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ABSTRACT

Identification and Characterization of Events in
Social Media

Hila Becker

Millions of users share their experiences, thoughts, and interests online, through social

media sites (e.g., Twitter, Flickr, YouTube). As a result, these sites host a substantial num-

ber of user-contributed documents (e.g., textual messages, photographs, videos) for a wide

variety of events (e.g., concerts, political demonstrations, earthquakes). In this dissertation,

we present techniques for leveraging the wealth of available social media documents to iden-

tify and characterize events of different types and scale. By automatically identifying and

characterizing events and their associated user-contributed social media documents, we can

ultimately offer substantial improvements in browsing and search quality for event content.

To understand the types of events that exist in social media, we first characterize a

large set of events using their associated social media documents. Specifically, we develop a

taxonomy of events in social media, identify important dimensions along which they can be

categorized, and determine the key distinguishing features that can be derived from their

associated documents. We quantitatively examine the computed features for different cate-

gories of events, and establish that significant differences can be detected across categories.

Importantly, we observe differences between events and other non-event content that exists

in social media. We use these observations to inform our event identification techniques.

To identify events in social media, we follow two possible scenarios. In one scenario, we

do not have any information about the events that are reflected in the data. In this scenario,

we use an online clustering framework to identify these unknown events and their associated

social media documents. To distinguish between event and non-event content, we develop

event classification techniques that rely on a rich family of aggregate cluster statistics,

including temporal, social, topical, and platform-centric characteristics. In addition, to



tailor the clustering framework to the social media domain, we develop similarity metric

learning techniques for social media documents, exploiting the variety of document context

features, both textual and non-textual.

In our alternative event identification scenario, the events of interest are known, through

user-contributed event aggregation platforms (e.g., Last.fm events, EventBrite, Facebook

events). In this scenario, we can identify social media documents for the known events by

exploiting known event features, such as the event title, venue, and time. While this event

information is generally helpful and easy to collect, it is often noisy and ambiguous. To

address this challenge, we develop query formulation strategies for retrieving event content

on different social media sites. Specifically, we propose a two-step query formulation ap-

proach, with a first step that uses highly specific queries aimed at achieving high-precision

results, and a second step that builds on these high-precision results, using term extraction

and frequency analysis, with the goal of improving recall. Importantly, we demonstrate how

event-related documents from one social media site can be used to enhance the identification

of documents for the event on another social media site, thus contributing to the diversity

of information that we identify.

The number of social media documents that our techniques identify for each event

is potentially large. To avoid overwhelming users with unmanageable volumes of event

information, we design techniques for selecting a subset of documents from the total number

of documents that we identify for each event. Specifically, we aim to select high-quality,

relevant documents that reflect useful event information. For this content selection task,

we experiment with several centrality-based techniques that consider the similarity of each

event-related document to the central theme of its associated event and to other social

media documents that correspond to the same event. We then evaluate both the relative

and overall user satisfaction with the selected social media documents for each event.

The existing tools to find and organize social media event content are extremely lim-

ited. This dissertation presents robust ways to organize and filter this noisy but powerful

event information. With our event identification, characterization, and content selection

techniques, we provide new opportunities for exploring and interacting with a diverse set of

social media documents that reflect timely and revealing event content. Overall, the work



presented in this dissertation provides an essential methodology for organizing social media

documents that reflect event information, towards improved browsing and search for social

media event data.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The ease of publishing content on social media sites brings to the Web an ever increasing

amount of content captured during—and associated with—various types of events. Event

content shared on social media sites such as Flickr, YouTube, Twitter and others varies

widely, ranging from planned, known occurrences such as a concert or a parade, to sponta-

neous, unplanned incidents such as an earthquake or death of a celebrity. By automatically

identifying and characterizing these events and their associated user-contributed social me-

dia documents (e.g., Flickr photographs, YouTube videos, Twitter messages), we can enable

rich search and presentation of all event content. In this dissertation we present approaches

for leveraging the wealth of social media documents available on the Web for event identi-

fication and characterization.

As motivation for identifying events in social media, consider a person who is thinking

of attending the opening gala of “Celebrate Brooklyn!,” an annual arts festival that takes

place in Brooklyn, New York every summer. Prior to purchasing a ticket, this person could

search the Web for relevant information that would aid in making an informed decision.

Unfortunately, Web search results are far from revealing for this relatively minor event:

the event’s website contains basic details about the event (e.g., time, location), and tradi-

tional news coverage is low, with some articles providing the list of performers, and others

discussing various related topics. Overall, these Web search results do not convey what

this person should expect to experience at this event. In contrast, user-contributed con-

tent may provide a better representation of prior instances of the event from an attendee’s
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perspective, or timely announcements relevant to the event (e.g., “tickets for the Celebrate

Brooklyn! opening gala are sold out”). A user-centric perspective, as well as coverage of a

wide span of events of various types and scale, make social media sites a valuable source of

event information.

Our problem is most similar to the event detection and tracking task [APL98; KA04;

YPC98], whose objective is to identify events in a continuous stream of news documents

(e.g., newswire, radio broadcast transcripts). However, our problem exhibits some funda-

mental differences from traditional event detection that originate from the focus on social

media sources. Specifically, most of the work on event detection focuses on identifying,

clustering, and searching over a corpus of event documents from broadcast news. These

news articles adhere to certain grammatical, syntactical, and stylistic standards that are

appropriate for their venue of publication. Therefore, most state-of-the-art event detec-

tion approaches leverage natural language processing tools such as named-entity extraction

and part-of-speech tagging to enhance the document representation [HGM00; MAMS04;

ZZW07]. In contrast, social media documents contain little textual narrative, usually in

the form of a short description, title, or keyword tags. Importantly, this text is often noisy,

which renders traditional event detection techniques undesirable for social media documents.

We are interested in identifying events, and their associated social media documents,

with two goals in mind: timeliness and breadth. To address our timeliness goal, we leverage

information from social media sites that enable the exchange of short textual messages (e.g.,

Twitter, Facebook, Google+), as these messages often contain revealing and timely event

information. To address our breadth goal, we then identify event content across all types of

social media sites (e.g., photo-sharing, video-sharing, and social networking sites), as such

cross-site event content is useful for augmenting and enhancing event content identified on

any social media site individually.

To identify events in a timely manner, as they occur or as soon as their social media

documents are produced, we follow two possible scenarios. In one scenario, we do not have

any advanced knowledge of the events that may be present in a stream of social media

documents. In the other scenario, we assume that we have some advanced knowledge of

the event, in the form of associated context features (e.g., title, time, location). These
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unknown vs. known event identification scenarios guide our identification techniques in this

dissertation. For the unknown scenario, we focus on a specific class of events that we refer

to as trending events (Chapter 2), due to their unique temporal characteristics. For the

known scenario, we focus on a specific class of events that we refer to as planned events

(Chapter 2), for which prior information is posted on event aggregation sites (e.g., Last.fm

events, EventBrite). Note that these classes of events are not mutually exclusive, but rather

indicate the types of events we focus on in each identification scenario (see Chapter 2).

In the unknown identification scenario, we identify trending events by leveraging infor-

mation from social media sites that enable the exchange of short textual messages (e.g.,

Twitter, Facebook, Google+). These short textual messages can typically reflect unknown

events as they happen, making them particularly useful for timely event identification. As

a unique advantage, for unplanned events (e.g., the Iran election protests, earthquakes),

users of these social media sites sometimes spread news prior to the traditional news me-

dia [KLPM10; SOM10]. However, identifying events on such sites is a challenging task, as

shared messages are brief and often exhibit low quality (e.g., with typos and ungrammatical

sentences).

As we discussed, in the unknown identification scenario we specifically focus on identi-

fying trending events, where the frequency of documents associated with such an event in

a stream of social media documents exhibits an unusual, increasing trend during the time

period associated with the event. To inform the trending event identification process, it is

useful to understand the range and characteristics of all types of trends (Chapter 2) that

exist in social media, including (but not limited to) those that represent trending events.

With a thorough understanding of the different types of trends and, consequently, trending

events that exist in social media, we can help our event identification approaches distin-

guish between trending events and trends that do not reflect event information, and also

among specific trending event types. Characterizing different types of trends along various

dimensions can be useful for automatically identifying and differentiating among them. To

this end, we collect, analyze, and characterize content associated with trends on Twitter,

given this site’s desirable properties (e.g., presence of real-time event content, diversity of

event content) for identifying events in a timely manner. A strong grasp of trending event
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characteristics can help provide critical information for applications such as event browsing

and search, which could be enhanced with trending event information from social media.

For our analysis of trending events, we specifically focus on one social media site, namely,

Twitter, due to its transient, large-scale publicly available content. In particular, we collect

a set of textual terms and phrases that exhibit trending behavior on Twitter, character-

ized by an unusual increase in message frequency during a particular time period in a

Twitter message stream. While some of these trends (Chapter 2) might refer to events,

others might include non-event information. To organize and understand this content,

we define a taxonomy of trend types, which includes trending events, using Twitter mes-

sages associated with each trend. Unlike related efforts in this area, which focused on

characterizing or analyzing content from individual events on Twitter [Yb10; NGS+09],

or characterizing aggregate trend characteristics for manually identified terms [SOM10;

DNKS10], the taxonomy we define in this study is based on a large set of automatically

identified trends.

Given this taxonomy, we demonstrate how different types of trends (and trending events)

can be distinguished from one another according to various descriptive characteristics.

Specifically, we identify important dimensions according to which trends can be catego-

rized (e.g., content, interaction), as well as the key distinguishing features of trends that

can be derived from their associated messages (e.g., hashtag usage, forwarding behavior).

We quantitatively examine the computed features for different categories of trends, and

establish that significant differences can be detected across categories. As a key contribu-

tion, we identify and distinguish between endogenous, platform-centric trends and trending

events that reflect real-world occurrences (Chapter 3).

As we learn from our study, Twitter messages generally reflect useful trending event

information for a variety of trending events of different types and scale. To collect trend-

ing events for our study, we use simple techniques [NBG11] that can surface terms and

phrases that might not necessarily be associated with any trending event. Additionally,

these terms and phrases are often insufficient as stand-alone identifiers for each event (e.g.,

“sparklehorse” referring to the band’s lead singer’s suicide) and, therefore, provide a noisy

indicator of event content when found in Twitter messages. To address these two issues,
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we develop more advanced techniques to create a robust real-time framework for trending

event identification on Twitter.

Identifying trending events on Twitter is a challenging task since much of the shared

content is not related to any particular trending event [NBL10], but rather consists of

mundane conversations (e.g., “good morning” and “thank you” messages) or Twitter-centric

discussions (e.g. using the #whenimolder hashtag, describing what Twitter users would like

to do when they get older). However, despite the ubiquity of non-event content, informative

event messages also abound (e.g., “the health care reform bill was passed”). Therefore, our

techniques must distinguish between event and non-event content on Twitter, to identify

trending events and their associated messages.

Several related research efforts have focused on identifying trending events in social

media [CR09; POL10; SOM10; SST+09]. Chen and Roy [CR09] presented techniques for

retrospective identification of trending events on Flickr, finding patterns in the data after

an event has occurred rather than identifying the event as soon as its associated content is

posted. Recent work on Twitter has started to process data as a stream, as it is produced,

but has mainly focused on identifying events of a particular type (e.g., news events [SST+09],

earthquakes [SOM10]). Other work aimed to identify the first Twitter message associated

with a trending event [POL10]. Our focus is on online identification of trending events, and

their associated social media documents, for a variety of events, regardless of their type.

We develop techniques for identifying trending events in real-time using an online clus-

tering framework. This framework provides a scalable, incremental solution, to handle

the high volume and changing nature of social media documents. We use this clustering

framework to group together topically similar social media documents. To identify all event

clusters, we compute a variety of revealing features using collective characteristics of all

the documents in each cluster. These include social interaction characteristics, temporal

characteristics, content coherence characteristics, and endogenous [NBG11] characteristics.

Since the clusters constantly evolve over time, we periodically update the characteristics for

each cluster and compute characteristics of newly formed clusters. We train a classifier over

these characteristic features and use it to determine which clusters contain event content

at any point in the stream (Chapter 4).



CHAPTER 1. INTRODUCTION 6

In addition to Twitter, which we focus on for timely identification given the reasons

discussed above, we can use our clustering framework with other types of social media

documents (e.g, Flickr photos, YouTube videos). While these social media documents may

not always be instantaneously shared like the messages on Twitter, they often provide useful

and rich event content, to complement and enhance identified event content on Twitter.

Unlike Twitter, however, where messages are textual and brief, social media documents on

sites such as Flickr include rich context features such as user-provided annotations (e.g.,

title, tags, description) and automatically generated information (e.g., content creation

time, geo-coordinates). Using this rich context, which includes both textual and non-textual

features, we can define appropriate document similarity metrics to enable online clustering

of media to events. As a key contribution, we explore a variety of techniques for learning

multi-feature similarity metrics for social media documents in a principled manner (Chapter

5).

In the second scenario for identifying events in a timely manner, we focus on the challenge

of automatically identifying social media documents related to known, planned events (e.g.,

concerts, parades, conferences) from user-contributed event aggregation platforms (e.g.,

Last.fm events, EventBrite, Facebook events). These event aggregation platforms provide

revealing, structured information (e.g.,title, description, time, location) for planned events,

but this information is often noisy or incomplete. Our goal is to automatically identify

social media documents for these planned events on multiple social media sites, with focus

on achieving both high precision and high recall. For this, we define a two-step query

formulation process that automatically constructs queries for each planned event given its

associated context features.

As an example of a planned event, consider the opening night gala of the “Celebrate

Brooklyn!” festival. To formulate queries for this event, our techniques leverage explicitly

provided event features such as title (e.g., “Celebrate Brooklyn! Opening Gala”), descrip-

tion (e.g., “Singer/songwriter Andrew Bird will open the 2011 Celebrate Brooklyn! season”),

time/date (e.g., June 10, 2011), location (e.g., Brooklyn, NY), and venue (e.g., “Prospect

Park”). While these provided event features are generally informative, they also present

many challenges for our techniques. Specifically, these features may be inaccurate (e.g.,
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time/date using the wrong time zone), incomplete (e.g., missing state in the location fea-

ture), missing altogether, overly specific (e.g., “Celebrate Brooklyn! Opening Night Gala &

Concert with Andrew Bird” for the title feature) or too broad (e.g., “Opening Night Con-

cert” for the title feature). Therefore, we develop a variety of query formulation strategies,

designed to overcome the various challenges that this data presents.

Our two-step query formulation technique starts with a precision-oriented step, which

combines the planned event features into several queries aimed at retrieving high-precision

results. These precision-oriented queries complement each other and are used to retrieve

social media documents collectively. The second, recall-oriented, step uses these high-

precision results along with text processing techniques such as term extraction and frequency

analysis to build additional queries, aimed at improving the (generally low) recall of the

precision-oriented step. Unlike prior work [SOM10; Yb10], our strategies are fully automatic

and do not require manually selected terms or phrases to retrieve documents for each event.

Additionally, in contrast to related efforts by Benson et al. [BHB11] we do not impose any

assumptions on the type of event (i.e., concerts) or desired information in the corresponding

documents (i.e., artist and venue names).

Importantly, prior research on identifying events in social media focused on tailoring

approaches to one specific social media site. To address our breadth goal, we focus on

identifying planned events across all types of social media sites (e.g., photo-sharing, video-

sharing, and social networking sites). Our query formulation strategies can be applied to

each social media site individually or to all social media sites simultaneously. We propose a

couple of cross-site query formulation and retrieval techniques, and demonstrate how event

content identified on one social media site can be used to improve the identification process

on another social media site (Chapter 6).

Overall, we show that social media sites contain substantial, useful information about

events. With the techniques we develop in this dissertation, we can effectively identify dif-

ferent types events and their associated social media documents across various social media

sites. Regardless of the technique we use, the type of event, or the social media site, any

single event might have hundreds or thousands of associated social media documents. While

some of these associated documents might contain interesting and useful information (e.g.,



CHAPTER 1. INTRODUCTION 8

event time, location, participants, opinions), others might provide little value (e.g., using

heavy slang, incomprehensible language without accompanying media) to people interested

in learning about an event. Techniques for effective selection of quality event content may

then help improve applications such as event browsing and search. Therefore, we propose

and evaluate a variety of centrality-focused techniques for selecting a subset the social media

documents associated with each of our identified events.

Selecting a representative subset of document for each event is a challenging task. As

one challenge, seemingly related documents with good textual quality might not be truly

relevant to the event (e.g., “I am going to celebrate in brooklyn tomorrow” for the “Celebrate

Brooklyn!” opening gala). As another challenge, relevant, high-quality documents might

not be useful (e.g., “I can’t stop thinking about the Celebrate Brooklyn! opening gala”) as

they do not provide much information about the event in question. Therefore, we focus

on selecting a subset of documents for each event that exhibit high textual quality, high

relevance to the event, and clear usefulness to a user looking for information about the

event.

While related efforts focused on summarizing or otherwise presenting social media doc-

uments related to events [DNKS10; NGS+09; SKC10], our goal in this work is to select a

subset of the documents to be presented in their unaltered form, complete with any as-

sociated digital media, tags, URLs, and other contextual information (e.g., time, author

name). Presenting event documents along with all of their context features provides a rich,

multi-dimensional view of an event. Towards this goal, we experiment with centrality-based

techniques to select event documents based on their similarity to a centroid representation

of an event or to other event documents (Chapter 7). Although there are other useful doc-

ument features that could be used for this content selection task, they generally produce

poor results when used in isolation. Instead, these features could be incorporated with our

centrality based approaches in a disciplined way (e.g., using a trained ranking function), a

task that we reserve for future work.

In summary, the contributions of this dissertation are as follows:

• A qualitative study of trends and trending events in social media, yielding in a tax-

onomy of trends and events, and a complementary quantitative study, examining the
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differences between trend and trending event types along various descriptive charac-

teristics (Chapter 3)

• An online clustering framework for unknown identification of trending events, and

their associated social media documents, along with classification techniques for sep-

arating event and non-event content (Chapter 4)

• Similarity metric learning approaches for unknown identification of trending events,

and their associated social media documents, and approaches for leveraging social

links to improve event clustering results (Chapter 5)

• Query formulation techniques for identifying social media documents for planned

events from multiple social media sites, showing that we can effectively identify event

documents on each social media site individually, and on multiple social media sites

simultaneously, by leveraging identified event content on one site to enhance the iden-

tification process on another site (Chapter 6)

• Content selection techniques for choosing a subset of social media documents asso-

ciated with each identified event, based on the documents’ quality, relevance, and

usefulness to the event (Chapter 7)

In Chapter 2 we discuss several alternative definitions of events in the literature and provide

the event definitions that we use in this dissertation. We describe additional related work

in Chapter 8, and then present our conclusions and discuss directions for future work in

Chapter 9.

As the amount of social media content grows, research will have to identify robust ways

to organize and filter that content. In this dissertation we aim to provide scalable techniques

for organizing social media documents associated with events. With our event identifica-

tion, characterization, and content selection techniques, we provide new opportunities for

exploring and interacting with social media event data.
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Chapter 2

Event Definition and

Characterization

The definition and characterization of “event” has received substantial attention across

academic fields, from philosophy [Eve02] to cognitive psychology [ZT01]. An event is often

defined as an abstract concept [Eve02], or with respect to its manifestation in a specific

domain (e.g., time series, textual news, social media). Even within a specific domain,

researchers often disagree on what precisely constitutes an event [GSFW94], or agree on

a definition that is admittedly problematic and does not cover all possible cases [Mak03].

Still, it is important to formally and precisely define the concept of an event to convey the

various phenomena we study, identify, and characterize in this dissertation.

In this chapter, we survey the alternative definitions of events in the literature over a

variety of domains and connect these definitions to our task of identifying and characterizing

events in social media (Section 2.1). In addition to events, we present several definitions of

related concepts (e.g., activity, topic, trend), which are used in the literature to generalize

or extend the definition of event (Section 2.2). These concepts, and particularly “trend,”

are useful for our study of events in social media, presented in Chapter 3. We draw on all of

these different definitions to define an event in the context of our work. As we will show, an

event is a complex concept and defining it, or its embodiment in social media, is a difficult

task [GSFW94; Mak03]. Therefore, instead of providing another definition of an event, we
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define specific types of events in social media, on which we focus in this dissertation (Section

2.3).

2.1 Events in the Literature

We present and discuss various efforts to define events in the context of three tasks: topic

detection and tracking in news documents (Section 2.1.1), event extraction from free text

(Section 2.1.2), and multimedia event detection (Section 2.1.3).

2.1.1 Topic Detection and Tracking

Event detection in broadcast news was notably studied as part of a broad research effort

known as Topic Detection and Tracking (TDT) [All02]. TDT research focused on a vari-

ety of tasks concerning event-based organization of textual news document streams (e.g.,

newswire, news broadcast transcripts). These tasks include new event detection, focused on

identifying the first document in a text document stream that corresponds to a previously

unknown event, and retrospective event detection, aimed at grouping documents according

to their event content [ACD+98]. Importantly, to evaluate these different TDT tasks, the

Linguistics Data Consortium (LDC) prepared annotated corpora based on a set of guide-

lines for what constitutes an event (as well as other concepts such as activity, topic, and

trend, described in Section 2.2).

The definition of event for TDT research has evolved throughout the years, with several

researchers proposing alternatives to address problems in earlier versions of the definition.

Initially, an event was defined as “some unique thing that happens at some point in time”

[ACD+98]. This definition touches on an important aspect of an event, namely, its necessary

association with a defined time period. Later, a notion of location was introduced, defining

an event as “something that happens at some specific time and place” [YCB+99]. Although

most news events indeed happen at a specific location, some events may be global or virtual

(e.g., World Peace Day, a virtual trade show) so their location is not well defined.

As a significant drawback, the scope of an event according to these definitions is vague

and may be interpreted in a variety of ways. For instance, under this definition, the earth-
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quake in Japan that took place on May 21, 2011 is an event. However, textual news

documents that report on this event might mention the tsunami alert caused by the earth-

quake, the response of the rescue crews, and the damage to the Fukashima nuclear power

plant, which are all acceptable events according to the definition. Since the scope of an

event according to this definition is open, it is unclear if the events in our examples should

be considered as separate events or one collective event.

To address the ambiguity of the initial TDT definitions, a new definition was proposed

[All02], stating that an event is “a specific thing that happens at a specific time and place

along with all necessary preconditions and unavoidable consequences.” This amended def-

inition considers our previous examples of the Japan earthquake and subsequent reactions

to be a single event. While this definition makes some clarifications regarding event bound-

aries, it introduces other questions, namely, what can be considered necessary preconditions

and unavoidable consequences for an event [Mak03]. For certain events (e.g., the 2008 Mum-

bai terror attacks), some of the necessary preconditions and unavoidable consequences are

unknown or subject to debate.

Overall, the TDT-inspired definitions of an event introduce some useful ideas (e.g., an

event’s association with a specific time period), but they are also somewhat ambiguous and

do not cover all possible types of events. In Section 2.2 we discuss some of the additional

concepts introduced by the TDT effort to facilitate event detection in textual news streams.

2.1.2 Event Extraction

Event extraction is a task that involves identifying instances of specific types of events, and

their associated attributes, in free text [Gri10]. Extracting such events from text has been

the focus of numerous studies as part of a National Institute of Standards and Technology

(NIST) initiative for Automatic Content Extraction (ACE)1. The ACE event extraction

task explicitly defines a set of event types (e.g., conflict) and subtypes (e.g., attack) to

be extracted from various text sources (e.g., newswire, Blogs, conversation transcripts),

using a set of predefined templates that include event attributes (e.g., attacker, target). A

template of the “attack” event subtype applied to the sentence “Yesterday, a number of

1http://www.nist.gov/speech/tests/ace/

http://www.nist.gov/speech/tests/ace/
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Attribute Description Example

Attacker The attacking/instigating agent demonstrators

Target The target of the attack (includ-

ing unintended targets)

Israeli soldiers

Instrument The instrument used in the attack stones and empty bottles

Time When the attack takes place yesterday

Place Where the attack takes place a Jewish holy site at the

town’s entrance

Table 2.1: Attack event template and sample extracted attributes.

demonstrators threw stones and empty bottles at Israeli soldiers positioned near a Jewish

holy site at the town’s entrance” can be found in Table 2.1.

The guidelines for the ACE event extraction task2 provide a few generic and unexplained

definitions for an event. According to these guidelines, an event is “a specific occurrence

involving participants,” and “something that happens.” These definitions by themselves

do not explain how to address events with ambiguous semantic scopes (e.g., the May 25,

2011 Japan earthquake) and allow for undefined temporal scopes (e.g., “Thanksgiving Day

Parade”). However, instead of defining all possible events abstractly, the ACE event extrac-

tion task defines specific events according to their expression in free text. This operational

definition outlines the spans of text that can be used to identify an event, namely, the event

trigger and extent. The event trigger is the word that most clearly expresses the event’s

occurrence (e.g., “threw” in our example sentence), and the extent, which indicates the

scope of the event, is defined as the sentence in which the event trigger is mentioned.

In addition to the event itself, as identified via a keyword trigger (e.g., “attack,” “threw,”

“bomb”), the ACE event extraction task requires that a set of participants be identified

for each event. This set of participants varies by event type (e.g., attacker for an “attack”

event, defendant for a “trial-hearing” event). The requirement to have a set of participants

indicates an implicit assumption that events should have one or more participants. How-

ever, not all events have a clearly defined set of participants (e.g., an earthquake, a solar

2http://projects.ldc.upenn.edu/ace/docs/English-Events-Guidelines_v5.4.3.pdf

http://projects.ldc.upenn.edu/ace/docs/English-Events-Guidelines_v5.4.3.pdf
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eclipse). Indeed, the assumption of participants might be appropriate to this particular

event extraction task since it does not involve identifying all possible events, but rather a

specific subset of events that follow predefined templates. Other interesting event attributes

used in this task include time and place. Even though these attributes were not mentioned

in the event definition, they are both present in the predefined templates of almost all

event types and subtypes (with the exception of a “phone-write” event, which occurs when

two or more people engage in a discussion remotely and hence does not require a location

attribute).

Contrary to the TDT definitions that are very broad but ambiguous, the operational

definitions used for the ACE event extraction tasks are particular but restrictive. Focusing

on a restricted class of events is often useful to eliminate ambiguity and enable precise

annotations for evaluation purposes. At the same time, this type of definition only applies

to supervised event detection tasks, where the classes of events that should be detected are

known a priori.

2.1.3 Multimedia Event Detection

Research on detecting events in multimedia content (e.g., videos, audio clips) has received

considerable attention over the past several years. In a notable effort, work on Multimedia

Event Detection (MED)3 aims to detect evidence of events in multimedia content using

audio and video streams of multimedia clips. Unlike the previously described event detection

tasks, the MED task does not allow the use of human-annotated textual context features

(e.g., title, tags) that often accompany such clips. As part of the TREC Video Retrieval

Evaluation, another large-scale NIST research effort, the specific goal of MED is to develop

event detection techniques to enable quick and accurate search of user-defined events in

multimedia collections. An event according to the MED 2011 evaluation plan4 is “a complex

activity occurring at a specific place and time,” involving “people interacting with other

people and/or objects.” Additionally, an event “consists of a number of human actions,

processes, and activities that are loosely or tightly organized and that have a significant

3http://www.nist.gov/itl/iad/mig/med11.cfm

4http://www.nist.gov/itl/iad/mig/upload/MED11-EvalPlan-V03-20110801a.pdf

http://www.nist.gov/itl/iad/mig/med11.cfm
http://www.nist.gov/itl/iad/mig/upload/MED11-EvalPlan-V03-20110801a.pdf
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Event Name Making a cake

Definition One or more people make a cake.

Evidential Description

Scene indoors, typically a kitchen in a home, restaurant or

other setting

Objects/People ingredients (like eggs, flour, cake mix), bowls, spoons,

mixers, cake pans, ovens, potholders, candles

Activities selecting ingredients, combining ingredients, pouring

batter into pan, putting cake into oven, setting timer,

removing cake from oven, testing cake for doneness,

decorating cake

Table 2.2: Example of an “event kit” for the MED task.

temporal and semantic relationships to overarching activity” and “is directly observable.”

Once again, the association with a specific place, time, and participants is explicitly

mentioned in the event definition. As we discussed above, any definition that mentions a

specific location or requires a set of participants is prone to ambiguity as it does not fit all

possible types of events (e.g., virtual events, natural disasters). Additionally, the notions

of “activity” and “processes” are broad and remain undefined. This definition implies that

an event must center around human activities, which is not always the case for events in

general (e.g., an earthquake might be the result of seismic activity, but it does not by itself

consist of a human action or activity). We discuss some definitions for “activity” and the

connection between activities and events in the next section.

Similar to the ACE event extraction task, the MED event detection task is supervised,

which means that the set of events that it aims to identify (e.g., making a cake, assembling

a shelter) is predefined. Each event has an associated predefined “event kit,” consisting of a

name, definition, and description for each event (see Table 2.2). In addition, each event kit

includes a set of illustrative video examples (Figure 2.1), each containing an instance of the

event. These examples help form the definition of each event but, according to the MED

guidelines, they “do not demonstrate all possible variability or potential realizations.”



CHAPTER 2. EVENT DEFINITION AND CHARACTERIZATION 16

Figure 2.1: Examples for the “Making a cake” event.

Interestingly, a multimedia event such as “making a cake” is very different in nature

than an ACE- or TDT-style event. Although the definition of events for the MED task

states that an event should have a specific time and place, making a cake can happen at

different times and different places, making it more similar to an ACE event type than a

TDT or ACE event. If making a cake was considered newsworthy, a similar event for the

TDT (or ACE) task might instead be described as “Alton Brown making a cake in the

French Culinary Institute in New York City on August 20, 2011 at 1pm.”

2.2 Related Concepts: Topics, Trends, and Activities

The discussion of events in the literature often includes a variety of related concepts that

are used to generalize or build upon the notion of an event. We present an overview of three

such related concepts: activity, topic, and trend.

Activity: The notion of an activity is introduced in the TDT guidelines5 to clarify and

refine the definition of a topic. Specifically, an activity is defined as “a connected set of

actions that have a common focus or purpose.” For our Japan earthquake example, the

earthquake is an event, and the earthquake-related disaster relief efforts are activities. In our

work, we make no distinction between events and activities as defined above, and consider

all such activities as valid events. Often, event-related activities fall within the scope of the

event (e.g., the earthquake and subsequent relief efforts would be considered part of the

same event) and, therefore, considered part of the event itself. As we discussed (Section

5http://projects.ldc.upenn.edu/TDT2/Guide/label-instr.html

http://projects.ldc.upenn.edu/TDT2/Guide/label-instr.html
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2.1), defining the scope of the event is conceptually difficult and, therefore, researchers often

resort to using signals such as temporal proximity of topically similar events and activities

to operationally define the event scope.

Topic: The initial definition of topic for the TDT task was the same as the definition of

event (see Section 2.1.1). However, it was later changed to “an event or activity, along with

all directly related events or activities.” Intuitively, a topic in TDT is a set of news docu-

ments that are strongly connected by some real-world event (e.g., the earthquake in Japan

and all other stories triggered by it, including tsunami alerts and the nuclear meltdown)

[All02]. As with the event definition, it exhibits scope problems, since the word “related”

is left open to interpretation. To resolve this issue, the LDC modified the TDT annotation

guidelines to include “rules of interpretation,” which outline the types of events that may

be considered related to other types of events. Unfortunately, Makkonen [Mak09] observed

that while an event is defined as something that happens (Section 2.1.1), a topic, according

to this definition, is a human judgment and, therefore, an event cannot be a topic, which

contradicts the definition.

Yang et al. [YCB+99] describe the difference between an event and a topic “in the con-

ventional sense” by stating that events are instances of topics. For example, the Thanks-

giving Day Parade is an event, and is an instance of the general topic of parades. This

observation contradicts the definition of events in the ACE event extraction task (Section

2.1.2) where, for example, the “building a shelter” event would be considered a topic accord-

ing to Yang et al. [YCB+99], and specific incidents of shelter-building would be considered

events under this topic. The idea that events are instances of a topic was also reinforced by

Filatova et al. [FHM06], who used the concept of a “domain” to describe a set of events of a

particular type. As another insight about the relationship between topics and events, Yang

et al. observed that a time gap between bursts of documents on a particular topic often

indicates that each burst corresponds to a different event. In other words, the temporal

scope of an event is smaller than that of the topic to which it belongs.

