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ABSTRACT

Identification and Characterization of Events in
Social Media

Hila Becker

Millions of users share their experiences, thoughts, and interests online, through social
media sites (e.g., Twitter, Flickr, YouTube). As a result, these sites host a substantial num-
ber of user-contributed documents (e.g., textual messages, photographs, videos) for a wide
variety of events (e.g., concerts, political demonstrations, earthquakes). In this dissertation,
we present techniques for leveraging the wealth of available social media documents to iden-
tify and characterize events of different types and scale. By automatically identifying and
characterizing events and their associated user-contributed social media documents, we can
ultimately offer substantial improvements in browsing and search quality for event content.

To understand the types of events that exist in social media, we first characterize a
large set of events using their associated social media documents. Specifically, we develop a
taxonomy of events in social media, identify important dimensions along which they can be
categorized, and determine the key distinguishing features that can be derived from their
associated documents. We quantitatively examine the computed features for different cate-
gories of events, and establish that significant differences can be detected across categories.
Importantly, we observe differences between events and other non-event content that exists
in social media. We use these observations to inform our event identification techniques.

To identify events in social media, we follow two possible scenarios. In one scenario, we
do not have any information about the events that are reflected in the data. In this scenario,
we use an online clustering framework to identify these unknown events and their associated
social media documents. To distinguish between event and non-event content, we develop
event classification techniques that rely on a rich family of aggregate cluster statistics,

including temporal, social, topical, and platform-centric characteristics. In addition, to



tailor the clustering framework to the social media domain, we develop similarity metric
learning techniques for social media documents, exploiting the variety of document context
features, both textual and non-textual.

In our alternative event identification scenario, the events of interest are known, through
user-contributed event aggregation platforms (e.g., Last.fm events, EventBrite, Facebook
events). In this scenario, we can identify social media documents for the known events by
exploiting known event features, such as the event title, venue, and time. While this event
information is generally helpful and easy to collect, it is often noisy and ambiguous. To
address this challenge, we develop query formulation strategies for retrieving event content
on different social media sites. Specifically, we propose a two-step query formulation ap-
proach, with a first step that uses highly specific queries aimed at achieving high-precision
results, and a second step that builds on these high-precision results, using term extraction
and frequency analysis, with the goal of improving recall. Importantly, we demonstrate how
event-related documents from one social media site can be used to enhance the identification
of documents for the event on another social media site, thus contributing to the diversity
of information that we identify.

The number of social media documents that our techniques identify for each event
is potentially large. To avoid overwhelming users with unmanageable volumes of event
information, we design techniques for selecting a subset of documents from the total number
of documents that we identify for each event. Specifically, we aim to select high-quality,
relevant documents that reflect useful event information. For this content selection task,
we experiment with several centrality-based techniques that consider the similarity of each
event-related document to the central theme of its associated event and to other social
media documents that correspond to the same event. We then evaluate both the relative
and overall user satisfaction with the selected social media documents for each event.

The existing tools to find and organize social media event content are extremely lim-
ited. This dissertation presents robust ways to organize and filter this noisy but powerful
event information. With our event identification, characterization, and content selection
techniques, we provide new opportunities for exploring and interacting with a diverse set of

social media documents that reflect timely and revealing event content. Overall, the work



presented in this dissertation provides an essential methodology for organizing social media
documents that reflect event information, towards improved browsing and search for social

media event data.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The ease of publishing content on social media sites brings to the Web an ever increasing
amount of content captured during—and associated with—various types of events. Event
content shared on social media sites such as Flickr, YouTube, Twitter and others varies
widely, ranging from planned, known occurrences such as a concert or a parade, to sponta-
neous, unplanned incidents such as an earthquake or death of a celebrity. By automatically
identifying and characterizing these events and their associated user-contributed social me-
dia documents (e.g., Flickr photographs, YouTube videos, Twitter messages), we can enable
rich search and presentation of all event content. In this dissertation we present approaches
for leveraging the wealth of social media documents available on the Web for event identi-
fication and characterization.

As motivation for identifying events in social media, consider a person who is thinking
of attending the opening gala of “Celebrate Brooklyn!,” an annual arts festival that takes
place in Brooklyn, New York every summer. Prior to purchasing a ticket, this person could
search the Web for relevant information that would aid in making an informed decision.
Unfortunately, Web search results are far from revealing for this relatively minor event:
the event’s website contains basic details about the event (e.g., time, location), and tradi-
tional news coverage is low, with some articles providing the list of performers, and others
discussing various related topics. Overall, these Web search results do not convey what
this person should expect to experience at this event. In contrast, user-contributed con-

tent may provide a better representation of prior instances of the event from an attendee’s
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perspective, or timely announcements relevant to the event (e.g., “tickets for the Celebrate
Brooklyn! opening gala are sold out”). A user-centric perspective, as well as coverage of a
wide span of events of various types and scale, make social media sites a valuable source of
event information.

Our problem is most similar to the event detection and tracking task [ ; ;

|, whose objective is to identify events in a continuous stream of news documents
(e.g., newswire, radio broadcast transcripts). However, our problem exhibits some funda-
mental differences from traditional event detection that originate from the focus on social
media sources. Specifically, most of the work on event detection focuses on identifying,
clustering, and searching over a corpus of event documents from broadcast news. These
news articles adhere to certain grammatical, syntactical, and stylistic standards that are
appropriate for their venue of publication. Therefore, most state-of-the-art event detec-
tion approaches leverage natural language processing tools such as named-entity extraction
and part-of-speech tagging to enhance the document representation | ; ;

]. In contrast, social media documents contain little textual narrative, usually in
the form of a short description, title, or keyword tags. Importantly, this text is often noisy,
which renders traditional event detection techniques undesirable for social media documents.

We are interested in identifying events, and their associated social media documents,
with two goals in mind: timeliness and breadth. To address our timeliness goal, we leverage
information from social media sites that enable the exchange of short textual messages (e.g.,
Twitter, Facebook, Google+), as these messages often contain revealing and timely event
information. To address our breadth goal, we then identify event content across all types of
social media sites (e.g., photo-sharing, video-sharing, and social networking sites), as such
cross-site event content is useful for augmenting and enhancing event content identified on
any social media site individually.

To identify events in a timely manner, as they occur or as soon as their social media
documents are produced, we follow two possible scenarios. In one scenario, we do not have
any advanced knowledge of the events that may be present in a stream of social media
documents. In the other scenario, we assume that we have some advanced knowledge of

the event, in the form of associated context features (e.g., title, time, location). These
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unknown vs. known event identification scenarios guide our identification techniques in this
dissertation. For the unknown scenario, we focus on a specific class of events that we refer
to as trending events (Chapter 2), due to their unique temporal characteristics. For the
known scenario, we focus on a specific class of events that we refer to as planned events
(Chapter 2), for which prior information is posted on event aggregation sites (e.g., Last.fm
events, EventBrite). Note that these classes of events are not mutually exclusive, but rather
indicate the types of events we focus on in each identification scenario (see Chapter 2).

In the unknown identification scenario, we identify trending events by leveraging infor-
mation from social media sites that enable the exchange of short textual messages (e.g.,
Twitter, Facebook, Google+). These short textual messages can typically reflect unknown
events as they happen, making them particularly useful for timely event identification. As
a unique advantage, for unplanned events (e.g., the Iran election protests, earthquakes),
users of these social media sites sometimes spread news prior to the traditional news me-
dia | ; |. However, identifying events on such sites is a challenging task, as
shared messages are brief and often exhibit low quality (e.g., with typos and ungrammatical
sentences).

As we discussed, in the unknown identification scenario we specifically focus on identi-
fying trending events, where the frequency of documents associated with such an event in
a stream of social media documents exhibits an unusual, increasing trend during the time
period associated with the event. To inform the trending event identification process, it is
useful to understand the range and characteristics of all types of trends (Chapter 2) that
exist in social media, including (but not limited to) those that represent trending events.
With a thorough understanding of the different types of trends and, consequently, trending
events that exist in social media, we can help our event identification approaches distin-
guish between trending events and trends that do not reflect event information, and also
among specific trending event types. Characterizing different types of trends along various
dimensions can be useful for automatically identifying and differentiating among them. To
this end, we collect, analyze, and characterize content associated with trends on Twitter,
given this site’s desirable properties (e.g., presence of real-time event content, diversity of

event content) for identifying events in a timely manner. A strong grasp of trending event
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characteristics can help provide critical information for applications such as event browsing
and search, which could be enhanced with trending event information from social media.

For our analysis of trending events, we specifically focus on one social media site, namely,
Twitter, due to its transient, large-scale publicly available content. In particular, we collect
a set of textual terms and phrases that exhibit trending behavior on Twitter, character-
ized by an unusual increase in message frequency during a particular time period in a
Twitter message stream. While some of these trends (Chapter 2) might refer to events,
others might include non-event information. To organize and understand this content,
we define a taxonomy of trend types, which includes trending events, using Twitter mes-
sages associated with each trend. Unlike related efforts in this area, which focused on
characterizing or analyzing content from individual events on Twitter [ ; ],
or characterizing aggregate trend characteristics for manually identified terms [ ;

], the taxonomy we define in this study is based on a large set of automatically
identified trends.

Given this taxonomy, we demonstrate how different types of trends (and trending events)
can be distinguished from one another according to various descriptive characteristics.
Specifically, we identify important dimensions according to which trends can be catego-
rized (e.g., content, interaction), as well as the key distinguishing features of trends that
can be derived from their associated messages (e.g., hashtag usage, forwarding behavior).
We quantitatively examine the computed features for different categories of trends, and
establish that significant differences can be detected across categories. As a key contribu-
tion, we identify and distinguish between endogenous, platform-centric trends and trending
events that reflect real-world occurrences (Chapter 3).

As we learn from our study, Twitter messages generally reflect useful trending event
information for a variety of trending events of different types and scale. To collect trend-
ing events for our study, we use simple techniques | | that can surface terms and
phrases that might not necessarily be associated with any trending event. Additionally,
these terms and phrases are often insufficient as stand-alone identifiers for each event (e.g.,
“sparklehorse” referring to the band’s lead singer’s suicide) and, therefore, provide a noisy

indicator of event content when found in Twitter messages. To address these two issues,
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we develop more advanced techniques to create a robust real-time framework for trending
event identification on Twitter.

Identifying trending events on Twitter is a challenging task since much of the shared
content is not related to any particular trending event [ ], but rather consists of
mundane conversations (e.g., “good morning” and “thank you” messages) or Twitter-centric
discussions (e.g. using the #whenimolder hashtag, describing what Twitter users would like
to do when they get older). However, despite the ubiquity of non-event content, informative
event messages also abound (e.g., “the health care reform bill was passed”). Therefore, our
techniques must distinguish between event and non-event content on Twitter, to identify
trending events and their associated messages.

Several related research efforts have focused on identifying trending events in social
media, | ; ; ; ]. Chen and Roy | | presented techniques for
retrospective identification of trending events on Flickr, finding patterns in the data after
an event has occurred rather than identifying the event as soon as its associated content is
posted. Recent work on Twitter has started to process data as a stream, as it is produced,
but has mainly focused on identifying events of a particular type (e.g., news events [ ],
earthquakes [ ]). Other work aimed to identify the first Twitter message associated
with a trending event | |. Our focus is on online identification of trending events, and
their associated social media documents, for a variety of events, regardless of their type.

We develop techniques for identifying trending events in real-time using an online clus-
tering framework. This framework provides a scalable, incremental solution, to handle
the high volume and changing nature of social media documents. We use this clustering
framework to group together topically similar social media documents. To identify all event
clusters, we compute a variety of revealing features using collective characteristics of all
the documents in each cluster. These include social interaction characteristics, temporal
characteristics, content coherence characteristics, and endogenous [ ] characteristics.
Since the clusters constantly evolve over time, we periodically update the characteristics for
each cluster and compute characteristics of newly formed clusters. We train a classifier over
these characteristic features and use it to determine which clusters contain event content

at any point in the stream (Chapter 4).
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In addition to Twitter, which we focus on for timely identification given the reasons
discussed above, we can use our clustering framework with other types of social media
documents (e.g, Flickr photos, YouTube videos). While these social media documents may
not always be instantaneously shared like the messages on Twitter, they often provide useful
and rich event content, to complement and enhance identified event content on Twitter.
Unlike Twitter, however, where messages are textual and brief, social media documents on
sites such as Flickr include rich context features such as user-provided annotations (e.g.,
title, tags, description) and automatically generated information (e.g., content creation
time, geo-coordinates). Using this rich context, which includes both textual and non-textual
features, we can define appropriate document similarity metrics to enable online clustering
of media to events. As a key contribution, we explore a variety of techniques for learning
multi-feature similarity metrics for social media documents in a principled manner (Chapter
5).

In the second scenario for identifying events in a timely manner, we focus on the challenge
of automatically identifying social media documents related to known, planned events (e.g.,
concerts, parades, conferences) from user-contributed event aggregation platforms (e.g.,
Last.fm events, EventBrite, Facebook events). These event aggregation platforms provide
revealing, structured information (e.g.,title, description, time, location) for planned events,
but this information is often noisy or incomplete. Our goal is to automatically identify
social media documents for these planned events on multiple social media sites, with focus
on achieving both high precision and high recall. For this, we define a two-step query
formulation process that automatically constructs queries for each planned event given its
associated context features.

As an example of a planned event, consider the opening night gala of the “Celebrate
Brooklyn!” festival. To formulate queries for this event, our techniques leverage explicitly
provided event features such as title (e.g., “Celebrate Brooklyn! Opening Gala”), descrip-
tion (e.g., “Singer/songwriter Andrew Bird will open the 2011 Celebrate Brooklyn! season”),
time/date (e.g., June 10, 2011), location (e.g., Brooklyn, NY), and venue (e.g., “Prospect
Park”). While these provided event features are generally informative, they also present

many challenges for our techniques. Specifically, these features may be inaccurate (e.g.,
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time/date using the wrong time zone), incomplete (e.g., missing state in the location fea-
ture), missing altogether, overly specific (e.g., “Celebrate Brooklyn! Opening Night Gala &
Concert with Andrew Bird” for the title feature) or too broad (e.g., “Opening Night Con-
cert” for the title feature). Therefore, we develop a variety of query formulation strategies,
designed to overcome the various challenges that this data presents.

