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ABSTRACT
In many practical applications, one is interested in gener-
ating a ranked list of items using information mined from
continuous streams of data. For example, in the context
of computer networks, one might want to generate lists of
nodes ranked according to their susceptibility to attack. In
addition, real-world data streams often exhibit concept drift,
making the learning task even more challenging. We present
an online learning approach to ranking with concept drift,
using weighted majority techniques. By continuously mod-
eling different snapshots of the data and tuning our measure
of belief in these models over time, we capture changes in
the underlying concept and adapt our predictions accord-
ingly. We measure the performance of our algorithm on
real electricity data as well as a synthetic data stream, and
demonstrate that our approach to ranking from stream data
outperforms previously known batch-learning methods and
other online methods that do not account for concept drift.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation, Performance

Keywords
Concept drift, data streams, online learning, ranking

1. INTRODUCTION
In this paper we present a solution to the problem of gen-

erating ranked lists of a given set of items in a dynamic,
real-time setting. Each item in our system is represented
by a collection of attribute-value pairs, where the values
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can change over time. We apply inductive learning tech-
niques to past data to construct predictive models so that
when new data arrives, we can generate a new ranking that
is accurate with respect to some phenomenon of interest.
This application was inspired by the problem of generating
real-time rankings of the components of an electrical system
according to their susceptibility to impending failure based
on the current status of the network and on information
gathered during past failures. Specifically, in this applica-
tion, we want components that are about to fail to appear
toward the top of the current ranking so that engineers and
operators can focus their attention on the most-at-risk com-
ponents and can thus take appropriate measures to prevent
failures or mitigate their consequences. We believe that our
proposed solution can be useful for other applications and
therefore present the problem and our solution in a generic
form.

This problem presents several challenges. First, in order
to build predictive models we use supervised machine learn-
ing algorithms. Most successful algorithms in practice do
not handle dynamic data, hence we need to convert the in-
coming stream of data to a batch representation. We do
this by using fairly standard window-based aggregations of
the time-dependent data. We will not include any details
on this data-assembly process since this is not the main fo-
cus of this paper. More importantly, in real applications
one cannot assume that the underlying system is static. For
example, the electricity system changes quite dramatically
depending on the environmental conditions, and a computer
network may behave differently at different times of the day
or the week due to different usage patterns. Thus, models
trained at a given time may perform well for a while but
could cease to do so if there is a change of context in the
underlying system. We assume that these changes of con-
text happen and alter the behavior of the underlying system
that we are trying to model, but when or why this happens
is not known to the algorithm. This phenomenon is gener-
ally referred to in the literature as learning in the presence
of concept drift [20, 16, 37, 22, 35, 42, 38, 8, 41, 43] and is
the focus of this paper.

Our solution is based on the weighted majority algorithm
[28], an online learning algorithm that given a set of “ex-
perts” (predictors that are used as black boxes) uses a com-
bination of the experts’ predictions with strong theoretical
worst-case performance bounds. The weighted majority al-
gorithm and its multiple variants [7, 13, 4, 27, 40] keep a
weight or score for each expert, updating it as new feedback
of the experts’ performance becomes available. All these al-



gorithms are based on the plausible assumption that experts
that have performed well recently are more likely to perform
well in the future than experts that have had poor perfor-
mance. Clearly, this assumption breaks down in presence of
concept drift. In order to account for concept drift, we have
extended this algorithm in several ways. First, the original
formulation in [28] uses a fixed set of experts available in the
beginning of the learning process. In our case, we periodi-
cally add new experts as we gather new training data over
time. Therefore, we need to drop experts to avoid having to
store and monitor an infinitely growing set of experts. Sec-
ondly, our algorithm uses rankers as underlying predictors,
whereas all algorithms in the learning from experts’ frame-
work are designed for classification tasks. Finally, we have
included several ad-hoc parameters to control when and how
new experts are added, as it will be explained in Section 4.

The paper is organized as follows. Section 2 we briefly
survey related work and situate our work in context; Sec-
tion 3 presents the problem formally and introduces some
notation and concepts; Section 4 describes OnlineRank,
our proposed solution to the problem; Section 5 presents
experimental results in the context of the feeder ranking ap-
plication, and Section 6 concludes with a discussion of the
system and some directions for future work.

