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ABSTRACT
Social media sites (e.g., Flickr, YouTube, and Facebook)
are a popular distribution outlet for users looking to share
their experiences and interests on the Web. These sites
host substantial amounts of user-contributed materials (e.g.,
photographs, videos, and textual content) for a wide va-
riety of real-world events of different type and scale. By
automatically identifying these events and their associated
user-contributed social media documents, which is the focus
of this paper, we can enable event browsing and search in
state-of-the-art search engines. To address this problem, we
exploit the rich “context” associated with social media con-
tent, including user-provided annotations (e.g., title, tags)
and automatically generated information (e.g., content cre-
ation time). Using this rich context, which includes both
textual and non-textual features, we can define appropriate
document similarity metrics to enable online clustering of
media to events. As a key contribution of this paper, we ex-
plore a variety of techniques for learning multi-feature sim-
ilarity metrics for social media documents in a principled
manner. We evaluate our techniques on large-scale, real-
world datasets of event images from Flickr. Our evaluation
results suggest that our approach identifies events, and their
associated social media documents, more effectively than the
state-of-the-art strategies on which we build.
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1. INTRODUCTION
The ease of publishing content on social media sites brings

to the Web an ever increasing amount of content captured
during—and associated with—real-world events. Sites like
Flickr, YouTube, Facebook and others host user-contrib-
uted content for a wide variety of events. These range
from widely known events, such as presidential inaugura-
tions, to smaller, community-specific events, such as annual
conventions and local gatherings. By automatically identify-
ing these events and their associated user-contributed social
media documents, which is the focus of this paper, we can
enable powerful local event browsing and search, to comple-
ment and improve the local search tools that Web search
engines provide. In this paper, we address the problem of
how to identify events and their associated user-contributed
documents over social media sites.

In one scenario, consider a person who is thinking of at-
tending “All Points West,” an annual music festival that
takes place in early August in Liberty State Park, New Jer-
sey. Prior to purchasing a ticket, this person could search
the Web for relevant information, to make an informed de-
cision. Unfortunately, Web search results are far from re-
vealing for this relatively minor event: the event’s website
contains marketing materials, and traditional news cover-
age is low. Overall, these Web search results do not convey
what this person should expect to experience at this event.
In contrast, user-contributed content may provide a better
representation of prior instances of the event from an at-
tendee’s perspective. A user-centric perspective, as well as
coverage of a wide span of events of varying type and scale,
make social media sites a valuable source of event informa-
tion.

Identifying events and their associated documents over
social media sites is a challenging problem, as social me-
dia data is inherently noisy and heterogeneous. In our “All
Points West” example, some photographs might contain the
event’s name in the title, description, or tag fields, while
many others might not be as clearly linked, with titles such
as “Radiohead” or “Metric” and descriptions such as “my fa-
vorite band.” Photographs geo-tagged with the coordinates
of Liberty State Park, and taken on August 8, 2008, are
likely to be related to this event, regardless of their textual
description, but not every photograph taken on August 8,
2008, or titled “Radiohead,” necessarily corresponds to this
event. Overall, social media documents generally include in-
formation that is useful for identifying the associated events,
if any, but this information is far from uniform in quality and
might often be misleading or ambiguous.



Our problem is most similar to the event detection task
[3, 26, 39], where the objective is to identify news events in a
continuous stream of news documents (e.g., newswire, radio
broadcast). However, our problem exhibits some fundamen-
tal differences from traditional event detection that originate
from the focus on social media sources. Specifically, event
detection traditionally aims to discover and cluster events
found in textual news articles. These news articles adhere
to certain grammatical, syntactical, and stylistic standards
that are appropriate for their venue of publication. There-
fore, most state-of-the-art event detection approaches lever-
age natural language processing tools such as named-entity
extraction and part-of-speech tagging to enhance the docu-
ment representation [19, 28, 40]. In contrast, social media
documents contain little textual narrative, usually in the
form of a short description, title, or keyword tags. Impor-
tantly, as discussed above, this text is often noisy, which
renders traditional event detection techniques undesirable
for social media documents, as we will see.

While social media documents present challenges for event
detection, they also exhibit opportunities not found in tra-
ditional news articles. Specifically, social media documents
have a wealth of associated “context,” including user-provid-
ed annotations (e.g., title, tags), and automatically gener-
ated information (e.g., upload or content creation time). In-
dividual features might be noisy or unreliable, but collec-
tively they provide revealing information about events, and
this information is valuable to address our problem of focus.

In this paper, we exploit this rich family of features to
identify events and their associated user-contributed social
media documents. We explore distinctive representations of
social media documents to analyze document similarity and
identify which documents correspond to the same events.
We define appropriate similarity metrics for each document
representation, and explore a variety of techniques for com-
bining them into a single measure of social media docu-
ment similarity. We experiment with ensemble-based and
classification-based similarity learning techniques, and use
them in conjunction with a scalable, online clustering algo-
rithm, to generate a clustering solution where each cluster
corresponds to an event and includes the social media doc-
uments associated with the event.

The contributions of this paper are as follows:

• We pose the problem of identifying events and their user-
contributed social media documents as a clustering task,
where documents have multiple features, associated with
domain-specific similarity metrics (Section 3).

• We propose a general online clustering framework, suit-
able for the social media domain (Section 4).

• We develop several techniques for learning a combination
of the feature-specific similarity metrics, and use them
to indicate social media document similarity in a general
clustering framework1 (Sections 5 and 6).

• We evaluate our proposed clustering framework and the
similarity metric learning techniques on two real-world
datasets of social media event content (Section 7).

We conclude with a discussion of the implications of our
findings and directions for future work in Section 8.

