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Abstract—Video streaming on mobile devices is on the rise.
According to recent reports, mobile video streaming traffic
accounted for 52.8% of total mobile data traffic in 2011, and it is
forecast to reach 66.4% in 2015. We analyzed the network traffic
behaviors of the two most popular HTTP-based video streaming
services: YouTube and Netflix. Our research indicates that the
network traffic behavior depends on factors such as the type of
device, multimedia applications in use and network conditions.
Furthermore, we found that a large part of the downloaded
video content can be unaccepted by a video player even though
it is successfully delivered to a client. This unwanted behavior
often occurs when the video player changes the resolution in a
fluctuating network condition and the playout buffer is full while
downloading a video. Some of the measurements show that the
discarded data may exceed 35% of the total video content.

Keywords—Video Streaming, Mobile Wireless, HTTP Progres-
sive Video, Over The Top Applications

I. INTRODUCTION

Today’s popular video streaming services such as YouTube
and Netflix use HTTP adaptive bit-rate streaming. A video
server contains several video files that encode the same video
content at multiple bit-rates. The available bandwidth in the
network and CPU capacity of the client’s device are considered
while the video player adjusts the quality of the video stream.
The video files are chopped into small segments, and then
streamed to the client over HTTP in order. This rate-adaption
mechanism leads to byte waste. For example, when the video
player changes the resolution while downloading a video, it
needs to re-download the entire size of the affected segment.

Regardless of the file format and size of the video, the
video server pushes the requested video content to the client
as network conditions permit. The video content is buffered
locally on the device and played back. Hence, if the network
bandwidth available to the client is smaller than the encoded
data rate of the video, the client has to wait until there is
sufficient space in the buffer. Regardless of whether the client
pauses or not while playing a video, some video content
providers such as YouTube and Netflix continue to push the
requested video content to the client. A part of the downloaded
video content can be discarded without being watched if the
client chooses to quit the video before it ends.

This paper focuses on HTTP adaptive bit-rate streaming;
we analyze YouTube and Netflix video streaming while watch-
ing the videos on mobile devices (iOS and Android) over
wireless networks (Wi-Fi, 3G and LTE) under varying network
conditions. As shown in Figure 1, we have designed the Video
Streaming Packet Collector (VSPC) to capture and analyze
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Figure 1: Mobile application traffic measurement testbed

TABLE I: iOS and Android mobile devices

Devices OS versions Resolutions Memory

iPad 3 iOS 6.1.2 1920x 1080 1024 MB

iPhone 4S iOS 6.1.2 640x 960 512 MB

iPhone 3G iOS 4.1.2 320x 480 128 MB

Nexus 7 Android 4.2.1 1280x 800 1 GB

Nexus S 4G Android 4.1.1 480x 800 512 MB

TCP/IP and HTTP packets on video streaming between a client
and a video server. Table I shows the hardware specifications
of the selected iOS and Android mobile devices that we used
in our experiments.

After analyzing HTTP-based video streaming, we found
that a video player establishes a sequence of TCP connections
by sending HTTP GET messages while playing a video. The
behavior of downloading video contents varies depending on
the operating system (OS), the hardware performance of the
client device and the network condition. Compared to Android,
for example, YouTube video player for iOS sends more HTTP
GET messages via new TCP connections to download the
duplicate video content for the possible re-play activities by
the client. We also found that Netflix video player for iOS
periodically requests a small chunk of the video (every 10
sec in our measurements) while the video player for Android
aggressively downloads the entire video at one go.