Our two-step query formulation technique starts with a precision-oriented step, which
combines the planned event features into several queries aimed at retrieving high-precision
results. These precision-oriented queries complement each other and are used to retrieve
social media documents collectively. The second, recall-oriented, step uses these high-
precision results along with text processing techniques such as term extraction and frequency
analysis to build additional queries, aimed at improving the (generally low) recall of the
precision-oriented step. Unlike prior work | ; |, our strategies are fully automatic
and do not require manually selected terms or phrases to retrieve documents for each event.
Additionally, in contrast to related efforts by Benson et al. [ ] we do not impose any
assumptions on the type of event (i.e., concerts) or desired information in the corresponding
documents (i.e., artist and venue names).

Importantly, prior research on identifying events in social media focused on tailoring
approaches to one specific social media site. To address our breadth goal, we focus on
identifying planned events across all types of social media sites (e.g., photo-sharing, video-
sharing, and social networking sites). Our query formulation strategies can be applied to
each social media site individually or to all social media sites simultaneously. We propose a
couple of cross-site query formulation and retrieval techniques, and demonstrate how event
content identified on one social media site can be used to improve the identification process
on another social media site (Chapter 6).

Overall, we show that social media sites contain substantial, useful information about
events. With the techniques we develop in this dissertation, we can effectively identify dif-
ferent types events and their associated social media documents across various social media
sites. Regardless of the technique we use, the type of event, or the social media site, any
single event might have hundreds or thousands of associated social media documents. While

some of these associated documents might contain interesting and useful information (e.g.,
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event time, location, participants, opinions), others might provide little value (e.g., using
heavy slang, incomprehensible language without accompanying media) to people interested
in learning about an event. Techniques for effective selection of quality event content may
then help improve applications such as event browsing and search. Therefore, we propose
and evaluate a variety of centrality-focused techniques for selecting a subset the social media
documents associated with each of our identified events.

Selecting a representative subset of document for each event is a challenging task. As
one challenge, seemingly related documents with good textual quality might not be truly
relevant to the event (e.g., “I am going to celebrate in brooklyn tomorrow” for the “Celebrate
Brooklyn!” opening gala). As another challenge, relevant, high-quality documents might
not be useful (e.g., “I can’t stop thinking about the Celebrate Brooklyn! opening gala”) as
they do not provide much information about the event in question. Therefore, we focus
on selecting a subset of documents for each event that exhibit high textual quality, high
relevance to the event, and clear usefulness to a user looking for information about the
event.

While related efforts focused on summarizing or otherwise presenting social media doc-
uments related to events | ; ; ], our goal in this work is to select a
subset of the documents to be presented in their unaltered form, complete with any as-
sociated digital media, tags, URLs, and other contextual information (e.g., time, author
name). Presenting event documents along with all of their context features provides a rich,
multi-dimensional view of an event. Towards this goal, we experiment with centrality-based
techniques to select event documents based on their similarity to a centroid representation
of an event or to other event documents (Chapter 7). Although there are other useful doc-
ument features that could be used for this content selection task, they generally produce
poor results when used in isolation. Instead, these features could be incorporated with our
centrality based approaches in a disciplined way (e.g., using a trained ranking function), a
task that we reserve for future work.

In summary, the contributions of this dissertation are as follows:

e A qualitative study of trends and trending events in social media, yielding in a tax-

onomy of trends and events, and a complementary quantitative study, examining the
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differences between trend and trending event types along various descriptive charac-

teristics (Chapter 3)

e An online clustering framework for unknown identification of trending events, and
their associated social media documents, along with classification techniques for sep-

arating event and non-event content (Chapter 4)

e Similarity metric learning approaches for unknown identification of trending events,
and their associated social media documents, and approaches for leveraging social

links to improve event clustering results (Chapter 5)

e Query formulation techniques for identifying social media documents for planned
events from multiple social media sites, showing that we can effectively identify event
documents on each social media site individually, and on multiple social media sites
simultaneously, by leveraging identified event content on one site to enhance the iden-

tification process on another site (Chapter 6)

e Content selection techniques for choosing a subset of social media documents asso-
ciated with each identified event, based on the documents’ quality, relevance, and

usefulness to the event (Chapter 7)

In Chapter 2 we discuss several alternative definitions of events in the literature and provide
the event definitions that we use in this dissertation. We describe additional related work
in Chapter 8, and then present our conclusions and discuss directions for future work in
Chapter 9.

As the amount of social media content grows, research will have to identify robust ways
to organize and filter that content. In this dissertation we aim to provide scalable techniques
for organizing social media documents associated with events. With our event identifica-
tion, characterization, and content selection techniques, we provide new opportunities for

exploring and interacting with social media event data.
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Chapter 2

Event Definition and

Characterization

The definition and characterization of “event” has received substantial attention across
academic fields, from philosophy [ ] to cognitive psychology | ]. An event is often
defined as an abstract concept [ |, or with respect to its manifestation in a specific
domain (e.g., time series, textual news, social media). Even within a specific domain,
researchers often disagree on what precisely constitutes an event [ |, or agree on
a definition that is admittedly problematic and does not cover all possible cases [ ].
Still, it is important to formally and precisely define the concept of an event to convey the
various phenomena we study, identify, and characterize in this dissertation.

In this chapter, we survey the alternative definitions of events in the literature over a
variety of domains and connect these definitions to our task of identifying and characterizing
events in social media (Section 2.1). In addition to events, we present several definitions of
related concepts (e.g., activity, topic, trend), which are used in the literature to generalize
or extend the definition of event (Section 2.2). These concepts, and particularly “trend,”
are useful for our study of events in social media, presented in Chapter 3. We draw on all of
these different definitions to define an event in the context of our work. As we will show, an
event is a complex concept and defining it, or its embodiment in social media, is a difficult

task | ; ]. Therefore, instead of providing another definition of an event, we
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define specific types of events in social media, on which we focus in this dissertation (Section

2.3).

2.1 Events in the Literature

We present and discuss various efforts to define events in the context of three tasks: topic
detection and tracking in news documents (Section 2.1.1), event extraction from free text

(Section 2.1.2), and multimedia event detection (Section 2.1.3).

2.1.1 Topic Detection and Tracking

Event detection in broadcast news was notably studied as part of a broad research effort
known as Topic Detection and Tracking (TDT) [ ]. TDT research focused on a vari-
ety of tasks concerning event-based organization of textual news document streams (e.g.,
newswire, news broadcast transcripts). These tasks include new event detection, focused on
identifying the first document in a text document stream that corresponds to a previously
unknown event, and retrospective event detection, aimed at grouping documents according
to their event content | |. Importantly, to evaluate these different TDT tasks, the
Linguistics Data Consortium (LDC) prepared annotated corpora based on a set of guide-
lines for what constitutes an event (as well as other concepts such as activity, topic, and
trend, described in Section 2.2).

The definition of event for TDT research has evolved throughout the years, with several
researchers proposing alternatives to address problems in earlier versions of the definition.
Initially, an event was defined as “some unique thing that happens at some point in time”
[ |. This definition touches on an important aspect of an event, namely, its necessary
association with a defined time period. Later, a notion of location was introduced, defining
an event as “something that happens at some specific time and place” | ]. Although
most news events indeed happen at a specific location, some events may be global or virtual
(e.g., World Peace Day, a virtual trade show) so their location is not well defined.

As a significant drawback, the scope of an event according to these definitions is vague

and may be interpreted in a variety of ways. For instance, under this definition, the earth-
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quake in Japan that took place on May 21, 2011 is an event. However, textual news
documents that report on this event might mention the tsunami alert caused by the earth-
quake, the response of the rescue crews, and the damage to the Fukashima nuclear power
plant, which are all acceptable events according to the definition. Since the scope of an
event according to this definition is open, it is unclear if the events in our examples should
be considered as separate events or one collective event.

To address the ambiguity of the initial TDT definitions, a new definition was proposed
[ ], stating that an event is “a specific thing that happens at a specific time and place
along with all necessary preconditions and unavoidable consequences.” This amended def-
inition considers our previous examples of the Japan earthquake and subsequent reactions
to be a single event. While this definition makes some clarifications regarding event bound-
aries, it introduces other questions, namely, what can be considered necessary preconditions
and unavoidable consequences for an event [ ]. For certain events (e.g., the 2008 Mum-
bai terror attacks), some of the necessary preconditions and unavoidable consequences are
unknown or subject to debate.

Overall, the TDT-inspired definitions of an event introduce some useful ideas (e.g., an
event’s association with a specific time period), but they are also somewhat ambiguous and
do not cover all possible types of events. In Section 2.2 we discuss some of the additional

concepts introduced by the TDT effort to facilitate event detection in textual news streams.

2.1.2 Event Extraction

Event extraction is a task that involves identifying instances of specific types of events, and
their associated attributes, in free text | |. Extracting such events from text has been
the focus of numerous studies as part of a National Institute of Standards and Technology
(NIST) initiative for Automatic Content Extraction (ACE)!. The ACE event extraction
task explicitly defines a set of event types (e.g., conflict) and subtypes (e.g., attack) to
be extracted from various text sources (e.g., newswire, Blogs, conversation transcripts),
using a set of predefined templates that include event attributes (e.g., attacker, target). A

template of the “attack” event subtype applied to the sentence “Yesterday, a number of

Mttp://www.nist.gov/speech/tests/ace/
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Attribute | Description Example

Attacker | The attacking/instigating agent demonstrators
Target The target of the attack (includ- | Israeli soldiers
ing unintended targets)
Instrument | The instrument used in the attack | stones and empty bottles
Time When the attack takes place yesterday
Place Where the attack takes place a Jewish holy site at the

town’s entrance

Table 2.1: Attack event template and sample extracted attributes.

demonstrators threw stones and empty bottles at Israeli soldiers positioned near a Jewish
holy site at the town’s entrance” can be found in Table 2.1.
The guidelines for the ACE event extraction task? provide a few generic and unexplained

“a specific occurrence

definitions for an event. According to these guidelines, an event is
involving participants,” and “something that happens.” These definitions by themselves
do not explain how to address events with ambiguous semantic scopes (e.g., the May 25,
2011 Japan earthquake) and allow for undefined temporal scopes (e.g., “Thanksgiving Day
Parade”). However, instead of defining all possible events abstractly, the ACE event extrac-
tion task defines specific events according to their expression in free text. This operational
definition outlines the spans of text that can be used to identify an event, namely, the event
trigger and extent. The event trigger is the word that most clearly expresses the event’s

Y

occurrence (e.g., “threw” in our example sentence), and the extent, which indicates the
scope of the event, is defined as the sentence in which the event trigger is mentioned.

In addition to the event itself, as identified via a keyword trigger (e.g., “attack,” “threw,”
“bomb”), the ACE event extraction task requires that a set of participants be identified
for each event. This set of participants varies by event type (e.g., attacker for an “attack”
event, defendant for a “trial-hearing” event). The requirement to have a set of participants

indicates an implicit assumption that events should have one or more participants. How-

ever, not all events have a clearly defined set of participants (e.g., an earthquake, a solar

Zhttp://projects.ldc.upenn.edu/ace/docs/English-Events-Guidelines_v5.4.3.pdf
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eclipse). Indeed, the assumption of participants might be appropriate to this particular
event extraction task since it does not involve identifying all possible events, but rather a
specific subset of events that follow predefined templates. Other interesting event attributes
used in this task include time and place. Even though these attributes were not mentioned
in the event definition, they are both present in the predefined templates of almost all
event types and subtypes (with the exception of a “phone-write” event, which occurs when
two or more people engage in a discussion remotely and hence does not require a location
attribute).

Contrary to the TDT definitions that are very broad but ambiguous, the operational
definitions used for the ACE event extraction tasks are particular but restrictive. Focusing
on a restricted class of events is often useful to eliminate ambiguity and enable precise
annotations for evaluation purposes. At the same time, this type of definition only applies
to supervised event detection tasks, where the classes of events that should be detected are

known a priori.

2.1.3 Multimedia Event Detection

Research on detecting events in multimedia content (e.g., videos, audio clips) has received
considerable attention over the past several years. In a notable effort, work on Multimedia
Event Detection (MED)? aims to detect evidence of events in multimedia content using
audio and video streams of multimedia clips. Unlike the previously described event detection
tasks, the MED task does not allow the use of human-annotated textual context features
(e.g., title, tags) that often accompany such clips. As part of the TREC Video Retrieval
Evaluation, another large-scale NIST research effort, the specific goal of MED is to develop
event detection techniques to enable quick and accurate search of user-defined events in
multimedia collections. An event according to the MED 2011 evaluation plan? is “a complex
activity occurring at a specific place and time,” involving “people interacting with other
people and/or objects.” Additionally, an event “consists of a number of human actions,

processes, and activities that are loosely or tightly organized and that have a significant

Shttp://www.nist.gov/itl/iad/mig/med11.cfm

“http://www.nist.gov/itl/iad/mig/upload/MED11-EvalPlan-V03-20110801a.pdf
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Event Name Making a cake

Definition One or more people make a cake.

Evidential Description
Scene indoors, typically a kitchen in a home, restaurant or

other setting

Objects/People ingredients (like eggs, flour, cake mix), bowls, spoons,

mixers, cake pans, ovens, potholders, candles

Activities selecting ingredients, combining ingredients, pouring

batter into pan, putting cake into oven, setting timer,

removing cake from oven, testing cake for doneness,

decorating cake

Table 2.2: Example of an “event kit” for the MED task.

temporal and semantic relationships to overarching activity” and “is directly observable.”

Once again, the association with a specific place, time, and participants is explicitly
mentioned in the event definition. As we discussed above, any definition that mentions a
specific location or requires a set of participants is prone to ambiguity as it does not fit all
possible types of events (e.g., virtual events, natural disasters). Additionally, the notions
of “activity” and “processes” are broad and remain undefined. This definition implies that
an event must center around human activities, which is not always the case for events in
general (e.g., an earthquake might be the result of seismic activity, but it does not by itself
consist of a human action or activity). We discuss some definitions for “activity” and the
connection between activities and events in the next section.

Similar to the ACE event extraction task, the MED event detection task is supervised,
which means that the set of events that it aims to identify (e.g., making a cake, assembling
a shelter) is predefined. Each event has an associated predefined “event kit,” consisting of a
name, definition, and description for each event (see Table 2.2). In addition, each event kit
includes a set of illustrative video examples (Figure 2.1), each containing an instance of the
event. These examples help form the definition of each event but, according to the MED

guidelines, they “do not demonstrate all possible variability or potential realizations.”
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4
Moty

Figure 2.1: Examples for the “Making a cake” event.