1One of these techniques was the focus of a preliminary,
earlier workshop paper describing this work [6].

2. RELATED WORK
We describe relevant related work in four areas: large-

scale data clustering, similarity metric learning, event detec-
tion and tracking in news streams, and social media analysis.

There are many approaches for clustering large-scale data
[7], trading off runtime performance and clustering accuracy.
One of the important issues to address when clustering large-
scale data is how to compare the data elements against each
other, which is hard to perform in a scalable manner as the
size of the data grows.

Several solutions were proposed to alleviate this problem.
One set of solutions [35, 41] uses statistical properties to
represent subsets of the data, thus reducing the total number
of comparisons to be made. In our work, we use this type
of solution by representing clusters according to the average
value of their elements. Other solutions propose “blocking”
methods [9, 20, 30], which partition elements into several
subsets based on a rough measure of similarity, and then use
traditional clustering algorithms (e.g., K-means, EM [7]) on
each subset, with exact similarities. We do not use blocking
techniques in this paper due to the online setting of our
problem, but plan to explore them in future work.

The choice of clustering similarity metric is critical for ob-
taining high-quality clustering solutions. In domains where
more than one similarity metric is appropriate, several ap-
proaches have been proposed for combining multiple similar-
ities using machine learning techniques [8, 10, 12, 13]. Other
metric learning approaches use optimization techniques to
learn a similarity metric from labeled examples directly [37,
14]. In our work, we define similarities tailored to the social
media domain, and use classification-based and ensemble-
based techniques to learn a combined similarity metric.

The topic detection and tracking (TDT) event detection
task [2] was studied in a notable collective effort to dis-
cover and organize news events in a continuous stream (e.g.,
newswire, radio broadcast) [3, 26, 39]. With an abundance
of well-formed text, many of the proposed approaches (e.g.,
[19, 40]) rely on natural language processing techniques to
extract linguistically motivated features. Makkonen et al.
[28] extracted meaningful semantic features such as names,
time references, and locations, and learned a similarity func-
tion that combines these metrics into a single clustering so-
lution. They concluded that augmenting documents with
semantic terms did not improve performance, and reasoned
that inadequate similarity functions were partially to blame.
In our setting, clustering performance improves when we
combine the variety of social media features judiciously.

Several efforts have focused on extracting high-quality in-
formation from social media [1, 4, 24, 27, 31]. Recent studies
[21, 22] showed that social media document tags are accu-
rate content descriptors, and could be used to train a social
tagging prediction system. Tags have also been used in con-
junction with other context [25] to retrieve Flickr images of
geographical landmarks. Directly related to our problem,
recent studies [11, 31] analyzed temporal and spatial tag
distribution to identify tags corresponding to events. How-
ever, they did not attempt to aggregate related social media
documents using the wealth of available context features.

3. PROBLEM DEFINITION
Given a set of social media documents associated with

events, the problem that we address in this paper is how to



identify the events that are reflected in the documents (e.g.,
President Obama’s inauguration, or Madonna’s October 6,
2008 concert in Madison Square Garden), and to correctly
assign the documents that correspond to each event. We
cast our problem as a clustering problem over social media
documents (e.g., photographs, videos, social network group
pages), where each document includes a variety of “context
features” with information about the document. Some of
these features (e.g., title, description, tags) are manually
provided by users, while other features (e.g., upload or con-
tent creation time) are automatically generated.

Problem Definition. Consider a set of social media docu-
ments where each document is associated with an (unknown)
event. Our goal is to partition this set of documents into
clusters such that each cluster corresponds to all documents
that are associated with one event.

As the formal definition of“event,”we adopt the version used
for the Topic Detection and Tracking (TDT) event detection
task over broadcast news [38].

Definition. An event is something that occurs in a certain
place at a certain time.

In our work, we make a couple of assumptions on the rela-
tionship between events and social media documents. First,
we will consider documents that are significantly related to
an event as being associated with the event, even if the doc-
uments were produced before or after the event. For in-
stance, in our “All Points West” example, a photograph of
a participant in front of the box office represents the au-
thor’s experience in the context of the event and will there-
fore be associated with the event for our purpose. Second,
we assume that each social media document corresponds to
exactly one event. However, our solution can easily be ex-
tended to handle cases where a single social media document
contains information pertaining to several events.

As a distinctive characteristic, social media documents in-
clude a variety of context features, that are dependent on the
type of document (e.g., a“duration”feature is meaningful for
videos but not photographs). However, many social media
sites share a core set of features. These features include: au-
thor, with an identifier of the user who created the document
(e.g.,“said&done” is the author of the photograph in Figure
1); title, with the “name” of the document (e.g., “DSC01325”
in Figure 1); description, with a short paragraph summariz-
ing the document contents (e.g., “radiohead performing” in
Figure 1); tags, with a set of keywords describing the doc-
ument contents (e.g., “apw, All, Points, West” in Figure 1);
time/date, with the time and date when the document was
published (e.g., August 9, 2008 in Figure 1);2 location, with
the location associated with the document (e.g., Jersey City,
New Jersey in Figure 1). These context features, collectively,
will prove helpful for capturing social media document simi-
larity and, in turn, for identifying events and their associated
documents, as we discuss next.

The context features of social media documents provide
complementary cues for deciding when documents corre-
spond to the same event. Individual features are often insuf-
ficient for this purpose, and all features collectively provide
more reliable evidence. For example, the description of two

2Often documents include their capture or creation time
(e.g., capture time/date, August 8, 2008 in Figure 1).