Trend: The concept of a “trend” and its relation to events is of particular interest and

importance to the work described in this dissertation. Kontostathis et al. [KGP+04] define



CHAPTER 2. EVENT DEFINITION AND CHARACTERIZATION 18

an emerging trend6 as “a topic area that is growing in interest and utility over time.” While

seemingly intuitive, this definition does not explain what the term “topic” encompasses, and

the necessary amount or speed of the topic’s growth over time. As we discussed, the notion

of a topic can be interpreted in different ways and its scope varies in different contexts.

Additionally, the amount or speed of growth necessary for a topic be designated a trend

varies according to the data source (e.g., trending topics on Twitter are generally short-lived,

often changing on an hourly basis, whereas trending topics in Computer Science research

publications rise and fall less rapidly due to the difference in temporal dynamics and content

of the data in these two sources).

Trend detection tasks over textual data collection generally aim to identify topic ar-

eas that are previously unseen or are rapidly growing in importance within the corpus

[KGP+04]. This idea of rapid growth, sometimes referred to as a “burst,” is prevalent in

the literature [Kle03; HCL07; WZHS07] and often used to describe trending behavior in

text document streams. In this context, Kleinberg [Kle03] observed that the emergence of

a topic in a text document stream is signaled by a sharp rise in frequency of the features

associated with the topic. We use this observation to guide our study of trends and trending

events in social media (Chapter 3) and our definition of trending events in the next section.

2.3 Events in Social Media

If a tree falls in the forest and nobody tweets (or posts any information) about it, is it an

event? According to some event definitions (Section 2.1) it might be considered an event,

but it is not an event in social media since it does not have a corresponding realization in

social media documents. Instead of providing an abstract, ambiguous, or arguable definition

of an event, for the purpose of this work we focus on specific types of events, which we define

precisely with respect to a stream of social media documents.

In Chapter 1, we described two alternative event identification scenarios that we con-

sider, namely, the unknown scenario, where events are identified in an unsupervised manner,

6Emerging trends are sometimes also referred to as “trending topics,” or “emerging topics.” All trends

discussed in this dissertation are emerging trends, so we simply refer to them as “trends,” for brevity.
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and the known scenario, where some basic event features (e.g., title, time, location) are avail-

able to our techniques. In the unknown scenario, since we have no information about the

events in the stream, we must rely on other signals that could indicate the presence of event

content. For this reason, in this scenario we focus on a class of events that we refer to as

trending events, which are events that exhibit bursty temporal patterns [Kle03]. Formally,

we provide the following definitions:

Definition 1 A document stream is a time-ordered sequence of documents; each document

is represented as a set of features, or terms.

Definition 2 A trending time period for a feature over a document stream is a time period

where the document frequency of the feature in the document stream is substantially higher

than expected.

Definition 3 A trending event is a real-world occurrence e with (1) an associated time

period Te, (2) a stream of documents De about the occurrence and published during time Te,

and (3) one or more features that describe the occurrence and for which Te is a trending

time period over document stream De.

The document stream in our definition refers to a stream of social media documents

(e.g., a Flickr photo, a YouTube video, a Twitter message), which can be represented using

a variety of associated context features (e.g., title, tags). These document representations

always include textual terms, among other features that depend on the document’s source

(see Chapter 5). Within the document stream, social media documents are always processed

chronologically, as they are posted. Each feature has an expected document frequency value

based on its historically observed document frequency in the stream. A deviation from this

expected value (a “sharp rise” [Kle03] or “burst” [WZHS07]) in a specific time period

indicates a trending time period for the feature in the document stream. This deviation

may be defined in different ways [Kle03], and we experiment with alternative definitions

in Chapters 3 and 4. Finally, determining whether such trending feature describes the

real-world occurrence in Definition 3 is based on a human judgment.

In the known event identification scenario, we know some basic features of the events

that we identify. Therefore, for this scenario, we focus on a class of events that we refer
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to as planned events, for which a set of associated context features is available. Regard-

less of the source of these context features (e.g., user-contributed event aggregation sites,

shared calendars), we require that, at a minimum, these features consist of a title and time.

Formally, we define planned events as follows:

Definition 4 A planned event is a real-world occurrence e with an associated time period

Te and a corresponding published event record consisting of, at least, the following two event

context features: (1) title, indicating the subject of event e as determined by a human being,

and (2) time, indicating the time at which e is planned to occur.

In our work, we make a couple of assumptions about the relationship between events

and social media documents. First, we consider documents that are significantly related to

an event as being associated with the event, even if the documents were produced before or

after the event. In other words, the time period Te associated with event e can start before

and end after the actual start and end date of event e. For instance, in our “Celebrate

Brooklyn!” example, a photograph of a participant in front of the box office represents the

author’s experience in the context of the event and will, therefore, be associated with the

event for our purpose. For planned events, the published time T ′e corresponds to the time at

which e is planned to occur, and therefore Te spans T ′e. Second, we assume that each social

media document corresponds to exactly one event. However, our approaches can generally

be extended to handle cases where a single social media document contains information

pertaining to several events.

It is important to note that planned events and trending events are not mutually exclu-

sive event types. Rather, they represent characteristics of an event along two orthogonal

dimensions. Therefore, an event can be either trending or non-trending, and at the same

time be either planned or unplanned. To illustrate this point, Figure 2.3 presents examples

of events that represent the various combinations of these dimensions. Unplanned events

such as an earthquake are also likely to be trending events due to the sudden onset of in-

formation about such a relatively rare phenomenon. Planned events such as the Canadian

Cheese Festival are sometimes non-trending, as the “buzz” generated by such special-interest
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Planned Unplanned

Trending American Idol season premier Japan earthquake

Non-Trending Canadian Cheese Festival Minor car accident

Table 2.3: Examples of different types of events.

events on social media is often low7. However, there is an overlap between trending and

planned events, for events such as the American Idol premier, which generate substantially

high volume of information within a short time period, relative to the expected amount

of discussion about this event over that time period. Unfortunately, we cannot identify

unplanned non-trending events (e.g., a minor car accident that may have generated very

few reactions on social media), due to the lack of available context and signal.

According to our event definitions, events in social media include widely known occur-

rences such as the presidential inauguration, and also local or community-specific events

such as a high-school homecoming game or the World Wide Web conference. Non-event

content, of course, is prominent on social media sites where people share various types of

content such as personal updates, random thoughts and musings, opinions, and information

[NBL10]. In the next chapters, we use our event definitions (i.e., trending and planned

events) in the context of different social media event identification and characterization

scenarios (i.e., unknown and known scenarios), to distinguish event content from the vast

amount of non-event content posted on social media sites. Specifically, for the unknown

identification scenario in Chapters 3, 4, and 5, we focus on trending events, as defined in

Definition 3. Then, for the known identification scenario in Chapter 6, we focus on planned

events as defined in Definition 4. Finally, in Chapter 7, we refer to any event that falls

under the planned or trending definition (or both), since this encompasses the spectrum of

events that we can identify in social media under both the known and unknown scenarios.

7This is not a general observation about special-interest events but rather an illustrative example of an

event that could be simultaneously planned and non-trending.
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Chapter 3

Characterization of Trending

Events in Social Media

Social media sites such as Facebook, Twitter, Google+, and others allow users to publicly

and rapidly share streams of lightweight content artifacts, from short status messages to

links, pictures, and videos. These sites have already shown considerable impact on the way

in which people share and consume information about events, as evidenced during major

global events such as the 2009 Iran election or the reaction to the 2010 earthquake in Haiti

[KLPM10], and in response to local events and emergencies [SPS08; SPHV10]. The often-

public shared content on these sites ranges from personal status updates to opinions and

information [NBL10]. In aggregate, however, the postings by hundreds of millions of users

of Facebook, Twitter, and other sites expose global interests, happenings, and attitudes

in almost real time [KLPM10]. Importantly, this content often reflects events as they

happen [KLPM10; SOM10; SST+09], making such sites particularly useful for addressing

our timeliness goal for event identification (see Chapter 1).

The interests and happenings as reflected in social media change rapidly. This strong

temporal nature of shared information allows for the detection of significant trends in the

data stream, which often correspond to trending events that we wish to identify. Such

trending events may reflect a varied set of real-world occurrences, including local events

(e.g., a baseball game or “fire on 34th street”), global news events (e.g., Michael Jack-
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son’s death), and televised events (e.g., the final episode of ABC’s popular series “Lost”).

Unfortunately, not all trends reflected in social media data correspond to events. Such non-

event trends range from Internet-only and platform-specific memes (e.g., a “fad” of users

describing various things they object to using the #idonotsupport keyword), to hot topics

of discussion (e.g., health care reform or the tween idol Justin Bieber). Therefore, before we

can successfully identify trending events in social media, we must understand the scope of

information that exhibits such trending behavior, with the particular goal of characterizing

and distinguishing between trends that reflect event information and trends that reflect

other non-event content. For this, we study, categorize, characterize, and compare all types

of trends on one such popular social media site, namely, Twitter.

Social media content on Twitter indeed reflects an ever-updating live image of happen-

ings, interests and attitudes in our society, which often include information related to events.

However, the lack of a well-established structure and semantics for this data significantly

limits its utility. In this chapter, we aim to characterize the features that can help identify

and differentiate between the types of trends and trending events that we can find on Twit-

ter. Better understanding of the semantics of Twitter trends provides critical information

for techniques that build on this emerging data. In particular, understanding the differences

between trends that reflect events and trends that do not is of critical importance to our

goal of identifying events in social media. The outcome of our study will be a more robust

and nuanced reflection of trends and, in turn, trending events that captures key aspects of

relevance and importance.

This chapter offers the following contributions:

• A taxonomy of trends, including trending events, which can be detected from Twitter

using popular, widely accepted methods

• Automatic characterization of the data associated with each trend along a number

of key dimensions, including social network features, time signatures, and textual

features

• Analysis of differences between trend types according to each characteristic

We begin with an introduction to Twitter and then formally describe our dataset of Twitter



CHAPTER 3. CHARACTERIZATION OF TRENDING
EVENTS IN SOCIAL MEDIA 24

trends and their associated messages. Later, we describe a qualitative study exposing

the types of trends found on Twitter. Finally, we identify and analyze trends using the

unique social, temporal, and textual characteristics of each trend that can be automatically

computed from Twitter content. The bulk of this chapter appeared in [NBG11].

3.1 Background: Twitter

Twitter is a popular social networking site, with hundreds of millions of registered users as

of March 2011. Twitter’s core function allows users to post short messages, or tweets, which

are up to 140 characters long. Twitter supports posting (and consumption) of messages in

a number of different ways, including through Web services and “third party” applications.

Importantly, a large fraction of the Twitter messages are posted from mobile devices and

services, such as Short Message Service (SMS) messages. A user’s messages are displayed

as a “stream” on the user’s Twitter page.

In terms of social connectivity, Twitter allows a user to follow any number of other

users. The Twitter contact network is directed: user A can follow user B without requiring

approval or a reciprocal connection from user B. Users can set their privacy preferences

so that their updates are available only to each user’s followers. By default, the posted

messages are available to anyone. In this work, we only consider messages posted publicly

on Twitter. Users consume messages mostly by viewing a core page showing a stream of

the latest messages from people they follow, listed in reverse chronological order.

The conversational aspects of Twitter play a role in our analysis of the Twitter temporal

trends. Twitter allows several ways for users to directly converse and interact by referencing

each other in messages using the @ symbol. A retweet is a message from one user that

is “forwarded” by a second user to the second user’s followers, commonly using the “RT

@username” text as prefix to credit the original (or previous) poster (e.g., “RT @justinbieber

Tomorrow morning watch me on the today show”). A reply is a public message from one

user that is a response to another user’s message, and is identified by the fact that it starts

with the replied-to user @username (e.g., “@mashable check out our new study on Twitter

trends”). Finally, a mention is a message that includes some other username in the text of
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the message (e.g., “attending a talk by @informor”). Twitter allows users to easily see all

recent messages in which they were retweeted, replied to, or mentioned.

Finally, Twitter supports a hashtag annotation format so that users can indicate what

their posted messages are about. This general “topic” of a tweet is, by convention, indicated

with the hash sign #. For example, #iranelections was a popular hashtag with users posting

about the 2009 Iran election events.

3.2 Trends on Twitter

Because of the quick and transient nature of its user posts, Twitter is an information system

that provides a “real time” reflection of the interests and thoughts of its users, as well as

their attention. As a consequence, Twitter serves as a rich source for exploring the mass

attention of millions of its users, reflected in trends that can be extracted from the site.

Similar to our definition of trending events (Chapter 2), a trend on Twitter (sometimes

referred to as a trending topic) consists of one or more terms and a time period, such that

the volume of messages posted for the terms in the time period exceeds some expected level

of activity (e.g., in relation to another time period or to other terms). Unlike trending

events, trends do not have to reflect a real-world occurrence. According to this definition,

trends on Twitter include our examples above, such as Michael Jackson’s death (with terms

“Michael” and “Jackson,” and time period June 25, 2009), the final episode of Lost (with

terms “Lost” and “finale,” and time period May 23, 2010), and the health care reform

debate (with term “HCR” and time period May 25, 2010). This definition conveys the

observation by Kleinberg [Kle03] that the “appearance of a topic in a document stream is

signaled by a burst of activity, with certain features rising sharply in frequency as the topic

emerges” but does not enforce novelty (i.e., a requirement that the topic was not previously

seen). In Twitter’s own (very informal) definition, trends “are keywords that happen to

be popping up in a whole bunch of tweets.” Figure 3.1 captures Twitter’s home page with

several trending topics displayed at the top.

In this chapter, each trend t is then identified by a set Rt of one or more terms and

a time period pt. For example, Figure 3.1 highlights one trend t that is identified by a
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Figure 3.1: Trending terms, on the dark blue (middle) banner, on Twitter’s home page.

single term, iOS4 (referring to the release of Apple’s mobile operating system). To analyze

a trend t, we study the set Mt of associated messages during the time period that contain

the trend terms (in our example, all messages with the string “iOS4”). Note that, of course,

alternative representations of trends are possible (e.g., using lists of terms and other context

features, as we discuss in Chapter 4). However, for this work we decided to concentrate on

the above term-based formulation, which reflects a model commonly used in other systems

(e.g., by Twitter as well as other commercial engines such as OneRiot).

While identifying trends, and specifically trending events, is an interesting research

problem that we explore in this dissertation (Chapter 4), in this chapter we focus instead on

characterizing the trends that can be identified on Twitter with existing baseline approaches.

This characterization, and particularly the comparison of characteristics of trending events

versus non-event trends, will later help inform our trending event identification techniques

(Chapter 4).

For the characterization task, we collect detected trends from two different sources.

First, we collect local trends identified and published hourly by Twitter; the trends are

available via an application programmer interface (API) from the Twitter service. Second,

to complement and expand the Twitter-provided trends, we run a simple burst-detection
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algorithm over a large Twitter dataset to identify additional trends. We describe these two

trend-collection methods next.

3.3 Collecting Trend Data

In this section, we describe the two methods we use to compile trends on Twitter, and also

how we select the set of trends for analysis and how we get the associated messages, or

tweets, for each trend. The set of trends T that we will analyze in this chapter consists of

the union of the trends compiled using both methods below. We use two methods in order

to control, at least to some degree, for bias in the type of trends that may be detected by

one method, but not another. While other algorithms for trend detection exist, we strongly

believe our selected methods will provide a representative sample of the type of trends that

can be detected. The set of detected trends might be skewed towards some trend types in

comparison to other methods, but this skewness does not affect the analysis in this work.

We further address this issue in the limitations discussion below.

In subsequent sections, we qualitatively examine a subset TQual of the trends in T

to extract the key types of trends that are present in Twitter data, and develop a set

of dimensions according to which trends can be categorized. We then use the categories

to compare the trends in (a different) subset of T , TQuant, according to several features

computed from the data associated with each trend, such as the time dynamics of each

trend and the interaction between users in the trend’s tweets. We examine whether trends

from different categories show significant difference in their computed features.

3.3.1 Tweets Dataset

The “base” dataset used for our study consists of over 48,000,000 Twitter messages posted

by New York City users of Twitter between September 2009 and March 2010. This dataset

is used in one of our methods described below to detect trends on Twitter (i.e., to generate

part of our trend set T ). The dataset is also used for identifying the set of tweets Mt for each

trend t in our trend set T . (Recall that T consists of all the trends that we analyze, compiled

using both methods discussed below.) We collected the tweets via a script for querying the



CHAPTER 3. CHARACTERIZATION OF TRENDING
EVENTS IN SOCIAL MEDIA 28

Twitter API. We used a “whitelisted” server, allowed to make a larger number of API calls

per day than the default quota, to continuously query the Twitter API for the most recent

messages posted by New York City users (i.e., by Twitter users whose location, as entered

by the users and shown on their profile, is in the New York City area). This querying

method results in a highly significant set of tweets, but it is only a subsample of the posted

content. First, we do not get content from New York users who did not identify their home

location. Second, the Twitter search API returns a subsample of matching content for most

queries. Still, we collected over 48,000,000 messages from more than 855,000 unique users.

For each tweet in our dataset, we record its textual content, the associated timestamp (i.e.,

the time at which the tweet was published), and the user ID of the user who published the

tweet.

3.3.1.1 Trend Dataset I: Collecting Twitter’s Local Trending Terms

As mentioned above, one of our trend datasets consists of the trends computed by, and

made available from, the Twitter service. Twitter computes these trends hourly, using an

unpublished method. This source of trend data is commonly used in research efforts related

to trends on Twitter (e.g., Kwak et al. [KLPM10], Cheong and Lee [CL09]). The Twitter-

provided trends are computed for various geographic scales and regions. For example,

Twitter computes and publishes the trends for New York City, as well as for the United

States, and across all the Twitter service (e.g., those shown in Figure 3.1). From the data,

we can observe that location-based trends are not necessarily disjoint: for example, New

York City trends can reflect national trends or overlap with other cities’ trends.

We collected over 8,500 trends published by Twitter for the New York City area during

the months of February and March of 2010. The data included the one or two terms

associated with each published trend, as well as the trend’s associated time period, expressed

as a date and time of day. We use the notation Ttw (for “Twitter”) to denote this set of

trends.
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3.3.1.2 Trend Dataset II: Collecting Trends with Burst Detection

We derived the second trend dataset using a simple trend-detection mechanism over our

Tweets dataset described above. This simple approach is similar to those used in other

efforts [NGS+09] and, as noted by Phelan et al. [PMS09], it “does serve to provide a

straightforward and justifiable starting point.” The trend-detection mechanism relies con-

ceptually on the tf-idf score [MRS08] of terms, highlighting terms that appear in a certain

time period much more frequently than expected for that time of day and day of the week.

We tune this approach so that it does not assign a high score to weekly recurring events,

even if they are quite popular, to ensure that we include a substantial fraction of trends

that represent “one-time,” non-recurring events, adding to the diversity of our analysis.

Specifically, to identify terms that appear more frequently than expected, we assign a

score to terms according to their deviation from an expected frequency. Assume that M is

the set of all messages in our Tweets dataset, R is a set of one or more terms to which we

wish to assign a score, and h, d, and w represent an hour of the day, a day of the week, and

a week, respectively. We then define M(R, h, d, w) as the set of every Twitter message in

M such that (1) the message contains all the terms in R and (2) the message was posted

during hour h, day d, and week w. With this information, we can compare the volume in

a specific day/hour in a given week to the same day/hour in other weeks (e.g., 10 a.m. on

Monday, March 15, 2010, vs. the activity for other Mondays at 10 a.m.).

To define how we score terms precisely, let Mean(R, h, d) = (
∑

i=1,...,n |M(R, h, d, wi|)/n

be the number of messages with the terms in R posted each week on hour h and day d,

averaged over the weeks w1 through wn covered by the Tweets dataset. Correspondingly,

SD(R, h, d) is the standard deviation of the number of messages with the terms in R posted

each week on day d and hour h, over all the weeks. Then, the score of a set of terms R

over a specific hour h, day d, and week w is defined as score(R, h, d, w) = (|M(R, h, d, w)|−

Mean(R, h, d))/SD(R, h, d).

Using this definition, we computed the score for every individual term in our dataset

(in other words, we computed the scores for all R sets where each R is a set with a single

1-gram that appears in M). We computed the score for each R over all h, d, and w values

for the weeks covered by our Tweets dataset. For each day d and week w, we identified
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Notation Data Source Selection for Analysis

Ttw Twitter’s own trends as retrieved

from the Twitter API

Selected from complete set of trends

published by Twitter

Ttf Trends computed from raw Twitter

data using term frequency measures

Selected from top-scoring terms for

each day

Table 3.1: Summary of event datasets.

the R and h pairs such that (1) M(R, h, d, w) contains at least 100 messages and (2) the

score(R, h, d, w) value is among the top-30 scores for day d and week w across all term-hour

pairs. Each selected pair defines a trend with set of terms R and associated time period

specified by h, d, and w. (Note that certain terms could be repeated if they scored highly

for multiple hours in the same day; such repetition is also possible for the trend set Ttw. We

compute a trend’s “real” peak after we choose the trends for analysis, as described below.)

We use the notation Ttf (for “term frequency”) to denote the resulting set of 1,500 trends.

For reference, the sources and properties of the event datasets are summarized in Table

3.1.

3.3.2 Selecting Trends for Analysis

After identifying the above two sets of trends, namely, Ttw and Ttf , our goal is to perform

both a quantitative and a qualitative analysis of these trends. To be meaningful, this

analysis will rely on a manual coding of the trends, but an exhaustive manual processing

of all trends in Ttw and Ttf would, unfortunately, be prohibitively expensive. Therefore,

our analysis will focus on a carefully selected subset of the two trend sets (see Section 3.4).

This selection of trends should (1) reflect the diversity of trends in the original sets and

(2) include only trends that could be interpreted and understood by a human, through

inspection of the associated Twitter messages.

For both sets Ttw and Ttf , we performed a random selection of trends to serve as an initial

dataset. For each trend in this initial selection, we attempted to identify the topic reflected

in the trend by inspecting associated messages (posted on the corresponding day, and with

the corresponding terms). If we could not identify the topic or reason for the trend, we
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Trend Terms Explanation Date # Tweets

#TEDxNYED A New York City conference on media,

technology, and education

March 6, 2010 556

Sparklehorse The suicide of Mark Linkous, of the

band Sparklehorse

March 8, 2010 230

Burger Reaction to a tweet by Lady Gaga:

“once you kill a cow, you gotta make

a burger”

March 12, 2010 3249

Masters Tiger Woods’s announcement of his re-

turn to golf at the Masters

March 16, 2010 693

itsreallyannoying Twitter meme: users sharing their an-

noyances

March 23, 2010 2707

Seder Passover-eve meal March 28, 2010 316

iPad Launch of the Apple iPad March 29, 2010 1714

Table 3.2: Sample trends and their explanation.

removed it from the selected set, to satisfy condition (2). In addition, after the first round of

coding trends according to the categories described below, we manually inspected the trends

from the initial sets Ttw and Ttf that were not yet selected for analysis. Instead of randomly

choosing among them, we randomly chose a date and then purposefully selected additional

trends from that date from underrepresented categories, satisfying condition (1). Note that

we attempted to create a comprehensive, but not necessarily proportional, sample of trends

in the data. In other words, some types of trends may be over- or under-represented in

the selected trends dataset. At the same time, the sample of trends in each category is

representative of trends in the category overall. Our aim here is to provide insight about

the categories of trends and features of trends in each category, rather than discuss the

magnitude of each category in the data, a figure likely to shift, for example, with changes

to the detection algorithms.

The result of this process was a set of trends T that combines trends from both Ttw and

Ttf . We split the set T into two subsets. The first subset of selected trends, TQual, consisting
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Initial set of Twitter trends (Ttw) > 8,500*

Initial set of burst detection trends (Ttf ) > 1,500*

Selected trends for qualitative analysis (TQual) 50

Selected trends for quantitative analysis (TQuant) 200

* Including duplicate trending terms in different hours.

Table 3.3: Details of the trend datasets produced and used in this work.

of trends in T through February 2010, was used for the qualitative analysis described in

Section 3.4. The second subset of T , TQuant, consisting of trends in T from March 2010,

was used for the quantitative analysis described in Section 3.7. Table 3.2 lists several of

the trends selected for the analysis: for each trend t, we list its description, time period,

and number of associated messages (i.e., the cardinality of Mt). Next, we explain how we

identify Mt for each trend t.

Table 3.3 provides a summary of the data sets described in this section, along with their

respective size.

3.3.3 Identifying Tweets Associated with Trends

For our statistical analysis of trend features, for each trend t in TQuant we need to know the

set of tweets Mt associated with t. Each trend includes the terms that identify the trend

and the associated time period, as discussed (e.g., a trend might consist of term “Passover”

on March 29, 2010, for the hour starting at 4 p.m.). To define Mt, we first collected every

message in our Tweets dataset that contains all of t’s terms and such that it was posted

up to 10 days before or after the time period for t. We sorted these messages according to

the time at which they were posted and we aggregated them into hourly bins. Since the

identifying term(s) may be popular at various times (e.g., as is the case for a trend that

persists for several hours), we identified the peak time for the trend by selecting the bin

with the largest number of messages. Finally, after anchoring the trend in its new associated

time period, we retrieved all messages posted up to 72 hours before or after the new time

period; this set is Mt, the set of messages associated with trend t. On average, the set Mt

for each trend in TQuant consists of 1,350 tweets, and the median cardinality of Mt is 573.
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3.4 Trend Taxonomy and Dimensions

We now describe the qualitative analysis that we performed to characterize the Twitter

trends in the TQual set of trends described above. The analysis was geared to identify the

different types of trends that occur in Twitter data from one metropolitan area and relied

on a taxonomy of the trends.

Several research effort showed that many Twitter trends correspond to trending events

(Chapter 2) that are reflected on Twitter by its users [KLPM10; SST+09]. Additionally,

trends and trending events in social media have been characterized by researchers in the

past. Dayan and Katz [DK92] characterized media events according to three generic types

of scripts that these events tend to follow, namely, “contest,” “conquest,” and “coronation,”

for events such as a presidential debate, an unfolding visit by a leader to a foreign state, and

a leader’s funeral, respectively. Boll and Westermann [BW03] present discussion of events

in the area of personal multimedia collections. However, the taxonomies available in these

literatures do not capture the variety of trends that emerge in a social media site such as

Twitter, which is our focus here.

Our qualitative analysis of trends is based on a variation of the affinity diagram method,

an inductive process [LS99] to extract themes and patterns from qualitative data. For this

analysis we used sticky notes to represent each trend in TQual and recorded the terms and the

explanation of the trend if needed, which happened when the terms associated with the trend

did not immediately offer an idea of the content. We then put together the different items

into groups and categories in an iterative process of comparing, contrasting, integrating,

and dividing the grouped trends. According to the affinity process, we considered the

relationship between categories as well as the items that are grouped and linked together.

Indeed, the categories that emerged could be described and differentiated according to

one key dimension: whether the trends in the category are exogenous or endogenous. Trends

in exogenous categories capture trending events that originated outside of the Twitter sys-

tem (e.g., an earthquake). Trends in endogenous categories are Twitter-only activities that

do not correspond to external events (e.g., a popular post by a celebrity). Having this

dimension at the top level of the taxonomy reflects and highlights the substantial differ-

ences on Twitter between exogenous and endogenous trends regarding their importance and
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use scenarios. The top level of the taxonomy thus separates trends that reflect real-world

(i.e., non-virtual) events from trends that reflect activities that only pertain to the Twitter

system.

The groups of trends that emerged are described below, with sample trends to illustrate

each category.

Exogenous Trends

• Broadcast-media events:

– Broadcast of local media events: “fight” (boxing event),“Ravens” (football game).

– Broadcast of global/national media events: “Kanye” (Kanye West acts up at the

MTV Video Music Awards), “Lost Finale” (series finale of Lost).

• Global news events:

– Breaking news events: “earthquake” (Chile earthquake), “Tsunami” (Hawaii

Tsunami warning), “Beyoncé” (Beyoncé cancels Malaysia concert).

– Nonbreaking news events: “HCR” (health care reform), “Tiger” (Tiger Woods

apologizes), “iPad” (toward the launch of Apple’s popular device).

• National holidays and memorial days: “Halloween,” “Valentine’s.”

• Local participatory and physical events:

– Planned events: “marathon,” “superbowl” (Super Bowl viewing parties), “patrick’s”

(St. Patrick’s Day Parade).

– Unplanned events: “rainy,” “snow.”

Endogenous Trends

• Memes: #in 2010 (in December 2009, users imagine their near future), “November”

(users marking the beginning of the month on November 1).

• Retweets (users “forwarding” en masse a single tweet from a popular user): “deter-

mination” (users retweeting LL Cool J’s post about said concept).
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• Fan community activities: “2pac” (the anniversary of the death of hip-hop artist

Tupac Shakur).

Needless to say, the above set of categories might not be comprehensive (i.e., other trends

that are not in our data might not comfortably fit in any of these categories). However,

we developed this set of categories after an exhaustive, thorough analysis of a large-scale

set of trends, as described above. Therefore, we believe that this categorization is both

sufficiently broad and, at the same time, simple enough to enable a meaningful study of the

“trends in trend data.”

Our quantitative analysis (Section 3.7) focused on a limited number of dimensions ex-

tracted from the taxonomy that capture key differences between trends. We identified the

dimensions to focus on according to two criteria: (a) significance, or the importance of being

able to extract differences between the selected trend categories, and (b) the likelihood that

these categories will result in measurable differences between trends.

The first dimension we examined is the high-level exogenous and endogenous categories

of trends. Such comparison will allow us to reason about this most distinguishing aspect of

any Twitter trend. Importantly, this comparison is critical to our understanding of trending

events on Twitter, which we leverage in the following chapters.

Within exogenous trends, in this work we chose to concentrate on two important dimen-

sions. First, whether the exogenous activity falls into the local participatory and physical

events category above. These “local trends” represent physical events, located in one ge-

ographic area (e.g., the New York marathon) that are currently underrepresented in the

detected trends, but naturally play an important role in local communities. The second

dimension chosen is whether the exogenous trends are breaking news events, global news

events that are surprising and have not been anticipated (e.g., an earthquake), as opposed

to all other events and trends that are planned or expected (e.g., a vote in the Senate,

or a holiday). This dimension will allow us to separate “news-worthy” versus “discussion-

worthy” trends, which may lead to a different manner in which systems use and display

these different trend types.

Similarly, within endogenous trends in this work we chose to investigate the differences

between trends in the two main categories of this group of events, namely, memes and
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retweets, as explained above.

Next, these dimensions help us guide the quantitative study of the trends detected in

Twitter data, as we label each trend according to categories derived from the dimensions

above.

3.5 Characterization of Trends and Events

The next step in our analysis is to characterize each Twitter trend using features of its

associated messages. These features are later used to reason about differences between

the various trend dimensions described in the previous section. For this analysis, we use

the trend set TQuant defined above. For each trend t, we compute features automatically,

based on its associated set of tweets Mt. These features range from aggregate statistics of

the content of each individual message (e.g., number of hashtags, URLs) to social network

connections between the authors of the messages in Mt, and the temporal characteristics of

Mt.

Content Features Our first set of features (see Table 3.4) provides descriptive charac-

teristics for a trend t based on the content of the messages in Mt. These features include

aggregate characteristics such as the average length of a message in Mt and the percentage

of messages with URLs or hashtags, or measures of the textual similarity of the tweets in

Mt.

Interaction Features The interaction features (see Table 3.5) capture the interaction

between users in a trend’s messages as indicated on Twitter by the use of the “@” symbol

followed by a username. These interactions have somewhat different semantics on Twitter,

and include “retweets” (forwarding information), replies (conversation), or mentions of other

users.

Time-based Features The time-based features (see Table 3.6) capture different temporal

patterns of information spread that might vary across trends. To capture these features for

a trend t, we fit a family of functions to the histogram describing the number of Twitter
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Content Features Explanation

Average number of words and

characters

Let words(m) be the number of words in a tweet m

and let char(m) be the number of characters in tweet

m. Then the average number of words per message is
summ∈Mt words(m)

|Mt| , and the average number of characters

per message is summ∈Mt char(m)

|Mt| .

Proportion of messages with URLs Let Ut ⊆Mt be the set of messages with URLs out of all

messages for trend t. Then the proportion of messages

with URLs is |Ut|/|Mt|.