Interestingly, a multimedia event such as “making a cake” is very different in nature
than an ACE- or TDT-style event. Although the definition of events for the MED task
states that an event should have a specific time and place, making a cake can happen at
different times and different places, making it more similar to an ACE event type than a
TDT or ACE event. If making a cake was considered newsworthy, a similar event for the
TDT (or ACE) task might instead be described as “Alton Brown making a cake in the
French Culinary Institute in New York City on August 20, 2011 at 1pm.”

2.2 Related Concepts: Topics, Trends, and Activities

The discussion of events in the literature often includes a variety of related concepts that
are used to generalize or build upon the notion of an event. We present an overview of three

such related concepts: activity, topic, and trend.

Activity: The notion of an activity is introduced in the TDT guidelines® to clarify and
refine the definition of a topic. Specifically, an activity is defined as “a connected set of
actions that have a common focus or purpose.” For our Japan earthquake example, the
earthquake is an event, and the earthquake-related disaster relief efforts are activities. In our
work, we make no distinction between events and activities as defined above, and consider
all such activities as valid events. Often, event-related activities fall within the scope of the
event (e.g., the earthquake and subsequent relief efforts would be considered part of the

same event) and, therefore, considered part of the event itself. As we discussed (Section

Shttp://projects.ldc.upenn.edu/TDT2/Guide/label-instr.html
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2.1), defining the scope of the event is conceptually difficult and, therefore, researchers often
resort to using signals such as temporal proximity of topically similar events and activities

to operationally define the event scope.

Topic: The initial definition of topic for the TDT task was the same as the definition of
event (see Section 2.1.1). However, it was later changed to “an event or activity, along with
all directly related events or activities.” Intuitively, a topic in TDT is a set of news docu-
ments that are strongly connected by some real-world event (e.g., the earthquake in Japan
and all other stories triggered by it, including tsunami alerts and the nuclear meltdown)
[ ]. As with the event definition, it exhibits scope problems, since the word “related”
is left open to interpretation. To resolve this issue, the LDC modified the TDT annotation
guidelines to include “rules of interpretation,” which outline the types of events that may
be considered related to other types of events. Unfortunately, Makkonen | ] observed
that while an event is defined as something that happens (Section 2.1.1), a topic, according
to this definition, is a human judgment and, therefore, an event cannot be a topic, which
contradicts the definition.

Yang et al. | | describe the difference between an event and a topic “in the con-
ventional sense” by stating that events are instances of topics. For example, the Thanks-
giving Day Parade is an event, and is an instance of the general topic of parades. This
observation contradicts the definition of events in the ACE event extraction task (Section
2.1.2) where, for example, the “building a shelter” event would be considered a topic accord-
ing to Yang et al. | |, and specific incidents of shelter-building would be considered
events under this topic. The idea that events are instances of a topic was also reinforced by
Filatova et al. | ], who used the concept of a “domain” to describe a set of events of a
particular type. As another insight about the relationship between topics and events, Yang
et al. observed that a time gap between bursts of documents on a particular topic often
indicates that each burst corresponds to a different event. In other words, the temporal

scope of an event is smaller than that of the topic to which it belongs.

Trend: The concept of a “trend” and its relation to events is of particular interest and

importance to the work described in this dissertation. Kontostathis et al. | | define
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an emerging trend® as “a topic area that is growing in interest and utility over time.” While
seemingly intuitive, this definition does not explain what the term “topic” encompasses, and
the necessary amount or speed of the topic’s growth over time. As we discussed, the notion
of a topic can be interpreted in different ways and its scope varies in different contexts.
Additionally, the amount or speed of growth necessary for a topic be designated a trend
varies according to the data source (e.g., trending topics on Twitter are generally short-lived,
often changing on an hourly basis, whereas trending topics in Computer Science research
publications rise and fall less rapidly due to the difference in temporal dynamics and content
of the data in these two sources).

Trend detection tasks over textual data collection generally aim to identify topic ar-
eas that are previously unseen or are rapidly growing in importance within the corpus
[ ]. This idea of rapid growth, sometimes referred to as a “burst,” is prevalent in
the literature | ; ; ] and often used to describe trending behavior in
text document streams. In this context, Kleinberg [ | observed that the emergence of
a topic in a text document stream is signaled by a sharp rise in frequency of the features
associated with the topic. We use this observation to guide our study of trends and trending

events in social media (Chapter 3) and our definition of trending events in the next section.

2.3 Events in Social Media

If a tree falls in the forest and nobody tweets (or posts any information) about it, is it an
event? According to some event definitions (Section 2.1) it might be considered an event,
but it is not an event in social media since it does not have a corresponding realization in
social media documents. Instead of providing an abstract, ambiguous, or arguable definition
of an event, for the purpose of this work we focus on specific types of events, which we define
precisely with respect to a stream of social media documents.

In Chapter 1, we described two alternative event identification scenarios that we con-

sider, namely, the unknown scenario, where events are identified in an unsupervised manner,

SEmerging trends are sometimes also referred to as “trending topics,” or “emerging topics.” All trends

discussed in this dissertation are emerging trends, so we simply refer to them as “trends,” for brevity.



CHAPTER 2. EVENT DEFINITION AND CHARACTERIZATION 19

and the known scenario, where some basic event features (e.g., title, time, location) are avail-
able to our techniques. In the unknown scenario, since we have no information about the
events in the stream, we must rely on other signals that could indicate the presence of event
content. For this reason, in this scenario we focus on a class of events that we refer to as
trending events, which are events that exhibit bursty temporal patterns [ |. Formally,

we provide the following definitions:

Definition 1 A document stream is a time-ordered sequence of documents; each document

is represented as a set of features, or terms.

Definition 2 A trending time period for a feature over a document stream is a time period
where the document frequency of the feature in the document stream is substantially higher

than expected.

Definition 3 A trending event is a real-world occurrence e with (1) an associated time
period Ty, (2) a stream of documents D, about the occurrence and published during time T,
and (8) one or more features that describe the occurrence and for which T, is a trending

time period over document stream D,.

The document stream in our definition refers to a stream of social media documents
(e.g., a Flickr photo, a YouTube video, a Twitter message), which can be represented using
a variety of associated context features (e.g., title, tags). These document representations
always include textual terms, among other features that depend on the document’s source
(see Chapter 5). Within the document stream, social media documents are always processed
chronologically, as they are posted. Each feature has an expected document frequency value
based on its historically observed document frequency in the stream. A deviation from this
expected value (a “sharp rise” | | or “burst” [ ]) in a specific time period
indicates a trending time period for the feature in the document stream. This deviation
may be defined in different ways | ], and we experiment with alternative definitions
in Chapters 3 and 4. Finally, determining whether such trending feature describes the
real-world occurrence in Definition 3 is based on a human judgment.

In the known event identification scenario, we know some basic features of the events

that we identify. Therefore, for this scenario, we focus on a class of events that we refer
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to as planned events, for which a set of associated context features is available. Regard-
less of the source of these context features (e.g., user-contributed event aggregation sites,
shared calendars), we require that, at a minimum, these features consist of a title and time.

Formally, we define planned events as follows:

Definition 4 A planned event is a real-world occurrence e with an associated time period
T, and a corresponding published event record consisting of, at least, the following two event
context features: (1) title, indicating the subject of event e as determined by a human being,

and (2) time, indicating the time at which e is planned to occur.

In our work, we make a couple of assumptions about the relationship between events
and social media documents. First, we consider documents that are significantly related to
an event as being associated with the event, even if the documents were produced before or
after the event. In other words, the time period T, associated with event e can start before
and end after the actual start and end date of event e. For instance, in our “Celebrate
Brooklyn!” example, a photograph of a participant in front of the box office represents the
author’s experience in the context of the event and will, therefore, be associated with the
event for our purpose. For planned events, the published time 77 corresponds to the time at
which e is planned to occur, and therefore T, spans T”. Second, we assume that each social
media document corresponds to exactly one event. However, our approaches can generally
be extended to handle cases where a single social media document contains information
pertaining to several events.

It is important to note that planned events and trending events are not mutually exclu-
sive event types. Rather, they represent characteristics of an event along two orthogonal
dimensions. Therefore, an event can be either trending or non-trending, and at the same
time be either planned or unplanned. To illustrate this point, Figure 2.3 presents examples
of events that represent the various combinations of these dimensions. Unplanned events
such as an earthquake are also likely to be trending events due to the sudden onset of in-
formation about such a relatively rare phenomenon. Planned events such as the Canadian

Cheese Festival are sometimes non-trending, as the “buzz” generated by such special-interest
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Planned Unplanned

Trending | American Idol season premier | Japan earthquake

Non-Trending Canadian Cheese Festival Minor car accident

Table 2.3: Examples of different types of events.

events on social media is often low’. However, there is an overlap between trending and
planned events, for events such as the American Idol premier, which generate substantially
high volume of information within a short time period, relative to the expected amount
of discussion about this event over that time period. Unfortunately, we cannot identify
unplanned non-trending events (e.g., a minor car accident that may have generated very
few reactions on social media), due to the lack of available context and signal.

According to our event definitions, events in social media include widely known occur-
rences such as the presidential inauguration, and also local or community-specific events
such as a high-school homecoming game or the World Wide Web conference. Non-event
content, of course, is prominent on social media sites where people share various types of
content such as personal updates, random thoughts and musings, opinions, and information
[ ]. In the next chapters, we use our event definitions (i.e., trending and planned
events) in the context of different social media event identification and characterization
scenarios (i.e., unknown and known scenarios), to distinguish event content from the vast
amount of non-event content posted on social media sites. Specifically, for the unknown
identification scenario in Chapters 3, 4, and 5, we focus on trending events, as defined in
Definition 3. Then, for the known identification scenario in Chapter 6, we focus on planned
events as defined in Definition 4. Finally, in Chapter 7, we refer to any event that falls
under the planned or trending definition (or both), since this encompasses the spectrum of

events that we can identify in social media under both the known and unknown scenarios.

"This is not a general observation about special-interest events but rather an illustrative example of an

event that could be simultaneously planned and non-trending.
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Chapter 3

Characterization of Trending

Events in Social Media

Social media sites such as Facebook, Twitter, Google+, and others allow users to publicly
and rapidly share streams of lightweight content artifacts, from short status messages to
links, pictures, and videos. These sites have already shown considerable impact on the way
in which people share and consume information about events, as evidenced during major
global events such as the 2009 Iran election or the reaction to the 2010 earthquake in Haiti
[ ], and in response to local events and emergencies | ; ]. The often-
public shared content on these sites ranges from personal status updates to opinions and
information | ]. In aggregate, however, the postings by hundreds of millions of users
of Facebook, Twitter, and other sites expose global interests, happenings, and attitudes
in almost real time | . Importantly, this content often reflects events as they
happen | ; ; ], making such sites particularly useful for addressing
our timeliness goal for event identification (see Chapter 1).

The interests and happenings as reflected in social media change rapidly. This strong
temporal nature of shared information allows for the detection of significant trends in the
data stream, which often correspond to trending events that we wish to identify. Such
trending events may reflect a varied set of real-world occurrences, including local events

(e.g., a baseball game or “fire on 34th street”), global news events (e.g., Michael Jack-
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son’s death), and televised events (e.g., the final episode of ABC’s popular series “Lost”).
Unfortunately, not all trends reflected in social media data correspond to events. Such non-
event trends range from Internet-only and platform-specific memes (e.g., a “fad” of users
describing various things they object to using the #idonotsupport keyword), to hot topics
of discussion (e.g., health care reform or the tween idol Justin Bieber). Therefore, before we
can successfully identify trending events in social media, we must understand the scope of
information that exhibits such trending behavior, with the particular goal of characterizing
and distinguishing between trends that reflect event information and trends that reflect
other non-event content. For this, we study, categorize, characterize, and compare all types
of trends on one such popular social media site, namely, Twitter.

Social media content on Twitter indeed reflects an ever-updating live image of happen-
ings, interests and attitudes in our society, which often include information related to events.
However, the lack of a well-established structure and semantics for this data significantly
limits its utility. In this chapter, we aim to characterize the features that can help identify
and differentiate between the types of trends and trending events that we can find on Twit-
ter. Better understanding of the semantics of Twitter trends provides critical information
for techniques that build on this emerging data. In particular, understanding the differences
between trends that reflect events and trends that do not is of critical importance to our
goal of identifying events in social media. The outcome of our study will be a more robust
and nuanced reflection of trends and, in turn, trending events that captures key aspects of
relevance and importance.

This chapter offers the following contributions:

e A taxonomy of trends, including trending events, which can be detected from T'witter

using popular, widely accepted methods

e Automatic characterization of the data associated with each trend along a number
of key dimensions, including social network features, time signatures, and textual

features
e Analysis of differences between trend types according to each characteristic

We begin with an introduction to Twitter and then formally describe our dataset of Twitter
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trends and their associated messages. Later, we describe a qualitative study exposing
the types of trends found on Twitter. Finally, we identify and analyze trends using the
unique social, temporal, and textual characteristics of each trend that can be automatically

computed from Twitter content. The bulk of this chapter appeared in | .

3.1 Background: Twitter

Twitter is a popular social networking site, with hundreds of millions of registered users as
of March 2011. Twitter’s core function allows users to post short messages, or tweets, which
are up to 140 characters long. Twitter supports posting (and consumption) of messages in
a number of different ways, including through Web services and “third party” applications.
Importantly, a large fraction of the Twitter messages are posted from mobile devices and
services, such as Short Message Service (SMS) messages. A user’s messages are displayed
as a “stream” on the user’s Twitter page.

In terms of social connectivity, Twitter allows a user to follow any number of other
users. The Twitter contact network is directed: user A can follow user B without requiring
approval or a reciprocal connection from user B. Users can set their privacy preferences
so that their updates are available only to each user’s followers. By default, the posted
messages are available to anyone. In this work, we only consider messages posted publicly
on Twitter. Users consume messages mostly by viewing a core page showing a stream of
the latest messages from people they follow, listed in reverse chronological order.