2. RELATED WORK
As sensor, communication, computing and storage devices

improve, the need of algorithms that can keep up with,
make sense of and exploit the tremendous flow of informa-
tion grows. It is therefore not surprising that the problem
of dealing with concept drift in the context of learning from
data streams is receiving so much attention recently, see e.g.
[20, 16, 37, 22, 35, 42, 38, 8, 41, 43].

When one learns from a data stream, examples are pre-
sented one at a time. Hence, online learning algorithms
are ideal for this task, as they are able to process exam-
ples incrementally as they arrive. Therefore a straightfor-
ward solution to learning from data streams is to use online
learning algorithms directly (e.g. perceptron, winnow, etc.
[2]). Unfortunately, many successful machine learning algo-
rithms are batch in the sense that all examples need to be
available as soon as the learning process starts. In order to
use these algorithms in the context of learning from data
streams one needs to transform them into online learning
algorithms. This sometimes results in complicated methods
that require Ω(1) time per example, although oftentimes
speed-up heuristics and approximations exist that alleviate
this problem. Examples of typically batch algorithms with
online versions are decision trees [11, 20, 39], SVMs [10, 14,
30], and bagging and boosting [31, 32].

An alternative approach is what we refer to as the wrap-

per approach. In the wrapper approach, the batch machine
learning algorithms are not modified but are used within a
meta-learning layer that applies them to different subsets of
the input data and combines them in multiple ways. The
most common strategy in wrapper algorithms is to divide
the input stream of data into subsets of sequential data (or
“data windows”), and to repeatedly train models with the
batch machine learning algorithm using only one or sev-
eral contiguous windows of data at a time. The algorithms
proposed to date within this approach differ in how a sin-
gle or a combination of window-specific models are used to
make future predictions. Within this group of algorithms

we distinguish two broad categories: the ones that maintain
a single model and replace it with newer ones to cope with
the concept drift, and ensemble-based methods that keep a
set of models and use combinations of the existing models to
make predictions. An example of the former type is the work
of Gama et al. [16, 36, 15, 17], where a process monitors
the error rate of the current predictive model and when-
ever the performance significantly degrades, a new model is
generated. Most of the existing work, however, falls into
the category of ensemble-based wrappers. An early exam-
ple of this is the system of [42], where in addition to dealing
with concept drifting using a weighted ensemble of classi-
fiers, they also introduce the notion of hidden context : as-
suming that the concept drift is due to a change of a hidden
context, they store representations successful under differ-
ent contexts so that their algorithm can take advantage of
the already learned concepts if some previous context reap-
pears. This meta-learning level should be clearly beneficial
if the concept drift is cyclic and the same contexts re-appear.
This meta-level idea of hidden context is exploited also in
the system of [43]. Other ensemble-based algorithms that
use averages or weighted averages for future predictions in-
clude [37, 38, 41, 8]. All these algorithms are similar in that
they use heuristics to estimate the predictive accuracy of
the ensemble models and use these to weigh models’ pre-
dictions. Additionally, the system in [38] favors ensembles
with diverse members since it has been empirically shown
that having a diverse set of models benefits predictive ac-
curacy. Additionally, the work of Klinkenberg et al. [24,
22, 23, 25, 35] describes and compares several strategies for
dealing with concept drift such as selecting base learners
adaptively, selecting window size adaptively, selecting ex-
amples adaptively, etc.

Our solution falls into the category of ensemble-based
wrappers. The main difference is that instead of using heuris-
tics or boosting-like combinations of underlying models we
follow the framework of learning from expert advice. This
framework has been thoroughly studied in the theory com-
munity, and it offers very strong performance guarantees.
After the seminal paper of [28] several variants and exten-
sions have been proposed [7, 13, 4, 27, 26, 40]. For example,
[13] can handle the fact that experts may choose not to make
predictions for a while. The algorithm in [4] works well if
the concept drift is only among a small number of experts.
Although this algorithm has been developed in the theory
community, it has been applied to several domains success-
fully [3, 19, 9].

Our solution extends the existing algorithms in several
ways: (1) it handles concept drift by continually adding new
experts to the ensemble, (2) it has been adapted to the prob-
lem of ranking, and (3) it uses several ad-hoc parameters to
control various aspects of the learning and meta-learning.
The algorithm of [26] uses a similar idea of adding and drop-
ping experts throughout the execution of the algorithm but
differs from our approach in the type of base learners they
use, in the set of tunable parameters, and in the fact that
we are performing ranking instead of classification or regres-
sion.