Proportion of unique URLs Let URL(m) be the set of URLs that appear in tweet m.

The set of unique URLs for t is |UUt|, where UUt = {u :

u ∈ URL(m) for a message m ∈ Mt}, and the propor-

tion of unique URLs is |UUt|/|Mt|. (Note that the set

semantics ensures that each unique URL is only counted

once.)

Proportion of messages with hash-

tags

Let Ht ⊆ Mt be the set of messages with hashtags in

Mt . Then the proportion of messages with hashtags is

|Ht|/|Mt|.

Proportion of messages with hash-

tags, excluding trend terms

Let Ht ⊆Mt be the set of messages with hashtags in Mt,

excluding messages where the hashtag is a term in Rt, the

set of terms associated with trend t. Then the proportion

of messages with hashtags excluding the trends terms is

|Ht|/|Mt|.

Top unique hashtag? Whether there is at least one hashtag that appears in

at least 10% of the messages in Mt. This measure cap-

tures agreement on the terms most topically related to

the trend.

Similarity to centroid We represent each message m ∈ Mt as a tf-idf vector,

where the idf value is computed with respect to all mes-

sages in the Tweets dataset.We compute the average tf-

idf score for each term across all messages in Mt to define

the centroid Ct. Using Ct, we then compute the average

cosine similarity summ∈Mt sim(Ct,m)

|Mt| as well as the corre-

sponding standard deviation. These features help indi-

cate content cohesiveness within a trend.

Table 3.4: Content features for a trend t.
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Interaction Features Explanation

Proportion of retweets Let RTt ⊆ Mt be the set of messages in Mt that are

“retweets” (i.e., these messages include a string of the

form “RT @user”). Then the proportion of retweets is

|RTt|/|Mt|.

Proportion of replies Let RPt ⊆ Mt be the set of messages in Mt that are

“replies” (i.e., these messages begin with a string of

the form “@user”). Then the proportion of replies is

|RPt|/|Mt|.

Proportion of mentions Let MNt ⊆ Mt be the set of messages in Mt that are

“mentions” (i.e., these messages include a string of the

form “@user” but are not replies or retweets as defined

above). Then the proportion of mentions is |MNt|/|Mt|.

Table 3.5: Interaction features for a trend t.

messages associated with the trend over the time period spanned by the tweet set Mt (by

construction, as discussed, Mt has the matching messages produced up to 72 hours before

and after t’s peak). We aggregate all messages in Mt into hourly bins. We refer to all bins

before the peak as the head of the time period, while all bins after the peak are the tail of

the time period.

We proceed to fit the bin volume data, for both the head and the tail of the time period,

separately, to exponential and logarithmic functions. Using the least squares method, we

compute logarithmic and exponential fit parameters for the head and tail periods for each

trend, considering the full time period of 72 hours, which we refer to as the Log72 fit and

the Exp72 fit, respectively. We proceed in the same manner for a limited time period of

8 hours before and after the peak, which we refer to as the Log8 fit and the Exp8 fit,

respectively. The focus on the shorter time periods will allow us to better match rapidly

rising or declining trends [LBK09].

In sum, our features for each trend thus include the fit parameters for 8-hour and 72-hour

spans for both the head and the tail periods; and for each period and span, we calculate

the logarithmic and exponential fit parameters. In addition, for each combination we also

computed the R2 statistic, which measures the quality of each fit.
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Time-based Features Explanation

Exponential fit (head) Best fit parameters (p0, p1, p2) and goodness of fit R2 for

function M(h) = p1e
−p0|h| + p2, where M(h) represents

the volume of messages during the h-th hour before the

peak. Computed for 72- and 8-hour periods before the

peak.

Logarithmic fit (head) Best fit parameters (p0, p1) and goodness of fit R2 for

function M(h) = p0log(h) + p1, where M(h) represents

the volume of messages during the h-th hour before the

peak. Computed for 72- and 8-hour periods before the

peak.

Exponential fit (tail) Similar to above, but over 72- and 8-hour periods after

the trend’s peak.

Logarithmic fit (tail) Similar to above, but over 72- and 8-hour periods after

the trend’s peak.

Table 3.6: Time-based features for a trend t.

Participation Features Trends can have different patterns of participation, in terms

of authorship of messages related to the trend. The participation features (see Table 3.7)

characterize a trend using statistics about the participation of authors that produced the

trend’s associated messages; in particular, we capture the skew in participation (i.e., to

which extent a small portion of authors produced most of the content).

Social Network Features Our final group of features for a trend t focuses on the set

At of the authors of the messages in Mt. Specifically, the social network features (see Table

3.8) capture the properties of the social network Gt of authors. To model this network,

we used the Twitter API to collect the list of followers for each author, consisting of other

Twitter users in At that subscribe to the author’s message feed. (We ignore followers that

are not among the At authors. We also ignore followers of authors who restrict access to

this information, and those who have suspended Twitter accounts.) In other words, our

social network graph is a directed graph Gt(At, Et), such that there exists an edge e ∈ Et

from a1 to a2 if and only if a1 is a follower of a2 on Twitter. We computed various features
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Participation Features Explanation

Messages per author Let At = {a : a is an author of a message m ∈Mt}. Then

the number of messages per author is |Mt|/|At|.

Proportion of messages from top

author

We designate a′ ∈ At as the top author if a′ produced at

least as many messages in Mt as any other author. Then

the proportion of messages from top author is |{m : m ∈

Mt and m was posted by a′}|/|Mt|.

Proportion of messages from top

10% of authors

Let A10t be the set of the top 10% of the authors in

terms of the number of messages produced in Mt. Then

the proportion of messages from top 10% authors is |{m :

m ∈Mt and m was posted by a ∈ A10t}|/|Mt|.

Table 3.7: Participation features for a trend t.

of the social network graph Gt for each trend t, capturing the connectivity and structure of

connections in the graph [WF94].

3.6 Categorizing Trends in Different Dimensions

In addition to the automatically extracted features, we manually categorized the trends in

TQuant according to the dimensions picked for analysis (e.g., whether the trend belongs to

the “exogenous” or “endogenous” category). We manually associated every trend with one

category in each dimension. Later, we examined how the categories differ according to the

automatically computed features described above.

We required a content description of each trend in order to properly label it according

to the categories introduced in the previous section. The trend detection methods only

output the trend terms and a time period. This type of output (e.g., “Bacall on March

8th”) was often not enough to discern the content of the trend to correctly assign it to

different categories. We examined each of the trends to generate a short description. The

sources used for this examination were, first, the actual Twitter messages associated with

the trend. If that examination did not prove informative enough, we used news search tools

(e.g., Google News) to inspect corresponding news reports for that day and those terms.

At the end of the process, we had a description for 200 of the trends in our trend dataset
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Social Network Features Explanation

Level of reciprocity The fraction of reciprocal connections out of the to-

tal number of connections |Et|, where authors a1, a2 ∈

At form a reciprocal connection if (a1, a2) ∈ Et and

(a2, a1) ∈ Et.

Maximal eigenvector centrality The eigenvector centrality of an author measures the im-

portance of this author in At by computing the eigenvec-

tor of the largest eigenvalue in the adjacency matrix of

the network graph. We pick the author with the highest

eigenvector centrality value over all a ∈ At. A high value

suggests the existence of a dominant node in the network.

Maximal degree centrality The degree centrality of an author a ∈ At is the fraction

of authors it is connected to. We compute the highest

degree centrality value over all a ∈ At. A high value

suggests the existence of a dominant node in the network.

Table 3.8: Social network features for a trend t.

TQuant, after removing twenty-nine trends that could not be resolved (e.g., “challenging” on

March 14, 2010) from our dataset. We computed these features for the 200 resolved trends

in our trend dataset TQuant. This data is the basis for our analysis, described below.

We mapped each of the trends into categories based on the dimensions for analysis. Two

people independently annotated each of the trends. If an annotator could not assign a value

for some dimension, either a “not applicable” or an “unknown” label was used. In each

dimension, after removing trends marked “not applicable” or “unknown” by at least one

of the annotators, the inter-annotator agreement of the labeled trends in each dimension

was very high (the remaining number of trends for each dimension is reported below, in

the analysis). For the final analysis in each dimension we removed all “not applicable” and

“unknown” entries for that dimension, as well as any remaining disagreements between the

annotators. In other words, we ignored those trends for which we had reason to doubt the

assignment to a category.
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3.7 Quantitative Analysis

The main drivers for our analysis are the coded categories of trends, as detailed above.

In other words, we compared the samples of trends according to their categorization in

different dimensions (e.g., exogenous vs. endogenous) and according to the features we

computed from the data (e.g., the percentage of messages with URLs). Our hypotheses,

listed below, are guided by intuitions about deviations in the characteristics of trends in

different categories, and are geared towards confirming the expected deviations between the

trend categories. Such confirmation would allow, later on, for the development of automated

systems to detect the trend type or provide better visualizations or presentation of the trend

data. We continue by listing the key hypotheses that guided our analysis.

Exogenous vs. Endogenous Trends H1. We hypothesize that exogenous and endoge-

nous trends will have different quantitative characteristics. In particular:

• H1.1 Content features of exogenous trends will be different than those of endoge-

nous trends; in particular, they will have a higher proportion of URLs and a smaller

proportion of hashtags in tweets.

• H1.2 Interaction features of exogenous trends will be different than those of endoge-

nous trends; in particular, exogenous trends will have fewer retweets (forwarding),

and a similar number of replies (conversation).

• H1.3 Time features of exogenous trends will be different for the head period before

the trend peak but will exhibit similar time features in the tail period after the trend

peak, compared to endogenous trends.

• H1.4 Social network features of exogenous trends will be different than those of en-

dogenous trends, with fewer connections (and less reciprocity) in the social network

of the trend authors.

Breaking News vs. Other Exogenous Trends H2. We hypothesize that breaking

news events will have different quantitative characteristics compared to other exogenous

trends. In particular:
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• H2.1 Interaction features of breaking events will be different than those of other ex-

ogenous trends, with more retweets (forwarding), but fewer replies (conversation).

• H2.2 Time features of breaking events will be different for the head period, showing

more rapid growth, and a better fit to the functions’ curve (i.e., less noise) compared

to other exogenous trends.

• H2.3 Social network features of breaking events will be different than those of other

exogenous trends.

Local Events vs. Other Exogenous Trends H3. We hypothesize that local participa-

tory and physical events will have different quantitative characteristics compared to other

exogenous trends. In particular:

• H3.1 Content features of local events will be different than those of other exogenous

trends.

• H3.2 Interaction features of local events will be different than those of other exogenous

trends; in particular, local events will have more replies (conversation).

• H3.3 Time features of local events will be different than those of other exogenous

trends.

• H3.4 Social network features of local events will be different than those of other exoge-

nous trends; in particular, local events will have denser networks, more connectivity,

and higher reciprocity.

Memes vs. Retweet Endogenous Trends H4. We hypothesize that memes will have

different quantitative characteristics compared to retweet trends. In particular:

• H4.1 Content features of memes will be different than those of retweet trends.

• H4.2 Interaction features of memes will be different than those of retweet trends; in

particular, retweet trends will have significantly more retweet (forwarding) messages

(this hypothesis is included as a “sanity check” since the retweet trends are defined

by having large proportion of retweets).
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• H4.3 Time features of memes will be different than those of retweet trends.

• H4.4 Participation features of memes will be different than those of retweet trends.

• H4.5 Social network features of memes will be different than those of retweet trends;

in particular, meme trends will have more connectivity and higher reciprocity than

retweet trends.

We performed our analysis on the 200 resolved trends in TQuant. The analysis was

based on a pairwise comparison of trends according to the trends’ categorization in differ-

ent dimensions, following our hypotheses above. For each such pair, we performed a set of

two-tailed t-tests to show whether there are differences between the two sets of trends in

terms of the dependent variables, namely, our automatically extracted trend features. How-

ever, since each sub-hypothesis involved multiple dependent variables (e.g., we computed

seven different social network features), we controlled for the multiple t-tests by using the

Bonferroni correction, which asks for a significance level of α/n when conducting n tests at

once. Therefore, we only report here results with significance level of p < .008.

As is common in studies of social-computing activities, many of our dependent variables

were not normally distributed, but rather they were most often skewed to the right. Fol-

lowing Osborne [Osb02], we used logarithms (adding a small constant to handle zero values

as needed) or square root functions to transform these variables in order to improve their

normality. For most variables, such transformation indeed generated a normal distribution.

In the cases where we performed a variable transformation, whenever we find significant

differences between the transformed means in the analysis, we also report here the original

variable means and medians. For variables that were still skewed after the transformation,

we performed the Mann-Whitney test for non-normal distributions, and note when that is

the case. For the one dependent variable in our data that was nominal, we used the CHI-

square test. Finally, following Asur and Huberman [AH10], in the analysis we considered

the temporal features only for trends that peaked on a United States weekday (i.e., Monday

through Friday), as the temporal aspects in particular might be influenced by the different

patterns of Twitter usage during weekends.
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Categories Compared Content Interaction Time Participation Social

Exogenous vs.

Endogenous

Hypothesis: H1.1 H1.2 H1.3 None H1.4

Found: Yes* Yes* No No Yes

Breaking News vs.

Other Exogenous

Hypothesis: None H2.1 H2.2 None H2.3

Found: No Yes No No No

Local vs. Other

Exogenous

Hypothesis: H3.1 H3.2 H3.3 None H3.4

Found: No Yes* No No No

Memes vs.

Retweets

Hypothesis: H4.1 H4.2 H4.3 H4.4 H4.5

Found: Yes Yes Yes* Yes Yes

Table 3.9: Summary of results. Starred entries represent partial findings or findings that

diverged somewhat from the detailed hypothesis.

3.8 Experimental Results

We report below the results from our analysis. For convenience, an overview of the results

and findings as they related to the hypothesis is provided in Table 3.9.

3.8.1 Exogenous vs. Endogenous Trends

Exogenous trends were found to be different than endogenous trends in content, interaction,

time and social features, supporting most of the hypotheses under H1 as shown in Table 3.9.

In our dataset we had 115 exogenous trends and 55 endogenous trends (for some parts of

the analysis the numbers are lower due to missing data). The detailed numerical results are

shown in Tables 3.10 and 3.11. In terms of content features (H1.1), exogenous trends had a

higher proportion of messages with URLs than endogenous trends (results were similar for

the proportion of unique URLs appearing in the trend’s content). In addition, the average

term length for exogenous trends was somewhat shorter than the length of terms used

in endogenous trends. We found only some differences in the presence of hashtags in the

content: exogenous trends did not have a higher proportion of messages with hashtags, even

when excluding the trending terms. However, fewer exogenous trends had a unique hashtag

appearing in at least 10% of the messages compared to endogenous trends. This finding
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URL Proportion* Top Unique Hashtag+ Term Length (chars)†

Exo Endo Exo (Y/N) Endo (Y/N) Exo Endo

N 115 55 47/68 36/19 115 55

Mean .34 .144 - - 5.31 6.13

Median .307 .058 - - - -

* log-transformed, t=6.117, p<.001
+ χ2=9.00, p<.002
† t=-5.119, p<.001

Table 3.10: Quantitative analysis results of exogenous/endogenous categories.

Retweet Proportion+ Reply Proportion* Reciprocity†

Exo Endo Exo Endo Exo Endo

N 115 55 115 55 114 54

Mean .32 .47 .094 .083 .26 .33

Median .26 .38 .081 .028 - -

* sqrt-transformed, t=-3.865, p<.001
+ log-transformed, t=2.98, p<.003
† t=-6.87, p<.001

Table 3.11: Quantitative analysis results of exogenous/endogenous categories.

indicates less agreement between authors of exogenous trends on the ad-hoc “semantics” of

the trend (in other words, the chosen community representation for what that trend content

is about), which may stem from the fact that exogenous trends are seeded at once from

many users who choose different hashtags to represent the trend.

In terms of interaction features (H1.2), we found that exogenous trends had a smaller

proportion of retweets in the trend’s tweets compared to endogenous trends. This finding

suggests that users created more original content based on exogenous sources, rather than

retransmit and forward content that was already in the “system” as often happens for

endogenous trends. Interestingly, we also found that exogenous trends tend to have more

“conversation”: the proportion of replies in exogenous trends was higher than endogenous

ones. In terms of time features (H1.3), the hypothesis was not supported: our data did

not show exogenous trends to have different time features for the head period. The tail
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Retweet Proportion* Reply Proportion+ Exp72 tail R2† Log72 tail R2‡

Breaking Other Breaking Other Breaking Other Breaking Other

N 33 63 33 63 26 37 26 39

Mean .39 .28 .058 .11 .0119 .0041 .589 .386

Median .35 .21 .049 .101 - - - -

* sqrt-transformed, t=3.2, p<.002
+ log-transformed, t=-2.7, p<.008
† t=3.554, p<.001
‡ t=4.508, p<.001

Table 3.12: Quantitative analysis results of breaking/other categories.

period time parameters were, as we hypothesized, not found to be different for exogenous

and endogenous trends.

Finally, in terms of social network features (H1.4), we found differences in the level

of reciprocity between exogenous and endogenous trends. Social network connections in

exogenous trends had less reciprocity than those of endogenous trends. Other differences

were found but with marginal significance.

3.8.2 Breaking News vs. Other Exogenous Trends

Trends corresponding to breaking events were found to have different interaction character-

istics from other exogenous trends, but no other differences were found, giving only partial

support to hypothesis H2 (Table 3.9). In our dataset, we had 33 breaking events and 63

other exogenous events (for some parts of the analysis the numbers are lower due to missing

data). The detailed numerical results are shown in Table 3.12.

In terms of interaction features (H2.1), we found that breaking exogenous trends have

a larger proportion of retweet messages than other exogenous events. Breaking trends also

have a smaller proportion of reply messages than other exogenous events. These findings

show the informational nature of breaking events, which focus on information transmission

rather than conversation.

Hypotheses H2.2 and H2.3 were not confirmed, though, finding no significant differences

in time features between breaking exogenous events and other exogenous events. It is noted,
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Retweet Proportion*

Local Other

N 12 96

Mean .18 .345

Median .148 .2

* sqrt-transformed, t=-4.82,

p<.001

Table 3.13: Quantitative analysis results of local/other categories.

however, that we found that the R2 quality of fit on the Exp72 time fit parameters for the

tail period was significantly different between breaking and other events, with breaking

events having better fit on average than other events. Similar yet marginal differences were

found for Log72 fit parameters. This difference might suggest that the breaking events,

after the peak, are less noisy than other exogenous events with discussion levels dropping

more “smoothly.”

3.8.3 Local Events vs. Other Exogenous Trends

We found limited support that local events have different characteristics than other exoge-

nous trends (H3). In particular, our data surfaced differences between interaction features

of local events and other exogenous trends (Table 3.9). In our dataset, we had 12 local

events and 96 other exogenous trends (for some parts of the analysis the numbers are lower

due to missing data). We note that the analysis was limited by the small number of local

events in our trends dataset. The detailed numerical results are shown in Table 3.13.

We could confirm only one difference in terms of interaction features between local and

other exogenous trends (H3.2), where local events have a smaller proportion of messages

that are retweets than other exogenous trends. In addition, our analysis suggests that local

events might be more conversational, in terms of the proportion of messages that are replies,

than other exogenous trends; however, the result for replies is not significant at the level

we require for reporting in this paper, and thus cannot be fully confirmed. Therefore, we

can provide only partial support to H3.2.

Finally, we found no support for H3.3, as the differences in time features between local



CHAPTER 3. CHARACTERIZATION OF TRENDING
EVENTS IN SOCIAL MEDIA 49

URL Proportion* Unique URL Proportion+ Hashtag Proportion† Length (terms)‡

Memes RTs Memes RTs Memes RTs Memes RTs

N 27 22 27 22 27 22 27 22

Mean .044 .24 .035 .064 .989 .275 13.19 17.83

Median .032 .103 .029 .06 .998 .092 - -

* log-transformed, t=-4.231, p<.001
+ log-transformed, t=-2.759, p<.008
† log-transformed, t=5.552, p<.001
‡ t=-5.156, p<.001

Table 3.14: Quantitative analysis results of meme/retweet categories.

Length (chars)* Term Lengths (chars)+ Top Unique Hashtag† Retweet Proportion‡

Memes RTs Memes RTs Memes (Y/N) RTs (Y/N) Memes RTs

N 27 22 27 22 27/0 7/15 27 22

Mean 80.3 106.1 6.65 5.57 - - .309 .692

Median - - - - - - .277 .739

* t=-4.621, p<.001
+ t=4.017, p<.001
† χ2=27.99, p<.001
‡ sqrt-transformed, t=-8.633, p<.001

Table 3.15: Quantitative analysis results of meme/retweet categories.

events and other exogenous trends could not be confirmed.

3.8.4 Memes vs. Retweet Endogenous Trends

Looking at endogenous trends, “retweet” trends were found to be different than “meme”

trends (H4) in content, interaction, time, participation, and social network features (see

Table 3.9). In our dataset, we had 29 memes and 27 retweet trends (for some parts of the

analysis the numbers are lower due to missing data). The detailed numerical results are

shown in Tables 3.14-3.17.

In terms of content (H4.1), we found several differences between the retweet trends and

meme trends. Retweet trends have a larger proportion of messages with URLs than meme
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Reply Proportion* Log8 head p1
+ Messages/author† Messages/top author‡

Memes RTs Memes RTs Memes RTs Memes RTs

N 27 22 7 15 27 22 27 22

Mean .029 .079 .055 -.109 2.067 1.171 .042 .019

Median .018 .0565 - - - - .018 .01

* log-transformed, t=-3.704, p<.001
+ t=3.549, p<.002
† Mann-Whitney Z=5.44, p<.001
‡ log-transformed, t=2.793, p<.008

Table 3.16: Quantitative analysis results of meme/retweet categories.

Messages/top-10% authors* SCC size (avg)+ Reciprocated Ties†

Memes RTs Memes RTs Memes RTs

N 27 22 27 22 27 22

Mean .382 .182 1.861 1.332 .363 .3

Median .383 .157 1.582 1.239 - -

* sqrt-transformed, t=8.814, p<.001
+ log-transformed, t=3.53, p<.001
† t=3.936, p<.001

Table 3.17: Quantitative analysis results of meme/retweet categories.
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trends, and a higher proportion of unique URLs. More meme trends have a single hashtag

that appears in more than 10% of the trend’s messages. Accordingly, meme trends have a

larger proportion of hashtags per message than retweet trends, but are not different when

we remove the trending terms from consideration (indeed, memes are often identified by the

hashtag that the relevant messages contain). Finally, retweet trends have more textual terms

in the tweets than meme trends, and the retweet trend tweets are longer on average than

meme trend tweets, and are even longer when counting characters in URLs (not reported

here). However, these differences may be attributed to the “RT @username” phrase added

to individual retweet messages, which were more common, of course, for retweet trends (this

observation was true at the time the data was collected; since then, Twitter has changed its

format for retweet messages, so that “RT @username” does not always appear in the data).

Supporting H4.2, retweet trends naturally have a significantly greater proportion of

messages that are retweets than meme trends. Retweet trends also have a greater portion

of replies, showing that they are slightly more conversational than meme trends. The retweet

and meme trend categories are not different in their proportions of mentions. Regarding

time features, addressing H4.3, we found one difference between the time fit parameters:

the head fit parameter Log8 head p1, indicating different growth for retweet trends. This

finding may suggest that retweet trends develop in a different manner than meme trends.

Looking at the participation features (H4.4), we found a number of significant differences

between retweet and meme trends, supporting the hypothesis. Meme trends have more

messages per author on average than retweet trends in a statistically significant manner (we

performed the Mann-Whitney test due to the non-normal distribution of this parameter).

In addition, meme trends have a higher proportion of messages from the single top author

than retweet trends, as well as a higher proportion of messages from the top 10% of authors

than retweet trends. These results show a significant difference in participation between

these types of trends, where meme trends are more skewed, and a limited number of users

are responsible for a fairly significant part of the content, and retweet trends are more

“democratic” and participatory.

Finally, retweet trends were significantly different than meme trends in a number of

social network features, confirming H4.5. In terms of the proportion of reciprocation in the
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trends’ authors social network, retweet trends had a lower level of reciprocated ties than

meme trends. Meme trends also had a higher average size of strongly connected components,

than retweet trends. These findings suggest that retweet trends are supported by a network

that, while showing the same density, builds on directional, informational ties more than

meme trends that are supported by communication and reciprocity.

3.9 Discussion

The results of our quantitative analysis provide a strong indication that we can use the

characteristics of the messages associated with a trend to reason about the trend, for ex-

ample, to better understand the trend’s origin and context. In particular, we found that

exogenous trends, corresponding to real-world occurrences that originate from outside the

Twitter system but reflected in the activity of users in the system, are different in a number

of important features from endogenous trends, which are topics that start and develop in

the Twitter “universe.” Connections between the authors of messages in endogenous trends

tend to be more symmetrical (i.e., with higher reciprocity) than in exogenous trends, sug-

gesting perhaps that endogenous trends require stronger ties to be “transmitted.” However,

we also expected the density of the endogenous trend networks and the average degree of

their nodes to be higher, but did not find any such differences. Differences between these

two categories of trends were not evident in the temporal features, where the results did not

support our hypothesis of a more rapid curve leading to the peaks of the exogenous trends.

However, the differences between these categories are further supported by the deviations

in content and interaction features between the categories: more URLs, unique URLs, and

unique hashtags, as well as a smaller proportion of retweets, show that exogenous trends

generate more independent contributions than endogenous trends do.

In a deeper examination of the differences between categories of exogenous trends, we

found only interaction differences between trends representing “breaking” events and other

type of exogenous trends. Specifically, breaking events are, naturally perhaps, more “in-

formational” and less “conversational” in nature than other trends. Significantly, we could

not confirm the hypothesis from Sakaki et al. [SOM10] that breaking events will be more
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disconnected, as multiple contributors will independently contribute messages with less in-

network coordination. However, one possible reason for not seeing this effect in the data is

the long period of content (72 hours before and after a trends peak) over which we calculate

the author networks. Perhaps focusing on the connection between authors in the first hours

of a trend would capture these differences between breaking events and other trends.

Trends capturing local events were found to be only slightly different than other ex-

ogenous trends mainly with respect to the interaction features. People discuss more, and

forward information less, in the context of local events as compared to other exogenous

trends. Note again that we have a low number of local events represented in our trend

dataset and these findings should be considered tentative. Yet, it is possible that differ-

ences between local events and other trends would be even more pronounced when more

data is available.

Finally, we have shown that even endogenous trends, which grow and develop from

within the Twitter system and are not a reflection of external events, could have different

categories that are varied across a number of key features. Retweet trends, where users

respond and forward a message from a single popular user, are different in many charac-

teristics (including content, interaction, time, participation and social characteristics) than

meme trends.

Before we conclude, we list several important considerations about our study, acknowl-

edging a few limitations and biases in the work. One limitation is in the dataset used in

this work, which is incomplete because of two reasons. First, we generated the initial set

of trends using two specific, albeit well-established methods. (As we discussed, the focus of

this chapter is not on trend detection but rather on the analysis and characterization of the

trends and trending events.) However, other methods for trend detection and identifica-

tion of related content might assist in capturing additional trends and trending events. For

instance, in Chapters 4 and 5, we develop comprehensive techniques for unknown identifica-

tion of trending events, exploiting both textual and non-textual information. At the same

time, we believe that the sample of trends reflects the span of trend categories that can

reasonably be detected by any method. The second reason why our dataset is incomplete

relates to the selection of the tweets that we used for both trend extraction and charac-
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terization: specifically, we only included content from New York City users who disclosed

their hometown location in their profile and hence excluded content from other local users

without an explicit profile location. (Automatically matching locations and users with no

explicit geographical information in their profiles is the subject of interesting future work.)

In addition, we defined each trend using terms, and we retrieved the messages associated

with each trend via simple keyword search. In the next chapter, we explore alternative tech-

niques for identifying messages for trending events, specifically using a clustering framework,

so that we could associate a message with a trending event even without requiring a strict

term overlap.

Furthermore, our analysis focuses on a single system (i.e., Twitter) and a single location

(i.e., New York City). Other dynamics and trend characteristics may exist in other systems

and locations (e.g., involving Facebook data and concerning users based in Paris, France).

Indeed, the dynamics we observed, and some of the characteristics we extracted, are unique

to Twitter. However, Twitter is an important communication and information service that

has already made considerable impact on our society, and is important to study regardless

of generalization to other social media sites. Moreover, we have no reason to believe that,

other than message volume, trends involving New York City users are significantly different

from trends for other locations.

The metrics that we have used to characterize trends can be extended or further devel-

oped. For example, for the time-based characterization, one could experiment with different

fitting functions, identifying peaks in different ways (e.g., considering the expected volume

of tweets for each time of the day), using different time periods before and after the peak,

and so forth. In another example, the social network characteristics could consider the

social network of authors that appeared in the first 24 hours of the trends, following Yardi

and boyd [Yb10], which might produce networks of different characteristics. These dif-

ferent methods could expose more pronounced differences between trend categories. Still,

the wide-ranging set of metrics presented here has already helped identify key differences

between types of trends and trending events. These differences bring useful insight into the

nature of trends and trending events in social media, which we use to inform our unknown

identification techniques (Chapters 4 and 5).
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3.10 Conclusions

Emerging temporal trends in social media sites such as Twitter are a significant and reveal-

ing source of information for, and about, trending events. In this chapter, we categorized

and characterized trends on Twitter, and showed that different types of trends exhibit sig-

nificant differences in terms of various automatically computed characteristics. Our findings

suggest directions for automatically distinguishing between different types of trends, per-

haps using machine learning or model-based approaches, utilizing the trend characteristics

we propose above as well as others. Importantly, our study reveals and distinguishes be-

tween endogenous, platform-centric trends, and the trending events on which we focus in

this dissertation. Given these findings, we can enable a robust classification of trends into

the various trend categories we identified in general, and into trending events (i.e., exoge-

nous trends) and non-event trends (i.e., endogenous trends) in particular. This separation

will prove valuable for identifying trending events in social media, as we will see in the next

chapter.



CHAPTER 4. IDENTIFICATION OF UNKNOWN EVENTS
AND THEIR CONTENT 56

Chapter 4

Identification of Unknown Events

and Their Content

Short messages posted on social media sites such as Twitter can typically reflect events

as they happen. For this reason, the content of such social media sites is particularly

useful for timely, unknown event identification, which is the problem that we address in

this chapter. As we discussed, in this unknown identification scenario we focus on a class

of events defined as trending events (Chapter 2). Twitter content associated with trending

events can provide a set of unique perspectives [DNKS10; Yb10], reflecting the points of

view of users who are interested or even participate in an event. At the same time, much of

the content on Twitter does not correspond to any particular trending event, making the

separation between trending event and non-event content challenging and essential for the

unknown event identification task.

From our study of trending event content on Twitter (Chapter 3), we found that trend-

ing events exhibit temporal patterns that can be identified using burst detection techniques

[Kle03]. However, these techniques often also identify endogenous trends that do not corre-

spond to trending events. Therefore, to identify the trending events in a stream of Twitter

messages we must separate them from all non-event content, including the endogenous

trends that exhibit similar temporal behavior. In this chapter, we present techniques for

identifying trending events in social media by automatically distinguishing them from the
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abundant non-event content. Specifically, we identify each trending event—and its associ-

ated Twitter messages—using an online clustering technique that groups together topically

similar tweets. We then compute revealing features for each cluster, to determine which

clusters correspond to events. Importantly, we design features that capture many aspects

of each cluster, beyond bursty temporal patterns, to distinguish between trending events

and non-event trends.

In summary, the contributions presented in this chapter are:

• We propose a general online clustering framework, suitable for large-scale social media

content, which employs a post-clustering classification step to identify trending event

content

• We identify revealing cluster features, to learn event classification models

• We validate the effectiveness of our techniques using a dataset of over 2.6 million

Twitter messages

The clustering framework that we propose in this chapter is posed as a general framework

for the unknown identification scenario that could be customized to handle content from a

variety of social media sites. In this chapter, we tailor this framework to handle content

from Twitter, for reasons outlined above. However, in Chapter 5 we dive deeper into the

customizable aspects of this framework, particularly the clustering similarity metric, and

discuss its optimization with respect to social media content from sites such as Flickr, where

documents include a diverse set of revealing context features.

We begin by outlining our general clustering framework (Section 4.1) and then proceed

to describe its use for unknown identification of trending events on Twitter (Section 4.2).