Figure 1: A Flickr photograph associated with the
“All Points West” event.

images associated with the same event (e.g., the “All Points
West” music festival) might be ambiguous or not very re-
vealing (e.g., the description might read “my favorite band
in concert” and “radiohead in concert”); but the images’
time/date and location (e.g., August 8, 2008, Liberty State
Park, New Jersey) provide strong evidence that they are
likely to be about the same event.

In this paper, we consider social media document rep-
resentations using each individual feature, according to its
type (e.g., textual or time data). In addition, we use one
textual document representation that contains the textual
representations of all the document features (title, descrip-
tion, tags, time/date and location). This representation,
all-text, is commonly used in similar domains [28].

Next, we list the key types of features we extract from so-
cial media documents, and define individual similarity met-
rics for these feature types. It is possible, of course, to clus-
ter the documents by using individual features according to
an appropriate similarity metric. Such clustering approach
is not ideal, since it does not exploit the wealth of context
features collectively; instead, the rest of this paper describes
strategies to consider the similarity metrics in concert.
Textual features: To exploit the various context features
for our clustering task, we define a similarity metric for each
feature, in a way that is appropriate for the feature’s domain.
Specifically, we represent each textual feature (e.g., title,
description, tags) as a tf.idf weight vector and use the cosine
similarity metric, as defined in [26], as the feature similarity
metric. We considered alternative tf.idf formulas such as
Okapi [32]; however, they did not perform as well, so we do
not discuss them further.

In addition, we considered traditional text processing steps
such as stop-word elimination and stemming, and examined
the effect of each of these with respect to the individual tex-
tual features. Instead of applying the same text processing
treatment to all features, we conjectured that only some fea-
tures would benefit from stemming or stop-word elimination.
For instance, since tag keywords are meant to be a select set
of descriptive keywords for the contents of the social media
document, stop-word removal may not be appropriate (e.g.,
removing the tag “All” in our “All Points West” example).
We empirically determined the appropriate stemming and
stop-word settings for each textual feature (see Section 7.1).
Time/date: For time/date, an important feature in social
media documents, we represent values as the number of min-



utes elapsed since the Unix epoch (i.e., since January 1st,
1970) and compute the similarity of two time/date values t1
and t2 as follows: if t1 and t2 are more than one year apart,
we define their similarity as 0 (it is unlikely that the corre-
sponding documents are associated with the same event in

this case); otherwise, we define their similarity as 1− |t1−t2|
y

,
where y is the number of minutes in a year.
Location: For location metadata associated with social
media documents, we represent values as geographical co-
ordinates (i.e., latitude-longitude pairs) and compute the
similarity of two locations L1 = (lat1, long1) and L2 =
(lat2, long2) as 1−H(L1,L2), where H(.) is the Haversine
distance [33], an accepted metric for geographical distance.

Having defined social media document representations and
corresponding similarity metrics, we proceed to describe the
general clustering framework in which they will be used.

4. CLUSTERING FRAMEWORK
We cast the problem of identifying events and their as-

sociated social media documents as a clustering problem.
Ideally, each cluster should correspond to one event and con-
sist of all of the social media documents associated with the
event. In this section, we discuss the choice of general clus-
tering algorithm for our scenario. Later, in Sections 5 and 6,
we describe the key technical challenge of choosing a simi-
larity metric for the clustering algorithm.

4.1 Scalable Clustering Approach
For our social media document scenario, the clustering

algorithm of choice should be scalable, to handle the large
volume of data in social media sites, and not require a pri-
ori knowledge of the number of clusters, since social media
sites are constantly evolving and growing in size. Therefore,
traditional clustering approaches that require knowledge of
the number of clusters, such as K-means and EM [7], are not
suitable for this problem. Other alternatives such as scalable
graph partitioning algorithms [23] do not capture the highly
skewed event distribution of social media event data due to
their bias towards balanced partitioning (we experimented
with graph partitioning algorithms, but do not discuss their
results here because of their poor performance for our task).

Threshold-based techniques are preferable for our cluster-
ing task since they can be tuned using a training set and
subsequently generalized to unseen data points. Hierarchi-
cal clustering algorithms [7], while relying on threshold tun-
ing, are also not appropriate since they require processing a
fully specified similarity matrix, which does not scale to the
large size of our data. Furthermore, online or incremental
clustering algorithms, which are able to handle a constant
stream of new documents, are also desirable in our setting,
where new documents are continuously being produced.

Based on these observations, we propose using a single-
pass incremental clustering algorithm with a threshold pa-
rameter that can be tuned in a principled manner during a
training phase. Single-pass incremental clustering has been
shown to be an effective technique for event detection in
textual news documents (e.g., [3, 39]). Such a clustering al-
gorithm considers each element in turn, and determines the
suitable cluster assignment based on the element’s similarity
to any exiting clusters. Specifically, given a threshold µ, a
similarity function σ, and documents to cluster d1, . . . , dn,
the algorithm considers each document di in order, and com-
putes its similarity σ(di, cj) against each existing cluster cj ,

for j = 1, . . . , k. (Initially, k = 0.) Different versions of the
algorithms differ on how this similarity σ is computed, as
we report in the next section. If there is no cluster whose
similarity to di is greater than µ, we increment k by one and
create a new cluster ck for di. Otherwise, di is assigned to
a cluster cj with maximum σ(di, cj).

Conceptually, the similarity σ(d, c) between a document d
and a cluster c can be computed by comparing the features
of d to those of the cluster c; or by directly comparing d
to the documents in cluster c. We propose methods that
use both approaches. In Section 5.2, we describe a simple
similarity approach, comparing d to every document in the
cluster c, and define σ(d, c) as the average similarity score,
for a suitable document similarity metric. In other words,

we can define σ(d, c) =
P
d
′∈c

σ(d,d
′
)

|c| . This approach is not

efficient because it requires comparing document d against
every document in cluster c.