The conversational aspects of Twitter play a role in our analysis of the Twitter temporal
trends. Twitter allows several ways for users to directly converse and interact by referencing
each other in messages using the @ symbol. A retweet is a message from one user that
is “forwarded” by a second user to the second user’s followers, commonly using the “RT
@username” text as prefix to credit the original (or previous) poster (e.g., “RT @justinbieber
Tomorrow morning watch me on the today show”). A reply is a public message from one
user that is a response to another user’s message, and is identified by the fact that it starts
with the replied-to user Qusername (e.g., “@mashable check out our new study on Twitter

trends”). Finally, a mention is a message that includes some other username in the text of
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the message (e.g., “attending a talk by @informor”). Twitter allows users to easily see all
recent messages in which they were retweeted, replied to, or mentioned.

Finally, Twitter supports a hashtag annotation format so that users can indicate what
their posted messages are about. This general “topic” of a tweet is, by convention, indicated
with the hash sign #. For example, #iranelections was a popular hashtag with users posting

about the 2009 Iran election events.

3.2 Trends on Twitter

Because of the quick and transient nature of its user posts, Twitter is an information system
that provides a “real time” reflection of the interests and thoughts of its users, as well as
their attention. As a consequence, Twitter serves as a rich source for exploring the mass
attention of millions of its users, reflected in trends that can be extracted from the site.

Similar to our definition of trending events (Chapter 2), a trend on Twitter (sometimes
referred to as a trending topic) consists of one or more terms and a time period, such that
the volume of messages posted for the terms in the time period exceeds some expected level
of activity (e.g., in relation to another time period or to other terms). Unlike trending
events, trends do not have to reflect a real-world occurrence. According to this definition,
trends on Twitter include our examples above, such as Michael Jackson’s death (with terms
“Michael” and “Jackson,” and time period June 25, 2009), the final episode of Lost (with
terms “Lost” and “finale,” and time period May 23, 2010), and the health care reform
debate (with term “HCR” and time period May 25, 2010). This definition conveys the
observation by Kleinberg | ] that the “appearance of a topic in a document stream is
signaled by a burst of activity, with certain features rising sharply in frequency as the topic
emerges” but does not enforce novelty (i.e., a requirement that the topic was not previously
seen). In Twitter’s own (very informal) definition, trends “are keywords that happen to
be popping up in a whole bunch of tweets.” Figure 3.1 captures Twitter’s home page with
several trending topics displayed at the top.

In this chapter, each trend t is then identified by a set R; of one or more terms and

a time period p;. For example, Figure 3.1 highlights one trend ¢ that is identified by a
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- Search for a keyword or phrase...

Discover what's happening right now, anywhere in the world

TRENDING TOPICS

See who's here Top Tweets viewai »

. ) j m denisleary Survey: 1 in > NIgn SCNOOI students nave aoused
prescrlptlon drugs. The other 4 are no fun at all.

ER <
ralphmacchio Remake: Different vibe, story same, bigger,

m . Fufgghe m A more violent. Well done, but the SOUL, the MAGIC - LEGACY of
the Ongmal KK remains untouched!

msnbc
B Bfe

Friends and '_"fj“S"Y peers you comm_larrazabal Committee just finished canvassing ALL
know. Celebrities you watch. i P Certificates of Canvass for the May 2010 elections.

Businesses you frequent. Find Proclamation of Pres., & VP will be tom at 2 pm
them all on Twitter. c .

Figure 3.1: Trending terms, on the dark blue (middle) banner, on Twitter’s home page.

single term, i0S4 (referring to the release of Apple’s mobile operating system). To analyze
a trend t, we study the set M; of associated messages during the time period that contain
the trend terms (in our example, all messages with the string “i0S4”). Note that, of course,
alternative representations of trends are possible (e.g., using lists of terms and other context
features, as we discuss in Chapter 4). However, for this work we decided to concentrate on
the above term-based formulation, which reflects a model commonly used in other systems
(e.g., by Twitter as well as other commercial engines such as OneRiot).

While identifying trends, and specifically trending events, is an interesting research
problem that we explore in this dissertation (Chapter 4), in this chapter we focus instead on
characterizing the trends that can be identified on Twitter with existing baseline approaches.
This characterization, and particularly the comparison of characteristics of trending events
versus non-event trends, will later help inform our trending event identification techniques
(Chapter 4).

For the characterization task, we collect detected trends from two different sources.
First, we collect local trends identified and published hourly by Twitter; the trends are
available via an application programmer interface (API) from the Twitter service. Second,

to complement and expand the Twitter-provided trends, we run a simple burst-detection
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algorithm over a large Twitter dataset to identify additional trends. We describe these two

trend-collection methods next.

3.3 Collecting Trend Data

In this section, we describe the two methods we use to compile trends on Twitter, and also
how we select the set of trends for analysis and how we get the associated messages, or
tweets, for each trend. The set of trends T" that we will analyze in this chapter consists of
the union of the trends compiled using both methods below. We use two methods in order
to control, at least to some degree, for bias in the type of trends that may be detected by
one method, but not another. While other algorithms for trend detection exist, we strongly
believe our selected methods will provide a representative sample of the type of trends that
can be detected. The set of detected trends might be skewed towards some trend types in
comparison to other methods, but this skewness does not affect the analysis in this work.
We further address this issue in the limitations discussion below.

In subsequent sections, we qualitatively examine a subset T(,q of the trends in T
to extract the key types of trends that are present in Twitter data, and develop a set
of dimensions according to which trends can be categorized. We then use the categories
to compare the trends in (a different) subset of T', Tguant, according to several features
computed from the data associated with each trend, such as the time dynamics of each
trend and the interaction between users in the trend’s tweets. We examine whether trends

from different categories show significant difference in their computed features.

3.3.1 Tweets Dataset

The “base” dataset used for our study consists of over 48,000,000 Twitter messages posted
by New York City users of Twitter between September 2009 and March 2010. This dataset
is used in one of our methods described below to detect trends on Twitter (i.e., to generate
part of our trend set T'). The dataset is also used for identifying the set of tweets M; for each
trend ¢ in our trend set T'. (Recall that T" consists of all the trends that we analyze, compiled

using both methods discussed below.) We collected the tweets via a script for querying the
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Twitter API. We used a “whitelisted” server, allowed to make a larger number of API calls
per day than the default quota, to continuously query the Twitter API for the most recent
messages posted by New York City users (i.e., by Twitter users whose location, as entered
by the users and shown on their profile, is in the New York City area). This querying
method results in a highly significant set of tweets, but it is only a subsample of the posted
content. First, we do not get content from New York users who did not identify their home
location. Second, the Twitter search API returns a subsample of matching content for most
queries. Still, we collected over 48,000,000 messages from more than 855,000 unique users.
For each tweet in our dataset, we record its textual content, the associated timestamp (i.e.,
the time at which the tweet was published), and the user ID of the user who published the

tweet.

3.3.1.1 Trend Dataset I: Collecting Twitter’s Local Trending Terms

As mentioned above, one of our trend datasets consists of the trends computed by, and
made available from, the Twitter service. Twitter computes these trends hourly, using an
unpublished method. This source of trend data is commonly used in research efforts related
to trends on Twitter (e.g., Kwak et al. | ], Cheong and Lee | ]). The Twitter-
provided trends are computed for various geographic scales and regions. For example,
Twitter computes and publishes the trends for New York City, as well as for the United
States, and across all the Twitter service (e.g., those shown in Figure 3.1). From the data,
we can observe that location-based trends are not necessarily disjoint: for example, New
York City trends can reflect national trends or overlap with other cities’ trends.

We collected over 8,500 trends published by Twitter for the New York City area during
the months of February and March of 2010. The data included the one or two terms
associated with each published trend, as well as the trend’s associated time period, expressed
as a date and time of day. We use the notation T}, (for “Twitter”) to denote this set of

trends.
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3.3.1.2 Trend Dataset II: Collecting Trends with Burst Detection

We derived the second trend dataset using a simple trend-detection mechanism over our
Tweets dataset described above. This simple approach is similar to those used in other
efforts | | and, as noted by Phelan et al. | |, it “does serve to provide a
straightforward and justifiable starting point.” The trend-detection mechanism relies con-
ceptually on the tf-idf score | | of terms, highlighting terms that appear in a certain
time period much more frequently than expected for that time of day and day of the week.
We tune this approach so that it does not assign a high score to weekly recurring events,
even if they are quite popular, to ensure that we include a substantial fraction of trends
that represent “one-time,” non-recurring events, adding to the diversity of our analysis.

Specifically, to identify terms that appear more frequently than expected, we assign a
score to terms according to their deviation from an expected frequency. Assume that M is
the set of all messages in our Tweets dataset, R is a set of one or more terms to which we
wish to assign a score, and h, d, and w represent an hour of the day, a day of the week, and
a week, respectively. We then define M (R, h,d,w) as the set of every Twitter message in
M such that (1) the message contains all the terms in R and (2) the message was posted
during hour h, day d, and week w. With this information, we can compare the volume in
a specific day/hour in a given week to the same day/hour in other weeks (e.g., 10 a.m. on
Monday, March 15, 2010, vs. the activity for other Mondays at 10 a.m.).

To define how we score terms precisely, let Mean(R, h,d) = (32, _,, [M(R, h,d,w;|)/n
be the number of messages with the terms in R posted each week on hour h and day d,
averaged over the weeks w; through w, covered by the Tweets dataset. Correspondingly,
SD(R, h,d) is the standard deviation of the number of messages with the terms in R posted
each week on day d and hour h, over all the weeks. Then, the score of a set of terms R
over a specific hour h, day d, and week w is defined as score(R, h,d,w) = (|M (R, h,d, w)|—
Mean(R, h,d))/SD(R, h,d).

Using this definition, we computed the score for every individual term in our dataset
(in other words, we computed the scores for all R sets where each R is a set with a single
1-gram that appears in M). We computed the score for each R over all h, d, and w values

for the weeks covered by our Tweets dataset. For each day d and week w, we identified
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Notation | Data Source Selection for Analysis
Thw Twitter’s own trends as retrieved | Selected from complete set of trends
from the Twitter API published by Twitter
Tiy Trends computed from raw Twitter | Selected from top-scoring terms for
data using term frequency measures | each day

Table 3.1: Summary of event datasets.

the R and h pairs such that (1) M(R,h,d,w) contains at least 100 messages and (2) the
score(R, h,d,w) value is among the top-30 scores for day d and week w across all term-hour
pairs. Fach selected pair defines a trend with set of terms R and associated time period
specified by h, d, and w. (Note that certain terms could be repeated if they scored highly
for multiple hours in the same day; such repetition is also possible for the trend set Ty,,. We
compute a trend’s “real” peak after we choose the trends for analysis, as described below.)
We use the notation Tis (for “term frequency”) to denote the resulting set of 1,500 trends.

For reference, the sources and properties of the event datasets are summarized in Table

3.1.

3.3.2 Selecting Trends for Analysis

After identifying the above two sets of trends, namely, T3, and T}, our goal is to perform
both a quantitative and a qualitative analysis of these trends. To be meaningful, this
analysis will rely on a manual coding of the trends, but an exhaustive manual processing
of all trends in T}, and Ty would, unfortunately, be prohibitively expensive. Therefore,
our analysis will focus on a carefully selected subset of the two trend sets (see Section 3.4).
This selection of trends should (1) reflect the diversity of trends in the original sets and
(2) include only trends that could be interpreted and understood by a human, through
inspection of the associated Twitter messages.

For both sets T}, and T}y, we performed a random selection of trends to serve as an initial
dataset. For each trend in this initial selection, we attempted to identify the topic reflected
in the trend by inspecting associated messages (posted on the corresponding day, and with

the corresponding terms). If we could not identify the topic or reason for the trend, we
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Trend Terms Explanation Date # Tweets
#TEDXNYED | A New York City conference on media, | March 6, 2010 556

technology, and education
Sparklehorse The suicide of Mark Linkous, of the | March 8, 2010 230
band Sparklehorse
Burger Reaction to a tweet by Lady Gaga: | March 12, 2010 3249
“once you kill a cow, you gotta make
a burger”

Masters Tiger Woods’s announcement of his re- | March 16, 2010 693

turn to golf at the Masters

itsreallyannoying | Twitter meme: users sharing their an- | March 23, 2010 2707
noyances

Seder Passover-eve meal March 28, 2010 316

iPad Launch of the Apple iPad March 29, 2010 1714

Table 3.2: Sample trends and their explanation.

removed it from the selected set, to satisfy condition (2). In addition, after the first round of
coding trends according to the categories described below, we manually inspected the trends
from the initial sets T}, and T}y that were not yet selected for analysis. Instead of randomly
choosing among them, we randomly chose a date and then purposefully selected additional
trends from that date from underrepresented categories, satisfying condition (1). Note that
we attempted to create a comprehensive, but not necessarily proportional, sample of trends
in the data. In other words, some types of trends may be over- or under-represented in
the selected trends dataset. At the same time, the sample of trends in each category is
representative of trends in the category overall. Our aim here is to provide insight about
the categories of trends and features of trends in each category, rather than discuss the
magnitude of each category in the data, a figure likely to shift, for example, with changes
to the detection algorithms.

The result of this process was a set of trends 71" that combines trends from both T}, and

T;y. We split the set T' into two subsets. The first subset of selected trends, T(y,q;, consisting
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Initial set of Twitter trends (7}y) > 8,500
Initial set of burst detection trends (7}¢) > 1,500
Selected trends for qualitative analysis (TQyai) 50
Selected trends for quantitative analysis (TQuant) 200

* Including duplicate trending terms in different hours.

Table 3.3: Details of the trend datasets produced and used in this work.

of trends in 7" through February 2010, was used for the qualitative analysis described in
Section 3.4. The second subset of T', Tyant, consisting of trends in 7" from March 2010,
was used for the quantitative analysis described in Section 3.7. Table 3.2 lists several of
the trends selected for the analysis: for each trend ¢, we list its description, time period,
and number of associated messages (i.e., the cardinality of M;). Next, we explain how we
identify M; for each trend t.

Table 3.3 provides a summary of the data sets described in this section, along with their

respective size.