The bulk of this chapter appeared in [BNG11a].

4.1 Clustering Framework

We cast the problem of identifying trending events and their associated social media doc-

uments as a clustering problem. Ideally, each cluster should correspond to one event and

consist of all of the social media documents associated with the event. In this section,
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we discuss the choice of general clustering algorithm for our unknown event identification

problem.

To cluster social media documents, the algorithm of choice should be scalable, to han-

dle the large volume of data in social media sites, and not require a priori knowledge of

the number of clusters, since social media sites are constantly evolving and growing in

size. Therefore, traditional clustering approaches that require knowledge of the number of

clusters, such as K-means and EM [Ber02], are not well suited for this problem. Other alter-

natives such as scalable graph partitioning algorithms [KAKS97] do not capture the highly

skewed event distribution of social media event data due to their bias towards balanced

partitioning (we experimented with graph partitioning algorithms, but do not discuss their

results here because of their poor performance for our task).

Threshold-based techniques are preferable for our clustering task since they can be

tuned using a training set and subsequently generalized to unseen data points. Hierarchical

clustering algorithms [Ber02], while relying on threshold tuning, are also not appropriate

since they require processing a fully specified similarity matrix, which does not scale to the

large size of our data. Furthermore, online or incremental clustering algorithms, which are

able to handle a constant stream of new documents, are also desirable in our setting, where

new documents are continuously being produced.

Based on these observations, we propose using a single-pass incremental clustering algo-

rithm with a threshold parameter that can be tuned in a principled manner during a training

phase. Single-pass incremental clustering has been shown to be an effective technique for

event detection in textual news documents (e.g., [APL98; YPC98]). Such a clustering al-

gorithm considers each element in turn, and determines the suitable cluster assignment

based on the element’s similarity to any existing clusters. Specifically, given a threshold µ,

a similarity function σ, and documents to cluster d1, . . . , dn, the algorithm considers each

document di in order, and computes its similarity σ(di, cj) against each existing cluster cj ,

for j = 1, . . . , k. (Initially, k = 0.) Different versions of the algorithms differ on how this

similarity σ is computed, as we describe next. If there is no cluster whose similarity to di

is greater than µ, we increment k by one and create a new cluster ck for di. Otherwise, di

is assigned to a cluster cj with maximum σ(di, cj).
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Conceptually, the similarity σ(d, c) between a document d and a cluster c can be com-

puted by comparing the features of d to those of the cluster c; or by directly comparing d

to the documents in cluster c. For efficiency, we represent each cluster using the centroid

of its documents. The centroid for a cluster of documents c is defined as 1
|c|

∑
d∈c d. For

the textual features we use in this chapter, our centroids are simply the average tf-idf score

per term. In the next chapter, we experiment with more complex content representations

and, consequently, introduce alternative centroid definitions. The similarity score σ(d, c)

is then defined as the similarity between document d and the centroid of cluster c for a

suitable document similarity metric. This definition then avoids comparing document d

against every document in cluster c.

The general clustering algorithm that we described relies heavily on a similarity metric σ

for two documents, or for a document and a cluster centroid. For social media sites such as

Twitter, where content is limited to a short textual message, we represent each message as

a tf-idf weight vector of its textual content, and use the cosine similarity metric, as defined

by Kumaran and Allan [KA04], as the clustering similarity function σ. In Chapter 5, we

explore the use of this algorithm with social media documents from Flickr, which include a

variety of revealing context features. In that chapter, we explore the crucial issue of learning

a similarity metric using a combination of similarities, explicitly tailored to each type of

context feature.

We have explored different threshold settings and other variations of this clustering

algorithm, including a periodic second pass to handle fragmentation, which is a known

drawback of this incremental clustering approach. In Chapter 5 we explore ways to handle

such fragmentation using explicit social links to unify clusters that correspond to the same

event. Additional optimizations and variations of this clustering algorithm are described in

Chapter 9.

4.2 Separation of Event and non-Event Content on Twitter

Trending events on Twitter include widely known occurrences such as the presidential in-

auguration, and also local or community-specific events such as a high-school homecoming
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game or the World Wide Web conference. Non-event content, of course, is prominent on

Twitter and similar systems where people share various types of content such as personal

updates, random thoughts and musings, opinions, and information [NBL10].

As we discussed in Chapter 3, non-event content also includes forms of Twitter activity

that trigger substantial message volume over specific time periods, which is a characteristic

of trending event content. In this section, we present techniques for differentiating between

messages about trending events and non-event messages, where non-event messages include

those for trending activities that are Twitter-centric but do not reflect any trending events.

Formally, we define the problem we address in this section as follows (Figure 4.1):

Problem Definition 1 Consider a time-ordered stream of Twitter messages M . At any

point in time t, our goal is to identify trending events and their associated Twitter messages

present in M and published before time t. Furthermore, we assume an online setting for

our problem, where we only have access to messages posted before time t.

Figure 4.1: Conceptual diagram: Twitter event identification.

4.2.1 Identification of Event Clusters

We use the incremental, online clustering algorithm described above in order to effectively

cluster a stream of Twitter messages in real time. For scalability, we use a centroid repre-

sentation of each cluster, which consists of summary statistics of all messages in the cluster.

The centroid of a cluster is the average weight of each term across all documents in the
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cluster. We represent each message as a tf-idf weight vector of its textual content, and use

the cosine similarity metric [KA04], as the clustering similarity function σ. Based on our

experiments on training data, we perform traditional text processing steps such as stop-

word elimination and stemming, and also double the weight of hashtag terms as they are

often indicative of the message content.

To identify all trending event clusters in the stream, we compute a variety of revealing

features using statistics of the cluster messages (Section 4.2.2). Since the clusters constantly

evolve over time, we must periodically update the features for each cluster and compute

features of newly formed clusters. We subsequently proceed to invoke a classification model

(Section 4.2.3) that, given a cluster’s feature representation, decides whether or not the

cluster, and its associated messages, contains event information. With the appropriate

choice of classification model, we can also select the top events in the stream at any point

in time, according to the clusters’ probability of belonging to the event class.

4.2.2 Cluster-Level Event Features

We compute features of Twitter message clusters in order to reveal characteristics that may

help detect clusters that are associated with events. While each of these features may not

necessarily indicate event content in isolation, combining them with other revealing features

in a principled way (e.g., using a trained classifier) can help identify event clusters, as we

will see. We examine several broad categories of features that describe different aspects

of the clusters we wish to model. Specifically, we consider temporal, social, topical, and

Twitter-centric features.

4.2.2.1 Temporal Features

The volume of messages for an event e during the event’s associated time Te exhibits unique

characteristics (see the definition of trending event in Chapter 2). To effectively identify

events in our framework, a key challenge is to capture this temporal behavior with a set of

descriptive features for our classifier. We design a set of temporal features to characterize

the volume of frequent cluster terms (i.e., terms that appear frequently in the set of messages

associated with a cluster) over time. These features capture any deviation from the expected
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message volume for any frequent cluster term or a set of frequent cluster terms. Specifically,

we aggregate the number of messages containing each term into hourly bins and define Mt,h

as the number of messages posted during hour h and containing term t, and Mh as the total

number of messages posted during hour h.

For the n most frequent terms in the cluster, where n is determined empirically, we

compute two types of features to reveal the trending behavior that is characteristic of

trending events. First, we compute the deviation from expected volume for a term at the

time when we compute the features (i.e., at the time when we invoke the classifier; see

Section 4.2.3). This metric captures a single-point representation of trending behavior for

each term. Second, we compute the quality of fit of an exponential function to the term’s

binned data leading up to the time when we invoke the classifier. The exponential fit

captures the rate of increase in message volume over time. A good quality fit signifies a

true exponential rise in related content, an indication of trending behavior [LBK09].

Figure 4.2: Documents per hour with the term “valentine” for 72 hours prior to 2 p.m. on

Valentine’s Day.

We compute the expected number of messages for a term t at the end of hour h0

by averaging the number of messages containing t in the preceding hours (1, . . . , h0 − 1),
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weighted by the total number of messages at each hour to account for the varying volume

of messages across different hours; formally, µt,h0 =
∑h0−1

i=1
Mt,i

Mi
/(h0 − 1). Correspondingly,

σt,h0 is the standard deviation of the number of messages containing t over the preceding

hours. We define the deviation from expected message volume for term t at hour h0 as

(Mt,h0
Mh0
−µt,h0)/σt,h0 . The deviation from expected volume features in a cluster, then, include

a set of deviation values for the most frequent terms, as well as an average value over all

top terms. This value is generated by weighting the top terms by their relative support

in the cluster messages (e.g., if terms t1, t2, and t3 appeared in 300, 200, and 100 cluster

messages, respectively, their weights would be 0.5, 0.33, and 0.17).

The second set of temporal features reflects the degree to which the volume of messages

containing a term t exhibits an exponential growth in the hours leading up to h0. We

compute a histogram using Mt,i, where i = (h0 − 72), . . . , (h0 − 1); this models the volume

of messages with the term for the 72 hours leading up to h0. This method generally reflects

the trending behavior in the social Web [LBK09]. We use the least squares method to fit

an exponential function to the histogram, smoothed using a moving average, and compute

the R2 statistic to measure the quality of the fit. Figure 4.2 shows an example of this

exponential trending behavior for the term “valentine” around Valentine’s Day, 2010.

4.2.2.2 Social Features

We designed social features to capture the interaction of users in a cluster’s messages. These

interactions might be different between events, Twitter-centric activities, and other non-

event messages (Chapter 3). As we discussed in the previous chapter, user interactions on

Twitter include retweets, replies, and mentions. Our social features include the percentage

of messages containing each of these types of user interaction out of all messages in a cluster.

To motivate the use of these features, consider the Twitter messages in Figure 4.3.

Clusters that include a high percentage of retweets, especially of a single post by a popular

Twitter user (e.g., Justin Bieber’s message, retweeted over 100 times in Figure 4.3), may cor-

respond to endogenous trends that do not contain trending event information (Chapter 3).

Similarly, a high percentage of cluster messages containing replies (e.g., Paris Hilton’s reply

in Figure 4.3) may indicate non-event content, since when people spread event information
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they tend to do so via general broadcast messages rather than individual conversations. On

the other hand, many celebrities, politicians, companies, venues, and shows own Twitter

accounts (e.g., Ashton Kutcher’s show @FFLShow with guest @kurt13warner in Figure 4.3).

Therefore, unlike retweets, a high percentage of Twitter mentions of one of these entities

might imply that the cluster refers to an event, where the entity is an active participant or

the subject of the event.

Figure 4.3: Examples of social interaction on Twitter.

4.2.2.3 Topical Features

Topical features describe the topical coherence of a cluster, based on a hypothesis that

event clusters tend to revolve around a central topic, whereas non-event clusters do not.

Rather, non-event clusters often center around a few terms (e.g., “sleep,” “work”) that do

not reflect a single theme (e.g., with some messages about sleep, others about work, and a

few about sleeping at work). Messages in event clusters are likely to share more terms, as

they identify key characteristics of the events they describe (e.g., “Couric,” “Obama,” and

“interview” are common among messages describing Katie Couric’s interview of President

Obama).

To estimate this coherence of a cluster, we compute the average or median similarity
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of messages to the cluster centroid using the cosine similarity metric. Additionally, we

compute the percentage of messages in the cluster containing the most frequent term, the

second most frequent term, and so on. Finally, we look at how many of the most frequent

terms are contained in at least n% of the messages in the cluster, for empirically determined

values of n.

4.2.2.4 Twitter-Centric Features

While the goal of our classifier is to distinguish between event and non-event data, we

highlight the differences between non-event clusters that correspond to Twitter-centric,

endogenous trends (Chapter 3), and the trending event clusters that we wish to identify.

As discussed above, Twitter-centric activities often exhibit characteristics that resemble

trending events, especially as captured by temporal features, which generally offer a strong

signal for the presence of trending event content. To address this challenge, we design a set

of features that targets commonly occurring patterns in non-event clusters with Twitter-

centric behavior.

Twitter-centric discussions often exhibit unique hashtag usage characteristics (e.g., #when-

imolder tag indicating discussion on things Twitter users wish to do when they get older).

We design features to capture these characteristics and differentiate the Twitter-centric ac-

tivities from other non-event content and from trending events. Specifically, we compute

statistics relating to tag usage, including the percentage of cluster messages that contain

tags, and the percentage of cluster messages that contain the most frequently used tag. A

large value of the latter serves as an indication that the messages in the cluster revolve

around a tagged conversation topic.

Importantly, we also determine if the most frequently used tag is a concatenation of

multiple words. Multi-word tags are highly indicative of Twitter-centric discussions that do

not correspond to trending events (e.g., #firstdaterulez, #BadWrestlingNames). Unfortu-

nately, identifying them is a challenging task since they often contain short-hand notations,

acronyms, and slang that may be difficult to parse. Using a dictionary-based method for

parsing the tags into several terms may be inefficient and difficult to implement due to the

variety of potential terms that may be included in the tags. We have experimented with
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identifying these multi-word tags using such an approach with limited success. Instead,

we design capitalization-based features to detect such multi-word tags: we observed that

when more than one letter of a tag is capitalized by some users, and this capitalization is

consistent among these users, it frequently indicates that a tag consists of multiple words.

Since we do not rely on a dictionary, our approach can be applied to tweets in any language

that uses capitalization rules.

4.2.3 Event Classification

Using the above features, we train an event classifier by applying standard machine learning

techniques (see Section 4.2.4). This classifier predicts which clusters correspond to events

at any point in time (i.e., at any point in the stream). Specifically, to identify event clusters

at the end of hour h, we first compute the features of all clusters with respect to h, and

then use the classification model with each cluster’s feature representation to predict the

probability that the cluster contains event information.

Due to the large volume of data on Twitter, it is possible that at any point in time the

classifier may label many clusters as events. In an event browsing scenario, where users look

for information on current events, it is essential to display a select subset of these identified

event clusters. To that end, we are interested in the ability of our classifier to select the top

events according to their probability of belonging to the event class, with respect to any

point in the stream. Note that a temporal component is built into some of the features,

and we recompute the features prior to classification, so the temporal relevance of the top

selected clusters is inherently captured by our classifier.

We compare the results of our classifier against several baseline approaches next.

4.2.4 Experiments

We evaluated our event identification strategies on a large dataset of Twitter messages. We

describe this dataset and report the experimental settings (Section 4.2.4.1), and then turn

to the results of our experiments (Section 4.2.4.2).
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4.2.4.1 Experimental Settings

Data: Our dataset consists of over 2,600,000 Twitter messages posted during February

2010. We are interested in identifying events both with local and with broad geographical

interest. To ensure that our dataset substantially covers local events, we decided to collect

messages posted by users of one specific location, namely, New York City (i.e., by Twitter

users whose location, as entered by the users and shown on their profile, is in the New York

City area)1. We chose this location as it consistently generated a high volume of tweets.

While the location as reported by Twitter users is not always accurate, it does provide a

reliable approximation [HHSC11]. Since we do not currently use location-based signals in

our identification approach (a task that is reserved for future work), focusing on messages

from a specific geo-location does not reduce the generality of our results. We collected

these messages via a script, which continuously requested the most recent messages from

the Twitter API. For each collected Twitter message, we record its textual content, the

associated timestamp (i.e., the time at which the tweet was posted), and the username of

the user who posted the tweet.

We cluster our dataset in an online fashion as described in Section 4.1. We use the

data from the first week in February to calibrate statistics such as term frequency over

time, which are needed to compute our temporal features. We then use the second week of

February to train our event classifiers and baselines. Finally, we report our results on test

data selected from the latter half of February (i.e., Weeks 3 and 4).

Annotations: We use human annotators to label clusters for both the training and testing

phases of our event identification experiments. These annotators were instructed to label

each cluster according to four different categories: event, Twitter-centric activity, other

non-event, and ambiguous. To ease annotation, as a representation of each cluster, the an-

notators were shown the 10 most frequent terms in the cluster, along with their respective

counts, and sample Twitter messages from the cluster. For clusters with more than one

central theme (e.g., with top keywords “south,” “park,” “west,” “sxsw,” and “cartman,”

referring to either the “South Park” show or the “South by Southwest” festival), the anno-

1Note that events with broad geographical interest are also naturally captured in our dataset.
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tators used the ambiguous label. Ambiguous clusters were not used for training, but were

treated as non-events for testing.

For the training set, we randomly selected 504 clusters from the top-20 fastest-growing

clusters according to hourly message volume at the end of each hour in the second week

of February 2010. Each cluster was labeled by two annotators, and their agreement was

measured using Cohen’s kappa (κ=0.683), indicating substantial agreement. After removing

34 ambiguous clusters and dropping 96 clusters on which the annotators disagreed, we were

left with 374 clusters.

For the test set, we used 300 clusters collected at the end of five different hours in

the third and fourth weeks of February 2010. These five hours were sampled uniformly at

random from five bins partitioned according to the volume of messages per hour over these

two weeks. This sampling technique assures that we test our classifiers during hours with

different volumes of messages. At the end of each hour we select the 20 fastest-growing

clusters according to hourly volume, the top-20 clusters according to our classifier (Section

4.2.3), and 20 random clusters, for a total of 60 clusters per hour, or 100 clusters per method

over the five hours. We used two human annotators to label each cluster and achieved

substantial agreement (κ=0.83). We discuss our handling of annotator disagreements on

the test set in the description of our evaluation.

Training Classifiers: We train a classifier to distinguish between trending event and

non-event clusters (RW-Event). We extracted cluster-level features for each cluster in the

training set, as described in Section 4.2.2. We also used a few additional features that did

not fall under the groups described in Section 4.2.2, such as the cluster size and average

length of cluster tweets. We used the Weka toolkit [WF05] to train our event classifier. We

first applied a resampling filter to balance the class distribution, which was skewed towards

the non-event class, and then we trained and evaluated the classifier using 10-fold cross

validation. We explored a variety of classifier types and selected support vector machines

(specifically, Weka’s sequential minimal optimization implementation) for RW-Event, as it

yielded the best overall performance in exploratory tests over the training set. We also fit

logistic regression models to the output of the support vector machine, to obtain probability

estimates of the class assignment.
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As a baseline, we use a strong text classification approach that identifies events based

on the textual content of the messages in the cluster. Specifically, we trained a Näıve Bayes

classifier (NB-Text) that treats all messages in a cluster as a single document, and uses the

tf-idf weights of textual terms as features. This classifier, distinguishing between events and

non-events, is similar to the one used by Sankaranarayanan et al. [SST+09] as part of their

approach for identifying news in Twitter messages. We train this Näıve Bayes classifier

using Weka, with the same methodology described above.

Evaluation: We use our annotated test set of 100 randomly selected clusters to evaluate

the performance of each classifier. For this, we use the macro-averaged F1 metric [MRS08].

This evaluation metric is widely used and is effective for evaluating classification results

where it is desirable to assign an equal weight to the classifier’s performance on each class.

Here, macro-averaged F1 is preferable to its alternative, micro-averaged F1 [MRS08], which

weighs each instance equally, causing predictions on the larger non-event class to dominate

the score. In this evaluation we omit test clusters on which our annotators disagree.

In addition to classification performance, we evaluate our RW-Event classifier’s ability

to identify events among a set of top clusters, ordered by their probability of belonging to

the event class at the end of each hour. We refer to this task as “event surfacing.” Since the

number of clusters in the stream may be large, we only classify clusters that have over 100

messages. Similarly, we do not classify clusters that did not have newly added documents

in the hour prior to the time when we invoke the classifier.

As a baseline for the event surfacing task, we consider the event thread selection ap-

proach presented by Petrović et al. [POL10], which selects the fastest-growing threads in a

stream of Twitter messages and then re-ranks them based on thread entropy and unique

number of users. Exploratory experiments on our training data indicated that selecting

clusters based on such re-ranking strategies (i.e., selecting clusters with the highest num-

ber of unique users and entropy above a threshold) yields similar results as selecting the

fastest-growing clusters. Note that the re-ranking strategies were not used to select the

top clusters, which is our goal, and optimizing the selection of fastest-growing clusters that

have the highest number of unique users and low entropy is reserved for future work (in

fact, similar features already exist in our models). In addition to the fastest-growing clus-
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ters baseline (Fastest), we compare our approach against a technique that selects clusters

randomly (Random).

To evaluate the event surfacing task, we select two standard metrics, namely, Precision@K

and NDCG [CMS09], which capture the quality of ranked lists with focus on the top results.

Precision@K simply reports the fraction of correctly identified events out of the top-K se-

lected clusters, averaged over all hours. Precision@K is set-based and does not consider

the relative rank of the clusters. An alternative metric that is sensitive to the rank of the

events in the top selected clusters is the normalized discounted cumulative gain (NDCG)

metric. We use the binary version of NDCG [CMS09], to measure how well our approach

ranks the top events relative to their ideal ranking. To handle annotator disagreements

in this scenario, where we need to examine ordered lists, removing the disagreements from

the evaluation is not desirable given the evaluation metrics used. Instead, we penalize the

RW-Event classifier if either annotator disagreed with our classifier’s prediction, but only

penalize the baselines if both annotators disagreed with their predicted label. We thus give

the “benefit of the doubt” to the baselines, hence making our results more robust.

4.2.4.2 Experimental Results

We begin by examining the performance of our RW-Event classifier against the NB-Text

baseline classifier on the training and test sets. The performance on the training set reflects

the accuracy of each classifier computed using 10-fold cross-validation. The test performance

measures how well each classification model predicts on the test set of 100 randomly selected

clusters.

Table 4.1 shows the F1 scores of the classifiers on both the training and test sets. As we

can see, the RW-Event classifier outperformed NB-Text over both training and test sets,

showing that it is overall more effective in predicting whether or not our clusters contain

trending event information. A deeper examination of our results revealed that the NB-Text

classifier was especially weak at classifying event clusters, accurately predicting only 25%

of event clusters on the test set. A sample of event clusters identified by RW-Event, and

their most frequent terms, are presented in Table 4.2.

The next set of results describes how well our RW-Event classifier performs for the
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Classifier Validation Test

NB-Text 0.785 0.702

RW-Event 0.849 0.837

Table 4.1: F1 score of our classifiers on validation and test sets.

Description Terms

Senator Bayh’s retirement bayh, evan, senate, congress, retire

Westminster Dog Show westminster, dog, show, club

Obama & Dalai Lama meet lama, dalai, meet, obama, china

NYC Toy Fair toyfairny, starwars, hasbro, lego

Marc Jacobs Fashion Show jacobs, marc, nyfw, show, fashion

Table 4.2: Sample events identified by the RW-Event classifier.
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Figure 4.4: Distribution of labels for our classifier and baselines.
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“event surfacing” task. Recall that the goal of this task is to identify the top events in

the stream per hour. Figure 4.4 shows the distribution of labels for clusters surfaced by

our classifier RW-Event and baselines Fastest and Random (Section 4.2.4.1) over the entire

test dataset. In this figure, annotator disagreements were considered as non-event labels.

As this figure clearly shows, RW-Event was able to identify about 5 times the number of

events that each baseline technique identified. Interestingly, out of the random sample of

100 clusters, only 12% were labeled as events. Surprisingly, the number of events identified

by Fastest was similar to the number of events identified by Random, implying that the

growth rate of clusters is not an effective indication of event content. However, since Fastest

identified the largest number of clusters that were labeled as “Twitter-centric,” it is possible

that the growth rate of clusters, to some extent, captures the trending behavior that is

characteristic of trends in social media, which include both trending events and Twitter-

centric endogenous trends (Chapter 3).

Since the event surfacing task aims to identify the top-K event clusters in the Twit-

ter stream at each hour, it is important to consider the performance of our classifier and

baselines with respect to the number of event clusters and relative rank of event clusters

identified at each hour. For this, we report Precision@K (Figure 4.5) and NDCG@K (Fig-

ure 4.6) scores for varying K, averaged over the five hours selected for the test set. Not

surprisingly, the proportion of events identified by the Random technique is very low, as

most data on Twitter does not contain event information. The proportion of events iden-

tified by the Fastest technique was higher than that of Random. The RW-Event classifier

performed well across the board, better than both baselines according to both precision and

NDCG.

Next, we examine the performance of our classifier and baselines for each of our 5 test

hours, using NDCG computed over the top 20 clusters per hour. Recall that we sampled

the hours for our test set such that the volume of messages per hour varies (Section 4.2.4.1).

Figure 4.7 shows the hourly performance of the alternative event surfacing techniques, for

hours ordered according to increasing message volume. While our classifier still outperforms

the baselines at each hour, this figure reveals several interesting points. First, even though

the performance of all techniques was most similar during the highest-volume hour (i.e.,
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Figure 4.5: Precision@K for our classifier and baselines.
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Figure 4.6: NDCG@K for our classifier and baselines.
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Figure 4.7: NDCG@20 of our classifier and baselines for each hour over the test set.

Hour 5), there is no indication that the hourly volume of messages effects the performance

of either RW-Event or the baselines. Second, RW-Event and Fastest had the worst perfor-

mance on the same hour (i.e., Hour 3), possibly indicating that there was less “fresh” event

content during that hour, since, unlike Random, both of these techniques only consider

clusters that are temporally relevant (e.g., as indicated by the number or percentage of new

documents added to the cluster in recent hours). Since the temporal features we defined

earlier were, not surprisingly, strongly correlated with the presence of event content in a

cluster, reduced trending behavior for event clusters during a particular hour could explain

this slight drop in performance.

Overall, Figure 4.7 shows that our classifier was very successful during three of the test

hours (i.e., Hours 1, 2, and 4), and less successful during two of the test hours (i.e., Hours

3 and 5). Interestingly, these less successful test hours were also chronologically later than

the hours on which RW-Event showed the best performance. Still, there are many factors

that might contribute to this variation in performance, such as the availability of new event

content, as discussed above. As another example, for Hour 5, there were several Twitter-

centric clusters that were mistakingly identified by RW-Event as events. For some of these

clusters, it was especially difficult to automatically distinguish the endogenous Twitter-

centric characteristics from those of events (e.g., with single-term hashtags like #haiku).

Examining the general mistakes made by the RW-Event classifier, the most prominent
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misclassification occurs in cases where a Twitter user (usually a company or service) posts

messages on a broad topic (e.g., job listings with tags such as #jobs, #nycjobs) using

multiple Twitter accounts and a similar message “template,” complete with hashtags. A

possible reason for this behavior is that features of our model such as the number of messages

from the top author were not adequately captured in the training process. Since we selected

training data by sampling from the fastest-growing clusters per hour, many of our training

examples did not exhibit this behavior and, therefore, we were not able to properly model

it. We plan to explore this behavior further in future work.

4.3 Conclusions

In this chapter, we presented an end-to-end approach for unknown identification of trending

events on Twitter. Specifically, we explored approaches for analyzing a stream of Twitter

messages to distinguish between messages about trending events and non-event messages.

We proposed a general clustering framework for the unknown event identification task, and

customized it to group together topically similar Twitter messages. We then defined a rich

family of revealing cluster-based features, including temporal, social, and topical features.

Importantly, our insights into trending event behavior from Chapter 3 helped us identify

a set of Twitter-centric features, which was used along with the other features to train

state-of-the-art classification models, which, in turn were used to identify events and their

associated Twitter messages. Our techniques offer a significant improvement over baseline

and existing approaches, showing that we can identify trending event content in real time

over a large-scale stream of social media content. We thus help unveil important information

from, and about, real-world events as they are reflected through the eyes of hundreds of

millions of users of Twitter and similar social media sites.

Additional social media sites such as Flickr and YouTube often also contain timely,

unknown content related to events. These sites, unlike Twitter, have a set of associated

context features (e.g., title, description, location) that can provide complementary cues

for determining when social media documents correspond to the same event. In the next

chapter, we explore ways to use these context features in concert, to learn a similarity metric
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for the clustering framework that we introduced in this chapter. Additionally, we propose

ways to improve our clustering framework, using explicit social links (e.g., user comments)

to connect fragmented event clusters.
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Chapter 5

Similarity Metric Learning for

Identification of Unknown Events

With the increasing use of cameras on mobile devices, photo- and video-sharing sites (e.g.,

Flickr, YouTube) are gradually becoming a valuable source of event information captured

during trending events (e.g., natural disasters, political riots) [LPS+08]. While event doc-

uments on these sites generally lag behind their counterparts on social media sites such

as Twitter, their accompanying multimedia content adds a useful dimension, as evidenced

by the growing use of such content in mainstream media reports [LPS+08]. Such event

documents exhibit opportunities for unknown event identification due to their wealth of

associated context features, including user-provided annotations (e.g., title, tags), and au-

tomatically generated information (e.g., upload or content creation time). Individual fea-

tures might be noisy or unreliable, but collectively they provide revealing information about

events, and this information is valuable to address the unknown event identification prob-

lem.

In this chapter, instead of using a simple text-based document similarity metric for our

clustering framework as we did in Chapter 4, we propose using a variety of context features

in concert, to determine if two social media documents (or a social media document and

a cluster) correspond to the same event. Specifically, in Section 5.1 we explore distinc-

tive representations of social media documents and define appropriate similarity metrics
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for each document representation. We then develop a variety of techniques for combining

these different similarities into a single metric for our clustering framework. We experiment

with ensemble-based and classification-based similarity learning techniques, and use them

in conjunction with a scalable, online clustering algorithm, to generate a clustering solu-

tion where each cluster corresponds to an event and includes the social media documents

associated with the event.

Beyond context features, in Section 5.2 we explore the use of social links (e.g., comment

and authorship connections) for enhancing the results of our cluster-based event identifica-

tion approach. To understand the potential benefits of using social links for this task, we

analyze a network of author comments associated with photographs in a large-scale Flickr

data set. Our exploratory experiments, building on the results of Section 5.1, suggest that

social links can provide a useful indication of document similarity for event identification.

In summary, the contributions presented in this chapter are:

• We develop several techniques for learning a combination of the feature-specific sim-

ilarity metrics, and use them to indicate social media document similarity for our

clustering framework

• We explore ways to use explicit social links between social media documents to improve

the quality of the clusters produced by our framework

• We evaluate our alternative similarity metric learning techniques and social-link-based

cluster merging techniques on two real-world datasets of social media event content

from Flickr

In this chapter, we focus on learning multi-feature similarity metrics that can be used in

conjunction with our proposed clustering framework (Section 4.1). To tailor this similarity

metric to event content, our techniques rely on an assumption that the stream of social media

documents to cluster contains only event documents. Techniques for filtering non-event

content from a stream of social media documents have been previously developed [POL10;

SST+09], using text classification approaches [POL10; SST+09] or documents produced by

users who are classified as “seeders” of event information [SST+09]. An interesting direction

for future work is to develop our own pre-clustering non-event filtering approach or use the
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multi-feature similarity metric in our end-to-end unknown event identification approach

described in Chapter 4.

We proceed to describe several social media document representations using a variety

of context features (Section 5.1.1) that we can incorporate into our clustering framework

(Section 5.1.2), and propose alternative models for combining these similarities into a single

clustering similarity metric (Sections 5.1.3 and 5.1.4). We evaluate our techniques on large-

scale datasets of Flickr images (Section 5.1.5), and then explore ways to improve our clus-

tering results using social links (Section 5.2). The bulk of this chapter appeared in [BNG10;

BXNG10].

5.1 Learning Similarity Metrics for Clustering

Given a set of social media documents associated with events, the problem that we address in

this chapter is how to identify the events that are reflected in the documents (e.g., President

Obama’s inauguration, or Madonna’s October 6, 2008 concert in Madison Square Garden),

and to correctly assign the documents that correspond to each event. As in the previous

chapter, we cast our problem as a clustering problem over social media documents (e.g.,

photographs, videos), but with the particular requirement that each document includes a

variety of “context features” with information about the document. Some of these features

(e.g., title, description, tags) are manually provided by users, while other features (e.g.,

upload or content creation time) are automatically generated. Formally, we define the

problem we address in this chapter as follows:

Problem Definition 2 Consider a set of social media documents where each document is

associated with an (unknown) event. Our goal is to partition this set of documents into

clusters such that each cluster corresponds to all documents that are associated with one

event.

As we discussed, our setting assumes a stream of social media documents such that

each document contains event information. However, we do not have any knowledge of the

events that exist in the stream, or which social media document corresponds to which event.
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For this, we employ our clustering framework (Section 4.1) with alternative multi-feature

similarity metrics that we propose, learn, and evaluate in this section.