Our analysis indicates that a significant amount of video
content can be discarded by the video player, even without
being stored in the video playout buffer while the video is
being played. One of the measurements shows that over 35%
of the total video content can be lost by the video player. We
found that the undesirable behavior often occurred when the
video player established new TCP connections in the middle
of downloading the video that was requested previously. Once
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Figure 2: Video resolution with mobile
devices over Wi-Fi networks
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Figure 3: Video resolution with iOS and
Android over Wi-Fi networks
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Figure 4: Video resolution with an iPhone
3G over Wi-Fi, 3G and LTE networks

it opened a new TCP connection, it rejected all the incoming
video packets via the previous connection. In this paper, we
focus on finding the underlying causes. Based on the measure-
ments, we found out that the client received the unnecessary
video data when the video player changed resolutions and the
video playout buffer was full while downloading the video.

The remainder of the paper is organized as follows. The
second section of the paper looks at the related work. In
Section 3, we analyze YouTube and Netflix video streaming. In
Section 4, we focus on finding problems that cause the wasted
video data. We measure the amount of the discarded video
traffic in Section 5 and we address the future work in Section
6. Finally, we summarize our conclusions in Section 7.

II. RELATED WORK

Much work has been done to characterize HTTP-based
video streaming. Gill et al. [1] examined usage patterns, file
properties, popularity, referencing characteristics and transfer
behaviors of YouTube. Zink et al. [2] collected and analyzed
TCP/IP and HTTP headers of the packets between YouTube
servers and clients. The early works focused more on studying
the characteristics of video such as the distribution of video
durations and file sizes and how clients access the video
contents provided by YouTube.

Huang et al. [3] analyzed popular HTTP-based video
streaming services (Hulu, Netflix and Vudu), but this work
focused more on the bandwidth estimation conducted by the
client, using fixed devices (PCs and Play-station 3) in a wired
network. Finamore et al. [4] focused on analyzing the differ-
ences between the network traffic patterns when accessed from
PCs over wired networks and from mobile devices over Wi-
Fi networks. They showed that the video delivery mechanism
of YouTube is more efficient for PCs than for mobile devices
due to the limited capabilities of the mobile devices. Hoque
et al. [5] identified five different video streaming techniques
and analyzed the energy efficiency of mobile video streaming
services. Liu et al. [6] compared the performance of YouTube
video streaming between Android and iOS mobile devices.
They showed that the YouTube video player for iOS downloads
more duplicate video data than the video player for Android
while playing a video. Rao et al. [7] analyzed the traffic pattern
of YouTube and Netflix on both PCs and mobile devices, but

did not consider the video packet loss caused by the video
delivery mechanisms.

Our analysis is conducted while playing YouTube and
Netflix videos on iOS and Android mobile devices over Wi-
Fi, 3G and LTE networks. Different from the prior works, in
addition to studying the characteristics of HTTP-based video
streaming, we emphasize on finding the video packet loss
in HTTP-based video streaming. Noticeably, in some cases,
a significant amount of video content may be discarded by
a video player after transferring data over the limited air-
interface, resulting in undesirable waste of resources.

III. VIDEO STREAMING ANALYSIS

Using our testbed (Figure 1), we analyzed the network
traffic behaviors of YouTube and Netflix while playing several
videos on mobile devices (iOS and Android) over wireless
networks (Wi-Fi, 3G and LTE). The videos were played using
the video players provided by the content providers, not using
a Web browser installed in the user device.

As a baseline analysis, we performed the following three
experiments.

• Analyze and contrast the resulting resolution of the
same video contents delivered to several mobile de-
vices over Wi-Fi (Figure 2): These experiments in-
dicate that a device capable of higher performance
receives a video with higher resolution.

• Analyze and contrast the resulting resolution of the
same video contents delivered through iOS and An-
droid over Wi-Fi (Figure 3): These experiments in-
dicate that the video content size remains the same
regardless of the operating system.

• Analyze and contrast the resulting resolution of the
same video contents delivered to an iPhone 3G via
different access networks, namely Wi-Fi, 3G and
LTE (Figure 4): These experiments indicate that the
video content size remains the same regardless of the
network type.