3.3.3 Identifying Tweets Associated with Trends

For our statistical analysis of trend features, for each trend ¢ in Ty,ant We need to know the
set of tweets M, associated with ¢. Each trend includes the terms that identify the trend
and the associated time period, as discussed (e.g., a trend might consist of term “Passover”
on March 29, 2010, for the hour starting at 4 p.m.). To define My, we first collected every
message in our Tweets dataset that contains all of t’s terms and such that it was posted
up to 10 days before or after the time period for t. We sorted these messages according to
the time at which they were posted and we aggregated them into hourly bins. Since the
identifying term(s) may be popular at various times (e.g., as is the case for a trend that
persists for several hours), we identified the peak time for the trend by selecting the bin
with the largest number of messages. Finally, after anchoring the trend in its new associated
time period, we retrieved all messages posted up to 72 hours before or after the new time
period; this set is M;, the set of messages associated with trend t. On average, the set M,

for each trend in T(y,ans consists of 1,350 tweets, and the median cardinality of M; is 573.
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3.4 Trend Taxonomy and Dimensions

We now describe the qualitative analysis that we performed to characterize the Twitter
trends in the T, set of trends described above. The analysis was geared to identify the
different types of trends that occur in Twitter data from one metropolitan area and relied
on a taxonomy of the trends.

Several research effort showed that many Twitter trends correspond to trending events
(Chapter 2) that are reflected on Twitter by its users [ ; ]. Additionally,
trends and trending events in social media have been characterized by researchers in the
past. Dayan and Katz [ | characterized media events according to three generic types
of scripts that these events tend to follow, namely, “contest,” “conquest,” and “coronation,”
for events such as a presidential debate, an unfolding visit by a leader to a foreign state, and
a leader’s funeral, respectively. Boll and Westermann | ] present discussion of events
in the area of personal multimedia collections. However, the taxonomies available in these
literatures do not capture the variety of trends that emerge in a social media site such as
Twitter, which is our focus here.

Our qualitative analysis of trends is based on a variation of the affinity diagram method,
an inductive process [ | to extract themes and patterns from qualitative data. For this
analysis we used sticky notes to represent each trend in T(y,,; and recorded the terms and the
explanation of the trend if needed, which happened when the terms associated with the trend
did not immediately offer an idea of the content. We then put together the different items
into groups and categories in an iterative process of comparing, contrasting, integrating,
and dividing the grouped trends. According to the affinity process, we considered the
relationship between categories as well as the items that are grouped and linked together.

Indeed, the categories that emerged could be described and differentiated according to
one key dimension: whether the trends in the category are exogenous or endogenous. Trends
in exogenous categories capture trending events that originated outside of the Twitter sys-
tem (e.g., an earthquake). Trends in endogenous categories are Twitter-only activities that
do not correspond to external events (e.g., a popular post by a celebrity). Having this
dimension at the top level of the taxonomy reflects and highlights the substantial differ-

ences on Twitter between exogenous and endogenous trends regarding their importance and
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use scenarios. The top level of the taxonomy thus separates trends that reflect real-world

(i.e., non-virtual) events from trends that reflect activities that only pertain to the Twitter

system.

The groups of trends that emerged are described below, with sample trends to illustrate

each category.

Exogenous Trends
e Broadcast-media events:

— Broadcast of local media events: “fight” (boxing event), “Ravens” (football game).

— Broadcast of global /national media events: “Kanye” (Kanye West acts up at the

MTYV Video Music Awards), “Lost Finale” (series finale of Lost).

e Global news events:

— Breaking news events: “earthquake” (Chile earthquake), “T'sunami” (Hawaii

Tsunami warning), “Beyoncé” (Beyoncé cancels Malaysia concert).
— Nonbreaking news events: “HCR” (health care reform), “Tiger” (Tiger Woods
apologizes), “iPad” (toward the launch of Apple’s popular device).

e National holidays and memorial days: “Halloween,” “Valentine’s.”

e Local participatory and physical events:

— Planned events: “marathon,” “superbowl” (Super Bowl viewing parties), “patrick’s”

(St. Patrick’s Day Parade).

A AN13

— Unplanned events: “rainy,” “snow.”

Endogenous Trends

e Memes: #in 2010 (in December 2009, users imagine their near future), “November”

(users marking the beginning of the month on November 1).

e Retweets (users “forwarding” en masse a single tweet from a popular user): “deter-

mination” (users retweeting LL Cool J’s post about said concept).
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e Fan community activities: “2pac” (the anniversary of the death of hip-hop artist

Tupac Shakur).

Needless to say, the above set of categories might not be comprehensive (i.e., other trends
that are not in our data might not comfortably fit in any of these categories). However,
we developed this set of categories after an exhaustive, thorough analysis of a large-scale
set of trends, as described above. Therefore, we believe that this categorization is both
sufficiently broad and, at the same time, simple enough to enable a meaningful study of the
“trends in trend data.”

Our quantitative analysis (Section 3.7) focused on a limited number of dimensions ex-
tracted from the taxonomy that capture key differences between trends. We identified the
dimensions to focus on according to two criteria: (a) significance, or the importance of being
able to extract differences between the selected trend categories, and (b) the likelihood that
these categories will result in measurable differences between trends.

The first dimension we examined is the high-level exogenous and endogenous categories
of trends. Such comparison will allow us to reason about this most distinguishing aspect of
any Twitter trend. Importantly, this comparison is critical to our understanding of trending
events on Twitter, which we leverage in the following chapters.

Within exogenous trends, in this work we chose to concentrate on two important dimen-
sions. First, whether the exogenous activity falls into the local participatory and physical
events category above. These “local trends” represent physical events, located in one ge-
ographic area (e.g., the New York marathon) that are currently underrepresented in the
detected trends, but naturally play an important role in local communities. The second
dimension chosen is whether the exogenous trends are breaking news events, global news
events that are surprising and have not been anticipated (e.g., an earthquake), as opposed
to all other events and trends that are planned or expected (e.g., a vote in the Senate,
or a holiday). This dimension will allow us to separate “news-worthy” versus “discussion-
worthy” trends, which may lead to a different manner in which systems use and display
these different trend types.

Similarly, within endogenous trends in this work we chose to investigate the differences

between trends in the two main categories of this group of events, namely, memes and
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retweets, as explained above.
Next, these dimensions help us guide the quantitative study of the trends detected in
Twitter data, as we label each trend according to categories derived from the dimensions

above.

3.5 Characterization of Trends and Events

The next step in our analysis is to characterize each Twitter trend using features of its
associated messages. These features are later used to reason about differences between
the various trend dimensions described in the previous section. For this analysis, we use
the trend set Tguaent defined above. For each trend ¢, we compute features automatically,
based on its associated set of tweets M;. These features range from aggregate statistics of
the content of each individual message (e.g., number of hashtags, URLS) to social network
connections between the authors of the messages in My, and the temporal characteristics of

M;.

Content Features Our first set of features (see Table 3.4) provides descriptive charac-
teristics for a trend t based on the content of the messages in M;. These features include
aggregate characteristics such as the average length of a message in M; and the percentage
of messages with URLs or hashtags, or measures of the textual similarity of the tweets in

M;.

Interaction Features The interaction features (see Table 3.5) capture the interaction
between users in a trend’s messages as indicated on Twitter by the use of the “@” symbol
followed by a username. These interactions have somewhat different semantics on Twitter,
and include “retweets” (forwarding information), replies (conversation), or mentions of other

users.

Time-based Features The time-based features (see Table 3.6) capture different temporal
patterns of information spread that might vary across trends. To capture these features for

a trend t, we fit a family of functions to the histogram describing the number of Twitter
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Content Features

Explanation

Average number of words and

characters

Let words(m) be the number of words in a tweet m
and let char(m) be the number of characters in tweet

m. Then the average number of words per message is

SUMm e M, words(m)
[ M|

, and the average number of characters

SUMme p, char(m)

er message is
P Sag A

Proportion of messages with URLSs

Let U; C M; be the set of messages with URLs out of all
messages for trend t. Then the proportion of messages

with URLs is |Uy|/| M.

Proportion of unique URLs

Let URL(m) be the set of URLs that appear in tweet m.
The set of unique URLs for t is [UU|, where UU; = {u :
u € URL(m) for a message m € M.}, and the propor-
tion of unique URLs is |[UU;|/|M;|. (Note that the set
semantics ensures that each unique URL is only counted

once.)

Proportion of messages with hash-

tags

Let H;y C M; be the set of messages with hashtags in
M, .
| Hy|/| M.

Then the proportion of messages with hashtags is

Proportion of messages with hash-

tags, excluding trend terms

Let Hy C M; be the set of messages with hashtags in M;,
excluding messages where the hashtag is a term in Ry, the
set of terms associated with trend ¢. Then the proportion

of messages with hashtags excluding the trends terms is

| H| /[ M.

Top unique hashtag?

Whether there is at least one hashtag that appears in
at least 10% of the messages in M;. This measure cap-
tures agreement on the terms most topically related to

the trend.

Similarity to centroid

We represent each message m € M, as a tf-idf vector,
where the idf value is computed with respect to all mes-
sages in the Tweets dataset.We compute the average tf-
idf score for each term across all messages in M; to define

the centroid Cy. Using Cy, we then compute the average

SUMm e My 59m(Cy,m)

as well as the corre-
[ M

cosine similarity
sponding standard deviation. These features help indi-

cate content cohesiveness within a trend.

Table 3.4: Content features for a trend ¢.
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Interaction Features Explanation
Proportion of retweets Let RT; C M; be the set of messages in M; that are

“retweets” (i.e., these messages include a string of the
form “RT @user”). Then the proportion of retweets is

| RT3 | /| M.

Proportion of replies Let RP, C M; be the set of messages in M; that are
“replies” (i.e., these messages begin with a string of
the form “@user”). Then the proportion of replies is

|REy|/|My].

Proportion of mentions Let MN; C M; be the set of messages in M; that are
“mentions” (i.e., these messages include a string of the
form “@user” but are not replies or retweets as defined

above). Then the proportion of mentions is |MN|/|M,|.

Table 3.5: Interaction features for a trend ¢.

messages associated with the trend over the time period spanned by the tweet set M; (by
construction, as discussed, M; has the matching messages produced up to 72 hours before
and after t’s peak). We aggregate all messages in M; into hourly bins. We refer to all bins
before the peak as the head of the time period, while all bins after the peak are the tail of
the time period.

We proceed to fit the bin volume data, for both the head and the tail of the time period,
separately, to exponential and logarithmic functions. Using the least squares method, we
compute logarithmic and exponential fit parameters for the head and tail periods for each
trend, considering the full time period of 72 hours, which we refer to as the Log72 fit and
the Exp72 fit, respectively. We proceed in the same manner for a limited time period of
8 hours before and after the peak, which we refer to as the Log8 fit and the Exp8 fit,
respectively. The focus on the shorter time periods will allow us to better match rapidly
rising or declining trends | .

In sum, our features for each trend thus include the fit parameters for 8-hour and 72-hour
spans for both the head and the tail periods; and for each period and span, we calculate
the logarithmic and exponential fit parameters. In addition, for each combination we also

computed the R? statistic, which measures the quality of each fit.
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Time-based Features Explanation
Exponential fit (head) Best fit parameters (pg, p1,p2) and goodness of fit R? for

function M(h) = pre Pol"l 4 p,, where M(h) represents
the volume of messages during the h-th hour before the
peak. Computed for 72- and 8-hour periods before the
peak.

Logarithmic fit (head) Best fit parameters (pg,p1) and goodness of fit R? for
function M (h) = polog(h) + p1, where M (h) represents
the volume of messages during the h-th hour before the
peak. Computed for 72- and 8-hour periods before the
peak.

Exponential fit (tail) Similar to above, but over 72- and 8-hour periods after

the trend’s peak.

Logarithmic fit (tail) Similar to above, but over 72- and 8-hour periods after

the trend’s peak.

Table 3.6: Time-based features for a trend ¢.

Participation Features Trends can have different patterns of participation, in terms
of authorship of messages related to the trend. The participation features (see Table 3.7)
characterize a trend using statistics about the participation of authors that produced the
trend’s associated messages; in particular, we capture the skew in participation (i.e., to

which extent a small portion of authors produced most of the content).

Social Network Features Our final group of features for a trend ¢ focuses on the set
A, of the authors of the messages in M;. Specifically, the social network features (see Table
3.8) capture the properties of the social network G; of authors. To model this network,
we used the Twitter API to collect the list of followers for each author, consisting of other
Twitter users in A; that subscribe to the author’s message feed. (We ignore followers that
are not among the A; authors. We also ignore followers of authors who restrict access to
this information, and those who have suspended Twitter accounts.) In other words, our
social network graph is a directed graph G¢(A¢, Et), such that there exists an edge e € F

from a1 to a9 if and only if a; is a follower of as on Twitter. We computed various features
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Participation Features Explanation
Messages per author Let A: = {a : a is an author of a message m € M;}. Then

the number of messages per author is |M;|/|A4|.

Proportion of messages from top | We designate a’ € A; as the top author if @’ produced at
author least as many messages in M; as any other author. Then
the proportion of messages from top author is |[{m : m €

M, and m was posted by a'}|/| M.

Proportion of messages from top | Let A10; be the set of the top 10% of the authors in
10% of authors terms of the number of messages produced in M;. Then
the proportion of messages from top 10% authors is [{m :

m € M; and m was posted by a € A10;}|/| M.

Table 3.7: Participation features for a trend t.

of the social network graph Gy for each trend ¢, capturing the connectivity and structure of

connections in the graph [ ].

3.6 Categorizing Trends in Different Dimensions

In addition to the automatically extracted features, we manually categorized the trends in
TQuant according to the dimensions picked for analysis (e.g., whether the trend belongs to
the “exogenous” or “endogenous” category). We manually associated every trend with one
category in each dimension. Later, we examined how the categories differ according to the
automatically computed features described above.

We required a content description of each trend in order to properly label it according
to the categories introduced in the previous section. The trend detection methods only
output the trend terms and a time period. This type of output (e.g., “Bacall on March
8th”) was often not enough to discern the content of the trend to correctly assign it to
different categories. We examined each of the trends to generate a short description. The
sources used for this examination were, first, the actual Twitter messages associated with
the trend. If that examination did not prove informative enough, we used news search tools
(e.g., Google News) to inspect corresponding news reports for that day and those terms.

At the end of the process, we had a description for 200 of the trends in our trend dataset
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Social Network Features Explanation
Level of reciprocity The fraction of reciprocal connections out of the to-

tal number of connections |E;|, where authors aq,as €
A; form a reciprocal connection if (a1,a2) € FE; and

(az, al) S Et.

Maximal eigenvector centrality The eigenvector centrality of an author measures the im-
portance of this author in A; by computing the eigenvec-
tor of the largest eigenvalue in the adjacency matrix of
the network graph. We pick the author with the highest
eigenvector centrality value over all a € A;. A high value

suggests the existence of a dominant node in the network.