5.1.1 Social Media Document Representations

As a distinctive characteristic, social media documents, particularly from digital-media-

sharing sites such as Flickr, include a variety of context features that are dependent on the

type of document (e.g., a “duration” feature is meaningful for videos but not photographs).

However, many such sites share a core set of features. These features include: author, with

an identifier of the user who created the document (e.g.,“said&done” is the author of the

photograph in Figure 5.1); title, with the “name” of the document (e.g., “DSC01325” in

Figure 5.1); description, with a short paragraph summarizing the document contents (e.g.,

“radiohead performing” in Figure 5.1); tags, with a set of keywords describing the document

contents (e.g., “apw, All, Points, West” in Figure 5.1); time/date, with the time and date

when the document was published (e.g., August 9, 2008 in Figure 5.1);1 location, with

the location associated with the document (e.g., Jersey City, New Jersey in Figure 5.1).

These context features, collectively, will prove helpful for capturing social media document

similarity and, in turn, for identifying events and their associated documents, as we discuss

next.

The context features of social media documents provide complementary cues for deciding

when documents correspond to the same event. Individual features are often insufficient

for this purpose, and all features collectively provide more reliable evidence. For example,

the description of two images associated with the same event (e.g., the “All Points West”

music festival) might be ambiguous or not very revealing (e.g., the description might read

“my favorite band in concert” and “radiohead in concert”); but the images’ time/date and

location (e.g., August 8, 2008, Liberty State Park, New Jersey) provide strong evidence

that they are likely to be about the same event.

In this section, we consider social media document representations using each individual

feature, according to its type (e.g., textual or time data). In addition, we use one textual

1Often documents include their capture or creation time (e.g., capture time/date, August 8, 2008 in

Figure 5.1).
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Figure 5.1: A Flickr photograph associated with the “All Points West” music festival event.

document representation that contains the textual representations of all the document fea-

tures (title, description, tags, time/date and location). This representation, all-text, is

commonly used in similar domains [MAMS04] and similar to the representation we used in

Chapter 4 (although we did not use a textual representation of the time/date feature).

Next, we list the key types of features we extract from social media documents, and

define individual similarity metrics for these feature types. It is possible, of course, to

cluster the documents by using individual features according to an appropriate similarity

metric. Such a clustering approach is not ideal, since it does not exploit the wealth of

context features collectively; instead, the rest of this section describes strategies to consider

the similarity metrics in concert.

Textual features: To exploit the various context features for our clustering task, we define

a similarity metric for each feature, in a way that is appropriate for the feature’s domain.

Specifically, we represent each textual feature (e.g., title, description, tags) as a tf-idf weight

vector and use the cosine similarity metric, as defined in [KA04], as the feature similarity

metric. We considered alternative tf-idf formulas such as Okapi [RW99]; however, they did



CHAPTER 5. SIMILARITY METRIC LEARNING FOR
IDENTIFICATION OF UNKNOWN EVENTS 82

not perform as well, so we do not discuss them further.

In addition, we considered traditional text processing steps such as stop-word elimination

and stemming, and examined the effect of each of these with respect to the individual

textual features. Instead of applying the same text processing treatment to all features, we

conjectured that only some features would benefit from stemming or stop-word elimination.

For instance, since tag keywords are meant to be a select set of descriptive keywords for the

contents of the social media document, stop-word removal may not be appropriate (e.g.,

removing the tag “All” in our “All Points West” example). We empirically determined the

appropriate stemming and stop-word settings for each textual feature (see Section 5.1.5.1).

Time/date: For time/date, an important feature in social media documents, we represent

values as the number of minutes elapsed since the Unix epoch (i.e., since January 1, 1970)

and compute the similarity of two time/date values t1 and t2 as follows: if t1 and t2 are more

than one year apart, we define their similarity as 0 (it is unlikely that the corresponding

documents are associated with the same event in this case); otherwise, we define their

similarity as 1− |t1−t2|y , where y is the number of minutes in a year.

Location: For location metadata associated with social media documents, we represent

values as geographical coordinates (i.e., latitude-longitude pairs) and compute the similarity

of two locations L1 = (lat1, long1) and L2 = (lat2, long2) as 1−H(L1,L2), where H(.) is

the Haversine distance [Sin84], an accepted metric for geographical distance.

5.1.2 Clustering Quality Metrics and Parameter Settings

Recall that our clustering algorithm presented in Section 4.1 relies on two input parameters,

a threshold µ and a similarity metric σ(d, c). As we discussed, the similarity σ(d, c) between

a document d and a cluster c can be computed by comparing the features of d to those of

the cluster c; or by directly comparing d to the documents in cluster c. In this chapter,

we propose methods that use both approaches. In Section 5.1.3.2, we describe a simple

similarity approach, comparing d to every document in the cluster c, and define σ(d, c)

as the average similarity score, for a suitable document similarity metric. In other words,

we can define σ(d, c) =
∑

d′∈c
σ(d,d

′
)

|c| . This approach is not efficient because it requires

comparing document d against every document in cluster c.
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A more efficient approach is to represent each cluster using the centroid of its documents.

Depending on the document representation we use (see Section 5.1.1), our centroids can be

the average tf-idf score per term (for textual document features such as title, description,

tags), the average time in minutes (for time/date), or the geographic mid-point (for location)

of all documents in c. We use the centroid similarity approach in the majority of our

techniques, described in detail in Sections 5.1.3.3 and 5.1.4.

To tune the clustering threshold for a specific dataset, we run the clustering algorithm

on a subset of labeled training data. We evaluate the algorithm’s performance on the

training data using a range of thresholds, and identify the threshold setting that yields the

highest-quality solution according to a given clustering quality metric. Although several

clustering quality metrics exist (see [AGAV08]), we focus on Normalized Mutual Information

(NMI) [MRS08; SGC02] and B-Cubed [AGAV08]. Both NMI and B-Cubed balance our

desired clustering properties: maximizing the homogeneity of events within each cluster,

and minimizing the number of clusters that documents for each event are spread across.

NMI is an information-theoretic metric that was originally proposed as the objective

function for cluster ensembles [SGC02]. NMI measures how much information is shared

between actual “ground truth” events, each with an associated document set, and the

clustering assignment. Specifically, for a set of clusters C = {c1, . . . , cJ} and events

E = {e1, . . . eK}, where each cj and ek is a set of documents, and n is the total num-

ber of documents, NMI (C,E) = I(C,E)
(H(C)+H(E))/2 , where I(C,E) =

∑
k

∑
j
|ek∩cj |
n log n·|ek∩cj |

|ek|·|cj | ,

H(C) = −
∑

j
|cj |
n log |cj |n , and H(E) = −

∑
k
|ek|
n log |ek|

n . NMI can be interpreted as the

harmonic mean of cluster homogeneity and completeness, as defined by Rosenberg and

Hirschberg [RH07]. We present a proof of this claim in Appendix A.

B-Cubed estimates the precision and recall associated with each document in the dataset

individually, and then uses the average precision Pb and average recall Rb values for the

dataset to compute B-Cubed = 2·Pb·Rb
Pb+Rb

. For each document, precision is defined as the

proportion of items in the document’s cluster that correspond to the same event, and recall

is defined as the proportion of documents that correspond to the same event, which are also

in the document’s cluster.

As we mentioned, the choice of clustering quality metric serves an important role in our
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clustering approach since it is used to tune the threshold parameter µ. Although NMI and

B-Cubed capture the clustering properties that we are interested in, it is not always the case

that the best threshold setting according to NMI is also the best setting according to B-

Cubed. In order to select the threshold setting that optimizes both metrics, we use a single

aggregate objective function, averaging NMI and B-Cubed. The threshold setting that

yields the highest average NMI and B-Cubed value is considered Pareto optimal [Diw03],

meaning that we cannot find a threshold with higher NMI value that does not have a lower

B-Cubed value and vice versa.

5.1.3 Ensemble-based Similarity

Our first attempt at learning a similarity metric using the wealth of context features present

in social media documents involves an ensemble algorithm, which considers each feature as

a weak indication of social media document similarity, and combines all features using a

weighted similarity consensus function. Ensemble clustering is an approach that combines

multiple clustering solutions for a document set [DAR09; GMT05; SGC02]. The advan-

tage of using an ensemble approach is its ability to account for different similarity metrics

during the clustering process, by learning their optimal weighted contribution to the final

clustering decision. In this section, we discuss ensemble clustering and show how we use it

in conjunction with our clustering framework from Section 4.1 to learn a similarity metric

for social media documents.

5.1.3.1 Training a Cluster Ensemble

The first step in any ensemble clustering approach is to select techniques for partitioning the

data. These techniques, also referred to as clusterers (C1, . . . , Cm in Figure 5.2(b)), produce

mappings from documents to clusters. Each of these techniques should have a unique view

of the data (R1, . . . , Rm in Figure 5.2(a)), or use a different underlying model to generate

the data partitions. For our ensemble, we select clusterers that partition the data using

the different social media features and appropriate similarity metrics discussed in Section

5.1.1. In particular, we have separate clusterers for features such as title, description, tags,

location, and time. Following the logic of Section 4.1, we use the single-pass incremental
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clustering algorithm for each feature individually, with its respective similarity metric from

Section 5.1.1, as the clustering similarity function σ. We tune the threshold µ for each

clusterer on a set of training data, and select the best threshold based on each clusterer’s

performance according to NMI and B-Cubed (see Section 5.1.2). This results in clusterers

C1, . . . , Cm (Figure 5.2(b)).

Figure 5.2: A conceptual diagram of an ensemble clustering process.

The clustering quality metrics described in Section 5.1.2 serve two important purposes

in our ensemble approach. The first, as previously mentioned, is to select the most suitable

threshold setting for each clusterer. The second is to assign a weight to each clusterer,

indicating our confidence in its predictions. The weights are assigned during a supervised

training phase, and used to determine each clusterer’s influence on the overall ensemble

similarity assignment. By assigning a weight to a clusterer, we indicate how successful the

clusterer was in capturing document similarity on a training set, and, therefore, how likely

it is to correctly indicate the similarity of unseen document pairs.

Once we select the best performing thresholds for all clusterers C1, . . . , Cm, we set their

weights w1, . . . , wm to equal their respective combined NMI and B-Cubed scores (see Section
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5.1.2), and then normalize the ensemble weights such that
∑m

i=1wi = 1. In the conclusion

of the ensemble training phase, we have learned an optimal threshold for each clusterer, as

well as a quality measure that will be used to weigh its decisions. With this information,

we can proceed in two distinct ways: the first is to combine individual clusterer partitions

as in the traditional ensemble clustering setting (Section 5.1.3.2), and the second is to use

the learned weights and thresholds as a model for the similarity metric, without further

influence from the individual clusterers (Section 5.1.3.3). We elaborate on these approaches

next.

5.1.3.2 Combining Individual Partitions

The first ensemble-based approach for learning a similarity metric follows the traditional

cluster ensemble framework [SGC02] that utilizes individual clusterers’ similarity judgments

on document pairs. Given a set of documents, we use each clusterer with its learned thresh-

old to generate a clustering partition. Our challenge is to develop a consensus mechanism

for combining these individual partitions into one clustering solution (C1, . . . , Cp in Figure

5.2(d)). The consensus that our algorithm reaches using the clusterers’ similarity judgments

is translated into a similarity metric σ that can be used in our general clustering framework

(Section 4.1).

Intuitively, each clusterer can be regarded as providing an expert vote on whether two

documents belong in the same cluster. The consensus function we use is a weighted binary

vote: for a pair of documents (di, dj) and clusterer C, we define a prediction function

PC(di, dj) as equal to 1, if di and dj are in the same cluster, or 0 otherwise2. Then, we

compute the consensus score for di and dj as
∑

C PC(di, dj) ·wC , where wC is the weight of

clusterer C. For example, consider a simple ensemble with three clusterers Ctime, Clocation,

and Ctags, whose weights are 0.25, 0.35, and 0.4, respectively. To determine whether two

documents di and dj belong in the same cluster, we compute their prediction PCi(di, dj), for

i = time, location, and tags. Suppose that Ctime and Clocation cluster di and dj together,

but Ctags does not. The consensus score for di and dj is then 0.25+0.35=0.6.

Note that our general single-pass incremental clustering algorithm has to compare each

2Similarly, we can use the raw similarity score.
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document to existing clusters at every step. However, in the cluster ensemble formulation

we can only obtain the clusterers’ similarity judgments for document pairs. Therefore, in

order to measure the similarity of a document to a cluster, we compare the document against

all documents in the cluster using the ensemble consensus function, and use the average

consensus score as our similarity metric σ for this document-cluster pair.

Learning a similarity metric using this ensemble approach yields a simple model, which

uses a weighted combination of the data partitions obtained by clustering according to

each feature and corresponding similarity metric from Section 5.1.1. While this approach

provides an intuitive solution that models the contribution of each feature-specific similarity

in a clustering context, one of its main drawbacks is its best-case quadratic running time in

the size of the dataset. Therefore, in the next section we consider a modified approach that

still uses the knowledge from the ensemble training phase to combine the similarity metrics,

while at the same time improves efficiency with a centroid-based similarity technique.

5.1.3.3 Combining Individual Similarities

The second ensemble-based technique for learning a similarity metric uses the threshold

and weight assignment learned in the ensemble training phase (Section 5.1.3.1) as the only

input from the clusterers. Instead of computing the consensus score using the clusterers’

predictions, we now compute the documents’ feature-specific similarity metrics directly for

documents and cluster centroids. The advantages of this modification to the ensemble

similarity learning technique include improved efficiency via the use of centroids, providing

for a more direct similarity metric computation.

To compute a similarity between a document di and a cluster centroid cj , we repeat

the same decision procedure for the similarity of document pairs, described above, us-

ing the weight and threshold that we learned for each individual feature. For similar-

ity metric σC , threshold µC , and weight wC associated with a clusterer C, we define

PC(di, cj) = 1 if σC(di, cj) > µC , and 0 otherwise, and compute the combined similar-

ity metric
∑

C PC(di, cj) · wC . Note that while this formulation of the similarity function

uses a weighted binary vote for each feature, we could alternatively use the raw similarity

score, as we suggest in the next section.
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Note that we can now use the one-pass incremental clustering algorithm with centroid

similarity. Depending on the document representation, the centroid is either the average

tf-idf score per term (for textual features such as title, description, tags), the average time

in minutes (for time/date), or the geographic mid-point (for location). Centroids can be

updated and maintained with little cost using the general framework described in Section

4.1.

5.1.4 Classification-based Similarity

In this section, we use classification models to learn document similarity functions for social

media, as an alternative to the ensemble-based approach. In other words, we use a classifier

with similarity scores as features to predict whether a pair of documents belongs to the

same event. Formally, given a pair of social media documents di and dj , we compute the

raw similarity scores σ1(di, dj), . . . , σm(di, dj), corresponding to the document features and

individual similarity metrics defined in Section 5.1.1. Using this formulation of the problem,

we are able to utilize a variety of state-of-the-art classification algorithms for learning the

combined similarity metric σ for our general clustering framework.

Before we can train a similarity metric classifier, we must decide whether to model

similarity between document pairs, or documents-centroid pairs. Although we are interested

in learning a similarity metric that would indicate when social media documents correspond

to the same event, in our clustering framework we compare documents to cluster centroids.

Therefore, we consider the alternative of training the classifiers on document-centroid pairs,

which more closely resembles the data that the classifier will be predicting on.

Intuitively, modeling the similarity between documents and centroids would be more

robust than modeling similarities between document pairs. For example, consider a pair of

documents that does not share any tag keywords, yet relates to the same event. Having

this pair as a positive example (i.e., the documents are about the same event) provides

a false indication that tag keywords do not contribute towards a positive prediction. For

centroids, since we aggregate and average the tf-idf values of multiple documents, there

exists a better chance to capture some overlapping tag vocabulary and, therefore, to more

accurately gauge the contribution of tag keywords to the overall similarity metric.
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One key challenge for the classification-based approach involves the selection of training

examples from which to learn the similarity classifiers. Ideally, we want our model to cor-

rectly predict the similarity of every document to every other document (or every centroid,

based on the modeling choice described above) in the dataset. However, creating a training

example for each document (or document-centroid) pair results in a skewed label distri-

bution, since a large majority of pairs in the training dataset do not belong to the same

event. Using a classifier trained with a skewed label distribution as a similarity metric for

clustering yields poor clustering solutions since this classifier is much more likely to predict

that two items do not belong in the same cluster, thus splitting single events across many

clusters.

With this in mind, we can outline two sampling strategies to balance the label distri-

bution. The first strategy is to take the first n documents in the training set according to

their upload time, and compare them to every other document in that set. In the case of

document-centroid similarities, we compare each document against all centroids, which are

computed in advance for each event. To handle the skewed label distribution, we produce

a random subsample of this data such that the number of positive and negative examples

is balanced. We empirically found that generating a subsample that is 10% of the original

sample size, with a balanced label distribution, yields a more accurate similarity metric

classifier than other sampling techniques that we experimented with.

The second strategy is to select documents at random, pairing each document with one

positive example, randomly selected from the set of documents that share the same event,

and one negative example, randomly selected from the set of documents related to different

events. For document-centroid pairs, we only have one choice for the positive example

per document, but we randomly select among different event centroids for the negative

document-centroid pair.

For this family of similarity metric learning techniques, we consider a variety of state-of-

the-art classification algorithms, and train them using the datasets discussed in this section.

We elaborate on our choice of classifiers and the training process in the next section.
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5.1.5 Experiments

We evaluated our work on a large dataset of real world data from popular social media sites,

with these goals:

• Examine which sampling and modeling methods, and what classification algorithms

perform well for the classification-based approach.

• Determine which similarity metrics and techniques perform best for the event identi-

fication task.

• Gain insight about these approaches by analyzing the weights that the similarity

metric learning approaches assign to each feature-specific similarity.

We report on the dataset and experimental settings, then turn to the results of our experi-

ments.

5.1.5.1 Experimental Settings

Data: For our experiments, we collected two datasets of labeled event photographs from

Flickr, a popular photo-sharing service, using the site’s API3. The Upcoming dataset consists

of all photographs that were manually tagged by users with an event id corresponding to

an event from the Upcoming event database4. These Upcoming tags provide the “ground

truth” for our clustering experiments. Each photograph corresponds to a single event, and

each event is self-contained and independent of other events in the dataset. The Upcoming

dataset contains 9,515 unique events, with an average of 28.42 photographs per event, for

a total of 270,425 photographs, taken between January 1, 2006, and December 31, 2008.

Our second dataset is the Last.fm dataset, which consists of all Flickr photographs that

were manually tagged by users with an id corresponding to an event from the Last.fm music

event catalog5. The Last.fm dataset contains 24,958 unique events, with an average of 23.84

3http://www.flickr.com/services/api

4http://www.upcoming.org

5http://www.last.fm/events

http://www.flickr.com/services/api
http://www.upcoming.org
http://www.last.fm/events
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photographs per event, for a total of 594,946 photographs, taken between January 1, 2006,

and December 31, 2008.

The context features associated with each photograph include the title, description,

tags, time/date of capture, and location. On average, 32.2% of the photos include location

information in the form of geo-coordinates. On this subset of the data, we perform reverse

geo-coding using the Flickr API, to obtain a textual representation of the location of each

photo, which we use for the all-text feature.

Training Methodology: We train our clustering algorithms on data from the Upcom-

ing dataset, and test them on unseen Upcoming data, as well as Last.fm data. We order the

photographs in the Upcoming dataset according to their upload time, and then divide them

into three equal parts. We use the earliest two thirds of the data as training and validation

sets. We use the training set to tune the clusterer thresholds for the ensemble-based tech-

niques and train classifiers for the classification-based techniques. We use the validation

set to learn the weights for the ensemble and tune the threshold for the general single-pass

incremental clustering algorithm. The last third of the Upcoming data and all of the Last.fm

data are used as test sets, on which we report our results. We chose a time-based split since

it best emulates real-world scenarios, where we only have access to past data with which

we can train models to cluster future data. We train our similarity metrics once and for

all, without adapting them as we observe more data. Dynamically modifying the similarity

metrics as new documents arrive is reserved for future work.

Document Representations: The Lemur Toolkit6 is used to index our documents

according to each textual representation discussed in Section 5.1.1. These representations

include Title, Tags, Description, and All-Text. We use all possible settings of stemming

and stop-word elimination for each document representation, and create a separate index

for every possible combination. We use the index to compute tf-idf vectors for each textual

document representation. Finally, we create additional document representations using

numeric time/date (Time/Date-Proximity) and location coordinates (Location-Proximity)

as described in Section 5.1.1. If a document representation cannot be created due to missing

data (e.g., an unspecified location), we assign it a similarity value of 0 to any other document

6http://www.lemurproject.org
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for this representation.

Weighing Clusterers: For the ensemble-based approaches, we use Lemur’s single-

pass incremental clustering implementation to cluster the training data according to each

document representation and corresponding similarity metric from Section 5.1.1. We tune

the clustering threshold for each clusterer using the training set, considering thresholds

in the range [0, 1], with 0.05 increments. For time and location features, we apply log

scaling to the similarity metric in order to perform the selection of thresholds with a finer

granularity, as appropriate to those metrics. For each document representation, we select

the threshold that yields the highest combined NMI and B-Cubed score (Section 5.1.2). For

textual document representations, we select one threshold setting per feature and associated

parameter settings (stemming and stop-word elimination). We use the best-performing

setting for each textual representation when creating future document representations for

that feature. The best settings for Title and Description were no stemming or stop-word

elimination, while Tags benefited from stemming and All-Text from stop-word elimination.

We proceed to cluster the validation set according to each document representation and

corresponding similarity metric, using the selected threshold setting for each clusterer. To

determine the weight of each clusterer, we compute its combined NMI and B-Cubed scores

on the validation set. Finally, we run the ensemble algorithm on the validation set using

the selected clusterers, and tune the clustering threshold for the ensemble approach using

NMI and B-Cubed.

Training Classifiers: To train similarity classification models (Section 5.1.4), we used

the training set to construct four training samples according to the modeling and sampling

strategies that we discussed in Section 5.1.4:

• TIME-DD: all possible document-document pairs from the first 500 documents or-

dered according to their time of creation.

• RANDOM-DD: 10,000 document-document pairs chosen randomly from all possible

pairings between documents.

• TIME-DC: all possible document-centroid pairs from the first 500 documents, ordered

according to their time of creation, and their corresponding centroids.
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• RANDOM-DC: 10,000 document-centroid pairs chosen randomly from all possible

pairings between documents and centroids.

For the document-centroid modeling approach, we computed all event centroids based on

the ground truth labels.

We used the Weka toolkit [WF05] to build classifiers for all of the above training sets.

We explored a variety of classifier types and selected two techniques that yielded the best

overall performance in preliminary tests using the training set, although differences were not

substantial. We selected support vector machines (Weka’s sequential minimal optimization

implementation), and logistic regression.

Comparing Techniques: We consider all individual clusterers as baseline approaches,

namely, All-Text, Title, Description, Tags, Time/Date-Proximity, and Location-Proximity.

We compared them against our clustering approaches using four different similarity metric

learning techniques:

• ENS-PART: Ensemble-based approach, combining partitions (Section 5.1.3.2).

• ENS-SIM: Ensemble-based approach, combining similarity scores (Section 5.1.3.3).

• CLASS-SVM: Similarity classifier, using Support Vector Machines (Section 5.1.4).

• CLASS-LR: Similarity classifier, using Logistic Regression (Section 5.1.4).

To evaluate the clustering solutions of these different techniques, we use the clustering

quality metrics of Section 5.1.2, namely, NMI and B-Cubed.

5.1.5.2 Experimental Results

We begin with the task of finding the best modeling and sampling strategies for the

classification-based techniques, which is of course critical for the performance of these ap-

proaches. We trained a classifier using support vector machines and logistic regression for

the different sampling and modeling strategies, and tested the quality of clustering results

for each classifier and sampling method. The results are shown in Table 5.1, indicating that

time-based sampling is consistently superior to random sampling according to both NMI

and B-Cubed. Similarly, the document-centroid modeling techniques yield higher-quality
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Algorithm Sample NMI B-Cubed

CLASS-SVM TIME-DC 0.9492 0.8226

CLASS-SVM TIME-DD 0.9396 0.7868

CLASS-SVM RANDOM-DC 0.9082 0.6954

CLASS-SVM RANDOM-DD 0.8227 0.4180

CLASS-LR TIME-DC 0.9508 0.8258

CLASS-LR TIME-DD 0.9360 0.7743

CLASS-LR RANDOM-DC 0.8991 0.6483

CLASS-LR RANDOM-DD 0.8257 0.4360

Table 5.1: Performance of classification-based techniques using different sampling strategies

over the validation set.

Algorithm NMI B-Cubed

All-Text 0.9240 0.7697

Tags 0.9229 0.7676

ENS-PART 0.9296 0.7819

ENS-SIM 0.9322 0.7861

CLASS-SVM 0.9425 0.8095

CLASS-LR 0.9444 0.8155

Table 5.2: Performance of all similarity metric learning techniques and the best individual

clustering techniques over the Upcoming test set.

clustering solutions than techniques that model similarity between document pairs. There-

fore, we proceed to test our classification-based techniques using classifiers trained on the

time-based document-centroid training sample (TIME-DC).

Next, we compared our similarity metric learning techniques against each other, as well

as against the top performing individual clusterers, on the Upcoming test set. Table 5.2

presents the clustering performance of all similarity metric learning techniques, as well as

the All-Text and Tags clusterers, in terms of NMI and B-Cubed. Not surprisingly, the top

performing individual clusterer is All-Text.
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Title Date Location #Docs

Street Art Photowalk 7/14/08 London 411

Cherry Blossom Festival 4/12/08 San Francisco 269

American Music Union 8/8/08 Pittsburgh 209

How Weird Street Fair 5/4/08 San Francisco 52

Table 5.3: Some events identified by CLASS-LR.
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Figure 5.3: NMI scores on the Upcoming test dataset.

More importantly, the similarity metric combination approaches that we consider in

this work outperform all individual clusterers, including All-Text (which also considers all

document features, but with a single text-based similarity metric). Among the similarity

metric learning techniques, the classification-based techniques CLASS-SVM and CLASS-

LR outperform the ensemble-based techniques ENS-PART and ENS-SIM. CLASS-LR is the

best overall technique in terms of both NMI and B-Cubed. The least successful of our tech-

niques is ENS-PART, implying that learning the similarity metric directly is more effective

than combining individual feature-based clustering partitions. Some events identified by

CLASS-LR are shown in Table 5.3.

We also compared our techniques using the Last.fm dataset as an independent test



CHAPTER 5. SIMILARITY METRIC LEARNING FOR
IDENTIFICATION OF UNKNOWN EVENTS 96

0.89	  

0.9	  

0.91	  

0.92	  

0.93	  

0.94	  

0.95	  

All
-‐Te
xt	  

Ta
gs	  

EN
S-‐P
AR
T	  

EN
S-‐S
IM
	  

CL
AS
S-‐S
VM

	  

CL
AS
S-‐L
R	  

Figure 5.4: NMI scores on the Last.fm test dataset.
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Figure 5.5: B-Cubed scores on the Upcoming test dataset.
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Figure 5.6: B-Cubed scores on the Last.fm test dataset.

set (with the training and validation set from the Upcoming dataset). As Figures 5.3-5.6

show, the test on the Last.fm dataset resulted in similar, albeit not identical, outcomes.

In that test, all similarity metric learning techniques still outperform the baselines, but

the top-performing technique is now ENS-SIM. Recall that the analysis of our techniques

is performed over data from Flickr, with one dataset containing content annotated with

events from Upcoming, and the other from Last.fm. Different properties of Last.fm events

compared to Upcoming events could be the source of these relative performance differences

(e.g., Tags similarity is better than All-Text for the Last.fm dataset), in which case ENS-

SIM may be most robust in the face of these differences. Interestingly, the strong results for

all methods over Last.fm are encouraging, as some real-world scenarios will require training

on datasets different than the eventual data to be analyzed.

To determine if our results are statistically significant, we executed a set of tests by

partitioning the Upcoming test dataset into 10 equal subsets according to document upload

time, and ran each clustering technique on every subset. We discuss detailed results only

for the NMI metric (while trends for B-Cubed were equivalent to trends observed for NMI,

the differences between approaches as measured by B-Cubed were not as significant). We

used the Friedman test [Dem06], a non-parametric statistical test for comparing a set of
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Figure 5.7: Comparison of all techniques using the Nemenyi test. Groups of techniques

connected by a line are not significantly different at p < 0.05.

alternative models. The Friedman test’s null hypothesis states that all the approaches have

similar performance. The results of the test comparing the 10 runs show that we can reject

this null hypothesis with p < 0.05, meaning that the performance of some approaches is

significantly different.

A post-hoc statistical test is required to expose the relationship between the individual

techniques. Figure 5.7 shows the results of the post-hoc analysis of our data using the

Nemenyi test and the graphical representation as proposed by Demšar to visualize the

relationships between the techniques [Dem06]. Techniques are plotted according to their

average rank for the test datasets, and a line spans each group of techniques that is not

different in a statistically significant manner. The figure demonstrates that, for the 10 tests,

while CLASS-SVM and CLASS-LR are significantly better than both baseline approaches,

they are not significantly different from each other, or the other similarity metric learning

techniques, at the p < 0.05 level. For p < 0.1, we can claim that CLASS-SVM is also

significantly better than ENS-PART.

Since NMI can be intuitively interpreted as the harmonic mean of the clusters’ homo-

geneity and completeness scores (Appendix A), we also examine our competing approaches

using these metrics. Figure 5.8 shows the homogeneity scores of our similarity metric learn-

ing techniques and baselines on the Upcoming test set. Interestingly, even though CLASS-

LR has a higher NMI score than CLASS-SVM, CLASS-SVM produced clusters that are
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Figure 5.8: Homogeneity scores on the Upcoming test dataset.

more homogenous, with a larger proportion of documents in each cluster corresponding to

the same event, compared to CLASS-LR. Another interesting insight is that Tags has a

higher homogeneity score than All-Text, which implies that the Tags similarity metric is

more precise but less inclusive than the All-Text similarity.

To complement the homogeneity results, we report the completeness scores of our simi-

larity metric learning techniques and baselines on the Upcoming test set. Here, we see that

the completeness score of CLASS-SVM is lower than that of CLASS-LR, which explains

why the NMI score, which balances homogeneity and completeness, indicated that CLASS-

LR is the best approach. Recall from our discussion of cluster quality metrics (Section

5.1.2) that homogeneity and completeness are the two properties of the clustering solution

that we aim to optimize. Therefore, while CLASS-SVM may be better than CLASS-LR

according to homogeneity, CLASS-LR is better in terms of completeness, and, importantly,

strikes a better balance between these two properties. This is also the case for Tags, whose

completeness score is the lowest overall, again supporting our claim that tag-based similar-

ity is very conservative and, therefore, spreads event documents across more clusters than

All-Text.

To gain more insight into the results of the various techniques, we analyzed the similarity
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Figure 5.9: Completeness scores on the Upcoming test dataset.

metric models. Since the techniques use different modeling assumptions, we examined their

differences in terms of the weight coefficients that they assign to each similarity feature.

These coefficients, while not comparable in absolute terms, hint at the relative contribution

of each similarity feature towards the model’s final similarity prediction. CLASS-LR con-

siders All-Text as the most important feature, followed by Time/Date-Proximity. CLASS-

SVM, on the other hand, considers Title, followed by All-Text as the top two features. A

surprising result is that both classifiers agree that, in the presence of all other features,

Location-Proximity is an indication of document dissimilarity. In contrast, our ensemble

model gives the lowest weights to Title and Time/Date-Proximity, and Location-Proximity

has the third highest weight (after Tags and All-Text). These observations can form the

basis of a more detailed analysis in the future.

5.2 Exploiting Social Links

In the previous section, we focused on learning social media document similarity metrics,

and used them in conjunction with a scalable clustering algorithm. As we discussed, ideally

each cluster corresponds to an event and includes the social media documents associated
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with the event. While this work significantly outperformed the appropriate baselines, it

did not exploit the variety of social links available in social media sites. We expect social

links to be useful in situations where we cannot determine if documents are similar based

on their context features alone (e.g., often documents have missing location information).

Therefore, we explore ways to judiciously leverage social links for event identification, to

complement the similarity learning models identified in the previous section.