3. THE REAL-TIME RANKING PROBLEM
Consider a network of interconnected nodes, where each

node generates a stream of data representing its state in-
formation. We want to rank these nodes according to some



event of interest, for instance susceptibility to failure in elec-
trical grids or vulnerability to attack in computer networks.
We assume that these events are observable and that we
have access to past observations of events as well as state
information of the nodes during the events, and so we are
dealing with a supervised learning problem.

Any real-time ranking system should generate rankings
that change over time in order to reflect the changing state
of the network. Hence, we assume that Ranking(t) is a
ranked list of nodes in the network at time t, and Rank(n, t)
is the rank of node n at time t. How quickly the system
should update its rankings will be driven by how quickly
new data becomes available or by the requirements of the
actual application. The system is effectively guessing that
nodes at or near the top of the ranking are more likely to
be involved in the next occurrence of the event of interest
than nodes ranked low in the list. Naturally, we want these
guesses to be accurate and therefore we use the following
natural performance metric to measure the quality of the
rankings over time.

We use pairs (n, t) to represent the fact that a node n has
been involved in an event at time t. Let Events(start, end)
be the set of event pairs {(ni, ti)}i listing all the events ob-
served between start and end in a network with N nodes.
Assume there are K events between the start and end dates.
To evaluate the performance of a system generating time-
varying rankings Ranking(t) we use the formula

performance({(ni, ti)}i) = 1−
1

K

K
X

i=1

Rank(ni, ti)

N
(1)

For example, in the context of electrical component fail-
ures in an electricity grid, suppose that the network consists
of 943 components and that 3 of them fail while ranked at
positions 100, 231, and 51. The corresponding performance
is 1− 1

3

`

100+231+51

943

´

≈ 0.865. Notice that the higher up in
the ranking a failure is, the better (higher) the performance
is; 0.5 is the expected value if rankings are random.

In order to produce time-varying rankings of the nodes,
we must capture snapshots of the continuously streaming
data and assemble training and test sets. We assume that
the set of attributes for each node consists of static data,
which changes rarely, and dynamic data that continuously
changes over time. It is the dynamic data that requires us
to constantly adapt our models to reflect the latest state of
the system.

Training data and ranking models. Training datasets
are assembled with respect to date intervals, capturing the
state of (selected) nodes in the network during the specified
period. We assume the system has access to the procedure
TrainingDataset(start, end) that operates as follows: for
each event within the given time interval, it samples nodes
involved in the event and nodes that were not involved, col-
lects their data from the data stream at the time of the
event and labels them according to whether the nodes were
involved in the event or not. 1 The ranking models are ob-
tained by applying machine learning ranking algorithms to
training data; these models attempt to make generalizations
about how the static and dynamic attributes relate to the
labels seen in the training datasets.

1To be precise, we have experimented with alternative ways
of assembling datasets but for brevity we will omit an ex-
planation of these in this paper.

Test data and rankings. Test or snapshot data at a
given time t is compiled by obtaining the readings of all dy-
namic attributes at time t for each node, together with the
known static values. The procedure Snapshot(t) assembles
test datasets. Given a ranking model mi, the ranking con-
structed by applying mi to the snapshot at time t is denoted
by Rankingi(t) = mi(Snapshot(t)).

The problem. Given an interconnected set of nodes in
a network with associated data streams reflecting the state
of each node over time, produce a ranking of the nodes in
real-time such that the performance over time as given by
Formula (1) with respect to some observable event is maxi-
mized.

4. DESCRIPTION OF THE ALGORITHM
Our online ranking approach consists of multiple batch-

trained models that we refer to as experts, and a meta-model
which determines how to combine the expert predictions.
We use training datasets from different time intervals and a
diverse base of learning algorithms to create a diverse base
of experts. To assess the quality of experts’ predictions we
use Formula (1) on each expert’s ranking and use this as
feedback to the meta-model. While the experts are used to
model different states of the system, the meta-model is used
to determine which captured states are better at predicting
the current state of the system. The meta-model is an adap-
tive (online) learning model, meaning that the training and
testing is performed by feeding in each example, receiving
the model’s prediction, and altering the model based on the
loss of the experts with respect to the example. The set of
labeled examples for the meta-model in our case consists of
the nodes that participate in the event of interest. For exam-
ple, if we are interested in generating a ranking of electrical
components according to their failure susceptibility, our la-
beled examples would consist of the electrical components
that failed. The final ranking output of the meta-model is a
weighted average of experts’ rankings, where the weight of
each expert translates to the meta-model’s measure of belief
in that expert.