These baseline experiments indicate that a video quality
is highly dependent on the hardware specification of a client’s
device when a client requests a video. The device specification
can be obtained from user-agent information in the HTTP GET
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Figure 5: TCP throughput while playing a YouTube video on an iPad 3 and a Nexus S 4G over Wi-Fi networks

messages. Hence, such device considerations directly impact
Over The Top (OTT) resource consumption, as well as the
Quality of Experience (QoE) for the end users. This poses
more significant challenges on the wireless capacity planning,
which traditionally has been ignoring the capacity consumption
per device type, and as it relates to an enforced QoE in a
wireless network.

We found that video players send multiple HTTP GET
messages to the video content servers while playing YouTube
and Netflix videos. For Netflix video streaming, the video
player for iOS generates periodic HTTP GET messages while
maintaining a single TCP connection. Each spike in Figure 6
corresponds to the video packet transmission from Netflix after
the periodic HTTP GET messages (10 sec on average) from the
client’s device. Unlike iOS, the Netflix video player running
on Android devices requests the whole video at one go. Each
time it establishes a TCP connection, it uses a different TCP
port number from the previous connection.

1
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Sequence number stalls: No 
traffic moves for 10 sec
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Figure 6: TCP sequence number with Netflix video trace over
LTE

Unlike Netflix, the traffic behavior is quite dynamic with
YouTube video servers. The dependency of HTTP GET mes-
sages varies depending on the operating systems (OSs). For
example, our experimental results show that the YouTube video
player for iOS typically sends more HTTP GET messages
via new TCP connections than the video player for Android
while playing a video. As investigated by Yao Liu et al.
in the paper [6], one of the reasons is that the YouTube
video player for iOS sends additional HTTP GET messages
to download duplicate video data for the possible re-play
activities after completely downloading the video content. We
see the additional traffic on iOS devices (Figure 5a), but do
not find it on Android devices (Figure 5b).

Using PCs, we established multiple video sessions via the
same wireless connection to load the network. Conditions
beyond the access point are unknown, since the testbed is
established over the public Internet. Under loaded network
conditions, the clients for YouTube and Netflix often expe-
rienced buffer underflow (downloading rate < video encoded
rate) and the display froze from time to time. Throughout the
measurements, we found that the YouTube video player for
iOS sent more HTTP GET messages than the video player
for Android. Our measurements indicate that the video player
for iOS established multiple TCP connections in parallel to
download small chunks of the video content, while the video
player for Android maintained a single TCP connection under
the congested network conditions.

IV. PROBLEM FINDING

Based on extensive measurements, we found that the video
players for YouTube and Netflix frequently terminated the TCP
connection while playing a video. They established another
TCP connection, followed by another HTTP GET message to
continue receiving the video content. For example, Figure 7 is a
simplified video traffic flow diagram between a user device and
a YouTube video content server. When a subscriber connects
to a video streaming server, the client sends an HTTP GET
message (packet 1). The GET request message includes the
unique id of the requested video and the user-agent information
such as the OS and the video player running on the device.
Then the server responds to the client with addresses of a video
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Figure 7: YouTube video traffic flows

content server which contains the video file and a Web content
server, where the client will download background images
from (packet 2). The client transmits a set of HTTP GET
messages (packets 3 and 4) in parallel to download background
images (packets 5 and 6). The images mostly consist of Web-
page images and snap shots of other videos related to the
requested video. When the client clicks the play button on
the application, it triggers downloading the video content from
the video content server by sending an HTTP GET message
(packet 7, TCP source port: 5000).