Maximal degree centrality The degree centrality of an author a € A, is the fraction
of authors it is connected to. We compute the highest
degree centrality value over all a € A;. A high value

suggests the existence of a dominant node in the network.

Table 3.8: Social network features for a trend t.

TQuant, after removing twenty-nine trends that could not be resolved (e.g., “challenging” on
March 14, 2010) from our dataset. We computed these features for the 200 resolved trends
in our trend dataset T(yqnt- This data is the basis for our analysis, described below.

We mapped each of the trends into categories based on the dimensions for analysis. Two
people independently annotated each of the trends. If an annotator could not assign a value
for some dimension, either a “not applicable” or an “unknown” label was used. In each
dimension, after removing trends marked “not applicable” or “unknown” by at least one
of the annotators, the inter-annotator agreement of the labeled trends in each dimension
was very high (the remaining number of trends for each dimension is reported below, in
the analysis). For the final analysis in each dimension we removed all “not applicable” and
“unknown” entries for that dimension, as well as any remaining disagreements between the
annotators. In other words, we ignored those trends for which we had reason to doubt the

assignment to a category.
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3.7 Quantitative Analysis

The main drivers for our analysis are the coded categories of trends, as detailed above.
In other words, we compared the samples of trends according to their categorization in
different dimensions (e.g., exogenous vs. endogenous) and according to the features we
computed from the data (e.g., the percentage of messages with URLs). Our hypotheses,
listed below, are guided by intuitions about deviations in the characteristics of trends in
different categories, and are geared towards confirming the expected deviations between the
trend categories. Such confirmation would allow, later on, for the development of automated
systems to detect the trend type or provide better visualizations or presentation of the trend

data. We continue by listing the key hypotheses that guided our analysis.

Exogenous vs. Endogenous Trends H1. We hypothesize that exogenous and endoge-

nous trends will have different quantitative characteristics. In particular:

e H1.1 Content features of exogenous trends will be different than those of endoge-
nous trends; in particular, they will have a higher proportion of URLs and a smaller

proportion of hashtags in tweets.

e H1.2 Interaction features of exogenous trends will be different than those of endoge-
nous trends; in particular, exogenous trends will have fewer retweets (forwarding),

and a similar number of replies (conversation).

e H1.3 Time features of exogenous trends will be different for the head period before
the trend peak but will exhibit similar time features in the tail period after the trend

peak, compared to endogenous trends.

e H1.4 Social network features of exogenous trends will be different than those of en-
dogenous trends, with fewer connections (and less reciprocity) in the social network

of the trend authors.

Breaking News vs. Other Exogenous Trends H2. We hypothesize that breaking
news events will have different quantitative characteristics compared to other exogenous

trends. In particular:
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e H2.1 Interaction features of breaking events will be different than those of other ex-

ogenous trends, with more retweets (forwarding), but fewer replies (conversation).

e H2.2 Time features of breaking events will be different for the head period, showing
more rapid growth, and a better fit to the functions’ curve (i.e., less noise) compared

to other exogenous trends.

e H2.3 Social network features of breaking events will be different than those of other

exogenous trends.

Local Events vs. Other Exogenous Trends H3. We hypothesize that local participa-
tory and physical events will have different quantitative characteristics compared to other

exogenous trends. In particular:

e H3.1 Content features of local events will be different than those of other exogenous

trends.

e H3.2 Interaction features of local events will be different than those of other exogenous

trends; in particular, local events will have more replies (conversation).

e H3.3 Time features of local events will be different than those of other exogenous

trends.

e H3.4 Social network features of local events will be different than those of other exoge-
nous trends; in particular, local events will have denser networks, more connectivity,

and higher reciprocity.

Memes vs. Retweet Endogenous Trends H4. We hypothesize that memes will have

different quantitative characteristics compared to retweet trends. In particular:
e H4.1 Content features of memes will be different than those of retweet trends.

e H4.2 Interaction features of memes will be different than those of retweet trends; in
particular, retweet trends will have significantly more retweet (forwarding) messages
(this hypothesis is included as a “sanity check” since the retweet trends are defined

by having large proportion of retweets).
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e H4.3 Time features of memes will be different than those of retweet trends.
e H4.4 Participation features of memes will be different than those of retweet trends.

e H4.5 Social network features of memes will be different than those of retweet trends;
in particular, meme trends will have more connectivity and higher reciprocity than

retweet trends.

We performed our analysis on the 200 resolved trends in Tguent- The analysis was
based on a pairwise comparison of trends according to the trends’ categorization in differ-
ent dimensions, following our hypotheses above. For each such pair, we performed a set of
two-tailed t-tests to show whether there are differences between the two sets of trends in
terms of the dependent variables, namely, our automatically extracted trend features. How-
ever, since each sub-hypothesis involved multiple dependent variables (e.g., we computed
seven different social network features), we controlled for the multiple t-tests by using the
Bonferroni correction, which asks for a significance level of av/n when conducting n tests at
once. Therefore, we only report here results with significance level of p < .008.

As is common in studies of social-computing activities, many of our dependent variables
were not normally distributed, but rather they were most often skewed to the right. Fol-
lowing Osborne | ], we used logarithms (adding a small constant to handle zero values
as needed) or square root functions to transform these variables in order to improve their
normality. For most variables, such transformation indeed generated a normal distribution.
In the cases where we performed a variable transformation, whenever we find significant
differences between the transformed means in the analysis, we also report here the original
variable means and medians. For variables that were still skewed after the transformation,
we performed the Mann-Whitney test for non-normal distributions, and note when that is
the case. For the one dependent variable in our data that was nominal, we used the CHI-
square test. Finally, following Asur and Huberman | ], in the analysis we considered
the temporal features only for trends that peaked on a United States weekday (i.e., Monday
through Friday), as the temporal aspects in particular might be influenced by the different

patterns of Twitter usage during weekends.
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Categories Compared Content | Interaction | Time | Participation | Social
Exogenous vs. Hypothesis: H1.1 H1.2 H1.3 None H1.4
Endogenous Found: Yes* Yes* No No Yes
Breaking News vs. | Hypothesis: None H2.1 H2.2 None H2.3
Other Exogenous Found: No Yes No No No
Local vs. Other Hypothesis: H3.1 H3.2 H3.3 None H3.4
Exogenous Found: No Yes* No No No
Memes vs. Hypothesis: H4.1 H4.2 H4.3 H4.4 H4.5
Retweets Found: Yes Yes Yes* Yes Yes

Table 3.9: Summary of results. Starred entries represent partial findings or findings that

diverged somewhat from the detailed hypothesis.

3.8 Experimental Results

We report below the results from our analysis. For convenience, an overview of the results

and findings as they related to the hypothesis is provided in Table 3.9.

3.8.1 Exogenous vs. Endogenous Trends

Exogenous trends were found to be different than endogenous trends in content, interaction,
time and social features, supporting most of the hypotheses under H1 as shown in Table 3.9.
In our dataset we had 115 exogenous trends and 55 endogenous trends (for some parts of
the analysis the numbers are lower due to missing data). The detailed numerical results are
shown in Tables 3.10 and 3.11. In terms of content features (H1.1), exogenous trends had a
higher proportion of messages with URLs than endogenous trends (results were similar for
the proportion of unique URLs appearing in the trend’s content). In addition, the average
term length for exogenous trends was somewhat shorter than the length of terms used
in endogenous trends. We found only some differences in the presence of hashtags in the
content: exogenous trends did not have a higher proportion of messages with hashtags, even
when excluding the trending terms. However, fewer exogenous trends had a unique hashtag

appearing in at least 10% of the messages compared to endogenous trends. This finding
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URL Proportion” Top Unique Hashtag™ Term Length (chars)T

Exo Endo Exo (Y/N) | Endo (Y/N) | Exo Endo
N 115 55 47/68 36/19 115 55
Mean .34 144 - - 5.31 6.13
Median | .307 .058 - - - -

* log-transformed, t=6.117, p<.001
* x2=9.00, p<.002
tt=-5.119, p<.001

Table 3.10: Quantitative analysis results of exogenous/endogenous categories.

Retweet Proportion™| Reply Proportion”| Reciprocity'
Exo Endo Exo Endo Exo | Endo
N 115 55 115 55 114 54
Mean .32 AT .094 .083 .26 33
Median | .26 .38 .081 .028 - -

* sqrt-transformed, t=-3.865, p<.001
* log-transformed, t=2.98, p<.003
t t=-6.87, p<.001

Table 3.11: Quantitative analysis results of exogenous/endogenous categories.

indicates less agreement between authors of exogenous trends on the ad-hoc “semantics” of
the trend (in other words, the chosen community representation for what that trend content
is about), which may stem from the fact that exogenous trends are seeded at once from
many users who choose different hashtags to represent the trend.

In terms of interaction features (H1.2), we found that exogenous trends had a smaller
proportion of retweets in the trend’s tweets compared to endogenous trends. This finding
suggests that users created more original content based on exogenous sources, rather than
retransmit and forward content that was already in the “system” as often happens for
endogenous trends. Interestingly, we also found that exogenous trends tend to have more
“conversation”: the proportion of replies in exogenous trends was higher than endogenous
ones. In terms of time features (H1.3), the hypothesis was not supported: our data did

not show exogenous trends to have different time features for the head period. The tail
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Retweet Proportion”| Reply Proportiont|  Ezp72 tail R? Log72 tail R**
Breaking | Other | Breaking | Other | Breaking | Other | Breaking | Other
N 33 63 33 63 26 37 26 39
Mean .39 .28 .058 A1 .0119 .0041 .589 .386
Median .35 21 .049 101 - - - -

* sqrt-transformed, t=3.2, p<.002
* log-transformed, t=-2.7, p<.008
t $=3.554, p<.001
t£=4.508, p<.001

Table 3.12: Quantitative analysis results of breaking/other categories.

period time parameters were, as we hypothesized, not found to be different for exogenous
and endogenous trends.

Finally, in terms of social network features (H1.4), we found differences in the level
of reciprocity between exogenous and endogenous trends. Social network connections in
exogenous trends had less reciprocity than those of endogenous trends. Other differences

were found but with marginal significance.

3.8.2 Breaking News vs. Other Exogenous Trends

Trends corresponding to breaking events were found to have different interaction character-
istics from other exogenous trends, but no other differences were found, giving only partial
support to hypothesis H2 (Table 3.9). In our dataset, we had 33 breaking events and 63
other exogenous events (for some parts of the analysis the numbers are lower due to missing
data). The detailed numerical results are shown in Table 3.12.

In terms of interaction features (H2.1), we found that breaking exogenous trends have
a larger proportion of retweet messages than other exogenous events. Breaking trends also
have a smaller proportion of reply messages than other exogenous events. These findings
show the informational nature of breaking events, which focus on information transmission
rather than conversation.

Hypotheses H2.2 and H2.3 were not confirmed, though, finding no significant differences

in time features between breaking exogenous events and other exogenous events. It is noted,
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Retweet Proportion”

Local Other

N 12 96
Mean 18 .345
Median 148 2

*

sqrt-transformed, — t=-4.82,
p<.001

Table 3.13: Quantitative analysis results of local /other categories.

however, that we found that the R2 quality of fit on the Exp72 time fit parameters for the
tail period was significantly different between breaking and other events, with breaking
events having better fit on average than other events. Similar yet marginal differences were
found for Log72 fit parameters. This difference might suggest that the breaking events,
after the peak, are less noisy than other exogenous events with discussion levels dropping

more “smoothly.”

3.8.3 Local Events vs. Other Exogenous Trends

We found limited support that local events have different characteristics than other exoge-
nous trends (H3). In particular, our data surfaced differences between interaction features
of local events and other exogenous trends (Table 3.9). In our dataset, we had 12 local
events and 96 other exogenous trends (for some parts of the analysis the numbers are lower
due to missing data). We note that the analysis was limited by the small number of local
events in our trends dataset. The detailed numerical results are shown in Table 3.13.

We could confirm only one difference in terms of interaction features between local and
other exogenous trends (H3.2), where local events have a smaller proportion of messages
that are retweets than other exogenous trends. In addition, our analysis suggests that local
events might be more conversational, in terms of the proportion of messages that are replies,
than other exogenous trends; however, the result for replies is not significant at the level
we require for reporting in this paper, and thus cannot be fully confirmed. Therefore, we
can provide only partial support to H3.2.

Finally, we found no support for H3.3, as the differences in time features between local
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URL Proportion”| Unique URL Proportiont| Hashtag Proportiont| Length (terms)?
Memes RTs Memes RTs Memes RTs Memes | RTs
N 27 22 27 22 27 22 27 22
Mean .044 .24 .035 .064 .989 275 13.19 | 17.83
Median .032 .103 .029 .06 .998 .092 - -

* log-transformed, t=-4.231, p<.001

* log-transformed, t=-2.759, p<.008

t log-transformed, t=5.552, p<.001

t£=-5.156, p<.001

Table 3.14: Quantitative analysis results of meme/retweet categories.

Length (chars)”| Term Lengths (chars)* Top Unique Hashtag! Retweet Proportion?
Memes | RTs | Memes RTs Memes (Y/N) | RTs (Y/N) | Memes RTs
N 27 22 27 22 27/0 7/15 27 22
Mean 80.3 | 106.1 | 6.65 5.57 - - .309 .692
Median - - - - - - 277 739

" t=-4.621, p<.001
+t=4.017, p<.001
t x2=27.99, p<.001

¥ sqrt-transformed, t=-8.633, p<.001

Table 3.15: Quantitative analysis results of meme/retweet categories.

events and other exogenous trends could not be confirmed.

3.8.4 Memes vs. Retweet Endogenous Trends

Looking at endogenous trends, “retweet” trends were found to be different than “meme”

trends (H4) in content, interaction, time, participation, and social network features (see

Table 3.9). In our dataset, we had 29 memes and 27 retweet trends (for some parts of the

analysis the numbers are lower due to missing data). The detailed numerical results are

shown in Tables 3.14-3.17.

In terms of content (H4.1), we found several differences between the retweet trends and

meme trends. Retweet trends have a larger proportion of messages with URLs than meme
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Reply Proportion”| Log8 head p; | Messages/author’ Messages,/top author?
Memes RTs Memes | RTs | Memes RTs Memes RTs
N 27 22 7 15 27 22 27 22
Mean .029 .079 .055 -.109 | 2.067 1.171 .042 .019
Median .018 .0565 - - - - .018 .01

* log-transformed, t=-3.704, p<.001
T 1$=3.549, p<.002

T Mann-Whitney Z=>5.44, p<.001

! log-transformed, t=2.793, p<.008

Table 3.16: Quantitative analysis results of meme/retweet categories.