Our online ranking algorithm is based on the principle
of learning from expert advice, and draws on ideas from
the Continuous Weighted Majority algorithm [28]. To cope
with concept drift, new models, trained with the most re-
cent data, are periodically added to the existing ensemble.
In order to avoid growing an infinitely large ensemble, mod-
els are removed according to a function of their age and
performance; the age of a model is the number of days since
its creation.

Periodically, we train and add new models to the current
ensemble. A parameter f determines how frequently this
should happen, i.e., new models will be added every f itera-
tions. When new models are created, we assign each of them
a weight to be used as an individual performance measure.
We add these models to the ensemble of experts used by the
algorithm in making its predictions. The expert ensemble
is then presented with a set of items to rank and each ex-
pert makes a separate prediction. The algorithm combines
these predictions by ranking the items according to their
weighted average rank. It then receives the true ranking of
the items and updates the weights of the experts in the en-
semble. The weight update function is similar to the one
discussed in [28], where the weight is multiplied by a func-
tion of the loss. The loss of each expert in the ensemble is



a measure of its performance, relative to the other experts.
There are several input parameters that can be used to

tune the performance of the algorithm. The learning rate
β ∈ [0, 1) is used in the weight update function to adjust the
fraction by which the weights are reduced. A larger value
of β corresponds to a slower learning rate, making the al-
gorithm more forgiving to experts that make a mistake by
reducing their influence by a smaller fraction. We also use
a parameter B (or budget) to limit the number of models
that the algorithm can keep track of at each iteration. Since
we do not use a static set of experts as in the traditional
weighted majority approach, we have to make sure that our
ensemble does not grow infinitely when we add new models.
We can also adjust the number of models that the algorithm
uses for prediction. In the traditional approach, the advice
of all experts in the ensemble is combined to make the fi-
nal prediction. By using a parameter E for the number of
predictors, we can try to further enhance the performance,
combining the advice of top performing experts only.

Since we add and remove models from our expert ensemble
throughout the algorithm, additional parameters are intro-
duced. Let n be the number of new models added to the
ensemble. This parameter n depends on how many machine
learning algorithms we use (2 in our experiments) and on
how many training sets we assemble (we vary the training
data windows, currently set to 7 and 14 days). When these
new models are added, they are assigned an initial weight
wnew. This weight can be also adjusted to reflect our trust
in these new models, and should be relative to the weights
of the existing models in the ensemble. We use a parameter
p that determines what weight to assign new models as a
percentile in the range [wmin, wmax] for the minimum and
maximum weights of the existing models. We also need to
decide what models to drop when the ensemble size grows
larger than the budget B. We order the experts according
to a function of their performance and age, where α ∈ (0, 1)
is a parameter used to set the exponential decay by age.
Pseudocode of our online ranking algorithm can be found in
Figure 1. In the algorithm, we keep a set of current models
M. Every f iterations, we add n new models and if nec-
essary remove the worst models that exceed our budget B.
The weights of models wi are computed according to the
update formula wi = wi ∗ βli , where li is the loss of model
mi in the last event. The loss of model mi is computed ac-
cording to its relative performance with respect to the other
models in M using the formula li = sbest−si

sbest−sworst
. This loss

function normalizes the losses of experts to the range [0, 1]
and could be used with any (even unbounded) performance
metric, which in our case is given by formula (1).

5. RESULTS
In this section, we present various experiments with the

goal of studying and evaluating the online ranking algo-
rithm. We perform our experiments on real electricity data
and a synthetically generated data stream. As a baseline,
we compare our performance to that of a commonly used
online learning algorithm as well as a batch-trained model.