While downloading the video content, the YouTube video
player terminates the TCP connection by sending a TCP FIN
segment, and establishes another TCP connection (packet 11,
TCP source port: 5001). The frequency of this behavior varies
with different OSs and different network conditions. As we
addressed in the previous section, the video player for iOS
sends more HTTP GET messages via new TCP connections
when the network is busy. Our research findings point out that a
significant amount of video content that had been delivered via
the terminated TCP ports was discarded by the video player.
This behavior is clearly reflected in Figure 7 between the
packets 7 and 15. Packets 8, 9 and 10 are accepted by the client.
However, before receiving packet 12, the client transmitted
another HTTP GET message via a new TCP connection with
port number 5001 (packet 11). The client sends a TCP RST
packet to the server each time it receives a video packet via
the previous TCP connection. The TCP RST is used to stop the
server from sending more video content through the closed port
and prevent the server from being left in a state awaiting further
transmissions. The client may still receive some video packets
through the terminated TCP connection if the server already

sent them to the client before noticing that the connection
was terminated by the client. These on-fly packets are not
accepted by the client since the TCP connection had already
been terminated. In other words, the affected video content
is simply dropped without being stored in the video playout
buffer. Packets 12, 13, 14, 19, 20 and 21 are discarded by the
video player in this example.

A. Dependency of the GET messages on the network condi-
tions

Our measurements show that the video players sent more
HTTP GET messages via new TCP connections under fluc-
tuating network conditions. One possible explanation for this
behavior, as Finamore et al. also described in the paper [4], is
the following: for HTTP adaptive bit-rate streaming, a video
content server contains several video files that encode a single
video content at multiple bit-rates. Each encoded video file is
segmented, and the segment size is typically between two and
ten seconds [8], [9]. When a video player changes the quality in
the middle of downloading a segment, it needs to re-download
the whole size of the segment encoded at the newly requested
bit-rate.

B. Dependency of the GET messages on the device types

As did Liu et al. [6], we conjecture that the number of
HTTP GET messages sent via new TCP connections varies
depending on the playback buffer management policies of the
video players running on different OSs. When the playout
buffer is full, the video player has to stop downloading until
there is sufficient space in the buffer. During our experiments,
the YouTube video player for Android established a new TCP
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Figure 8: TCP throughput while playing YouTube and Netflix videos on a Nexus 7 and a Nexus S 4G over Wi-Fi networks

connection to resume downloading the video after consuming
a certain amount of video content stored in the buffer (Fig-
ure 8a). The Netflix video player for Android halted but kept
the current connection alive when the buffer was full until
it could process the video content (Figure 8b). The Netflix
video player for iOS downloaded a small amount of video
content every 10 sec, which was of benefit to avoiding the full
buffer cases. However, the YouTube video player for iOS also
established new TCP connections when the buffer was full.

V. ANALYSIS OF VIDEO PACKET LOSS

We calculated the amount of discarded video traffic using
Equation 1 while playing YouTube and Netflix videos on
the mobile devices over Wi-Fi, 3G and LTE networks. The
hundreds of randomly selected videos include various genres
(e.g., action movies, sports, live concerts and animations), pop-
ularity, length (from five minutes to a half hour for YouTube
and from 45 minutes to an hour for Netflix) and video quality
(high quality - HQ and high definition - HD).

During the experiments, we created fluctuating network
conditions by using RF devices that cause interference at
2.4 GHz, such as a baby monitor and a cordless telephone. We
also intentionally throttled the network bandwidth by using an
Iperf tool.

Discard ratio = 1−
Goodput

Total throughput
(1)

Table II shows the discard ratio on average. For YouTube,
Android devices show much less discard ratio compared to
iOS devices. That is because the YouTube video player for iOS
sends more HTTP GET messages via new TCP connections
than the video player for Android does in order to download
the duplicate video content for the potential re-play activities.
Due to the small size of memory, an iPhone 3G is likely to
establish more new TCP connections than an iPad 3 and an
iPhone 4S do while downloading a video. Hence, it typically
shows higher discard ratio especially when it downloads a
video at a high speed.

TABLE II: Discard ratio (%) on average while playing
YouTube and Netflix videos on mobile devices over Wi-Fi,
3G and LTE networks under varying network conditions

Devices YouTube Netflix

iPad 3 11.7 0.1

iPhone 4S 11.2 0.1

iPhone 3G 20.7 Not Avail.