5.2.1 Link-based Similarity

Links such as social network connections, comments, and shared group memberships provide

important cues for document similarity in social media. To understand the potential benefits

of using (inherently noisy) social links for our event identification task, we analyzed the

network of author comments associated with photographs in (a 90,288-document subset

of) a large-scale Flickr data set (see Section 5.2.2). Out of the distinct document authors

in the data set, 45% commented on some other author’s document. Interestingly, 44% of

authors who made such comments did so purely within one event (i.e., these authors created

documents for an event and only commented on documents for that event, not others).

Furthermore, 80% of authors made more comments on documents inside events on which

they have published content than on documents for other events in the data set. These

exploratory statistics hint that social links (e.g., based on author-comment relationships)

might help in identifying event content.

We consider different ways to incorporate social links into a document similarity met-

ric. One way is to use different types of link-based similarities on context features (e.g.,

author) as features for a similarity metric learning model. These similarities may be binary

indicators of the authors’ social network connections, shared group memberships, and so

forth. In isolation, these features are not very revealing, but combined with other similarity

metrics (e.g., based on the documents’ context features) they may prove helpful for cap-

turing document similarity. However, incorporating social links into the similarity models

is a challenging task: for ensemble-based models (Section 5.1.3), clusterers using just link-

based similarities will likely group together many documents relating to different events,

and create a large number of singleton clusters where no links exist; for classification-based
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models, the true contribution of link-based similarity features might be difficult to capture,

since social links are often sparse.

While social links between document pairs may be too weak to capture similarity, links

between clusters of documents may be more revealing. We observed that when our clus-

tering algorithm (Section 4.1) incorrectly splits an event across multiple clusters, it is often

due to insufficient similarity between the event’s documents rather than due to a strong

similarity to documents from other events. As a result, many “pure” clusters, where all

documents in the cluster belong to the same event, are created. In a preliminary analysis

performed over clusters created by applying our algorithm to (a 90,288-document subset

of) the Flickr data set (Section 5.2.2), we found that 24% of the events were split across

multiple clusters, and half of these were split into “pure” clusters exclusively. These “pure”

clusters represent a simple case where strong evidence of social links between two clusters

could help us detect that they belong to the same event.

Therefore, we proceed to explore this alternative direction, using links between social

media document clusters to learn whether they should be merged. We analyzed social links

in the form of author comments on social media documents within Flickr. Out of the set

of distinct authors of documents in our data, 45% commented on some other author’s doc-

ument. Interestingly, 44% of authors who made such comments did so purely inside events

(i.e., commented on documents relating to the same events as documents they posted)

and 80% of authors made more comments on documents inside events than on other event

documents in the dataset. Figure 5.10 shows the authors’ comments graph, where each

node corresponds to an author, and a directed link from one author to another indicates

that the author commented on the other’s document. The documents are grouped together

according to their cluster assignment. The clusters in Figure 5.10 are two “pure” clusters

corresponding to the same event. The strong links between these clusters provide encour-

aging evidence that social links may be useful to detect social media document similarity

where feature-based metrics alone are unable to.



CHAPTER 5. SIMILARITY METRIC LEARNING FOR
IDENTIFICATION OF UNKNOWN EVENTS 103

Figure 5.10: Comments between authors in two event clusters.

5.2.2 Exploratory Experiments

We describe our exploratory experiments using author-comment links associated with Flickr

photographs to improve the clustering results of a classification-based similarity model based

on logistic regression (CLASS-LR). We perform our experiments over the Upcoming dataset

described in Section 5.1.5.1. Specifically, we develop our social link-based cluster merging

strategies on the validation set and then report the results of the entire procedure (clustering

and merging) on the test set.

To decide whether to merge any pair of clusters, we train a learning model using the

comments associated with each document across “pure” cluster pairs. We consider a variety

of link-based features, including the total number of comments between authors in the

clusters, the number of mutual comments (i.e., author A1 from cluster C1 commented on

the document of author A2 in cluster C2 and vice versa), and the percentage of shared

comments out of all comments associated with each cluster in the pair.

In our learning scenario, we would like to avoid false positives: a false positive corre-

sponds to merging clusters for different events and hence hurts the quality of the initial

clustering solution on which we build. Therefore, we use a cost-sensitive classification

approach, training a model that assigns the highest cost to false positive errors. We experi-

mented with different classification models and cost values using the Weka toolkit [WF05],
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Model NMI B-Cubed

CLASS-LR 0.9508 0.8155

Merge-ALL 0.8689 0.6765

Merge-FCFS 0.9404 0.7923

Merge-FCFS-θ 0.9514 0.8226

Table 5.4: Clustering results for the baseline and alternative merging methods.

and found a Multilayer Perceptron to be the best performing model, keeping the number

of false positives to just 425 for 397,386 cluster pairs.

Using this classifier, we can predict whether any pair of clusters should be merged.

However, we have to address the special case where the classifier’s predictions disagree.

For example, consider clusters C1, C2, and C3 where the classifier predicts that (C1, C2)

and (C1, C3) should be merged, but (C2, C3) should not. We can either merge C1, C2, and

C3 into a single cluster (Merge-ALL), or merge C1 and C2 but not C3, where C1 and C2

appear earlier in the data set (Merge-FCFS ). For the latter approach, we add a confidence

threshold θ, to ensure that only high-probability merge predictions would be used (Merge-

FCFS-θ). We experimented with different threshold settings on the validation set and used

the conservative setting that yielded the best performance (θ=0.995) for experiments over

the test set.

To evaluate our approach, we used the clustering quality metrics discussed in Section 5.1,

namely, NMI and B-Cubed. Table 5.4 shows the clustering quality over the test set using

the original logistic regression similarity model CLASS-LR and our alternative merging

strategies. CLASS-LR is a strong baseline, outperforming both merging strategies Merge-

ALL and Merge-FCFS. However, Merge-FCFS-θ provides a small improvement over this

baseline, according to both NMI and B-Cubed.

To analyze these results, we deconstruct the B-Cubed score into its precision and recall

components, which intuitively explain the observed performance of our alternative strate-

gies. Not surprisingly, all merging strategies hurt the B-Cubed precision, which corresponds

to the average proportion of items in every document’s cluster that belong to the same event.

Similarly, all merging strategies improve the B-Cubed recall, which reflects a decrease in



CHAPTER 5. SIMILARITY METRIC LEARNING FOR
IDENTIFICATION OF UNKNOWN EVENTS 105

0.52	  

0.57	  

0.62	  

0.67	  

0.72	  

0.77	  

0.82	  

0.87	  

0.92	  

CLASS-‐LR	   Merge-‐ALL	   Merge-‐FCFS	   Merge-‐FCFS-‐θ	  

Figure 5.11: B-Cubed Precision scores on the Upcoming test dataset.

the number of clusters that each event is spread across. However, the only strategy that

creates a better balance between the two, measured by the combined B-Cubed score, is

the least aggressive strategy, Merge-FCFS-θ. While the overall performance improvement

offered by this merging strategy is modest, it serves as an indication that social links can

be useful for event identification in social media. Further improvements may be obtained

by considering additional types of social links, which we intend to explore in future work.

5.3 Conclusions

In the previous chapter, we introduced a clustering framework for unknown event identifi-

cation in social media, and showed how we can use it with a post-clustering classification

step to distinguish between event and non-event clusters. In this chapter, we focused on

learning a similarity metric for the clustering framework, specifically tailored to social media

event documents that contain a variety of context features. We discussed and experimented

with ensemble-based and classification-based techniques for combining a set of similarity

metrics to predict when social media documents correspond to the same event. Our experi-

ments suggest that our similarity metric learning techniques yield better performance than

the baselines on which we build. In particular, our classification-based techniques show



CHAPTER 5. SIMILARITY METRIC LEARNING FOR
IDENTIFICATION OF UNKNOWN EVENTS 106

0.52	  

0.57	  

0.62	  

0.67	  

0.72	  

0.77	  

0.82	  

0.87	  

0.92	  

CLASS-‐LR	   Merge-‐ALL	   Merge-‐FCFS	   Merge-‐FCFS-‐θ	  

Figure 5.12: B-Cubed Recall scores on the Upcoming test dataset.

significant improvement over traditional approaches that use text-based similarity.

In addition, we described an exploratory direction for leveraging information from social

links to improve the similarity learning models we introduced in this chapter. Our initial

statistics and experiments suggest that these links may be useful similarity cues, especially

when context features of social media documents are not sufficient for inferring similarity.

In the next chapter, we turn to the known event identification scenario, where we use known

features of planned events to identify event documents across different social media sites.
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Chapter 6

Identification of Content for

Known Events

In the previous chapters, we presented techniques for identifying events and their associated

social media documents in the unknown identification scenario, where no information is

available on the events that exist in a document stream. However, for planned events

(e.g., concerts, parades, conferences), there is revealing and structured information (e.g.,

title, description, time, location) that is often explicitly available on user-contributed event

aggregation platforms (e.g., Last.fm events, EventBrite, Facebook events). For such events,

we explore approaches to automatically identify diverse social media content, under the

known event identification scenario. Importantly, we address the challenge of automatically

identifying user-contributed content for these planned events across different social media

sites.

Automatically identifying social media content associated with planned events is a chal-

lenging problem due to the heterogenous and noisy nature of the data. These properties

of the data present a double challenge in our setting, where both the planned event in-

formation and its associated social media content tend to exhibit missing or ambiguous

information, and often include short, ungrammatical textual features. In our “Celebrate

Brooklyn!” example, event features (e.g., title, description, location) are supplied by a

Last.fm user; therefore, these features may consist of generic titles (e.g., “Opening Night
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Concert”), missing descriptions, or insufficient venue information (e.g., “Prospect Park,”

with no exact address). Similarly, social media content associated with this event may be

ambiguous (e.g., a YouTube video titled “Bird singing at the opening night gala”) or not

have a clear connection to the event (e.g., a tweet stating “#CB! starts next week, very

excited!”).

To identify content for planned events, we leverage explicitly provided event features

such as title (e.g., “Celebrate Brooklyn! Opening Gala”), description (e.g., “Singer/songwriter

Andrew Bird will open the 2011 Celebrate Brooklyn! season”), time/date (e.g., June 10,

2011), location (e.g., Brooklyn, NY), and venue (e.g., “Prospect Park”) to automatically

formulate queries used to retrieve related social media content from multiple social media

sites. Importantly, we propose a two-step query generation approach: the first step com-

bines planned event features into several queries aimed at retrieving high-precision results;

the second step uses these high-precision results along with text processing techniques such

as term extraction and frequency analysis to build additional queries, aimed at improving

recall. We experiment with formulating queries for each social media site individually, and

also explore ways to use retrieved content from one site to improve the identification process

on another site. In summary, the contributions of this chapter are as follows:

• We pose the problem of identifying social media content for planned events as a query

generation and retrieval task (Section 6.1)

• We develop precision-oriented query generation strategies using planned event features

(Section 6.2)

• We develop recall-oriented query generation strategies to improve the often low recall

of the precision-oriented strategies (Section 6.3)

• We demonstrate how query generation strategies developed for one social media site

can be used to inform the event content identification process on other social media

sites (Section 6.4)

We evaluate our proposed query generation techniques on a set of planned events from

several sources and corresponding social media content from Twitter, Flickr, and YouTube
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(Section 6.5). We also present an interactive proof-of-concept system that uses our query

generation techniques with two alternative user interfaces to retrieve social media documents

for planned events (Section 6.6). Finally, we conclude with a discussion of our findings

(Section 6.7). The bulk of this paper appeared in [BING11; BCI+11].

6.1 Motivation and Approach

The problem that we address in this chapter is how to identify social media documents across

sites for a given planned event with known features (e.g., title, description, time/date,

location). Records of planned events—including the event features on which we rely—

abound on the Web, on platforms such as Last.fm events, EventBrite, and Facebook events.

Figure 6.1 shows a snapshot of such a planned-event record on Last.fm.

Figure 6.1: A Last.fm event record for the “Celebrate Brooklyn!” opening night gala and

concert.

As we discussed in Chapter 2, we regard a social media document as relevant to an event

if it provides a reflection on the event before, during, or after the event occurs. Consider the

“Celebrate Brooklyn!” opening gala concert example (see Figure 6.1). This event’s related
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documents can reflect anticipation of the event (e.g., a tweet stating “I’m so excited for this

year’s Celebrate Brooklyn! and the FREE opening concert!”), participation in the event

(e.g., a video of Andrew Bird singing at the opening gala), and post-event reflections (e.g.,

a photo of Prospect Park after the concert titled “Andrew Bird really knows how to put on

a show”). All of these documents may be relevant to a user seeking information about this

event at different times.

For the known event identification scenario that we address in this chapter, the events

that we aim to identify are planned events, as defined in Chapter 2. Operationally, a planned

event is any record posted to one of the public event aggregation platforms available on the

Web (e.g., Last.fm events, EventBrite). Unfortunately, not all user-contributed records on

these sites are complete and coherent, and while we expect our approaches to handle some

missing data, a small subset of these records lack critical features that would make them

difficult to interpret by our system and humans alike. Therefore, we do not include in our

analysis records that are potentially noisy and incomplete. Specifically, we ignore:

• Records that are missing both start time/date and end time/date

• Records that do not have any location information

• Records with non-English title or description

• Records for endogenous events (Chapter 3) (i.e., events that do not correspond to

any real-world occurrence, such as “profile picture change,” a Facebook-specific phe-

nomenon with no real-world counterpart)

Regardless of the platform on which they are posted, user-contributed event records gener-

ally share a core set of context features that describe the event along different dimensions.

These features include (see Figure 6.1): title, with the name of the event (e.g., “Celebrate

Brooklyn! Opening Night Gala & Concert with Andrew Bird”); description, with a short

paragraph outlining specific event details (e.g., “... Celebrate Brooklyn! Prospect Park

Bandshell FREE Rain or Shine”); time/date, with the time and date of the event (e.g.,

Friday 10 June 2011); venue, with the site at which the event is held (e.g., Prospect Park);

location, with the address of the event (e.g., Brooklyn, NY). These context features, collec-
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tively, will prove helpful for constructing queries that can retrieve different types of social

media documents associated with the event.

Problem Definition 3 Consider any planned-event record posted on an event aggregation

platform. Our goal is to retrieve relevant social media documents for this event on multiple

social media sites, and identify the top-k such documents from each site, according to given

site-specific scoring functions.

We define the problem of identifying social media documents for planned events as a

query generation and retrieval task. Specifically, we design query generation strategies using

multi-dimensional features of events on the Web (e.g., textual description, time, location).

For each event we generate a variety of queries, which we use collectively to retrieve match-

ing social media documents from multiple sites. Since each event could potentially have

many associated social media documents, we further narrow down the set of documents

we present to a user to the top-k most similar documents, using given site-specific scoring

functions (e.g., the multi-feature function in Chapter 5). The similarity metrics that we

use, and which are not the focus of this chapter, might differ slightly across social media

sites since documents from different sites vary in terms of their associated context features

(e.g., documents from Flickr and YouTube have titles and descriptions whereas documents

from Twitter do not).

Addressing the above problem presents multiple challenges. Notably, event records are

generally informative, but they are also far from perfect. Specifically, sometimes context

features are missing altogether, as is occasionally the case with the description feature.

Some other times, features have incomplete values (e.g., missing state in the location fea-

ture), or values at varying granularities (e.g., “Celebrate Brooklyn! Opening Night Gala &

Concert with Andrew Bird” vs. “Opening Night Concert” for the title feature). Still, these

event platforms are a rich source of planned event information, so our goal is to develop

a variety of query generation strategies, designed to overcome the various challenges that

this data presents. Also, social media sites contain highly heterogeneous documents, and

the vast majority of these documents are, needless to say, not relevant to an event of in-

terest. Designing queries to target these documents across sites is, therefore, a challenging
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proposition.

Our approach for associating social media documents with planned events consists of

two steps. First, we define precision-oriented queries for an event using its known context

features (Section 6.2). These precision-oriented queries aim to collectively retrieve a set of

social media documents with high-precision results. Then, to improve the (generally low)

recall achieved in the first step, we use term extraction and frequency analysis techniques

on the high-precision results to generate recall-oriented queries and retrieve additional doc-

uments for the event (Section 6.3). Figure 6.2 presents an overview of our query generation

approach.

Figure 6.2: Our query-generation approach.

6.2 Precision-Oriented Query Building Strategies

Our first step towards retrieving social media documents for planned events consists of

simple query generation strategies that are aimed at achieving high-precision results. These

strategies form queries that touch on various aspects of an event (e.g., time/date and venue),
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following the intuition that these highly restrictive queries should only result in messages

that relate to the intended event. We consider a variety of query generation strategies for

this step, involving different combinations of the context features, namely, title, time/date,

and location, of each event.

The precision-oriented queries for an event consist of combinations of one or more event

features. One intuitive feature that we include in all strategies is a restriction on the time

at which the retrieved social media documents are posted. In a study of trends on Twitter,

Kwak et al. [KLPM10] discovered that most trends last for one week once they become

“active” (i.e., once their associated Twitter messages are generated). Since our (planned)

events can be anticipated, unlike the trends in [KLPM10], we follow a similar intuition and

set the time period Te that is associated with the event (see Chapter 2) to start a week

prior to the event’s start time/date and to end a week after the event’s end time/date.

Note that this time period setting is not the same as the one we used in Chapter 3 (i.e.,

72-hours before and after the trend’s peak time), because the documents that we collect

serve a different purpose from the documents considered in Chapter 3. Specifically, we aim

to capture many documents that might be associated with an event, while in Chapter 3

we aim to capture the distribution of documents produced immediately before and after

an event. For documents that contain digital media items (e.g., photos, videos), we only

consider them if their associated media was created during or after the event’s start time.

This step, while potentially eliminating a few relevant documents, is aimed at improving

precision since we do not expect many digital media items associated with an event to

be captured prior to the start of the event. We experimented with more restrictive time

windows but observed that relevant documents that contain digital media are generally

posted within a week of the event, possibly due to a high barrier to post (e.g., having to

upload photos from a camera that does not connect directly to the Internet).

In addition to restricting by time, we always include the title of the event in our precision-

oriented strategies, as it often provides a precise notion of the subject of the event. As

discussed in Section 6.1, title values exhibit substantial variations in specificity across event

records. Some event titles might be too specific (e.g., “Celebrate Brooklyn! Opening Night

Gala & Concert with Andrew Bird”); for any such specific title, any social media documents



CHAPTER 6. IDENTIFICATION OF CONTENT FOR KNOWN EVENTS 114

matching it exactly will likely be relevant to the corresponding event. If the titles are too

specific, however, no matching documents might be available, which motivates the recall-

oriented techniques described in the next section. In contrast, other event titles might be too

general (e.g., “Opening Night Concert”). To automatically accommodate these variations in

title values, we consider different query generation options for the title feature. Specifically,

we generate queries with the original title as a phrase, to capture content for events with

detailed titles. We also generate queries with the original title as a phrase augmented with

(portions of1) the event location, to capture content for events with broad titles, for which

the location helps narrow down the matching documents. Finally, we consider alternative

query generation techniques that include the title keywords as a list of terms—rather than

as a phrase—for flexibility, as well as variations of the non-phrase version that eliminate

stop words from the queries.

The intuition for the precision-oriented strategies we define is motivated by the informal

results of these strategies over planned events from a pilot system. Our system (Section

6.6) has a customizable interface that allows a user to select among different retrieval

strategies. We selected precision-oriented strategies that include three variations of the

title (i.e., phrase, list of terms, and list of terms with removed stop words), optionally

augmented with either the city or venue portion of the location. We use these precision-

oriented strategies to retrieve social media documents for a set of planned events, and

verify that they indeed return high-precision results (Section 6.5). The final set of selected

precision-oriented strategies is listed in Table 6.1. These strategies, by design, generally

offer high precision, though often at the expense of recall.

6.3 Recall-Oriented Query Building Strategies

While the strategies outlined in Section 6.2 often return high-precision social media doc-

uments for an event, the number of these high-precision documents is generally low. To

improve recall, we develop several strategies for constructing queries using term-frequency

1We observed that social media documents usually mention a single, broad aspect of the event’s location,

such as city or venue, rather than a full address.
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Strategy Example

[“title”+“city”] [“Celebrate Brooklyn! Opening Night Gala &

Concert with Andrew Bird” “Brooklyn”]

[title+“city”] [Celebrate Brooklyn! Opening Night Gala & Con-

cert with Andrew Bird “Brooklyn”]

[title-stopwords+“city”] [Celebrate Brooklyn! Opening Night Gala Con-

cert Andrew Bird “Brooklyn”]

[“title”+“venue”] [“Celebrate Brooklyn! Opening Night Gala &

Concert with Andrew Bird” “Prospect Park”]

[title+“venue”] [Celebrate Brooklyn! Opening Night Gala & Con-

cert with Andrew Bird “Prospect Park”]

[“title”] [“Celebrate Brooklyn! Opening Night Gala &

Concert with Andrew Bird”]

[title] [Celebrate Brooklyn! Opening Night Gala & Con-

cert with Andrew Bird]

[title-stopwords] [Celebrate Brooklyn! Opening Night Gala Con-

cert Andrew Bird]

Table 6.1: Our selected precision-oriented strategies.
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analysis. Specifically, we treat an event’s title, description, and any retrieved results from

the precision-oriented techniques as “ground-truth” data for the event. We consider using

the precision-oriented results from each social media site individually, and also from all

social media sites collectively (Section 6.4).

Using the ground-truth data for each event, we design query formulation techniques

to capture terms that uniquely identify each event. These terms should ideally appear in

any social media document associated with the event but also be broad enough to match a

larger set of documents than possible with the precision-oriented queries. We select these

recall-oriented queries in two steps. First, we generate a large set of candidate queries for

each event using two different term analysis and extraction techniques. Then, to select the

most promising queries out of a potentially large set of candidates, we explore a variety of

query ranking strategies and identify the top queries according to each strategy.

Frequency Analysis: The first query candidate generation technique aims to extract

the most frequently used terms, while weighing down terms that are naturally common in the

English language. The idea is based on the traditional tf-idf approach [MRS08] commonly

used in information retrieval. To select these terms, we compute term frequencies over the

ground-truth data for word unigrams, bigrams, and trigrams. We then eliminate stop words

and remove infrequent n-grams (determined automatically based on the size of the ground-

truth corpus). We also eliminate any term that appears in the top 100,000 most frequent

words indexed by Microsoft’s Bing search engine as of April 20102, with the assumption

that any of these queries would be too general to describe any event.

To normalize the n-gram term frequency scores, we use a language model built from a

large corpus of Web documents (see Section 6.5). With this language model, we compute

log probability values for any candidate n-gram term. The probability of a term in the

language model provides an indication of its frequency on the Web and can be used to

normalize the term’s computed frequency. We sort the n-grams extracted for each event

according to their normalized term frequency values, and select the top 100 n-grams as

candidate queries for the event.

Term Extraction: The second query candidate generation technique aims to identify

2http://web-ngram.research.microsoft.com/info/

http://web-ngram.research.microsoft.com/info/
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meaningful event-related concepts in the ground-truth data using an external reference

corpus. For this, we use a Web-based term extractor over our available textual event

data. This term extractor leverages a large collection of Web documents and query logs

to construct an entity dictionary, and uses it along with statistical and linguistic analysis

methodologies to find a list of significant terms [KMC05]. The extracted terms for each

event serve as additional recall-oriented query candidates, along with the term-frequency

query candidates described above.

Each of the techniques we describe could potentially generate a large set of candidate

queries. However, many of these queries could be noisy (e.g., [@birdfan], with the name

of a user that posts many updates about the event), too general (e.g., [concert tonight]),

or describing a specific or non-central aspect of the event (e.g., [Fitz and the Dizzyspells],

the name of an Andrew Bird song from the concert). Issuing hundreds of queries for each

event is not scalable and could potentially introduce substantial noise, so we need to further

reduce the set of queries to the most promising candidates. We explore a variety of strategies

for selecting the top candidate queries out of all possible queries that we construct for each

event. We consider two important criteria for ordering the event queries: specificity and

temporal profile.

Specificity: Specificity assures that we rank long, detailed queries higher than broad,

general ones. Since we use conjunctive query semantics, longer queries consisting of multiple

terms (e.g. [a,b]), are more restrictive than shorter queries consisting of fewer terms (e.g.,

[a]). Particularly, since we use term n-gram shingles with n=1, 2, and 3 to construct the

recall-oriented queries, our set of candidate queries often includes bigram queries that are

subsets of trigram queries (e.g., [bird concert] and [andrew bird concert]). If both such

candidates are present in the set, we favor the longer, more detailed version, as we observed

that this level of specificity generally helps improve precision and yet is not restrictive

enough to hurt recall.

Temporal Profile: The historical temporal profile of a query is another criterion we

use to select among the candidate queries for an event. A local spike in document frequency

around the time of the event might serve as an indication that the query is associated with

the event. As we discussed in Chapters 3 and 4, this type of bursty temporal behavior is a
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useful, distinguishing characteristic of terms and phrases associated with trending events.

Even for planned events that are not trending, the bulk of associated documents is generally

posted or captured in close temporal proximity to the time of the event, so queries that are

useful for identifying these event documents will also exhibit some increase in document

frequency around that time. We keep a record of the number of documents retrieved by

each query during the week before and the week after the event, and compare this number

to the query’s document volume during shorter time periods (one or two days) around the

event’s time span.

Figure 6.3 shows a document volume histogram over Twitter documents for two recall-

oriented queries retrieved around the week of Andrew Bird’s concert at “Celebrate Brook-

lyn!” We can see that the volume of a general query such as [state farm insurance] is

consistent over time, whereas the volume of [andrew bird concert], while lower, increases

around the time of the event. While this temporal analysis is promising for some social

media sites (e.g., Twitter) where the time of the messages generally coincides with the time

of the event, it may be problematic for other sites (e.g., YouTube, Flickr) that tend to

exhibit a delay between an event’s time and upload time of the associated digital media

documents for the event, because of the nature of these sites. Therefore, for sites containing

digital media, we use the content creation time rather than the upload time, if possible.

(This feature is, unfortunately, often noisy or missing, especially for YouTube videos.)
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Figure 6.3: Histogram of Twitter document volume over time for two queries around the

week of Andrew Bird’s Celebrate Brooklyn! concert.
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We consider using each of these query selection strategies individually, and also explore

ways of combining them, to identify the top candidate queries for any given event. With

these queries, we can retrieve associated social media documents from a variety of social

media sites. Interestingly, these social media sites can be used as complementary signals

for the recall-oriented query generation and retrieval process, as we will see next.

6.4 Leveraging Cross-Site Content

We query for event-related documents on multiple social media sites in order to provide

a holistic perspective on the event, complete with digital media and a variety of user per-

spectives. For the “Celebrate Brooklyn!” opening concert, for instance, we can use these

different social media sites to learn about the event (e.g., via a Twitter message “Cele-

brate Brooklyn kicks off TONIGHT with Andrew Bird concert in Prospect Park!”), watch

a video of a song performed at the event (e.g., “Andrew Bird - Effigy (Live) - Prospect Park

- Brooklyn, NY” on YouTube), and see up-close photos of Andrew Bird on stage during the

event (e.g., “Andrew Bird: Prospect Park Bandshell” photo set on Flickr).

We can leverage event content from one social media site to help retrieve event doc-

uments from another social media site in different ways, following the query generation

strategies proposed in the previous sections. One simple way, of course, is to generate

recall-oriented queries for each site individually and use these queries across sites. Specif-

ically, we can use the high-precision results obtained from an individual site to formulate

recall-oriented queries as described in Section 6.3. We can then use these site-specific recall-

oriented queries to obtain additional results from other social media sites. This is especially

useful when the precision-oriented strategies do not retrieve results from all sites. This is

the case for our “Celebrate Brooklyn!” example: since the event title is too specific, the

precision-oriented queries fail to retrieve any documents from YouTube, and, therefore, we

cannot generate recall-oriented queries for this site. Fortunately, as is often the case, Twit-

ter has a wealth of results for the precision-oriented queries for the event, and the resulting

recall-oriented queries (e.g., [andrew bird concert], [brooklyn celebrate]) retrieve relevant

videos from YouTube. In short, we manage to extract useful YouTube content through
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queries derived based on Twitter content.

An alternative way to leverage multi-site social media content is to generate recall-

oriented queries using the high-precision results returned from all social media sites col-

lectively. Whenever we obtain precision-oriented results from multiple sites, this approach

yields a larger “ground-truth” corpus for the recall-oriented query generation than the ones

obtained from each site individually, which may be helpful for identifying salient event terms

that appear frequently across sites. At the same time, the results may be dominated by

content from one site, possibly obscuring useful content from another site. This approach

may also introduce noise or irrelevant content that is often present in some sites and not

others (e.g., content-free titles of Flickr photos, Twitter username mentions).

Although content from different social media sites provides promising opportunities, it

also presents challenges for our techniques. First, site-specific notations and conventions

often introduce noise or inhibit recall. For example, Flickr users often tag photos with

their camera settings (e.g., “canoneos5dmarkii”), which may be mistakenly identified as an

important event term by the term frequency analysis, especially if the ground-truth corpus

for the event is small. In addition, each Flickr tag must consist of a single term, so users

often resort to very long multi-word tags (e.g., “greatcanadiancheesefestival”). In contrast,

YouTube tags may each consist of several terms, so querying for such long multi-word tags

on YouTube rarely yields results. We experimentally evaluate the merits of these alternative

multi-site approaches in Section 6.5.

6.5 Experiments

We evaluated our query selection and retrieval techniques using a large dataset of real-world

events from several event aggregation sites. For each event, we used our query generation

strategies to collect related documents from popular social media sites. We performed three

different sets of experiments:

• Comparison of the automatically generated queries against human-produced queries

for the events

• Evaluation by human judges of the automatically generated queries
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• Evaluation of the quality of the documents retrieved by the automatically generated

queries

We report on the dataset and experimental settings, then turn to the results of our experi-

ments.

6.5.1 Experimental Settings

Planned Event Dataset: We assembled a dataset of event records posted between May

13, 2011 and June 11, 2011 on four different event aggregation platforms: Last.fm events,

EventBrite, LinkedIn events, and Facebook events. We used the Last.fm API with a lo-

cation parameter set to “United States”3 to collect a set of musical performance events.

Additionally, we filtered any returned events that did not fall into our specified date range.

To collect events from EventBrite, we simply used the EventBrite API with the date param-

eters set to our specified date range. For LinkedIn events, where an API was not available,

we retrieved and parsed event search pages in HTML format, using HTTP GET parameters

to specify the date range.

Facebook events deserve special attention due to the difficulty of collecting such data via

the site’s API. Facebook events can only be retrieved in response to a specific search query

or event id. To search for events, we used the most common event terms found in event titles

collected by our event tracking system (Section 6.6). This list includes terms that describe

specific types of events (e.g., [concert]) and also general terms commonly found in event

titles (e.g., [national], [international]). We removed any returned event records that had no

location or time information, and events that listed a virtual location (e.g., “everywhere”)

in their location or venue fields. Unfortunately, after filtering for these required fields we

were left with very few events that matched our criteria. Still, we included these events in

our experiments as they add diversity to our dataset.

To ensure that we collected events that would potentially have associated social media

documents, we filtered out obscure events by requiring a minimum number of event atten-

dees. We tuned this minimum threshold for each site given the observed distribution of

3This was the only way to retrieve a set of events from Last.fm without issuing specific queries.
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attendees over all collected events. At the end of the process, we collected a total of 393

events, with 90 events from Last.fm, 94 events from EventBrite, 130 events from LinkedIn,

and 25 events from Facebook. The above events constitute the test set over which we report

our results. For the training and tuning of the strategies, we used a separate set of 329

event records, collected between April 26 and May 11, 2011.

Social Media Documents: We collected social media documents for the events in our

dataset from three social media sites: Twitter, YouTube, and Flickr. Specifically, we used

each site’s respective search API to issue precision-oriented (Section 6.2) and recall-oriented

(Section 6.3) queries. From the retrieved results, we eliminated any document that did not

exactly match the search query since some site search engines (e.g., for Twitter) search for

the query in any content that is linked from the document, and return matching documents

as relevant results.

Note that part of our evaluation considers the quality of the top-k documents retrieved

by the automatically generated queries (see problem definition in Section 6.1). The ranking

of documents for an event is not the focus of this chapter. While we do explore techniques

for selecting relevant and useful documents for an event (see Chapter 7), the task of learning

a ranking function for event documents is reserved for future work, as we discuss in Chapter

9. For our evaluation, we rank the documents retrieved for an event by computing their

similarity to the event record using (an adaptation of) the multi-feature similarity function

in Chapter 5. As one additional component of the similarity, not present in Chapter 5, we

consider the percentage of queries that retrieve a given document when we compute the

score for the document and an event. Intuitively, we have observed that documents that

are retrieved by several of our queries for an event should be preferred over documents that

are retrieved by one such query.