In our experiments we use as “experts” two types of learn-
ing algorithms: SVMs and MartiRank [18], a ranking al-
gorithm based on the boosting framework in [29]. To ob-
tain a ranking from the outputs of the SVMs we simply use
the margin scores to sort the examples appropriately. Since

OnlineRank(B, E, β, α, p, n, f)
1 M← {}
2 while (true)
3 do at time t
4 Rankingi(t)← mi(Snapshot(t)) for mi ∈M
5 E ← E top-scoring models according to weights wi

6 Ranking(t)←WAvg({wi ×Rankingi(t)|mi ∈ E})
7 if new event(x, t)
8 then si = performancemi

(x, t) for mi ∈M
9 sbest ← min(s1, . . . , s|M|)

10 sworst ← max(s1, . . . , s|M|)
11 for mi ∈M
12 do li = sbest−si

sbest−sworst

13 wi = wi ∗ βli

14 if no models generated in f iterations
15 then train n models m|M|+1, . . . , m|M|+n

16 wnew ← percentile(p, {w1, . . . , wS})
17 wS+1, . . . , wS+n ← wnew

18 M←M∪ {m|M|+1, . . . , m|M|+n}
19 if |M| > B
20 then remove |M| −B worst
21 models according to
22 qi = wi ∗ αagei

23 normalize weights wi

Figure 1: Pseudocode for our online ranking algo-
rithm.

rankers are used as black boxes we could use any other rank-
ing algorithm e.g. [12, 6, 34].

5.1 Experiments with Electricity Data
Our first set of experiments are performed on data col-

lected from an electricity distribution system. In particular,
we examine attributes of electrical feeders2 with the intent
to rank them according to their failure susceptibility. The
electricity data is very diverse, not only in nature but also in
location, type, format, etc. A significant amount of work has
been devoted to understanding, processing and merging this
data into attribute-value vector datasets that can be used
by standard machine learning algorithms. The data used
for these experiments ranges from June 2005 to December
2006. The main input data sources are:

• Static Data: attributes comprising this category are
mainly physical characteristics of the feeders such as
age and composition of each feeder section as well as
attributes reflecting connectivity and topology of the
network. These values rarely change.

• Dynamic Data: attributes in this category do change
over time. We distinguish two types:

– Outage data: lists all the failures happened start-
ing in 2001 up to date. This data is updated daily.

– Stress data: reflects the state of a feeder and
its transformers. We obtain new readings of this
data in intervals of roughly 20 minutes, accumu-
lating at a rate of several hundred megabytes per
day in real-time.

2Feeders are cables, usually 10-20 km long, over which elec-
tricity is sent at mid-level voltage (tens of thousands of volts)
from substations to local transformers.



We compare the performance of our online ranking algo-
rithm against two separate baseline experiments. The first
one uses the perceptron algorithm [33]. We chose the percep-
tron particularly because it is an online method that learns
directly from the labeled feeder examples, as opposed to
using a meta-learning approach like ours. To generate a
ranking from the perceptron classification predictions, we
sort the feeders according to their (signed) distance from
the boundary in descending order.

The second experiment involves using a single batch-trained
model throughout the whole run. The batch model is trained
using a ranking algorithm based on the boosting framework
in [29], which proved to be the best performing batch learn-
ing method on this specific dataset [18]. The performance
of these baseline approaches can be seen alongside our on-
line ranking method in Figure 2 for the summer of 2005 and
Figure 3 for the winter of 2006. For both the summer and
the winter months our online ranking approach outperforms
both the perceptron and the batch model.

The default parameters used in our system are: learning
rate β = 0.9, budget B = 50, ensemble size E = 10, new
model frequency f = 7, age decay a = 0.99, and new weight
percentile p = 0.7.

Figure 2: OnlineRank daily performance over base-
line methods - Summer 2005 (6/1/2005-8/31/2005)

Figure 3: OnlineRank daily performance over base-
line methods - Winter 2006 (1/1/2006-3/31/2006)

In order to optimize the online algorithm’s performance,
we examine the effects of varying the value of a single pa-

rameter while keeping the rest constant. In doing so, we can
observe the change in performance (or lack thereof) associ-
ated with each parameter setting, and determine the optimal
input values to the algorithm.

Figure 4 shows the performance of the system during the
summer of 2006 for different values of the budget B, which
corresponds to the maximum number of experts that the
algorithm can select from to make its prediction. We can
observe that the performance of the system is directly cor-
related with the number of existing experts. Intuitively,
when there is a larger pool of models to select from, we
have a higher chance of selecting the top performing models
amongst them, especially if the predicting ensemble size E

is small.