A more efficient approach is to represent each cluster us-
ing the centroid of its documents. The centroid for a cluster
of documents c is defined as 1

|c|
P
d∈c d. Depending on the

document representation we use, our centroids are either
the average tf.idf score per term (for textual features such
as title, description, tags), the average time in minutes (for
time/date), or the geographic mid-point (for location) of all
documents in c. We use the centroid similarity approach in
the majority of our techniques, described in detail in Sec-
tions 5.3 and 6.

4.2 Quality Metrics and Thresholding
Regardless of the definition of σ(d, c), the clustering al-

gorithm on which we focus requires that we specify a clus-
tering threshold µ. To tune the clustering threshold for a
specific dataset, we run the clustering algorithm on a subset
of labeled training data. We evaluate the algorithm’s per-
formance on the training data using a range of thresholds,
and identify the threshold setting that yields the highest-
quality solution according to a given clustering quality met-
ric. Although several clustering quality metrics exist (see
[5]), in this paper we focus on Normalized Mutual Infor-
mation (NMI) [29, 34] and B-Cubed [5]. Both NMI and
B-Cubed balance our desired clustering properties: maxi-
mizing the homogeneity of events within each cluster, and
minimizing the number of clusters that documents for each
event are spread across.

NMI is an information-theoretic metric that was origi-
nally proposed as the objective function for cluster ensem-
bles [34]. NMI measures how much information is shared
between actual “ground truth” events, each with an associ-
ated document set, and the clustering assignment. Specif-
ically, for a set of clusters C = {c1, . . . , cJ} and events
E = {e1, . . . eK}, where each cj and ek is a set of documents,
and n is the total number of documents, NMI (C,E) =

I(C,E)
(H(C)+H(E))/2

, where I(C,E) =
P
k

P
j

|ek∩cj |
n

log
n·|ek∩cj |
|ek|·|cj |

,

H(C) = −
P
j

|cj |
n

log
|cj |
n

, and H(E) = −
P
k
|ek|
n

log |ek|
n

.
B-Cubed estimates the precision and recall associated with

each document in the dataset individually, and then uses
the average precision Pb and average recall Rb values for the
dataset to compute B-Cubed = 2·Pb·Rb

Pb+Rb
. For each document,

precision is defined as the proportion of items in the docu-
ment’s cluster that correspond to the same event, and recall
is defined as the proportion of documents that correspond
to the same event, which are also in the document’s cluster.



As we mentioned, the choice of clustering quality metric
serves an important role in our clustering approach since it
is used to tune the threshold parameter µ. Although NMI
and B-Cubed capture the clustering properties that we are
interested in, it is not always the case that the best thresh-
old setting according to NMI is also the best setting accord-
ing to B-Cubed. In order to select the threshold setting
that optimizes both metrics, we use a single aggregate ob-
jective function, equally weighing NMI and B-Cubed. The
threshold setting that yields the highest combined NMI and
B-Cubed value is considered Pareto optimal [16], meaning
that we cannot find a threshold with higher NMI value that
does not have a lower B-Cubed value and vice versa.

The general clustering algorithm that we described relies
heavily on a similarity metric σ for two documents, or for
a document and a cluster centroid. In the next section, we
turn to the crucial issue of learning such a similarity metric.

5. ENSEMBLE-BASED SIMILARITY
Our first attempt at learning a similarity metric using the

wealth of context features present in social media documents
involves an ensemble algorithm, which considers each feature
as a weak indication of social media document similarity, and
combines all features using a weighted similarity consensus
function. Ensemble clustering is an approach that combines
multiple clustering solutions for a document set [17, 18, 34].
The advantage of using an ensemble approach is its ability
to account for different similarity metrics during the cluster-
ing process, by learning their optimal weighted contribution
to the final clustering decision. In this section, we discuss
ensemble clustering and show how we use it in conjunction
with our clustering framework from Section 4 to learn a sim-
ilarity metric for social media documents.

5.1 Training a Cluster Ensemble
The first step in any ensemble clustering approach is to se-

lect techniques for partitioning the data. These techniques,
also referred to as clusterers (C1, . . . , Cm in Figure 2(b)),
produce mappings from documents to clusters. Each of
these techniques should have a unique view of the data
(R1, . . . , Rm in Figure 2(a)), or use a different underlying
model to generate the data partitions. For our ensemble, we
select clusterers that partition the data using the different
social media features and appropriate similarity metrics dis-
cussed in Section 3. In particular, we have separate cluster-
ers for features such as title, description, tags, location, and
time. Following the logic of Section 4, we use the single-pass
incremental clustering algorithm for each feature individu-
ally, with its respective similarity metric from Section 3, as
the clustering similarity function σ. We tune the thresh-
old µ for each clusterer on a set of training data, and select
the best threshold based on each clusterer’s performance ac-
cording to NMI and B-Cubed (see Section 4). This results
in clusterers C1, . . . , Cm (Figure 2(b)).

The clustering quality metrics described in Section 4 serve
two important purposes in our ensemble approach. The
first, as previously mentioned, is to select the most suit-
able threshold setting for each clusterer. The second is to
assign a weight to each clusterer, indicating our confidence
in its predictions. The weights are assigned during a super-
vised training phase, and used to determine each clusterer’s
influence on the overall ensemble similarity assignment. By
assigning a weight to a clusterer, we indicate how success-

Figure 2: A conceptual diagram of an ensemble clus-
tering process.

ful the clusterer was in capturing document similarity on a
training set, and therefore how likely it is to correctly indi-
cate the similarity of unseen document pairs.