Precision-Oriented Query Generation: For each event, we generate precision-

oriented queries as defined in Section 6.2 using the event’s context features, namely, title,

time/date, city and venue. As an exception, we do not generate queries using the three

title-only strategies for Last.fm events since we observed that many of the event titles on

Last.fm consist of the name of a performer without any other context. Even though we

restrict the social media documents that we retrieve to a specific time period around the
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event, it is often difficult in the Last.fm case to distinguish between two events held by

the same performer in close time proximity. By forcing the location (i.e., city or venue)

as part of the query for such events, we ensure that our precision-oriented queries produce

results from the intended performance. For event records from the rest of the sites we use

all precision-oriented queries from Section 6.2.

Recall-Oriented Query Generation: For each event, we generate recall-oriented

queries as described in Section 6.3. To perform the frequency analysis, we index the doc-

uments using Lucene4, with term n-grams, for n=1, 2, and 3. To normalize n-gram term

frequency scores, we use the Microsoft Web n-gram Service5, which provides n-gram log

probability values. This service returns the joint probability of n-gram terms using a lan-

guage model created from documents indexed by Microsoft’s Bing search engine.

We extract meaningful queries from the high-precision results using the Yahoo! Term

Extraction Web Service6, which returns a list of significant terms or phrases given a segment

of text. This term extractor leverages a large collection of documents and query logs to

construct an entity dictionary and uses it along with a statistical and linguistic analysis

[KMC05] to process the given textual event data. This term extraction service has shown

promising results on preliminary experiments with training data, to complement the first

term frequency analysis technique above. It has also been successfully used in prior work

for similar tasks [DI08; KMC05].

Query Generation and Ranking Techniques: Our experiments consider a subset of

the (potentially many) queries generated using the precision- and recall-oriented strategies

above. Different techniques will vary on how these subsets are selected. We consider two

basic options to rank the queries for selection, namely, using (1) the “specificity” of the

queries, as determined by the n-gram score on the Microsoft Web document corpus, or

(2) variations of a “temporal” profile of the queries, determined by analyzing the volume

of matching documents for the queries over time. Each alternative technique selects the

top-10 queries according to the associated ranking criterion, as follows:

4http://lucene.apache.org/

5http://research.microsoft.com/web-ngram

6http://developer.yahoo.com/search/content/V1/termExtraction.html

http://lucene.apache.org/
http://research.microsoft.com/web-ngram
http://developer.yahoo.com/search/content/V1/termExtraction.html
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• MS n-gram Score (MS): n-gram score of the query from the Microsoft Web n-gram

Service

• Time Ratio (TR): ratio of the number of documents created in the 48 hours before

and after the event to the number of documents created in the week before and after

the event

• Restricted Time Ratio (RTR): ratio of the number of documents created in the 24

hours before and after the event to the number of documents created in the week

before and after the event

• MS n-gram Score and Time Ratio (MS-TR): MS score multiplied by TR score

• MS n-gram Score and Restricted Time Ratio (MS-RTR): MS score multiplied by RTR

score

We apply these techniques to documents from Twitter, YouTube, and Flickr individually

and also to documents from all three sites collectively. We use the site’s name or “All,” along

with the strategy name (e.g., Twitter-MS, All-TR) to distinguish among these alternatives.

We also compare the above techniques, which include both precision- and recall-oriented

queries, against a technique that selects all precision-oriented queries. We refer to this

technique as Precision.

Evaluation and Metrics: To evaluate our strategies, we collected annotations for a

random sample of 60 events in our dataset. For each event, we used two annotators for three

different tasks: comparison against human-produced queries, human evaluation of gener-

ated queries, and evaluation of document retrieval results. To compare our automatically

generated queries against human-produced queries, we asked each annotator to provide 5

different queries that would be useful for collecting social media documents for each event.

We use the Jaccard coefficient to measure the similarity of the set of automatically gen-

erated queries G to the set of human-produced queries H for each event. Specifically, for

each query qg ∈ G and each query qh ∈ H we compute J(qg, qh) = (qg ∩ qh)/(qg ∪ qh), with

set operations performed over query terms. The Jaccard value that we report for G is then∑
qg∈Gmaxqh∈H(J(qg, qh))/|G|.
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For the human evaluation of the automatically generated queries, we asked two annota-

tors to label 2,037 queries selected by our strategies for each event on a scale of 1-5, based

on their relevance to the event. Here, we aim to gauge the potential of each query to retrieve

results related to the event. For our “Celebrate Brooklyn!” example, the queries [celebrate],

[celebrate brooklyn], and [andrew bird celebrate brooklyn] would receive scores of 1, 3, and

5, respectively. In cases of disagreement we use the average rating. For two events in this

set, our annotators were unable to provide queries due to ambiguous content (e.g., “ready

film” as the title, without description), and content in a foreign language (e.g., queries in

Italian for “FashionCamp,” despite setting our API parameters for English-only content).

These events were removed from the analysis.

Finally, for the evaluation of the quality of the documents retrieved by the automatically

generated queries, we used Amazon’s Mechanical Turk7 to collect relevance judgments for

the top-20 documents retrieved from Twitter, YouTube, and Flickr for each of our query

selection techniques above. We collected two binary relevance judgments for each docu-

ment, and an optional third judgment in cases of annotator disagreement. To evaluate the

retrieved documents, we use a standard metric, namely, normalized discounted cumulative

gain, or NDCG [CMS09], which captures the quality of ranked lists with focus on the top

results. We use the binary version of NDCG [CMS09], to measure how well our approach

ranks the top documents relative to their ideal ranking.

6.5.2 Experimental Results

We begin by comparing the similarity of the automatically generated queries and human-

produced queries for our events. Table 6.2 shows the results of our query generation methods

using documents from Twitter, Flickr, and YouTube separately, and documents from all

sites collectively. Across all strategies, queries generated using Flickr or YouTube doc-

uments were less similar to the human-produced queries compared to queries generated

using Twitter documents. For Flickr, this result can be explained by the common use

of long multi-word tags, which were often selected as the top queries by our strategies

(e.g., [20110603musichallofwilliamsburgbrooklynny]). While these queries may not reflect

7https://www.mturk.com

https://www.mturk.com
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Strategy Twitter Flickr YouTube All

MS 0.571 0.216 0.181 0.272

TR 0.524 0.254 0.097 0.277

RTR 0.517 0.253 0.094 0.317

MS-TR 0.531 0.209 0.141 0.244

MS-RTR 0.523 0.209 0.141 0.263

Table 6.2: Jaccard coefficient for automatically generated queries and human-produced

queries.

human behavior, they could still be useful for retrieving event content, as we will see. In

contrast, Precision had the highest Jaccard value at 0.705, indicating that the human-

produced queries were most similar to the precision-oriented queries we defined in Section

6.2. Interestingly, using documents from all sites collectively did not improve the similarity,

possibly due to the presence of Flickr tags among the selected queries for this strategy.

For the next step in our analysis, Figure 6.4 shows the average annotator rating for

our alternative query generation approaches. Not surprisingly, Precision achieved the best

average rating since, by design, it produced very detailed queries that are expected to return

relevant results for their associated events. The query generation techniques that used

Twitter documents, especially Twitter-MS, were again the most successful set of techniques.

Based on our annotation guidelines, the score of Twitter-MS indicates that, on average,

queries generated by this strategy are expected to retrieve some results for their associated

event. The query generation techniques that used YouTube documents received the lowest

scores in this evaluation. One possible explanation is that the query-generation strategies

may not be effective when formulated using YouTube data alone, which may be related to

the lack of reliable temporal information for YouTube documents, as we discussed in Section

6.3.

For our third set of experiments, we examined the relevance of documents retrieved by

our query generation strategies to their associated events. Figure 6.5 shows the NDCG

scores for the top 5, 10, 15, and 20 Twitter documents retrieved by Precision, Twitter-MS,

and Twitter-RTR (Twitter-TR, Twitter-MS-TR, and Twitter-MS-RTR produced similar
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Figure 6.4: Average annotator rating of our automatically generated queries.

Strategy 5 Docs 10 Docs 15 Docs 20 Docs

Twitter-MS 0.759 0.724 0.690 0.690

Twitter-RTR 0.828 0.793 0.759 0.759

Precision 0.414 0.293 0.241 0.224

Table 6.3: Percentage of events with Twitter results at different recall levels for alternative

query strategies.

results to Twitter-MS and Twitter-RTR, and were, therefore, omitted). Validating our ear-

lier observation (Section 6.2), Precision retrieved highly relevant results. Both Twitter-MS

and Twitter-RTR also produced good results, demonstrating their effectiveness at retrieving

Twitter documents for planned events.

It is important to note that the NDCG scores at each level of recall were averaged over

the set of events that had some returned results for each strategy. Table 6.3 reports the

percentage of events in our dataset for which each strategy returned results at various levels

of recall. As expected, Precision returned results for a small fraction of the events. Interest-

ingly, Twitter-RTR returned results for a larger proportion of the events than Twitter-MS.

This can be explained by the way these alternative strategies select their top queries. Specif-

ically, all queries selected for Twitter-RTR must have some matching documents, since we
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Figure 6.5: NDCG scores for top-k Twitter documents retrieved by our query strategies.

consider each query’s document volume over time as the selection criterion. In contrast,

Twitter-MS is biased towards rare terms (i.e., terms with lower probability scores), making

it the second most precise among the strategies, following Precision.

Our next set of results examines the effectiveness of our approaches for retrieving event

documents across social media sites. Given our observations from the query-based eval-

uations, we evaluated the relevance of documents retrieved by the best performing query

generation approach, namely, MS-Twitter, from both YouTube and Flickr. Figure 6.6 shows

the NDCG scores of Precision, Twitter-MS, and YouTube-MS for the top-k YouTube doc-

uments, averaged over all events. In addition, the size of each point reflects the number of

events that had at least k documents retrieved by the strategy. As we can see, Twitter-MS

performed better and retrieved results for more events than YouTube-MS, indicating that

Twitter documents can be potentially used to improve both precision and recall of YouTube

documents for planned events.

We performed a similar evaluation over documents from Flickr, using Precision, Twitter-

MS, and Flickr-MS. Precision, expectedly, retrieved relevant results for a small number of

events. Interestingly, unlike YouTube-MS, Flickr-MS achieved higher NDCG scores than
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Figure 6.6: NDCG scores for top-k YouTube documents retrieved by our query strategies.

Twitter-MS. However, the number of events covered by Flickr-MS is smaller than the num-

ber of events covered by Twitter-MS, showing that Twitter-MS can still retrieve relevant

Flickr documents and can be particularly useful in cases where Flickr-MS returns no results.

Overall, our evaluation showed that our query generation approaches can effectively

retrieve relevant social media documents for planned events on multiple social media sites.

In addition, we demonstrated that we can leverage social media documents on Twitter to

generate a query strategy (i.e., Twitter-MS) that can retrieve relevant event documents on

YouTube and Flickr.

6.6 Event Tracking System

To enable interaction with our various query formulation strategies described in this chapter,

we created a proof-of-concept system that, given an event record and a query formulation

strategy, builds the appropriate queries as outlined by the strategy and returns all match-

ing event documents. The current implementation uses records from the Upcoming event

database and retrieves event content from Twitter. We describe two applications that build
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Figure 6.7: NDCG scores for top-k Flickr documents retrieved by our query strategies.

on this query formulation system to create two user experiences for interacting with social

media content for planned events.

6.6.1 Browser Plug-In

Our first sample application uses a browser plug-in script that enables seamless embedding

of social media documents related to planned events on Upcoming (Figure 6.8). This

plug-in script calls a query formulation engine with the set of precision-oriented querying

strategies described in Section 6.2. These strategies may be modified via plug-in settings,

or dynamically selected based on event type. When a user navigates to an Upcoming event

page, the plug-in script collects the event ID and associated event features, and sends them

to the query formulation engine, along with the selected query building strategies. The

query formulation engine automatically constructs appropriate event-specific queries using

the event’s features, as required by each query building strategy. The engine then collects

all of the matching social media documents, and finally sends the results to the plug-in

script.

For efficiency, we issue asynchronous requests to the query formulation engine, where
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!
Figure 6.8: Browser plug-in.
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each strategy corresponds to one request, and post the documents in the order in which

they are returned. We use a hash-map to keep track of all documents that are already

displayed on the page, in order to avoid displaying duplicate documents, which may be

returned by the different strategies. Additional performance improvement is gained from

issuing a request for any locally cached documents that were previously retrieved for this

event by any user of our system. We dynamically append the resulting documents to the

Upcoming page, alongside the event description.

6.6.2 Customizable Web-based Interface

Our customizable interface enables users to select specific strategies for automatically re-

trieving documents for any given event record. Through this interface, users can either

search for events or select from a list of recent events (Figure 6.9). On the sidebar, we

display the list of query formulation strategies that, if checked, will be used in the retrieval

process. When a user selects the “search for tweets” link for an event, our interface issues

simultaneous, asynchronous calls to our query formulation engine, to retrieve documents

for this event according to each selected strategy.

We display the documents dynamically, as soon as they are retrieved, for efficiency

reasons. However, we also include options for ranking the documents according to various

criteria. One such ranking criterion is to order the documents according to the time at

which they were posted, in case a user is interested in the most up-to-date information

about an event. Another ranking option orders documents according to the number of

strategies for which they were retrieved. In the future, we plan to experiment with richer

ranking functions (Chapter 9).

This interface provides flexibility by allowing users to dynamically modify the set of

retrieval strategies, which is particularly useful when the high-precision strategies have in-

sufficient recall. Another feature is a user-driven option to remove generally high-precision

strategies when they are expected to introduce noise for a specific event: for example, this

scenario might happen with a “title-only” query strategy when an event title is ambigu-

ous (e.g., “4th of July Celebration,” referring to an event in Charleston, SC). While the

customization feature may be useful in some situations, the automatic query formulation
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Figure 6.9: Customizable interface.
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strategies proposed in this chapter provide a viable alternative for such iterative user su-

pervision, ideally resulting in a satisfactory set of documents without manual intervention.

6.7 Conclusions

While our previous event identification efforts (Chapters 4 and 5) focused on identifying

unknown events, in this chapter we explored the known identification scenario, where we

have information about the events for which social media content is to be identified. In

this setting, we presented a query-oriented solution for retrieving social media documents

for planned events across different social media sites. Using a combination of precision-

oriented and recall-oriented query generation techniques, we showed how to automatically

and effectively associate social media documents with planned events from various sources.

Importantly, in accordance with our breadth goal, we demonstrated how social media doc-

uments from one social media site can be used to enhance document retrieval on another

social media site, thus contributing to the diversity of information that we can collect

for planned events. Overall, our techniques help unveil important information related to

planned events, presenting diverse, multi-faceted content from the points of view of users

who participate in and reflect on these events. As we will discuss, often the number of

documents that we identify for an event in social media, both in the known event identi-

fication scenario presented in this chapter and in the unknown scenario described in the

previous chapters, exceeds the number of documents that could be reasonably consumed

by a human looking for information about the event. Therefore, in the next chapter, we

consider techniques for selecting among the documents that we identify for each event, so

that we can focus on high-quality, relevant, and useful documents for each event.
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Chapter 7

Selection of Event Content

Events in social media often have vast amounts of associated content. For example, Presi-

dent Obama’s inauguration has over 30,000 associated YouTube videos as of January 2011.

A 2010 live broadcast of a U2 concert on YouTube drew over 130,000 posts on Twitter.

Even smaller events often feature dozens to hundreds of different documents. In the previ-

ous chapters, we described a variety of techniques to identify different types of events and

their associated social media documents across several social media sites. Important appli-

cations such as event browsing and search could greatly benefit from such identified event

content, but they need to prioritize and select from this content to avoid overwhelming

their users with too much information. In this chapter, we address this problem of selecting

social media content for an event.

Selecting the most salient social media content for an event is a challenging task, due

to the heterogeneity and varied quality of the data. For instance, seemingly related social

media documents with good textual quality might not be truly relevant to the event (e.g., a

Flickr photo titled “Bill cares about his health” for the United States health care reform bill

passage). At the same time, relevant, high-quality documents might not be useful (e.g., a

Twitter message stating “I can’t stop thinking about the health care reform bill passage”) as

they do not provide much information about the event in question. This chapter examines

several approaches for finding high-quality documents that are relevant and contain useful

information for each event. For any event, given its associated social media documents, we

aim to select documents that best represent the event. We use centrality-based techniques
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to select documents that have high textual quality, strong relevance to the event, and,

importantly, are useful to people looking for information about the event.

In summary, the contributions of this chapter are as follows:

• We suggest and define content selection goals for event content in social media (Section

7.1.1)

• We propose techniques for selecting the top documents for each event according to

our defined content selection goals (Section 7.1.2)

• We evaluate our proposed content selection techniques using a large-scale dataset from

Twitter (Section 7.2)

Finally, we discuss the implications of our findings and conclude (Section 7.3). The bulk of

this chapter appeared in [BNG11b].

7.1 Identifying Event Content

In this chapter, we consider several strategies for selecting social media documents for any

event, with focus on textual quality, relevance, and usefulness (Section 7.1.1). Formally, we

define the content selection problem that we address in this chapter as follows:

Problem Definition 4 Given an event e and its associated social media documents De,

our goal is to select a set of documents from De that exhibit high textual quality and strong

relevance to the event, and which include highly useful details for people who seek informa-

tion about the event.

For this content selection problem, we assume that we are given an event and a corre-

sponding set of social media documents associated with the event. As we discussed in the

previous chapters, there are a variety of ways by which we might arrive at this scenario. In

this chapter, we make a couple of assumptions about our given events and their associated

social media documents. First, we do not know any information about the given event.

With this assumption we can handle any type of event, including events discovered under

the unknown identification scenario (Chapters 4 and 5) and, of course, any event identified
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under the known identification scenario (Chapter 6). Second, we assume that the social me-

dia documents that we select consist primarily of textual content. With this assumption,

our techniques can handle content from Twitter, which generally consists of simple, short

textual messages. However, our centrality-based techniques can be easily extended to han-

dle the variety of document representations and corresponding similarity metrics discussed

in Chapter 5.

Regardless of the mode of identification or type of event, once we have an identified event

and its associated social media documents, we address the problem of selecting a subset of

these documents for presentation (Section 7.1.2). We describe our content selection goals

and approaches next.

7.1.1 Content Selection Goals

We select documents for each identified event with three desired attributes: quality, rele-

vance, and usefulness. Quality refers to the textual quality of the documents, which reflects

how well they can be understood by a human. As previously discussed, the quality of doc-

uments posted on social media sites varies widely. High-quality documents contain crisp,

clear, and effective text that is easy to understand (e.g., a Twitter message stating that

“The Superbowl is playing on channel 4 right now”). Low-quality documents, on the other

hand, contain incomprehensible text, heavy use of short-hand notation, spelling and gram-

matical errors, and typos (e.g., a YouTube video titled “obv maj fail lol”). Interestingly,

the quality of a document is largely independent of its associated event.

Relevance in our context refers to how well a social media document reflects information

related to its associated event. Highly relevant documents clearly refer to or describe their

associated event (e.g., a YouTube video, with description: “The steelers’ touchdown was

amazing - I wish they’d do it again” for the Super Bowl 2010 event). Documents are not

relevant to an event if they do not refer to the event in any way (e.g., a Twitter message,

stating “good morning, what are people doing today?” for the Super Bowl 2010 event). In

between these two extremes are documents that are somewhat relevant to an event, where

the event is not the main subject (e.g., A Flickr photo, with description: “I can’t believe

I’m stuck at work, I’d rather be watching the superbowl” for the Super Bowl 2010 event)
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or documents that are barely relevant and only obscurely refer to the event (e.g., a Twitter

messages, stating that “this game is so boring, but watching the commercials is mildly

entertaining” for the Super Bowl 2010 event).

Usefulness refers to the potential value of a social media document for someone who

is interested in learning details about an event. Useful documents should provide some

insight about the event, beyond simply demonstrating that the event occurred (e.g., via

a statement on Twitter, a photo of the event on Flickr). The level of usefulness of social

media documents varies. Documents that are clearly useful provide potentially interesting

details about the event (e.g., a Twitter message announcing that “The Packers and Steelers

are playing in this year’s Superbowl” for the Super Bowl 2010 event). Documents that

are clearly not useful provide no context or information about the event (e.g., a message

by a Twitter user, stating “super bowl!!! that’s all folks” for the Super Bowl 2010 event).

Other documents may reflect a user’s opinion about the event, where somewhat useful

event information is directly stated or can be inferred (e.g., a Flickr photo titled “the best

superbowl game ever” for the Super Bowl 2010 event).

We use these three attributes, namely, quality, relevance, and usefulness as absolute

measures of user satisfaction with the selected event content, and as relative measures of

the success of our alternative content selection approaches, which we describe next.

7.1.2 Content Selection Approaches

With our content selection goals in mind, we now propose alternative approaches for select-

ing a subset of social media documents associated with a given event. These approaches

rely on the observation that the most topically central documents in a cluster of event doc-

uments are likely to reflect key aspects of the event better than other, less central cluster

documents. This notion of centrality in a cluster of social media documents can be defined

in a variety of ways:

Centroid: The centroid similarity approach computes the cosine similarity of the tf-idf

representation (as defined by Kumaran and Allan [KA04]) of each document to its associated

event cluster centroid, where each cluster term is associated with its average weight across

all cluster documents. It then selects the documents with the highest similarity value. Since
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a cluster’s centroid highlights important terms used to describe the event (e.g., for Tiger

Woods’s famous apology speech, centroid terms with high weight might include “tiger,”

“woods,” “apology,” and “elin”), documents with high similarity to these key terms are

likely to reflect key aspects of the event, as desired by the relevance and usefulness goals.

In addition, since centroid term weights are based on frequency across all documents, they

tend to be high for quality terms (e.g., without typos or spelling errors), addressing our

quality selection goal.

Degree: An alternative view of centrality involves document similarity across all doc-

uments in an event cluster. In this alternative approach, we represent each document in

the cluster as a node in a graph, and any pair of nodes whose cosine similarity exceeds a

predetermined threshold is connected by an edge. Using this graph formulation, the degree

method selects nodes with the highest degree centrality, defined as the degree of each node,

weighted by the number of nodes in the graph. Using degree centrality enables us to select

documents that contain important terms that may not have been captured by the centroid

due to low support in the cluster documents (e.g., a small but highly connected subset

of documents might also include the word “mistress” when describing the Tiger Woods

apology). In this method, highly connected documents are also likely to include key event

terms, a desirable property for content selection.

The degree centrality method treats each edge as an equal vote for its adjacent nodes’

centrality. However, it is often beneficial to associate a weight with each edge, based on the

similarity value of the nodes it connects. In fact, this idea has been considered for the task of

extractive summarization [ER04], a related task where sentences from multiple documents

are selected to form a summary. Our third approach, LexRank, is based on a state-of-the-art

technique by the same name used to select document sentences for summarization [ER04].

LexRank: The LexRank approach [ER04] defines centrality based on the idea that

central nodes are connected to other central nodes. In other words, every node has a

centrality value, which it distributes to its neighbors. This idea can be represented using

the formula p(m) =
∑

n∈adj[m](p(n)/deg(n)), where p(n) is the centrality of node n, adj[m]

is the set of nodes adjacent to node m, and deg(n) is the degree of node n. The value of p(m)

for each cluster document can be computed using the power method [ER04], which estimates
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the stationary probability distribution resulting from a random walk on the document graph.

We select the top documents in the cluster according to their LexRank value.

In addition to these centrality-based approaches, we considered baseline content selec-

tion techniques such as selecting the most recent documents added to a cluster or selecting

documents from popular users (i.e., users with many followers). Unfortunately, when used

in isolation, these techniques suffer from serious drawbacks (e.g., inability to reduce selec-

tion of noisy, irrelevant content) so we eliminated them from consideration after running

experiments on training data. These potentially useful signals could instead be incorpo-

rated with our centrality based approaches in a disciplined way (e.g., using a trained ranking

function), a task that we reserve for future work (Chapter 9).

7.2 Experiments

We evaluated our content selection strategies on a large dataset of Twitter messages. We

describe this dataset and report the experimental settings (Section 7.2.1), and then turn to

the results of our experiments (Section 7.2.2).

7.2.1 Experimental Settings

Data: We used the Twitter API to collect over 2,600,000 Twitter messages, or tweets,

posted during February 2010 by New York City users (i.e., by Twitter users whose location,

as entered by the users, is in the New York City area). This dataset was collected as part of

our work on unknown event identification described in Chapter 4, and is location-centric for

this reason. However, we believe that this characteristic of the data does not introduce any

bias in our evaluation since our techniques currently do not consider the tweets’ location in

the selection process.

We cluster our entire dataset in an online fashion as described in Section 4.1. We used the

data from the first week in February to calibrate the parameters of the clustering algorithm,

and then used the second week of February for the development of our centrality-based

approaches (and to rule out poorly performing alternatives such as time-based selection).

Finally, we report our results on test data selected from the latter half of February (i.e.,



CHAPTER 7. SELECTION OF EVENT CONTENT 141

Weeks 3 and 4).

Annotations: To test the content selection approaches, we selected 50 event clusters,

with an average of 412 messages per cluster, from our test set (the presence of event content

in the cluster was determined by two annotators, with substantial agreement, with Cohen’s

kappa coefficient κ=0.79). For each event cluster we selected the top-5 messages according

to each content selection approach. We used two annotators to label each message according

to our desired attributes: quality, relevance, and usefulness. The annotators labeled each

message on a scale of 1 to 4 for each attribute, where a score of 4 signifies high quality,

strong relevance, and clear usefulness, and a score of 1 signifies low quality, no relevance,

and no usefulness. Agreement between annotators on low (1, 2) and high (3, 4) ratings for

each attribute was substantial to high, with kappa coefficient values κ = 0.92, 0.89, 0.61 for

quality, relevance, and usefulness, respectively. In our evaluation, we use the average score

for each message to compare the algorithmic results.

Techniques for comparison: We evaluate and compare our three content selection

approaches, namely, Centroid, Degree, and LexRank. To compute the degree centrality,

we set the similarity threshold for connecting two message nodes to 0.05. For the LexRank

approach we used the Mead toolkit [ER04] with the LexRank feature option, which produces

a ranked list of messages according to their LexRank score.

7.2.2 Experimental Results

We evaluated our three competing approaches according to user-perceived quality, rele-

vance, and usefulness with respect to a specific event. Figure 7.1 summarizes the average

performance of these approaches across all 50 test events. All three approaches received

high scores for quality (where a score of 4 implies excellent quality). Degree and Centroid,

on average, selected messages that are either somewhat relevant or highly relevant. How-

ever, Centroid is the only approach that received a high score for usefulness, indicating

that, on average, its selected messages were either somewhat or clearly useful with respect

to the associated events.

To test for significant differences between the approaches, we also compared them against

each other in terms of the number of events that each approach was preferred for. Table
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Figure 7.1: Comparison of content selection techniques.

Method Quality Relevance Usefulness

LexRank 2.23 2.4 2.4

Degree 2.02 2.09 2.08

Centroid 1.75 1.51 1.52

Table 7.1: Preference rank of content selection approaches, averaged over 50 test events.

7.1 shows the average rank of each approach according to the three desired attributes. We

performed a statistical significance analysis based on these ranked preferences using the

Friedman test [Dem06], a non-parametric statistical test for comparing a set of alternative

models. According to this test, there are significant differences between the approaches (p <

0.01) in terms of relevance and usefulness. Post-hoc analysis of our data using the Nemenyi

test [Dem06] determined that Centroid is significantly better than the other approaches in

terms of both relevance and usefulness. Significant differences between Degree and LexRank

could not be determined. Additionally, we could not reject the null hypothesis of the

Friedman test (i.e., that all approaches have similar performance) in terms of quality.

7.3 Conclusions

A single event might sometimes attract hundreds or thousands of social media content items,

so being able to rank and filter event content is a requirement for a variety of applications
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Tiger Woods will make his first public statement Friday 
about returning to golf tour since the scandal 
Tiger Woods skedded to make a public apology Friday and 
talk about his future in golf. Will wife Elin be there? #cnn 

Centroid 

Tiger Woods Returns To Golf - Public Apology | Gasparino 
| Mediaite http://bit.ly/9Ui5jx 
Watson: Woods needs to show humility upon return (AP): 
Tom Watson says Tiger Woods needs to "show some 
humility to... http://bit.ly/cHVH7x 
This week on Tour: Tiger Woods must show humility,Tom 
Watson says: Mickelson is the only active player to have 
wo... http://bit.ly/dppTlU 

Degree 

Wedge wars upstage Watson v Woods: BBC Sport 
(blog),Tom Watson's comments in Dubai on Tiger Woods 
are telling,but... http://bit.ly/bwa9VM 
Tiger woods yall,tiger,tiger,tiger,tiger,tiger woods yall! 

Tiger Woods Hugs: http://tinyurl.com/yhf4uzw LexRank 

tiger woods y'all,ah tiger woods y'all,tiger woods y'all,ah 
tiger woods y'all 

!
Figure 7.2: Sample tweets selected by the different approaches for the “Tiger Woods Apol-

ogy” event.
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that aim to communicate that content effectively. In this chapter, we presented content

selection approaches that provide a promising step towards this goal.

Among three centrality-based approaches, Centroid emerged as the preferred way to

select documents given a cluster of documents related to an event. Based on our observation

of the data, we believe that the success of this method is related to its inherent assumption

that each cluster revolves around one central topic. LexRank and Degree, on the other hand,

tend to select documents that are strongly similar to one another, but may sometimes

diverge from the main topic of the cluster (e.g., see Tom Watson’s comments on Tiger

Woods, selected by Degree, in Figure 7.2).

In addition to the centrality-based approaches described in this chapter, we developed

a variety of re-ranking techniques that boost the centrality score of documents with po-

tentially useful features (e.g., URLs, tags). Users can manually adjust these techniques

based on their preferences. An exploration of these re-ranking techniques using our Twit-

ter dataset revealed a disagreement among users on what aspects of a document (beyond

quality, relevance, and usefulness, as defined in our annotation guidelines) are desirable.

Some users tend to prefer Twitter content with accompanying URLs, due to the promise

of additional, potentially interesting information, while others see more value in verbose

messages, with self-contained information related to the event. We plan to explore this

further in future work (Chapter 9).
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Chapter 8

Related Work

This chapter reviews the literature that is relevant to this dissertation. Section 8.1 outlines

prior research on event identification in textual news documents, which consists of many

efforts that predated our own, and, in most cases, the rise of social media. Section 8.2

describes work on trend detection and analysis in social media, related to the study of

Twitter trends and trending events presented in Chapter 3. Section 8.3 discusses related

efforts on event identification in social media, for both the unknown and known identification

scenarios that we addressed in Chapters 4, 5, and 6. Section 8.4 provides an overview of

large-scale clustering and alternative metric learning techniques that we considered for the

clustering framework used in Chapters 4 and 5, and the similarity metric learning problem

in Chapter 5. Finally, Section 8.5 discusses related research on organizing and presenting

social media content, including event-driven analytics and social media summarization,

which is related to our content selection task in Chapter 7.

8.1 Event Identification in Textual News

The topic detection and tracking (TDT) event detection task [All02] inspired many re-

search efforts that focused on discovering and organizing news events [APL98; KA04;

YPC98]. While some efforts focused on online event detection in continuous text docu-

ment streams [APL98; KA04], others explored retrospective detection of events and their

associated text documents [YPC98]. With an abundance of well-formed text, many of the
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proposed approaches (e.g., [HGM00; MAMS04; ZZW07]) rely on natural language process-

ing techniques to extract linguistically motivated features. Zhang et al. [ZZW07] extracted

named entities and part-of-speech tags from textual news documents, and used them to

reweigh tf-idf representations of these documents for the new event detection task. Fila-

tova and Hatzivassiloglou [FH03] identified named entities corresponding to participants,

locations, and times in text documents, and then used the relationships between certain

types of entity pairs to detect event content. Hatzivassiloglou et al. [HGM00] used linguistic

features (e.g., noun phrase heads, proper names) and learned a logistic regression model for

combining these features into a single similarity value. Makkonen et al. [MAMS04] extracted

meaningful semantic features such as names, time references, and locations, and learned a

similarity function that combines these metrics into a single clustering solution. They con-

cluded that augmenting documents with semantic terms did not improve performance, and

reasoned that inadequate similarity functions were partially to blame. As we previously dis-

cussed, social media documents have little textual content, and this content is often noisy,

and generally lacks well-established structure and semantics. Therefore, techniques that

rely on these properties of text are often not suitable for the social media domain. At the

same time, the idea of combining a variety of similarity metrics for event detection [HGM00;

MAMS04] was extended by our work and tailored to social media documents (Chapter 5).