Figure 4: OnlineRank daily performance with vary-
ing budget size (B), here E = 1 - Summer 2006
(6/1/2006-8/31/2006)

Another parameter that we are interested in observing is
the new models’ weight percentile p, which determines our
degree of belief in the incoming models. The performance
of the online ranking system with varying weight percentile
during the summer of 2006 can be seen in Figure 5. Al-
though the difference in performance is more subtle than
that of the budget variations, it is still clear that there are
values that lead to better performance than others. Assign-
ing new models the lowest weight in the range is under-
standably a poor choice since new models are trained with
the latest snapshot of the data, thus carrying an up to date
information about the system which should help increase
the accuracy of the prediction. On the other hand, assign-
ing too high a weight may force the system to use the newest
models always, which may not be a good choice if an older
model has been found to work the best. Notice that the per-
formance of the algorithm for the 90th and 70th new weight
percentile setting is almost identical.

To understand the reason for this results, we performed
a weight analysis on the experts used for prediction. We
found that more than 80% of the total weight is taken up
by 10 equally weighted models. This was not the case for
the algorithm’s run with new models’ weight in the 10th,
30th and 50th percentiles where the models were more di-
verse in terms of their weight and duration of stay in the top
E. We can attribute the prevalence and consistency of the
top 10 models in the case of 90th and 70th new weight per-
centile values to the fact that assigning low weights to the
incoming models prevented them from rising to the top of



the ensemble, making them more likely to be dropped. The
weight similarity among the top E models may imply that
although these models are different in the time and method
of training they may be similar in their predictions. We plan
to explore a measure of model similarity in future work in
order to gain insight into the system’s behavior.

From our experiments, we found that assigning new mod-
els a weight value in the middle of the range generally yields
better performance. This can be seen by observing the per-
formance of the 50th percentile new weight value in Figure 5,
relative to the other percentile values.

Figure 5: OnlineRank daily performance with vary-
ing new weight percentile (p) - Summer 2006
(6/1/2006-8/31/2006)

The maximum ensemble size E is the parameter that con-
trols how many models out of the available pool contribute
to the final prediction. While in theory we should com-
bine the advice of all available experts, in practice it may
be useful to ignore some of the lower-weighted experts for
the purpose of prediction but still keep them in the pool in
case they redeem themselves. For instance, in cases where
at any given time there are only a few experts that have
an accurate model of the system, it may be useful to com-
bine the advice of these top E without the majority of the
experts that would weigh down the performance. Figure 6
shows the performance of the online ranking system during
the summer of 2005, using different values for the predicting
ensemble size E.

Finally, we have experimented with the learning rate β of
the ranking algorithm. Figure 7 shows the performances ob-
tained for different settings of this parameter. Theoretically,
the learning rate should affect the performance by control-
ling the fraction by which weights are reduced. However,
our experiments show that varying the learning rate has a
minor impact to the overall performance change. To under-
stand why this is the case, we examine the weights of the top
soring models for each setting of β. We plot the weights of
the top E experts per day as a stacked bar, where the total
y-value corresponds to the fraction of the weights of models
in the budget B that are also in the predicting ensemble E.
Each color uniquely identifies a particular model so we can
observe which models are dominant and how long they stay
in the ensemble. Figure 8 shows the weight distribution for
learning rate setting β = 0.1 and Figure 9 shows the weight
distribution for β = 0.9. The weight contribution of the two
most dominant ensemble models in both plots explains the

similarity of the results.
Please note that we chose this particular example since

it is easier to interpret and render. In most of our weight
analysis plots there is a lot more diversity of models and
movement, although similar patterns still exist between the
plots for the algorithm’s runs with different learning rate
settings. This results is somewhat surprising and we plan to
experiment with different weight update functions in future
work.

Figure 6: OnlineRank daily performance with vary-
ing ensemble size (E) - Summer 2005 (6/1/2005-
8/31/2005)

Figure 7: OnlineRank daily performance with vary-
ing learning rate (β) - Winter 2006 (1/1/2006-
3/31/2006)

5.2 Experiments with Synthetic Data
In order to gain a deeper understanding of the behavior

of our system, we have “manually” generated datasets for
which the concept drift is controlled. The idea is that we
pick models at random and use them to generate events. A
parameter c ∈ [0, 1] controls the rate of change of the models
used to generate the events. That is, with probability c we
will substitute the event-generating model, otherwise we will
continue to use the current one. The data streams used in
these experiments are the same as in the experiments with
electricity data, the only difference being in the events that
occur over time. As a consequence, the labels of training
and test sets will differ from the experiments in Section 5.1.