Once we select the best performing thresholds for all clus-
terers C1, . . . , Cm, we set their weights w1, . . . , wm to equal
their respective combined NMI and B-Cubed scores (see Sec-
tion 4), and then normalize the ensemble weights such thatPm
i=1 wi = 1. In the conclusion of the ensemble training

phase, we have learned an optimal threshold for each clus-
terer, as well as a quality measure that will be used to weigh
its decisions. With this information, we can proceed in two
distinct ways: the first is to combine individual clusterer
partitions as in the traditional ensemble clustering setting
(Section 5.2), and the second is to use the learned weights
and thresholds as a model for the similarity metric, with-
out further influence from the individual clusterers (Section
5.3). We elaborate on these approaches next.

5.2 Combining Individual Partitions
The first ensemble-based approach for learning a similar-

ity metric follows the traditional cluster ensemble framework
[34] that utilizes individual clusterers’ similarity judgements
on document pairs. Given a set of documents, we use each
clusterer with its learned threshold to generate a clustering
partition. Our challenge is to develop a consensus mecha-
nism for combining these individual partitions into one clus-
tering solution (C1, . . . , Cp in Figure 2(d)). The consensus
that our algorithm reaches using the clusterers’ similarity
judgements is translated into a similarity metric σ that can
be used in our general clustering framework (Section 4).

Intuitively, each clusterer can be regarded as providing an
expert vote on whether two documents belong in the same
cluster. The consensus function we use is a weighted binary
vote: for a pair of documents (di, dj) and clusterer C, we de-
fine a prediction function PC(di, dj) as equal to 1, if di and
dj are in the same cluster, or 0 otherwise3. Then, we com-
pute the consensus score for di and dj as

P
C PC(di, dj)·wC ,

where wC is the weight of clusterer C. For example, consider
a simple ensemble with three clusterers Ctime, Clocation, and
Ctags, whose weights are 0.25, 0.35, and 0.4, respectively.
To determine whether two documents di and dj belong in
the same cluster, we compute their prediction PCi(di, dj),

3Similarly, we can use the raw similarity score.



for i = time, location, and tags. Suppose that Ctime and
Clocation cluster di and dj together, but Ctags does not. The
consensus score for di and dj is then 0.25+0.35=0.6.

Note that our general single-pass incremental clustering
algorithm has to compare each document to existing clusters
at every step. However, in the cluster ensemble formulation
we can only obtain the clusterers’ similarity judgements for
document pairs. Therefore, in order to measure the similar-
ity of a document to a cluster, we compare the document
against all documents in the cluster using the ensemble con-
sensus function, and use the average consensus score as our
similarity metric σ for this document-cluster pair.

Learning a similarity metric using this ensemble approach
yields a simple model, which uses a weighted combination of
the data partitions obtained by clustering according to each
feature and corresponding similarity metric from Section 3.
While this approach provides an intuitive solution that mod-
els the contribution of each feature-specific similarity in a
clustering context, one of its main drawbacks is its best-case
quadratic running time in the size of the dataset. In the
next section we therefore consider a modified approach that
still uses the knowledge from the ensemble training phase to
combine the similarity metrics, while at the same time im-
proves efficiency with a centroid-based similarity technique.

5.3 Combining Individual Similarities
The second ensemble-based technique for learning a simi-

larity metric uses the threshold and weight assignment learn-
ed in the ensemble training phase (Section 5.1) as the only
input from the clusterers. Instead of computing the consen-
sus score using the clusterers’ predictions, we now compute
the documents’ feature-specific similarity metrics directly
for documents and cluster centroids. The advantages of this
modification to the ensemble similarity learning technique
include improved efficiency via the use of centroids, provid-
ing for a more direct similarity metric computation.

To compute a similarity between a document di and a
cluster centroid cj , we repeat the same decision procedure
for the similarity of document pairs, described above, using
the weight and threshold that we learned for each individual
feature. For similarity metric σC , threshold µC , and weight
wC associated with a clusterer C, we define PC(di, cj) = 1
if σC(di, cj) > µC , and 0 otherwise, and compute the com-
bined similarity metric

P
C PC(di, cj) ·wC . Note that while

this formulation of the similarity function uses a weighted
binary vote for each feature, we could alternatively use the
raw similarity score, as we suggest in the next section.

Note that we can now use the one-pass incremental clus-
tering algorithm with centroid similarity. Depending on the
document representation, the centroid is either the average
tf.idf score per term (for textual features such as title, de-
scription, tags), the average time in minutes (for time/date),
or the geographic mid-point (for location). Centroids can be
updated and maintained with little cost using the general
framework described in Section 4.

6. CLASSIFICATION-BASED SIMILARITY
In this section, we use classification models to learn doc-

ument similarity functions for social media, as an alterna-
tive to the ensemble-based approach. In other words, we
use a classifier with similarity scores as features to predict
whether a pair of documents belongs to the same event. For-
mally, given a pair of social media documents di and dj , we

compute the raw similarity scores σ1(di, dj), . . . , σm(di, dj),
corresponding to the document features and individual sim-
ilarity metrics defined in Section 3. Using this formulation
of the problem, we are able to utilize a variety of state-of-
the-art classification algorithms for learning the combined
similarity metric σ for our general clustering framework.

Before we can train a similarity metric classifier, we must
decide whether to model similarity between document pairs,
or documents-centroid pairs. Although we are interested in
learning a similarity metric that would indicate when so-
cial media documents correspond to the same event, in our
clustering framework we compare documents to cluster cen-
troids. Therefore, we consider the alternative of training the
classifiers on document-centroid pairs, which more closely
resembles the data that the classifier will be predicting on.