Nexus 7 1.6 11.1

Nexus S 4G 9.2 1.4
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Figure 9: Total number of GETs vs. discard ratio (%) while
playing sample YouTube and Netflix videos on mobile devices
over Wi-Fi, 3G and LTE networks under varying network
conditions

For Netflix, the Netflix video player for iOS shows less
discard ratio than the video player for Android. As we stated
before, the video player for iOS periodically requests small
chunks of video content while maintaining a single TCP con-
nection. Therefore, it has an advantage of avoiding the cases
where the buffer is full while downloading a video. The Netflix
video player for Android aggressively downloads a video as
the YouTube video player for iOS does. In the experiments,
most of the discarding video content occurred when the video
playout buffer was full. Compared to a Nexus 7, a Nexus S 4G
shows less discard ratio. That is because only the lowest video
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resolution is viewed on the device without switching between
video resolutions due to the low hardware performance. We did
not experiment with an iPhone 3G because the current video
application for Netflix only supports iOS 5 or later.

As shown in Figure 9, the discard ratio does not proportion-
ally increase with the number of GET messages. Instead, it is
more related to other conditions such as the performance of a
client’s device, distance between the client and the server and
network conditions while downloading videos. For example,
if the round trip time (RTT) between a client and a server is
long and the receiver TCP window size is large, the new HTTP
GET message may arrive at the server with some significant
delay. During our measurements, especially under fluctuating
network conditions, we found out that the RTT between the
client and the content server was much longer than the one
when the network condition was good. During that delay, it is
possible for the server to send multiple video packets, which
will be discarded by the video client. Also, if the network
experiences congestion, the HTTP GET messages may be lost
and re-transmitted so that the discarded ratio may be further
increased. Our analysis shows that the total video content
discarded at the user device, after being delivered over the
wireless network, may exceed 35%. These resources should
be used for valuable purposes if appropriate actions are taken
to prevent delivering video content that gets wasted. In addition
to the wasted bandwidth on the down-link stream, which refers
to the down-link network resources, there is unnecessary up-
link traffic from the client (hosted by the mobile device) and
control traffic accompanying the up-link traffic, which would
have not occurred if there was no wasteful down-link traffic.

VI. FUTURE WORK

Towards the goal of improving the state of the art, we
plan to conduct more detailed measurements and analysis
of the behaviors of existing video players. We will identify
and categorize the shortcomings in using the plain HTTP
protocol that the video players are trying to overcome. We
aim at proposing a comprehensive solution for mobile video
streaming over wireless networks. We envision that our work
will combine the best practices of the existing video players,
possibly augmented by novel approaches.

VII. CONCLUSION

This paper explored and analyzed the two most popular
HTTP-based video streaming services (YouTube and Netflix)
in terms of video traffic behavior in the network, while playing
the videos on mobile devices (iOS and Android) over wireless
networks (Wi-Fi, 3G and LTE). In the experiments, we point
out that the network traffic behavior of downloading videos
on-line depend on hardware performance, software running on
clients’ devices and network conditions between clients and

video content servers. Our measurements show that when a
client requests a video, a video resolution is selected based
on the device types regardless of OSs on clients’ devices or
network interfaces that clients access.

While delivering a video to a client over HTTP, we also
observed that a noticeable amount of video content is being
discarded without being stored in the video playout buffer, after
the successful delivery to the client. The content discarding
occurs when a TCP connection is repeatedly terminated and
established. In such cases, the video packets arrived at the
client through the terminated TCP connection are discarded.
Our experimental results indicate that the average of video
packet loss is 10.1%, and it may exceed 35% of its com-
plete content. It causes additional mobile data usage paid
by consumers and misuse of the limited network resources.
Considering the increasing tendency of watching videos by
the mobile users and the scarcity of the network bandwidth,
understanding the application traffic behavior is very important
in order to develop an effective video delivery mechanism.
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