Messages/top-10% authors”| SCC size (avg)*| Reciprocated Ties
Memes RTs Memes | RTs | Memes RTs
N 27 22 27 22 27 22
Mean 382 182 1.861 1.332 .363 3
Median .383 157 1.582 | 1.239 - -

* sqrt-transformed, t=8.814, p<.001
* log-transformed, t=3.53, p<.001
t£=3.936, p<.001

Table 3.17: Quantitative analysis results of meme /retweet categories.
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trends, and a higher proportion of unique URLs. More meme trends have a single hashtag
that appears in more than 10% of the trend’s messages. Accordingly, meme trends have a
larger proportion of hashtags per message than retweet trends, but are not different when
we remove the trending terms from consideration (indeed, memes are often identified by the
hashtag that the relevant messages contain). Finally, retweet trends have more textual terms
in the tweets than meme trends, and the retweet trend tweets are longer on average than
meme trend tweets, and are even longer when counting characters in URLs (not reported
here). However, these differences may be attributed to the “RT @Qusername” phrase added
to individual retweet messages, which were more common, of course, for retweet trends (this
observation was true at the time the data was collected; since then, Twitter has changed its
format for retweet messages, so that “RT Qusername” does not always appear in the data).

Supporting H4.2, retweet trends naturally have a significantly greater proportion of
messages that are retweets than meme trends. Retweet trends also have a greater portion
of replies, showing that they are slightly more conversational than meme trends. The retweet
and meme trend categories are not different in their proportions of mentions. Regarding
time features, addressing H4.3, we found one difference between the time fit parameters:
the head fit parameter Log8 head pi, indicating different growth for retweet trends. This
finding may suggest that retweet trends develop in a different manner than meme trends.

Looking at the participation features (H4.4), we found a number of significant differences
between retweet and meme trends, supporting the hypothesis. Meme trends have more
messages per author on average than retweet trends in a statistically significant manner (we
performed the Mann-Whitney test due to the non-normal distribution of this parameter).
In addition, meme trends have a higher proportion of messages from the single top author
than retweet trends, as well as a higher proportion of messages from the top 10% of authors
than retweet trends. These results show a significant difference in participation between
these types of trends, where meme trends are more skewed, and a limited number of users
are responsible for a fairly significant part of the content, and retweet trends are more
“democratic” and participatory.

Finally, retweet trends were significantly different than meme trends in a number of

social network features, confirming H4.5. In terms of the proportion of reciprocation in the
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trends’ authors social network, retweet trends had a lower level of reciprocated ties than
meme trends. Meme trends also had a higher average size of strongly connected components,
than retweet trends. These findings suggest that retweet trends are supported by a network
that, while showing the same density, builds on directional, informational ties more than

meme trends that are supported by communication and reciprocity.

3.9 Discussion

The results of our quantitative analysis provide a strong indication that we can use the
characteristics of the messages associated with a trend to reason about the trend, for ex-
ample, to better understand the trend’s origin and context. In particular, we found that
exogenous trends, corresponding to real-world occurrences that originate from outside the
Twitter system but reflected in the activity of users in the system, are different in a number
of important features from endogenous trends, which are topics that start and develop in
the Twitter “universe.” Connections between the authors of messages in endogenous trends
tend to be more symmetrical (i.e., with higher reciprocity) than in exogenous trends, sug-
gesting perhaps that endogenous trends require stronger ties to be “transmitted.” However,
we also expected the density of the endogenous trend networks and the average degree of
their nodes to be higher, but did not find any such differences. Differences between these
two categories of trends were not evident in the temporal features, where the results did not
support our hypothesis of a more rapid curve leading to the peaks of the exogenous trends.
However, the differences between these categories are further supported by the deviations
in content and interaction features between the categories: more URLSs, unique URLs, and
unique hashtags, as well as a smaller proportion of retweets, show that exogenous trends
generate more independent contributions than endogenous trends do.

In a deeper examination of the differences between categories of exogenous trends, we
found only interaction differences between trends representing “breaking” events and other
type of exogenous trends. Specifically, breaking events are, naturally perhaps, more “in-
formational” and less “conversational” in nature than other trends. Significantly, we could

not confirm the hypothesis from Sakaki et al. | | that breaking events will be more
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disconnected, as multiple contributors will independently contribute messages with less in-
network coordination. However, one possible reason for not seeing this effect in the data is
the long period of content (72 hours before and after a trends peak) over which we calculate
the author networks. Perhaps focusing on the connection between authors in the first hours
of a trend would capture these differences between breaking events and other trends.

Trends capturing local events were found to be only slightly different than other ex-
ogenous trends mainly with respect to the interaction features. People discuss more, and
forward information less, in the context of local events as compared to other exogenous
trends. Note again that we have a low number of local events represented in our trend
dataset and these findings should be considered tentative. Yet, it is possible that differ-
ences between local events and other trends would be even more pronounced when more
data is available.

Finally, we have shown that even endogenous trends, which grow and develop from
within the Twitter system and are not a reflection of external events, could have different
categories that are varied across a number of key features. Retweet trends, where users
respond and forward a message from a single popular user, are different in many charac-
teristics (including content, interaction, time, participation and social characteristics) than
meme trends.

Before we conclude, we list several important considerations about our study, acknowl-
edging a few limitations and biases in the work. One limitation is in the dataset used in
this work, which is incomplete because of two reasons. First, we generated the initial set
of trends using two specific, albeit well-established methods. (As we discussed, the focus of
this chapter is not on trend detection but rather on the analysis and characterization of the
trends and trending events.) However, other methods for trend detection and identifica-
tion of related content might assist in capturing additional trends and trending events. For
instance, in Chapters 4 and 5, we develop comprehensive techniques for unknown identifica-
tion of trending events, exploiting both textual and non-textual information. At the same
time, we believe that the sample of trends reflects the span of trend categories that can
reasonably be detected by any method. The second reason why our dataset is incomplete

relates to the selection of the tweets that we used for both trend extraction and charac-
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terization: specifically, we only included content from New York City users who disclosed
their hometown location in their profile and hence excluded content from other local users
without an explicit profile location. (Automatically matching locations and users with no
explicit geographical information in their profiles is the subject of interesting future work.)
In addition, we defined each trend using terms, and we retrieved the messages associated
with each trend via simple keyword search. In the next chapter, we explore alternative tech-
niques for identifying messages for trending events, specifically using a clustering framework,
so that we could associate a message with a trending event even without requiring a strict
term overlap.

Furthermore, our analysis focuses on a single system (i.e., Twitter) and a single location
(i.e., New York City). Other dynamics and trend characteristics may exist in other systems
and locations (e.g., involving Facebook data and concerning users based in Paris, France).
Indeed, the dynamics we observed, and some of the characteristics we extracted, are unique
to Twitter. However, Twitter is an important communication and information service that
has already made considerable impact on our society, and is important to study regardless
of generalization to other social media sites. Moreover, we have no reason to believe that,
other than message volume, trends involving New York City users are significantly different
from trends for other locations.

The metrics that we have used to characterize trends can be extended or further devel-
oped. For example, for the time-based characterization, one could experiment with different
fitting functions, identifying peaks in different ways (e.g., considering the expected volume
of tweets for each time of the day), using different time periods before and after the peak,
and so forth. In another example, the social network characteristics could consider the
social network of authors that appeared in the first 24 hours of the trends, following Yardi
and boyd [ |, which might produce networks of different characteristics. These dif-
ferent methods could expose more pronounced differences between trend categories. Still,
the wide-ranging set of metrics presented here has already helped identify key differences
between types of trends and trending events. These differences bring useful insight into the
nature of trends and trending events in social media, which we use to inform our unknown

identification techniques (Chapters 4 and 5).
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3.10 Conclusions

Emerging temporal trends in social media sites such as Twitter are a significant and reveal-
ing source of information for, and about, trending events. In this chapter, we categorized
and characterized trends on Twitter, and showed that different types of trends exhibit sig-
nificant differences in terms of various automatically computed characteristics. Our findings
suggest directions for automatically distinguishing between different types of trends, per-
haps using machine learning or model-based approaches, utilizing the trend characteristics
we propose above as well as others. Importantly, our study reveals and distinguishes be-
tween endogenous, platform-centric trends, and the trending events on which we focus in
this dissertation. Given these findings, we can enable a robust classification of trends into
the various trend categories we identified in general, and into trending events (i.e., exoge-
nous trends) and non-event trends (i.e., endogenous trends) in particular. This separation
will prove valuable for identifying trending events in social media, as we will see in the next

chapter.
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Chapter 4

Identification of Unknown Events

and Their Content

Short messages posted on social media sites such as Twitter can typically reflect events
as they happen. For this reason, the content of such social media sites is particularly
useful for timely, unknown event identification, which is the problem that we address in
this chapter. As we discussed, in this unknown identification scenario we focus on a class
of events defined as trending events (Chapter 2). Twitter content associated with trending
events can provide a set of unique perspectives | ; ], reflecting the points of
view of users who are interested or even participate in an event. At the same time, much of
the content on Twitter does not correspond to any particular trending event, making the
separation between trending event and non-event content challenging and essential for the
unknown event identification task.

From our study of trending event content on Twitter (Chapter 3), we found that trend-
ing events exhibit temporal patterns that can be identified using burst detection techniques
[ |. However, these techniques often also identify endogenous trends that do not corre-
spond to trending events. Therefore, to identify the trending events in a stream of Twitter
messages we must separate them from all non-event content, including the endogenous
trends that exhibit similar temporal behavior. In this chapter, we present techniques for

identifying trending events in social media by automatically distinguishing them from the
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abundant non-event content. Specifically, we identify each trending event—and its associ-
ated Twitter messages—using an online clustering technique that groups together topically
similar tweets. We then compute revealing features for each cluster, to determine which
clusters correspond to events. Importantly, we design features that capture many aspects
of each cluster, beyond bursty temporal patterns, to distinguish between trending events
and non-event trends.

In summary, the contributions presented in this chapter are:

e We propose a general online clustering framework, suitable for large-scale social media
content, which employs a post-clustering classification step to identify trending event

content
e We identify revealing cluster features, to learn event classification models

e We validate the effectiveness of our techniques using a dataset of over 2.6 million

Twitter messages

The clustering framework that we propose in this chapter is posed as a general framework
for the unknown identification scenario that could be customized to handle content from a
variety of social media sites. In this chapter, we tailor this framework to handle content
from Twitter, for reasons outlined above. However, in Chapter 5 we dive deeper into the
customizable aspects of this framework, particularly the clustering similarity metric, and
discuss its optimization with respect to social media content from sites such as Flickr, where
documents include a diverse set of revealing context features.

We begin by outlining our general clustering framework (Section 4.1) and then proceed
to describe its use for unknown identification of trending events on Twitter (Section 4.2).

The bulk of this chapter appeared in [ ].

4.1 Clustering Framework

We cast the problem of identifying trending events and their associated social media doc-
uments as a clustering problem. Ideally, each cluster should correspond to one event and

consist of all of the social media documents associated with the event. In this section,
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we discuss the choice of general clustering algorithm for our unknown event identification
problem.

To cluster social media documents, the algorithm of choice should be scalable, to han-
dle the large volume of data in social media sites, and not require a priori knowledge of
the number of clusters, since social media sites are constantly evolving and growing in
size. Therefore, traditional clustering approaches that require knowledge of the number of
clusters, such as K-means and EM | ], are not well suited for this problem. Other alter-
natives such as scalable graph partitioning algorithms | ] do not capture the highly
skewed event distribution of social media event data due to their bias towards balanced
partitioning (we experimented with graph partitioning algorithms, but do not discuss their
results here because of their poor performance for our task).

Threshold-based techniques are preferable for our clustering task since they can be
tuned using a training set and subsequently generalized to unseen data points. Hierarchical
clustering algorithms | |, while relying on threshold tuning, are also not appropriate
since they require processing a fully specified similarity matrix, which does not scale to the
large size of our data. Furthermore, online or incremental clustering algorithms, which are
able to handle a constant stream of new documents, are also desirable in our setting, where
new documents are continuously being produced.

Based on these observations, we propose using a single-pass incremental clustering algo-
rithm with a threshold parameter that can be tuned in a principled manner during a training
phase. Single-pass incremental clustering has been shown to be an effective technique for
event detection in textual news documents (e.g., | ; ]). Such a clustering al-
gorithm considers each element in turn, and determines the suitable cluster assignment
based on the element’s similarity to any existing clusters. Specifically, given a threshold p,
a similarity function o, and documents to cluster dy,...,d,, the algorithm considers each
document d; in order, and computes its similarity o(d;, ¢;) against each existing cluster ¢;,
for j = 1,...,k. (Initially, & = 0.) Different versions of the algorithms differ on how this
similarity o is computed, as we describe next. If there is no cluster whose similarity to d;
is greater than p, we increment k& by one and create a new cluster ¢ for d;. Otherwise, d;

is assigned to a cluster ¢; with maximum o(d;, ¢;).
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Conceptually, the similarity o(d, c) between a document d and a cluster ¢ can be com-
puted by comparing the features of d to those of the cluster ¢; or by directly comparing d
to the documents in cluster c¢. For efficiency, we represent each cluster using the centroid
of its documents. The centroid for a cluster of documents c is defined as ﬁ > gecd. For
the textual features we use in this chapter, our centroids are simply the average tf-idf score
per term. In the next chapter, we experiment with more complex content representations
and, consequently, introduce alternative centroid definitions. The similarity score o(d, c)
is then defined as the similarity between document d and the centroid of cluster ¢ for a
suitable document similarity metric. This definition then avoids comparing document d
against every document in cluster c.

The general clustering algorithm that we described relies heavily on a similarity metric o
for two documents, or for a document and a cluster centroid. For social media sites such as
Twitter, where content is limited to a short textual message, we represent each message as
a tf-idf weight vector of its textual content, and use the cosine similarity metric, as defined
by Kumaran and Allan [ ], as the clustering similarity function o. In Chapter 5, we
explore the use of this algorithm with social media documents from Flickr, which include a
variety of revealing context features. In that chapter, we explore the crucial issue of learning
a similarity metric using a combination of similarities, explicitly tailored to each type of
context feature.