Intuitively, modeling the similarity between documents
and centroids would be more robust than modeling similari-
ties between document pairs. For example, consider a pair of
documents that does not share any tag keywords, yet relates
to the same event. Having this pair as a positive example
(i.e., the documents are about the same event) provides a
false indication that tag keywords do not contribute towards
a positive prediction. For centroids, since we aggregate and
average the tf.idf values of multiple documents, there exists
a better chance to capture some overlapping tag vocabulary
and therefore to more accurately gauge the contribution of
tag keywords to the overall similarity metric.

One key challenge for the classification-based approach
involves the selection of training examples from which to
learn the similarity classifiers. Ideally, we want our model
to correctly predict the similarity of every document to every
other document (or every centroid, based on the modeling
choice described above) in the dataset. However, creating a
training example for each document (or document-centroid)
pair results in a skewed label distribution, since a large ma-
jority of pairs in the training dataset do not belong to the
same event. Using a classifier trained with a skewed label
distribution as a similarity metric for clustering yields poor
clustering solutions since this classifier is much more likely
to predict that two items do not belong in the same cluster,
thus splitting single events across many clusters.

With this in mind, we can outline two sampling strategies
to balance the label distribution. The first strategy is to take
the first n documents in the training set according to their
upload time, and compare them to every other document
in that set. In the case of document-centroid similarities,
we compare each document against all centroids, which are
computed in advance for each event. To handle the skewed
label distribution, we produce a random subsample of this
data such that the number of positive and negative exam-
ples is balanced. We empirically found that generating a
subsample that is 10% of the original sample size, with a
balanced label distribution, yields a more accurate similar-
ity metric classifier than other sampling techniques that we
experimented with.

The second strategy is to select documents at random,
pairing each document with one positive example, randomly
selected from the set of documents that share the same
event, and one negative example, randomly selected from the
set of documents related to different events. For document-
centroid pairs, we only have one choice for the positive exam-
ple per document, but we randomly select among different
event centroids for the negative document-centroid pair.



For this family of similarity metric learning techniques,
we consider a variety of state-of-the-art classification algo-
rithms, and train them using the datasets discussed in this
section. We elaborate on our choice of classifiers and the
training process in the next section.

7. EXPERIMENTS
We evaluated our work on a large dataset of real world

data from popular social media sites, with these goals:

• Examine which sampling and modeling methods, and
what classification algorithms perform well for the classif-
ication-based approach.

• Determine which similarity metrics and techniques per-
form best for the event identification task.

• Gain insight about these approaches by analyzing the
weights that the similarity metric learning approaches
assign to each feature-specific similarity.

We report on the dataset and experimental settings, then
turn to the results of our experiments.

7.1 Experimental Settings
Data: For our experiments, we collected two datasets

of labeled event photographs from Flickr, a popular photo-
sharing service, using the site’s API4. The Upcoming dataset
consists of all photographs that were manually tagged by
users with an event id corresponding to an event from the
Upcoming event database5. These Upcoming tags provide
the “ground truth” for our clustering experiments (see Sec-
tion 4). Each photograph corresponds to a single event, and
each event is self-contained and independent of other events
in the dataset. The Upcoming dataset contains 9, 515 unique
events, with an average of 28.42 photographs per event, for
a total of 270, 425 photographs, taken between January 1,
2006, and December 31, 2008.

Our second dataset is the Last.fm dataset, which consists
of all Flickr photographs that were manually tagged by users
with an id corresponding to an event from the Last.fm music
event catalog6. The Last.fm dataset contains 24, 958 unique
events, with an average of 23.84 photographs per event, for
a total of 594, 946 photographs, taken between January 1,
2006, and December 31, 2008.

The context features associated with each photograph in-
clude the title, description, tags, time/date of capture, and
location. On average, 32.2% of the photos include location
information in the form of geo-coordinates. On this subset
of the data, we perform reverse geo-coding using the Flickr
API, to obtain a textual representation of the location of
each photo, which we use for the all-text feature.

Training Methodology: We train our clustering algo-
rithms on data from the Upcoming dataset, and test them
on unseen Upcoming data, as well as Last.fm data. We or-
der the photographs in the Upcoming dataset according to
their upload time, and then divide them into three equal
parts. We use the earliest two thirds of the data as training
and validation sets. We use the training set to tune the clus-
terer thresholds for the ensemble-based techniques and train
classifiers for the classification-based techniques. We use the
validation set to learn the weights for the ensemble and tune

4http://www.flickr.com/services/api
5http://www.upcoming.org
6http://www.last.fm/events

the threshold for the general single-pass incremental cluster-
ing algorithm. The last third of the Upcoming data and all
of the Last.fm data are used as test sets, on which we re-
port our results. We chose a time-based split since it best
emulates real-world scenarios, where we only have access to
past data with which we can train models to cluster future
data. We train our similarity metrics once and for all, with-
out adapting them as we observe more data. Dynamically
modifying the similarity metrics as new documents arrive is
reserved for future work.

Document Representations: The Lemur Toolkit7 is
used to index our documents according to each textual rep-
resentation discussed in Section 3. These representations
include Title, Tags, Description, and All-Text. We use all
possible settings of stemming and stop-word elimination for
each document representation, and create a separate index
for every possible combination. We use the index to compute
tf.idf vectors for each textual document representation. Fi-
nally, we create additional document representations using
numeric time/date (Time/Date-Proximity) and location co-
ordinates (Location-Proximity) as described in Section 3. If
a document representation cannot be created due to missing
data (e.g., an unspecified location), we assign it a similarity
value of 0 to any other document for this representation.