Figure 8: Ensemble models’ weights using learning
rate β = 0.1 for Winter 2006 (1/1/2006-3/31/2006)

To generate an event for a given ranking model m at time
t, we generate snapshot data and use the model to produce
a ranking Rankingm(t). Another parameter d (for depth

percentile) introduces noise by picking the node event uni-
formly at random among the top-ranked d ∗ |Rankingm(t)|
nodes of Rankingm(t).

Figures 10 and 11 show the performance of our system
vs. the online learning algorithm perceptron under different
settings of the concept change rate c and depth percentile
noise d. Our system dominates although the difference is
not as overwhelming as in the previous section.

We have also experimented with an alternative data gen-
eration approach. We generate random hyperplanes and
random examples in euclidean space and label them accord-
ing to the hyperplane. In each iteration we tweak the hy-
perplane to simulate concept drift. Using this approach we
have observed that perceptron consistently outperforms our
system. In hindsight, this is not surprising since we are us-
ing hyperplanes as concepts, namely the hypotheses used by
perceptron whereas our system explores a completely differ-
ent hypothesis space, thus favoring perceptron. The reader
should note that in practice it is unlikely that real-world
data is linearly separable.

6. CONCLUSIONS AND FUTURE WORK
We have presented a real-time algorithm that generates

time-varying rankings of nodes in a network based on data
streams associated with each node. We have demonstrated
its validity in the real-world scenario where one wants to
generate rankings of components based on their suscepti-
bility to impending failure. In fact, this is the context in
which the algorithm was originally developed. Our system
outperforms a standard online learning algorithm using syn-
thetic data although results are not as dramatic. We are still
investigating alternative ways of generating data in realis-
tic ways to further understand the behavior of our system.
Additionally, we are devising visualization methods for the
internal state of our algorithm such as the weight plots of
Figures 8 and 9. Such visualization methods should not only

Figure 9: Ensemble models’ weights using learning
rate β = 0.9 for Winter 2006 (1/1/2006-3/31/2006)

Figure 10: OnlineRank vs. perceptron on synthetic
data for concept drift rate c = 0.1 and depth per-
centile noise d = 0.01. Vertical bars mark a change
of concept.

give us a better understanding of the system’s behavior and
performance but also give us insights into the underlying
system itself (for example, factors or causes of failure in the
electricity grid).

There are several ways in which we could improve the
performance of our system. We are planning to include an
engine for the detection of concept drift, so that instead
of periodically adding new experts we will only add when
a change is detected [16, 21]. We also want to control for
the diversity of the ensemble. Currently we do not check
whether we have multiple copies of the same model in the
ensemble. If we are about to add a new model, we should
make sure it is not already present in the ensemble. This
should also ensure that the ensemble is diverse, which has
been found to help predictive performance [38].

Another direction of future work is to exploit re-occurring
scenarios. If there are cyclical patterns in the behavior of
the system under consideration, information learned during
one phase can be re-used when the system re-enters that
phase again. For example, in the electricity data applica-



Figure 11: OnlineRank vs. perceptron on synthetic
data for concept drift rate c = 0.05 and depth per-
centile noise d = 0.1. Vertical bars mark a change of
concept.

tion of section 5.1, load demand increases greatly when the
temperature is high, and hence the stresses on the grid in
the summer differ greatly from those in the winter. It is
natural to think that experts that have performed well in
the summer are likely to perform well in the upcoming sum-
mer. We want to extend our online algorithm to include a
meta-learning layer that is able to discover such correlations
so that the weight update can be further informed by the
information of results in previous years. In other words, the
hidden context discussed in [42] would correspond to a differ-
ent environmentally-driven condition. Since these different
contexts re-appear with periodicity of one year, we should
be able to take advantage of what has been learned in the
past. We have accumulated enough data to start to look at
such patterns. Examples of other systems that exploit this
meta-layer are [42, 43].

Finally, even though in our application the items we need
to rank are interconnected and form a graph, we do not
make use of this structure and use a feature-vector represen-
tation instead (although some of our static features model
the underlying topology of the network). The area of re-
lational learning deals with problems where examples are
interconnected and we should generalize our algorithm by
using learning methods that can exploit the network struc-
ture [5, 1]. An obvious way to incorporate this style of
learning into our algorithm would be to use such algorithms
as experts, although a more challenging problem would be
to incorporate this information directly at the meta-learning
level in the online learning algorithm.
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