Extracting events from text has been the focus of numerous studies as part of the NIST

initiative for Automatic Content Extraction (ACE) [Ahn06; JG08]. The ACE program de-

fines event extraction as a supervised task, given a small set of predefined event categories

and entities, with the goal of extracting a unified representation of the event from text

via attributes (e.g., type, subtype, modality, polarity) and event roles (e.g., person, place,

buyer, seller). Ahn [Ahn06] divided the event extraction task into different subtasks, in-

cluding identification of event keyword triggers (see Chapter 2), and determination of event

coreference, and then used machine learning methods to optimize and evaluate the results

of each subtask. Ji and Grishman [JG08] proposed techniques for extracting event content

from multiple topically similar documents, instead of the traditional approach of extracting

events from individual documents in isolation.

In contrast with the predefined templates outlined by ACE, Filatova et al. [FHM06]
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presented techniques to automatically create templates for event types, referred to as “do-

mains,” given a set of domain instances (i.e., documents containing information related to

events that belong to the domain). Our goal is to identify events of different types over social

media documents. For this, we either operate in an unsupervised manner, or in a supervised

manner that does not impose restrictions on the event’s domain. For the supervised, known

event identification task, we do not use explicit templates but rather guide our identification

process using event-specific (as opposed to type- or domain-specific) attributes.

8.2 Trend Analysis in Social Media

The general topic of studying trends in social media has recently received considerable

research interest. Research efforts often examined a small number of such trends to produce

some descriptive and comparative characteristics of social media trends or popular terms.

Cheong and Lee [CL09] looked at four trending topics and two control terms, and a subset of

the messages associated with each, commenting on features such as the time-based frequency

(i.e., volume of messages) for each term, and the category of users and type of devices used

to post the associated messages. Yardi and boyd [Yb10] examined the characteristics of

content related to three topics on Twitter, two topics representing geographically local

news events, and one control topic. The authors studied the messages posted for each

topic (i.e., messages containing terms manually selected by the authors to capture related

content), and the users who posted them. Among other findings, the authors suggest that

local topics feature denser social connectivity between the posting users. Similarly, Sakaki

et al. [SOM10] suggest that the social connectivity for breaking events is lower, but have

only examined content related to two manually chosen events. In our study of Twitter

trends in Chapter 3, we were not able to verify this hypothesis.

To detect trends in Blogs, Glance et al. [GHT04] used a measure of “burstiness,” among

other techniques, identifying trending terms and phrases. This measure of “burstiness” is

similar to the one we used in our study of trends and trending events on Twitter (Chapter

3). As an additional step, Glance et al. clustered the trending terms and phrases to create

trending topics, each consisting of a set of related terms. While we do not cluster terms for
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our study in Chapter 3, we do use clustering to identify events in our unknown identification

scenario (Chapters 4 and 5). However, we cluster documents rather than terms, to identify

the events and their associated social media documents simultaneously.

Singh and Jain [SJ10] examined Twitter messages with select hashtags and showed that

the content for each such set follows a power-law distribution in terms of popularity, time,

and geo-location. Kwak et al. [KLPM10] showed that different trending terms on Twitter

have different characteristics in terms of the number of replies, mentions, retweets, and

“regular” tweets that appear in the set of tweets for each term, but do not reason about

why and how exactly these trends are different. Some of the metrics we used in Chapter 3

for characterizing trends are similar to those used in these studies, but we go further and

perform a large-scale analysis of trends according to manual assignments of these trends to

distinct categories.

On a slightly larger scale, Kwak et al. [KLPM10] also examined the time series volume

data of tweets for each trending term in their dataset, namely, a sample of 4,000 of the

trending terms computed and published by Twitter. The authors based their analysis on

the findings of Crane and Sornette [CS08], which analyzed time series viewing data for

individual YouTube videos. Crane and Sornette observed that YouTube videos fall into two

categories, based on their view patterns. When a time series shows an immediate and fast

rise in a video’s views, Crane and Sornette assert that the rise is likely caused by external

factors (i.e., attention was drawn to the video from outside the YouTube community) and,

therefore, dub this category of videos “exogenous.” When there is no such rise, the authors

suggest that a video’s popularity is due to “endogenous” factors. Videos are also classified as

“critical” or “sub critical,” again according to the time series data. Kwak et al. [KLPM10]

use these guidelines to classify the Twitter trends in each of these two categories, showing

how many trends fit each type of time-series signature. However, the two groups of authors

never verified that the trends or videos labeled as exogenous or endogenous indeed matched

their labels. In Chapter 3, we used the time series data (amongst other characteristics)

while manually coding identified trends as exogenous or endogenous in order to observe

whether these categories show different time series effects.

The related problem of information dissemination has also attracted substantial atten-
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tion. As a notable example, recent work studies the diffusion of information in news and

blogs [GGLNT04; LBK09]. Leskovec et al. [LBK09] studied how memes propagate and

diffuse across the Web, from mainstream media to blogs and vice versa. Specifically, they

observed that the peak of attention for a meme in blogs generally lags 2.5 hours behind the

peak of attention for the same meme in mainstream media. As another example, Jansen et

al. [JZSC09] study word-of-mouth activity around brands on Twitter. The trends we iden-

tified on Twitter (Chapter 3) are, of course, both a product and a generator of information

dissemination processes.

8.3 Event Identification in Social Media

While event detection in textual news documents has been studied in depth, the identifica-

tion of events in social media sites is still in its infancy.

Several related papers explored the unknown event identification scenario in social me-

dia. Weng and Lee [WL11] proposed wavelet-based signal detection techniques for identi-

fying “real-life” events on Twitter. These techniques can detect significant bursts or trends

in a Twitter data stream but, unlike our work in Chapter 4, they do not filter the vast

amount of non-event content that exists on Twitter. This, unfortunately, results in poor

performance, with very low precision scores compared with the precision achieved by our

methods. Related to our work in Chapters 4 and 5, Sankaranarayanan et al. [SST+09]

identified late breaking news events on Twitter using clustering, along with a text-based

classifier and a set of news “seeders,” which are handpicked users known for publishing news

(e.g., news agency feeds). As we discussed, such text-based and seeder-driven filtering of

non-event data can be used to generate the event document stream we use in Chapter 5.

Petrović et al. [POL10] used locality-sensitive hashing to detect the first tweet associated

with an event in a stream of Twitter messages. We use the general text-based classifier

suggested in [SST+09] and a method for identifying top events suggested by Petrović et

al. [POL10] as baseline approaches in our evaluation of the unknown identification methods

of Chapter 4.

While our work in the unknown event identification scenario focuses on timely, online,



CHAPTER 8. RELATED WORK 150

analysis, several efforts tried to address this task using retrospective analysis. Rattenbury et

al. [RGN07] analyzed the temporal usage distribution of tags to identify tags that correspond

to events. Chen and Roy [CR09] used the time and location associated with Flickr image

tags to discover event-related tags with significant distribution patterns (e.g.“bursts”) in

both of these dimensions.

Recent efforts proposed techniques for known identification of events in social media.

Many of these techniques rely on a set of manually selected terms to retrieve event-related

documents from a single social media site [SOM10; Yb10]. Sakaki et al. [SOM10] developed

techniques for identifying earthquake events on Twitter by monitoring keyword triggers

(e.g., “earthquake” or “shaking”). In their setting, the type of event must be known a

priori, and should be easily represented using simple keyword queries. Most related to our

work in Chapter 6, Benson et al. [BHB11] identified Twitter messages for concert events

using statistical models to automatically tag artist and venue terms in Twitter messages.

Their approach is novel and fully automatic, but it limits the set of identified messages for

concert events to those with explicit artist and venue mentions. Importantly, both of these

approaches are tailored to one specific social media site. In contrast, we propose methods

for identifying social media documents across multiple sites with varying types of documents

(e.g., photos, videos, textual messages). Our goal is to automatically retrieve social media

documents for any planned event, without any assumption about the textual content of

the event or its associated documents. While not exclusively in the social media domain,

Tsagkias et al. [TdRW11] extracted named entities and quotations from news articles, as

well as explicit links between news and social media documents, to identify social media

utterances related to individual news stories. In contrast with their well formed, lengthy

textual documents and explicitly linked content, content in our known event identification

setting (Chapter 6) is brief and often noisy, and generally does not contain explicit links to

social media documents.



CHAPTER 8. RELATED WORK 151

8.4 Large-Scale Data Clustering

There are many approaches for clustering large-scale data [Ber02], trading off runtime per-

formance and clustering accuracy. One of the important issues to address when clustering

large-scale data is how to compare the data elements against each other, which is hard to

perform in a scalable manner as the size of the data grows.

Several solutions were proposed to alleviate this problem. One set of solutions [TBW95;

ZRL96] uses statistical properties to represent subsets of the data, thus reducing the to-

tal number of comparisons to be made. Hatzivassiloglou et al. [HGM00] and Allan et

al. [APL98] showed that an incremental single-pass clustering algorithm can be effectively

used for event detection in textual news. Hatzivassiloglou et al. discovered that a single-

pass approach can offer good, inexpensive performance for text document clustering, given

a carefully selected clustering threshold. For the unknown event identification scenario, we

adopt this type of single-pass incremental solution, and represent clusters according to the

average value of their elements (i.e., centroid).

Other large-scale clustering solutions involve “blocking” methods [BKM06; HS95; MNU00],

which partition elements into several subsets based on a rough measure of similarity. These

subsets are then clustered in parallel using traditional clustering algorithms (e.g., K-means,

EM [Ber02]) with exact similarities. For our clustering framework (Section 4.1), recent work

by Reuter et al. [RCD+11] showed that a time-based blocking function can offer efficiency

improvements over the complete-link similarity setting, which compares each incoming doc-

ument to all previously seen documents at any point in the stream. Alternatively, several

approaches [DDGR07; MBN07] use locality-sensitive hashing, a method for finding approx-

imate nearest neighbors, to determine a small set of candidate clusters for each element.

This method reduces the number of comparisons that the clustering algorithm must make

for each element, thus increasing the algorithm’s efficiency.

The choice of clustering similarity metric is critical for obtaining high-quality cluster-

ing solutions. In domains where more than one similarity metric is appropriate, several

approaches have been proposed for combining multiple similarities using machine learning

techniques [BBS05; BM03; CKM09; CR02]. Bilenko et al. [BBS05] used an online percep-

tron to combine several basis similarity functions, including cosine similarity, string edit
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distance, and relative difference (for numeric values), in the context of a system for link-

ing related database records. Similar to our work in Chapter 5, Chen et al. [CKM09] used

weighted ensemble voting and, in addition, context features of the clusterers in the ensemble,

to enable entity resolution in different domains (e.g., personal Websites and publications).

Other metric learning approaches use optimization techniques to learn a similarity metric

from labeled examples directly [DKJ+07; XNJR02]. Xing et al. [XNJR02] posed the metric

learning problem as a convex optimization problem, and showed how such metric can be

learned from pairs of similar items using semidefinite programming. While they argue the

efficiency of their metric, they only performed experiments over small-scale datasets. Impor-

tantly, the optimized metric is part of a family of distance functions known as Mahalanobis

distances, which are a generalized form of the standard Euclidean distance. For social me-

dia documents, we are interested in a variety of similarity (or, conversely, distance) metrics

that reflect the natural, intuitive similarity for a given document representation (e.g., co-

sine similarity for textual features, geo-coordinate similarity for location-based features).

In Chapter 5, we defined document representations and corresponding similarity metrics,

and used them as basis functions for a trained similarity metric with classification-based

and ensemble-based techniques.

8.5 Social Media Content Summarization, Topic Discovery,

and Analytics

Research on summarizing, discovering, or otherwise presenting social media content has

gathered recent attention. The task of social media summarization is related to our con-

tent selection task (Chapter 7), but instead of selecting a set of potentially disconnected

messages, it aims to construct a coherent summary representation. Several efforts [CP11;

SHK10] considered ways to summarize a set of social media documents related to a specific

topic. Sharifi et al. [SHK10] proposed approaches for summarizing a set of Twitter mes-

sages that were retrieved in response to a keyword query. They used graph-based phrase

reinforcement and tf-idf techniques to produce very short summaries, which often consist

of fewer than 10 words. Chakrabarti and Punera [CP11] proposed techniques for summa-
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rizing Twitter messages for events. They used Hidden Markov Models to segment the set

of messages into sub-events, and then selected key messages from each “interesting” sub-

event, to include in the overall summary. This approach, as the authors note, is geared

towards structured, long-running events and its effectiveness has not been determined for

short events such as concerts or festivals.

Identifying latent, though not necessarily trending, topics on Twitter is the subject of

many recent efforts [HD10; OKA10; RDL10; ZJH+11]. Hong and Davidson [HD10] proposed

several schemes to train standard LDA, and the Author-Topic LDA models for topic discov-

ery over Twitter data. Ramage et al. [RDL10] used Labeled LDA to map Twitter messages

into learned latent and labeled dimensions (e.g., using hashtags, emoticons). Interestingly,

they showed how topic models can be used to characterize users by the topics they most

commonly use. O’Connor et al. [OKA10] described a system for presentation of Twitter

search results, which uses a language modeling approach to identify topic phrases that are

most distinctive for a set of retrieved Twitter messages. Search results are then grouped by

topic and theme, and ranked based on topical diversity, size, and uniqueness of information.

Finally, Zhao et al. [ZJH+11] extracted and ranked topical key phrases on Twitter, using

topic models and topic-biased PageRank. They defined relevance and interestingness with

respect to a topic as the properties of good key phrases they aim to extract. We considered

topic modeling as a potential approach for event identification, despite several drawbacks

of this type of solution for our task. We discuss this issue in detail in the following chapter.

Several recent efforts attempted to provide analytics for events detected or tracked on

Twitter. De Longueville et al. [DLSL09] described a method for using Twitter to track for-

est fires and the response to the fires by Twitter users. Starbird et al. [SPHV10] described

the temporal distribution, sources of information, and locations in tweets from the Red

River Valley floods of April 2009. Nagarajan et al. [NGS+09] downloaded Twitter data for

three events over time, and analyzed the topical, geographic, and temporal importance of

descriptors (e.g., different keywords) that can help visualize the event data. O’Connor et

al. [OBRS10] performed sentiment analysis on Twitter, and showed a correlation between

sentiment measured on Twitter and public opinions derived from polling data for the United

States presidential elections in 2008, and presidential job approval in 2009. Finally, Shamma
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et al. [SKC10], Diakopolous and Shamma [DS10], and Diakopoulos et al. [DNKS10] analyze

the tweets corresponding to large-scale media events (e.g., the United States President’s

annual State of the Union speech) to improve event reasoning, visualization, and analyt-

ics. These tasks may all be improved or better automated with the event identification

techniques presented in this dissertation.
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Chapter 9

Conclusions and Future Work

As users continue to share event-related content through social media channels, identifying

and characterizing this content remains critical to enable a variety of applications that build

on this useful source of information. Users should be able to interact with event content in

a timely manner, and also be exposed to a variety of content from different social media

sites, offering a multifaceted view of events, complete with textual content and multimedia.

Figure 9.1 illustrates an event browsing and search system, which is one potential application

that could benefit from temporally relevant and multifaceted social media event data.

In this dissertation, we presented event identification, characterization, and content

selection techniques, each of which serves as an integral part of such applications that

interact with events, and their associated documents, in social media. Specifically, we

outlined alternative social media identification scenarios, and the types of events that we

can identify under each scenario (Chapter 2). For the unknown identification scenario, where

events are identified in an unsupervised manner, we studied the different types of trending

events and non-event trends that exist in social media (Chapter 3). We then leveraged

the conclusions of our study to inform our event classifiers, which we used in conjunction

with a proposed clustering framework for unknown identification of events (Chapter 4). To

improve our clustering framework, we developed alternative approaches for learning multi-

feature similarity metrics, suitable for the social media domain, using the rich family of

context features associated with social media documents (Chapter 5). Then, in the known

identification scenario, we developed query formulation strategies to identify social media
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documents for planned events. Importantly, we showed how event content identified on one

social media site can be used to identify additional event content on other social media

sites (Chapter 6). Finally, we explored approaches for selecting a subset of the documents

associated with any event in social media, with focus on content quality, relevance, and

usefulness (Chapter 7).

Figure 9.1: Mock-up illustration of an event search and browsing system.

While we developed key techniques for enabling important applications such as event

browsing and search, which rely on organized, timely, and multifaceted event data from

social media sites, there are many remaining opportunities for future work, to optimize,

connect, and extend the event identification and characterization techniques described in

this dissertation. We outline some of these directions for future work next.

9.1 Clustering Framework Optimization

The clustering framework developed in this dissertation (Section 4.1) is at the core of our

unknown event identification techniques and its results directly affect the events that we are
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able to discover. For this reason, we studied this framework and its alternatives extensively

prior to selecting it as part of our solution. Although we experimented with alternative

clustering algorithms and parameter settings while training our techniques (see Section

4.1), several optimizations of the clustering framework could be considered for future work.

Such optimizations could potentially improve the scalability and enhance the quality of our

clustering results.

There are several properties of a suitable clustering approach for the unknown event

identification scenario, as we previously discussed (Section 4.1). Specifically, recall that

the clustering approach we use should be able to efficiently process large amounts of data

incrementally, and not require a priori knowledge of the number of clusters. Although these

requirements eliminate many candidate clustering algorithms (e.g., K-Means, agglomerative

hierarchical clustering [Ber02]), our chosen algorithm, as described in Section 4.1, is not the

only possible solution. As one alternative, we could consider applying several efficiency op-

timizations to our current single-pass incremental approach, specifically involving blocking

or canopy techniques [BKM06; MNU00].

Recently, Reuter et al. [RCD+11] extended our clustering framework (as presented in

[BNG10]) to include a blocking technique, which considers only a subset of the already-

clustered documents as candidate “nearest-neighbors” for any newly posted document. The

“blocker” (i.e., candidate selection function) that they proposed is simply a sliding time win-

dow, which selects a subset of the clustered documents that are within an empirically-tuned

temporal proximity to the given document. Not surprisingly, this technique was significantly

more efficient than the baseline techniques that compute the similarity between all docu-

ment pairs. Unfortunately, Reuter et al. did not use a centroid representation of each cluster

but rather compared any document to all other seen documents in the stream that fit the

blocking criterion. An interesting direction to explore is the tradeoff between efficiency and

accuracy of the clustering algorithm, using document-document versus document-centroid

similarities with appropriate blocking functions. An additional option for the blocking func-

tion is a location-based candidate selection technique, using the location proximity between

the documents as a rough indicator that the documents correspond to the same event. This

location-based blocker might be more effective for certain types of events (e.g., local events)
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than others (e.g., global breaking news events).

As an alternative to clustering, we could consider approaches for grouping topically

similar social media documents using topic models [BNJ03]. Topic models are a class of

unsupervised probabilistic modeling techniques [BNJ03] that have grown in popularity over

the past several years and which have been used in a variety of applications. Broadly,

these models map a text document collection into sets of distributions over words. These

distributions serve as representations for the different topics in the document collection.

Recently, Hoffman et al. [HBB10] developed scalable, online topic models, for detecting

topics in massive document collections. Their algorithm only requires a single pass over

the document collection, making it significantly more efficient than previously-proposed

batch topic modeling approaches, and, therefore, more suitable for our event identification

problem. Unfortunately, the number of topics must be specified as a parameter for this

algorithm, and this number is static, unlike the number of clusters in our framework, which

may change over time.

Extending online topic models to handle a variable number of topics is one possible

solution that would make this alternative approach suitable for our problem. One obvious

drawback of topic models for the social media domain is that they associate documents

with topics purely based on textual content. As we showed in Chapter 5, learning similarity

metrics using a variety of context features, textual and non-textual, is more effective than

text-based approaches at determining when social media documents correspond to the same

event. Still, topic modeling is an effective technique for characterizing social media content

[RDL10], and may prove to be a useful signal for identifying events and their associated

social media documents in our unknown identification scenario.

9.2 Identifying Unknown Events with Learned Similarity

Metrics Across Sites

In Chapters 4 and 5 we presented two alternative approaches for identifying events and their

associated social media documents in the unknown event identification scenario. In Chapter

4, we first clustered social media documents using our proposed clustering framework, and
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then employed a post-clustering classification step to determine which clusters correspond

to events. In that chapter, we used a simple text-based similarity metric as we were focused

on social media sites such as Twitter, whose documents consist of short textual messages. In

contrast, in Chapter 5 we used our clustering framework with a stream that consists of event

documents exclusively. Here, we assumed that non-event documents were filtered prior to

clustering. Importantly, we defined multi-feature similarity metrics to handle documents

from social media sites such as Flickr, which include a variety of rich and descriptive context

features. A natural extension of the work described in these chapters is to unify the main

contributions in each chapter, namely, the clustering and classification approach of Chapter

4, and the similarity metric learning techniques of Chapter 5, into an end-to-end unknown

event identification framework with learned similarity metrics.

As a potential improvement to the techniques presented in Chapters 4 and 5, this un-

known identification framework should be able to incorporate social media documents across

sites, as we do in the known event identification scenario (Chapter 6). For this, we may

choose to cluster documents from all social media sites simultaneously, or cluster documents

from each social media site in isolation, and then merge similar event clusters across sites. If

we choose to cluster documents across sites collectively, we must train a new similarity met-

ric to handle a generic representation of social media documents that would fit documents

from most social media sites. Fortunately, most social media documents can be represented

using a core set of features (Chapter 5). As a challenge, social media documents from sites

such as Twitter consist of short segments of text, frequently with no additional context

features. To handle such documents, we could consider core context features such as title or

location as “missing,” in the context of the generic social media document representation.

As an alternative, by clustering documents from each site in isolation, we could have the

advantage of tailoring the similarity metric to each specific site and potentially exploiting

additional, site-specific document features (e.g., video category on YouTube, “people in

photos” feature on Flickr).
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9.3 Improving Breadth of Event Content

To address our breadth requirement (Chapter 1), we considered several query-based tech-

niques for identifying event documents from different types of social media sites (Chapter

6). We were able to show that we can successfully use identified event content on one site

to retrieve additional event content on other sites. This process of bootstrapping examples

from one view of the data (e.g., event documents from Flickr) to inform the learning process

in a different, complementary view of the data (e.g., event documents from YouTube) is

related to the powerful notion of co-training [BM98]. To extend this idea, we could cast

the cross-site event identification problem as a semi-supervised clustering problem [Zhu05],

where some events, and their associated social media documents, are available to us as

seed event clusters. In this scenario, we can use learned multi-feature similarity metrics to

identify social media documents that are highly similar to any existing event clusters.

Similar to the process we followed in Chapter 6, we can treat social media documents that

are highly similar to known event clusters as “ground truth.” As a challenging extension

to our work, we can use the newly identified documents to augment the event clusters

with additional context features that might not have been available initially (e.g., location,

title, tags). These additional features, in turn, could help identify new event documents on

complementary social media sites. This process repeats, as newly identified event documents

become “ground truth” and are iteratively used to identify more documents on other social

media sites.

9.4 Ranking Events for Search and Presentation

The events that we identified and characterized, along with their associated social media

documents, present many opportunities for improving and complementing search tools that

Web search engines provide. Specifically, as we discussed, we can enable social media-

augmented event browsing and search, where users are presented with a select set of rel-

evant events, for the search case in response to a keyword query. State-of-the-art search

applications rely on this notion of relevance to build domain-appropriate ranking models.

Therefore, one challenging direction for future work would be to learn a ranking model
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for events that would consider the event’s relevance for any user and query based on the

available social media context features.

Learning ranking models for information retrieval tasks has been the topic of many

research efforts over the past several years [BSR+05; CS01; XLW+08; FISS03; LBW07].

These ranking models use discriminative training over labeled examples to capture docu-

ment relevance by combining possibly revealing features with respect to a global notion of

relevance, or as it relates to specific queries and users. Such features may be generated by

traditional information retrieval methods such as language modeling [PC98] and PageRank

scoring [BP98]. The challenges that must be addressed in order to learn successful ranking

models include feature generation, ranking model selection, and labeled data collection for

model training and evaluation.

Keyword searches are often ambiguous and their results are not equally relevant for

every user. For example, a user in New York searching for the query [concert in the park]

may expect a different set of events than a person searching for the same query in San

Francisco (“the park” likely meaning Central Park in the first case and Golden Gate Park

in the other). Furthermore, we would expect that a New York Philharmonic’s concert in

the park would be more relevant than a concert in the park by an unknown artist, based

on its overall importance (e.g., as measured using link analysis [BP98]). Therefore, it is

important to define features that capture the static relevance of an event, as well as its

relevance to different queries and users. We could explore three different types of features:

• Static relevance features: capture the (query-independent, user-independent) impor-

tance of an event.

• Query relevance features: capture the relevance of an event for a specific keyword

query.

• Personalized relevance features: capture the relevance of an event for a specific user.

We elaborate on each of these types of features next.

Static relevance features: We could examine several possible feature indicators of

event importance that would help us gauge an event’s static relevance. These features reflect

an absolute notion of importance, which is not specific to any user or query. For example, a
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presidential inauguration should have a higher static rank than a speech by a local politician.

Yet, in some cases, the relative importance is not as clear (e.g., the New York City Marathon

versus the Macy’s Thanksgiving Day Parade), and, therefore, we could analyze different

factors that may be used to infer the global importance of an event. Specifically, we could

consider features such as the number of social media documents associated with the event,

the volume of comments, and the distribution of links between these social media documents

(e.g., using measures such as PageRank [BP98]). Understandably, local and community-

specific events would likely have fewer associated social media documents and, therefore, be

deemed as less important than popular, widely-known events, according to this definition

of importance. However, features based on user-specific and query-specific relevance, which

could be combined with the static relevance features using a trained ranking model, could

help adjust the predicted rank of these events in cases where they may be of relevance to

the specific user and query.

Query relevance features: Determining the relevance of an event with respect to a

query is a challenging task, with some queries containing ambiguous keywords (e.g., [police

concert 2011]), or simply not containing enough information (e.g., [www] referring to the

World Wide Web conference). For our query relevance features, we could experiment with

the traditional information retrieval models such as Okapi BM25 [RW99], language models

[PC98], and others [MRS08]. Additionally, since each event can be represented using a

record of values, some textual and some numeric, we could explore techniques for parsing

the query to extract and compare these structured features. For instance, for the keyword

query [macworld expo SF 2010], we would want to recognize that 2010 is the year, SF is the

location, and macworld expo is the title. We can compute the similarity along the event

features using the appropriate similarity metrics as described in Chapter 5. Finally, we may

consider representing each event using the content from all of its documents simultaneously,

or extract the query relevance features for each document separately, and report aggregate

statistics as the event-level query relevance features (the latter approach being less scalable

but possibly revealing).

Personalized relevance features: The personalized rank features reflect the impor-

tance of the event for a particular user. These features could be particularly important in



CHAPTER 9. CONCLUSIONS AND FUTURE WORK 163

the context of event browsing, where a query is not provided. Our ability to capture this

importance would improve with the amount of information that we have about the user.

For example, a New York Philharmonic concert in Central Park should be ranked higher

for a person who lives in New York than for a person who lives in California. Therefore,

it would be useful to include a feature that would indicate the geographical proximity of

the user to the event. We could also use signals from a user’s social network to compute

revealing personalized relevance features. For example, if the user’s social network contacts

search for or browse event content relating to a Columbia University commencement cere-

mony, this activity could provide an indication that this event would also be of interest to

the user. We could consider features such as the number (or percentage) of social network

connections that show interest in the event via browsing, search, or comments on associated

social media documents.

To train a ranking model using these features, we could explore different ways of collect-

ing labeled relevance judgments for document-query pairs and document-user pairs using

several user profiles. These relevance judgments may be obtained explicitly using human

annotators, or implicitly by analyzing user interaction with ranked results through click-

through behavior [RJ05]. Obtaining labels implicitly using clickthrough behavior is an easy

way to generate large amounts of training data, but this data may be noisy and influenced

by contextual factors such as the position of the item on the search results page [BMC07].

While employing expert human annotators is often expensive, we could explore the use

of services such as Amazon’s Mechanical Turk that can efficiently distribute this type of

labeling task to many of its workers.

We could consider a variety of techniques for training a ranking model. With so many

existing models in the literature, researchers have created benchmarking datasets for com-

petitive evaluation of ranking techniques [LXQ+07]. We could explore suitable ranking

models, using these benchmark datasets to identify techniques that optimize quality and

scalability. We could train ranking models that combine the three different types of features,

namely static, query, and personalized relevance features, to enable event search. Alterna-

tively, for event browsing, where no query is given, we could train a separate ranking model

using static and personalized features alone.
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In summary, this dissertation presents a variety of useful techniques for event-based

organization of social media content, to enable timely exploration and interaction with this

rich and valuable source of event information. Specifically, we provide important insights

regarding the types of events that exist in social media and the characteristics of their asso-

ciated content. We develop key methods for identifying different types of events and their

associated social media documents under two alternative scenarios, namely, the unknown

identification scenario, where we identify trending events and their associated documents

using an online clustering framework, and the known identification scenario, where we

identify social media documents for planned events using query formulation and retrieval

strategies. Since the number of identified social media documents for an event may be large

and, therefore, difficult for users to explore in its entirety, we also design techniques for

selecting a subset of high-quality, relevant event documents that reflect useful information

for each event. Overall, this dissertation provides a framework for studying events in social

media, and offers contributions for improving the utility of social media content through

event identification, characterization, and content selection. Promising directions for future

work could build on these contributions to provide a powerful interface to user-contributed

event content, reflecting the rich and diverse points of view of social media users around

the world.
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Appendix A

Normalized Mutual Information

and V-Measure

In our discussion of clustering evaluation metrics (Section 5.1.2) we described Normalized

Mutual Information (NMI) [SGC02], a frequently-used measure of quality for clustering

results. In this appendix, we present a proof that NMI is equivalent to a recently pro-

posed clustering quality metric called V-measure [RH07], which represents the harmonic

mean of two desirable criteria for a clustering solution: homogeneity and completeness.

Homogeneity of a clustering solution reflects the degree to which documents in any single

cluster correspond to one event. Completeness of a clustering solution reflects the degree

to which all documents that correspond to one event are in a single cluster. Homogeneity

and completeness directly reflect the clustering properties that we aim to optimize (Section

5.1.2).

Formally, for a set of clusters C = {c1, . . . , cJ} and events E = {e1, . . . eK}, homogeneity

h is defined as h = 1− H(E|C)
H(E) and completeness m is defined as m = 1− H(C|E)

H(C) . Therefore,

V-measure is defined as V = h·m
h+m . Substituting the definitions of h and m, we have:

V =
(1− H(E|C)

H(E) ) · (1− H(C|E)
H(C) )

(1− H(E|C)
H(E) ) + (1− H(C|E)

H(C) )
(A.1)
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which is equivalent to:

V =
(H(E)−H(E|C)

H(E) ) · (H(C)−H(C|E)
H(C) )

(H(E)−H(E|C)
H(E) ) + (H(C)−H(C|E)

H(C) )
(A.2)

Since H(E)−H(E|C) = H(C)−H(C|E), we get:

V =
(H(E)−H(E|C))2

H(E)·H(C)

(H(E)−H(E|C))·(H(E)+H(C))
H(E)·H(C)

(A.3)

and

V =
H(E)−H(E|C)
H(E) +H(C)

(A.4)

Finally, since H(E)−H(E|C) = I(C,E), we have:

V =
I(C,E)

H(E) +H(C)
= NMI(C,E) (A.5)

By showing that NMI is equivalent to the harmonic mean of homogeneity and complete-

ness, we can reason about the quality of our clustering solution in terms of each component

separately, thus making our results more interpretable than when using the combined met-

ric alone. This proof unifies two frequently-used clustering quality metrics, which would

hopefully enable a direct comparison between clustering results evaluated according to these

metrics.
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