Weighing Clusterers: For the ensemble-based approa-
ches, we use Lemur’s single-pass incremental clustering im-
plementation to cluster the training data according to each
document representation and corresponding similarity met-
ric from Section 3. We tune the clustering threshold for
each clusterer using the training set, considering thresholds
in the range [0, 1], with 0.05 increments. For time and loca-
tion features, we apply log scaling to the similarity metric
in order to perform the selection of thresholds with a finer
granularity, as appropriate to those metrics. For each doc-
ument representation, we select the threshold that yields
the highest combined NMI and B-Cubed score (Section 4).
For textual document representations, we select one thresh-
old setting per feature and associated parameter settings
(stemming and stop-word elimination). We use the best-
performing setting for each textual representation when cre-
ating future document representations for that feature. The
best settings for Title and Description were no stemming or
stop-word elimination, while Tags benefited from stemming
and All-Text from stop-word elimination.

We proceed to cluster the validation set according to each
document representation and corresponding similarity met-
ric, using the selected threshold setting for each clusterer.
To determine the weight of each clusterer, we compute its
combined NMI and B-Cubed scores on the validation set.
Finally, we run the ensemble algorithm on the validation set
using the selected clusterers, and tune the clustering thresh-
old for the ensemble approach using NMI and B-Cubed.

Training Classifiers: To train similarity classification
models (Section 6), we used the training set to construct four
training samples according to the modeling and sampling
strategies that we discussed in Section 6:

• TIME-DD: all possible document-document pairs from
the first 500 documents ordered according to their time
of creation.

• RANDOM-DD: 10,000 document-document pairs chosen
randomly from all possible pairings between documents.

7http://www.lemurproject.org



• TIME-DC: all possible document-centroid pairs from the
first 500 documents, ordered according to their time of
creation, and their corresponding centroids.

• RANDOM-DC: 10,000 document-centroid pairs chosen
randomly from all possible pairings between documents
and centroids.

For the document-centroid modeling approach, we computed
all event centroids based on the ground truth labels.

We used the Weka toolkit [36] to build classifiers for all
of the above training sets. We explored a variety of classi-
fier types and selected two techniques that yielded the best
overall performance in preliminary tests using the training
set, although differences were not substantial. We selected
support vector machines (Weka’s sequential minimal opti-
mization implementation), and logistic regression.

Comparing Techniques: We consider all individual clu-
sterers as baseline approaches, namely, All-Text, Title, De-
scription, Tags, Time/Date-Proximity, and Location-Proxi-
mity. We compared them against our clustering approaches
using four different similarity metric learning techniques:

• ENS-PART: Ensemble-based approach, combining par-
titions (Section 5.2).

• ENS-SIM: Ensemble-based approach, combining similar-
ity scores (Section 5.3).

• CLASS-SVM: Similarity classifier, using Support Vector
Machines (Section 6).

• CLASS-LR: Similarity classifier, using Logistic Regres-
sion (Section 6).

To evaluate the clustering solutions of these different tech-
niques, we use the clustering quality metrics of Section 4,
namely, NMI and B-Cubed.

7.2 Experimental Results
We begin with the task of finding the best modeling and

sampling strategies for the classification-based techniques,
which is of course critical for the performance of these ap-
proaches. We trained a classifier using support vector ma-
chines and logistic regression for the different sampling and
modeling strategies, and tested the quality of clustering re-
sults for each classifier and sampling method. The results
are shown in Table 1, indicating that time-based sampling is
consistently superior to random sampling according to both
NMI and B-Cubed. Similarly, the document-centroid model-
ing techniques yield higher-quality clustering solutions than
techniques that model similarity between document pairs.
We therefore proceed to test our classification-based tech-
niques using classifiers trained on the time-based document-
centroid training sample (TIME-DC).

Next, we compared our similarity metric learning tech-
niques against each other, as well as against the top per-
forming individual clusterers, on the Upcoming test set. Ta-
ble 2 presents the clustering performance of all similarity
metric learning techniques, as well as the All-Text and Tags
clusterers, in terms of NMI and B-Cubed. Not surprisingly,
the top performing individual clusterer is All-Text.

More importantly, the similarity metric combination ap-
proaches that we consider in this work outperform all in-
dividual clusterers, including All-Text (which also considers
all document features, but with a single text-based simi-
larity metric). Among the similarity metric learning tech-

Algorithm Sample NMI B-Cubed
CLASS-SVM TIME-DC 0.9492 0.8226
CLASS-SVM TIME-DD 0.9396 0.7868
CLASS-SVM RANDOM-DC 0.9082 0.6954
CLASS-SVM RANDOM-DD 0.8227 0.4180
CLASS-LR TIME-DC 0.9508 0.8258
CLASS-LR TIME-DD 0.9360 0.7743
CLASS-LR RANDOM-DC 0.8991 0.6483
CLASS-LR RANDOM-DD 0.8257 0.4360

Table 1: Performance of classification-based tech-
niques using different sampling strategies over the
validation set.

Algorithm NMI B-Cubed
All-Text 0.9240 0.7697

Tags 0.9229 0.7676
ENS-PART 0.9296 0.7819
ENS-SIM 0.9322 0.7861

CLASS-SVM 0.9425 0.8095
CLASS-LR 0.9444 0.8155

Table 2: Performance of all similarity metric learn-
ing techniques and the best individual clustering
techniques over the Upcoming test set.

niques, the classification-based techniques CLASS-SVM and
CLASS-LR outperform the ensemble-based techniques ENS-
PART and ENS-SIM. CLASS-LR is the best overall tech-
nique in terms of both NMI and B-Cubed. The least success-
ful of our techniques is ENS-PART, implying that learning
the similarity metric directly is more effective than com-
bining individual feature-based clustering partitions. Some
events identified by CLASS-LR are shown in Table 3.

We also compared our techniques using the Last.fm data-
set as an independent test set (with the training and vali-
dation set from the Upcoming dataset). As Figure 3 shows,
the test on the Last.fm dataset resulted in similar, albeit
not identical, outcomes. In that test, all similarity met-
ric learning techniques still outperform the baselines, but
the top-performing technique is now ENS-SIM. Recall that
the analysis of our techniques is performed over data from
Flickr, with one dataset containing content annotated with
events from Upcoming, and the other from Last.fm. Dif-
ferent properties of Last.fm events compared to Upcoming
events could be the source of these relative performance dif-
ferences (e.g., Tags similarity is better than All-Text for the
Last.fm dataset), in which case ENS-SIM may be most ro-
bust in the face of these differences. Interestingly, the strong
results for all methods over Last.fm are encouraging, as some
real-world scenarios will require training on datasets differ-
ent than the eventual data to be analyzed.

To determine if our results are statistically significant, we
executed a set of tests by partitioning the Upcoming test
dataset into 10 equal subsets according to document upload
time, and ran each clustering technique on every subset.
We discuss detailed results only for the NMI metric (while

Title Date Location #Docs
Street Art Photowalk 7/14/08 London 411

Cherry Blossom Festival 4/12/08 San Francisco 269
American Music Union 8/8/08 Pittsburgh 209
How Weird Street Fair 5/4/08 San Francisco 52

Table 3: Some events identified by CLASS-LR.



0.88 

0.9 

0.92 

0.94 

0.96 

A B C D E F 

Upcoming Last.fm

NMI

B-
Cubed

dataset:
metric:

0.88 

0.9 

0.92 

0.94 

0.96 

A B C D E F 

0.6 

0.65 

0.7 

0.75 

0.8 

0.85 

A B C D E F 

0.6 

0.65 

0.7 

0.75 

0.8 

0.85 

A B C D E F 

Figure 3: NMI and B-Cubed scores on the Upcoming
and Last.fm test datasets for All-Text (A), Tags (B),
ENS-PART (C), ENS-SIM (D), CLASS-SVM (E),
and CLASS-LR (F).

Figure 4: Comparison of all techniques using the
Nemenyi test. Groups of techniques connected by a
line are not significantly different at p < 0.05.

trends for B-Cubed were equivalent to trends observed for
NMI, the differences between approaches as measured by B-
Cubed were not as significant). We used the Friedman test
[15], a non-parametric statistical test for comparing a set
of alternative models. The Friedman test’s null hypothesis
states that all the approaches have similar performance. The
results of the test comparing the 10 runs show that we can
reject this null hypothesis with p < 0.05, meaning that the
performance of some approaches is significantly different.

A post-hoc statistical test is required to expose the rela-
tionship between the individual techniques. Figure 4 shows
the results of the post-hoc analysis of our data using the Ne-
menyi test and the graphical representation as proposed by
Demšar to visualize the relationships between the techniques
[15]. Techniques are plotted according to their average rank
for the test datasets, and a line spans each group of tech-
niques that is not different in a statistically significant man-
ner. The figure demonstrates that, for the 10 tests, while
CLASS-SVM and CLASS-LR are significantly better than
both baseline approaches, they are not significantly different
from each other, or the other similarity metric learning tech-
niques, at the p < 0.05 level. For p < 0.1, we can claim that
CLASS-SVM is also significantly better than ENS-PART.

To gain more insight into the results of the various tech-
niques, we analyzed the similarity metric models. Since the
techniques use different modeling assumptions, we examined
their differences in terms of the weight coefficients that they
assign to each similarity feature. These coefficients, while
not comparable in absolute terms, hint at the relative con-
tribution of each similarity feature towards the model’s final
similarity prediction. CLASS-LR considers All-Text as the

most important feature, followed by Time/Date-Proximity.
CLASS-SVM, on the other hand, considers Title, followed
by All-Text as the top two features. A surprising result
is that both classifiers agree that, in the presence of all
other features, Location-Proximity is an indication of doc-
ument dissimilarity. In contrast, our ensemble model gives
the lowest weights to Title and Time/Date-Proximity, and
Location-Proximity has the third highest weight (after Tags
and All-Text). These observations can form the basis of a
more detailed analysis in the future.

8. CONCLUSIONS
In this paper, we presented several novel techniques for

identifying events and their associated social media docu-
ments, by combining multiple context features of the docu-
ment in a variety of disciplined ways. We proposed a gen-
eral framework for identifying events in social media docu-
ments via clustering, and used similarity metric learning ap-
proaches in this framework, to produce high quality cluster-
ing results. We discussed and experimented with ensemble-
based and classification-based techniques, tailored to the so-
cial media domain, for combining a set of similarity metrics
to predict when social media documents correspond to the
same event. Our experiments suggest that our similarity
metric learning techniques yield better performance than the
baselines on which we build. In particular, our classification-
based techniques show significant improvement over tradi-
tional approaches that use text-based similarity.

As the amount of social media content grows, research will
have to identify robust ways to organize and filter that con-
tent. We provided a first step toward organizing media from
real-life events. In future work, we will learn to distinguish
between event and non-event documents (our current work
focuses on event documents only). Other future directions
include learning to rank events (e.g., to decide which events
to feature in a browsing application), and presentation and
summarization of event content [24].
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