We have explored different threshold settings and other variations of this clustering
algorithm, including a periodic second pass to handle fragmentation, which is a known
drawback of this incremental clustering approach. In Chapter 5 we explore ways to handle
such fragmentation using explicit social links to unify clusters that correspond to the same
event. Additional optimizations and variations of this clustering algorithm are described in

Chapter 9.

4.2 Separation of Event and non-Event Content on Twitter

Trending events on Twitter include widely known occurrences such as the presidential in-

auguration, and also local or community-specific events such as a high-school homecoming
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game or the World Wide Web conference. Non-event content, of course, is prominent on
Twitter and similar systems where people share various types of content such as personal
updates, random thoughts and musings, opinions, and information [NB1.10].

As we discussed in Chapter 3, non-event content also includes forms of Twitter activity
that trigger substantial message volume over specific time periods, which is a characteristic
of trending event content. In this section, we present techniques for differentiating between
messages about trending events and non-event messages, where non-event messages include
those for trending activities that are Twitter-centric but do not reflect any trending events.

Formally, we define the problem we address in this section as follows (Figure 4.1):

Problem Definition 1 Consider a time-ordered stream of Twitter messages M. At any
point in time t, our goal is to identify trending events and their associated Twitter messages
present in M and published before time t. Furthermore, we assume an online setting for

our problem, where we only have access to messages posted before time t.

rwinermessagesueam I [T [T T WINET TN ..
ﬁme}

(b) Twitter message clusters i @
(c) Identified event clusters \ . \ @

Figure 4.1: Conceptual diagram: Twitter event identification.

4.2.1 Identification of Event Clusters

We use the incremental, online clustering algorithm described above in order to effectively
cluster a stream of Twitter messages in real time. For scalability, we use a centroid repre-
sentation of each cluster, which consists of summary statistics of all messages in the cluster.

The centroid of a cluster is the average weight of each term across all documents in the
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cluster. We represent each message as a tf-idf weight vector of its textual content, and use
the cosine similarity metric [ ], as the clustering similarity function o. Based on our
experiments on training data, we perform traditional text processing steps such as stop-
word elimination and stemming, and also double the weight of hashtag terms as they are
often indicative of the message content.

To identify all trending event clusters in the stream, we compute a variety of revealing
features using statistics of the cluster messages (Section 4.2.2). Since the clusters constantly
evolve over time, we must periodically update the features for each cluster and compute
features of newly formed clusters. We subsequently proceed to invoke a classification model
(Section 4.2.3) that, given a cluster’s feature representation, decides whether or not the
cluster, and its associated messages, contains event information. With the appropriate
choice of classification model, we can also select the top events in the stream at any point

in time, according to the clusters’ probability of belonging to the event class.

4.2.2 Cluster-Level Event Features

We compute features of Twitter message clusters in order to reveal characteristics that may
help detect clusters that are associated with events. While each of these features may not
necessarily indicate event content in isolation, combining them with other revealing features
in a principled way (e.g., using a trained classifier) can help identify event clusters, as we
will see. We examine several broad categories of features that describe different aspects
of the clusters we wish to model. Specifically, we consider temporal, social, topical, and

Twitter-centric features.

4.2.2.1 Temporal Features

The volume of messages for an event e during the event’s associated time T, exhibits unique
characteristics (see the definition of trending event in Chapter 2). To effectively identify
events in our framework, a key challenge is to capture this temporal behavior with a set of
descriptive features for our classifier. We design a set of temporal features to characterize
the volume of frequent cluster terms (i.e., terms that appear frequently in the set of messages

associated with a cluster) over time. These features capture any deviation from the expected
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message volume for any frequent cluster term or a set of frequent cluster terms. Specifically,
we aggregate the number of messages containing each term into hourly bins and define M; j,
as the number of messages posted during hour A and containing term ¢, and M}, as the total
number of messages posted during hour h.

For the n most frequent terms in the cluster, where n is determined empirically, we
compute two types of features to reveal the trending behavior that is characteristic of
trending events. First, we compute the deviation from expected volume for a term at the
time when we compute the features (i.e., at the time when we invoke the classifier; see
Section 4.2.3). This metric captures a single-point representation of trending behavior for
each term. Second, we compute the quality of fit of an exponential function to the term’s
binned data leading up to the time when we invoke the classifier. The exponential fit
captures the rate of increase in message volume over time. A good quality fit signifies a

true exponential rise in related content, an indication of trending behavior [[LB3K09].
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Figure 4.2: Documents per hour with the term “valentine” for 72 hours prior to 2 p.m. on

Valentine’s Day.

We compute the expected number of messages for a term t at the end of hour hg

by averaging the number of messages containing ¢ in the preceding hours (1,...,hy — 1),
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weighted by the total number of messages at each hour to account for the varying volume
of messages across different hours; formally, p 5, = 2?21_1 MWT (hg — 1). Correspondingly,
Ot.ho is the standard deviation of the number of messages containing ¢ over the preceding

hours. We define the deviation from expected message volume for term ¢ at hour hg as

M, _ . .
( Aj’hhoo — [it,ho )/ Ot 1o - The deviation from expected volume features in a cluster, then, include

a set of deviation values for the most frequent terms, as well as an average value over all
top terms. This value is generated by weighting the top terms by their relative support
in the cluster messages (e.g., if terms t1, %2, and t3 appeared in 300, 200, and 100 cluster
messages, respectively, their weights would be 0.5, 0.33, and 0.17).

The second set of temporal features reflects the degree to which the volume of messages
containing a term ¢ exhibits an exponential growth in the hours leading up to hg. We
compute a histogram using M, ;, where i = (hg — 72), ..., (ho — 1); this models the volume
of messages with the term for the 72 hours leading up to hg. This method generally reflects
the trending behavior in the social Web [ ]. We use the least squares method to fit
an exponential function to the histogram, smoothed using a moving average, and compute
the R? statistic to measure the quality of the fit. Figure 4.2 shows an example of this

exponential trending behavior for the term “valentine” around Valentine’s Day, 2010.

4.2.2.2 Social Features

We designed social features to capture the interaction of users in a cluster’s messages. These
interactions might be different between events, Twitter-centric activities, and other non-
event messages (Chapter 3). As we discussed in the previous chapter, user interactions on
Twitter include retweets, replies, and mentions. Our social features include the percentage
of messages containing each of these types of user interaction out of all messages in a cluster.

To motivate the use of these features, consider the Twitter messages in Figure 4.3.
Clusters that include a high percentage of retweets, especially of a single post by a popular
Twitter user (e.g., Justin Bieber’s message, retweeted over 100 times in Figure 4.3), may cor-
respond to endogenous trends that do not contain trending event information (Chapter 3).
Similarly, a high percentage of cluster messages containing replies (e.g., Paris Hilton’s reply

in Figure 4.3) may indicate non-event content, since when people spread event information
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they tend to do so via general broadcast messages rather than individual conversations. On
the other hand, many celebrities, politicians, companies, venues, and shows own Twitter
accounts (e.g., Ashton Kutcher’s show QFFLShow with guest @kurt13warner in Figure 4.3).
Therefore, unlike retweets, a high percentage of Twitter mentions of one of these entities
might imply that the cluster refers to an event, where the entity is an active participant or

the subject of the event.

justinbieber Im thinking pancakes for breakfast... .with some nice
maple syrup. Who doesnt love maple syrup? | love maple syrup....

apout 1o hours ago via web

Top Tweet 100+ Retweets
7 u ParisHilton Paris Hilton
Al @ Thank you Bryant :)
iy h 22 hours ago

aplusk ashton kutcher

Don't miss @FFLShow tonight with @kurt13warner taking off his
dance shoes 2 talk some football. 6:30PM pst
http://ustream.tv/ashton

Figure 4.3: Examples of social interaction on Twitter.

4.2.2.3 Topical Features

Topical features describe the topical coherence of a cluster, based on a hypothesis that
event clusters tend to revolve around a central topic, whereas non-event clusters do not.
Rather, non-event clusters often center around a few terms (e.g., “sleep,” “work”) that do
not reflect a single theme (e.g., with some messages about sleep, others about work, and a
few about sleeping at work). Messages in event clusters are likely to share more terms, as
they identify key characteristics of the events they describe (e.g., “Couric,” “Obama,” and
“interview” are common among messages describing Katie Couric’s interview of President
Obama).

To estimate this coherence of a cluster, we compute the average or median similarity
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of messages to the cluster centroid using the cosine similarity metric. Additionally, we
compute the percentage of messages in the cluster containing the most frequent term, the
second most frequent term, and so on. Finally, we look at how many of the most frequent
terms are contained in at least n% of the messages in the cluster, for empirically determined

values of n.

4.2.2.4 Twitter-Centric Features

While the goal of our classifier is to distinguish between event and non-event data, we
highlight the differences between non-event clusters that correspond to Twitter-centric,
endogenous trends (Chapter 3), and the trending event clusters that we wish to identify.
As discussed above, Twitter-centric activities often exhibit characteristics that resemble
trending events, especially as captured by temporal features, which generally offer a strong
signal for the presence of trending event content. To address this challenge, we design a set
of features that targets commonly occurring patterns in non-event clusters with Twitter-
centric behavior.

Twitter-centric discussions often exhibit unique hashtag usage characteristics (e.g., #when-
imolder tag indicating discussion on things Twitter users wish to do when they get older).
We design features to capture these characteristics and differentiate the Twitter-centric ac-
tivities from other non-event content and from trending events. Specifically, we compute
statistics relating to tag usage, including the percentage of cluster messages that contain
tags, and the percentage of cluster messages that contain the most frequently used tag. A
large value of the latter serves as an indication that the messages in the cluster revolve
around a tagged conversation topic.

Importantly, we also determine if the most frequently used tag is a concatenation of
multiple words. Multi-word tags are highly indicative of Twitter-centric discussions that do
not correspond to trending events (e.g., #firstdaterulez, #BadWrestlingNames). Unfortu-
nately, identifying them is a challenging task since they often contain short-hand notations,
acronyms, and slang that may be difficult to parse. Using a dictionary-based method for
parsing the tags into several terms may be inefficient and difficult to implement due to the

variety of potential terms that may be included in the tags. We have experimented with
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identifying these multi-word tags using such an approach with limited success. Instead,
we design capitalization-based features to detect such multi-word tags: we observed that
when more than one letter of a tag is capitalized by some users, and this capitalization is
consistent among these users, it frequently indicates that a tag consists of multiple words.
Since we do not rely on a dictionary, our approach can be applied to tweets in any language

that uses capitalization rules.

4.2.3 Event Classification

Using the above features, we train an event classifier by applying standard machine learning
techniques (see Section 4.2.4). This classifier predicts which clusters correspond to events
at any point in time (i.e., at any point in the stream). Specifically, to identify event clusters
at the end of hour h, we first compute the features of all clusters with respect to h, and
then use the classification model with each cluster’s feature representation to predict the
probability that the cluster contains event information.

Due to the large volume of data on Twitter, it is possible that at any point in time the
classifier may label many clusters as events. In an event browsing scenario, where users look
for information on current events, it is essential to display a select subset of these identified
event clusters. To that end, we are interested in the ability of our classifier to select the top
events according to their probability of belonging to the event class, with respect to any
point in the stream. Note that a temporal component is built into some of the features,
and we recompute the features prior to classification, so the temporal relevance of the top
selected clusters is inherently captured by our classifier.

We compare the results of our classifier against several baseline approaches next.

4.2.4 Experiments

We evaluated our event identification strategies on a large dataset of Twitter messages. We
describe this dataset and report the experimental settings (Section 4.2.4.1), and then turn

to the results of our experiments (Section 4.2.4.2).
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4.2.4.1 Experimental Settings

Data: Our dataset consists of over 2,600,000 Twitter messages posted during February
2010. We are interested in identifying events both with local and with broad geographical
interest. To ensure that our dataset substantially covers local events, we decided to collect
messages posted by users of one specific location, namely, New York City (i.e., by Twitter
users whose location, as entered by the users and shown on their profile, is in the New York
City area)!. We chose this location as it consistently generated a high volume of tweets.
While the location as reported by Twitter users is not always accurate, it does provide a
reliable approximation | ]. Since we do not currently use location-based signals in
our identification approach (a task that is reserved for future work), focusing on messages
from a specific geo-location does not reduce the generality of our results. We collected
these messages via a script, which continuously requested the most recent messages from
the Twitter API. For each collected Twitter message, we record its textual content, the
associated timestamp (i.e., the time at which the tweet was posted), and the username of
the user who posted the tweet.

We cluster our dataset in an online fashion as described in Section 4.1. We use the
data from the first week in February to calibrate statistics such as term frequency over
time, which are needed to compute our temporal features. We then use the second week of
February to train our event classifiers and baselines. Finally, we report our results on test
data selected from the latter half of February (i.e., Weeks 3 and 4).

Annotations: We use human annotators to label clusters for both the training and testing
phases of our event identification experiments. These annotators were instructed to label
each cluster according to four different categories: event, Twitter-centric activity, other
non-event, and ambiguous. To ease annotation, as a representation of each cluster, the an-
notators were shown the 10 most frequent terms in the cluster, along with their respective
counts, and sample Twitter messages from the cluster. For clusters with more than one
central theme (e.g., with top keywords “south,” “park,” “west,” “sxsw,” and “cartman,”

referring to either the “South Park” show or the “South by Southwest” festival), the anno-

!Note that events with broad geographical interest are also naturally captured in our dataset.
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tators used the ambiguous label. Ambiguous clusters were not used for training, but were
treated as non-events for testing.

For the training set, we randomly selected 504 clusters from the top-20 fastest-growing
clusters according to hourly message volume at the end of each hour in the second week
of February 2010. Each cluster was labeled by two annotators, and their agreement was
measured using Cohen’s kappa (k=0.683), indicating substantial agreement. After removing
34 ambiguous clusters and dropping 96 clusters on which the annotators disagreed, we were
left with 374 clusters.

For the test set, we used 300 clusters collected at the end of five different hours in
the third and fourth weeks of February 2010. These five hours were sampled uniformly at
random from five bins partitioned according to the volume of messages per hour over these
two weeks. This sampling technique assures that we test our classifiers during hours with
different volumes of messages. At the end of each hour we select the 20 fastest-growing
clusters according to hourly volume, the top-20 clusters according to our classifier (Section
4.2.3), and 20 random clusters, for a total of 60 clusters per hour, or 100 clusters per method
over the five hours. We used two human annotators to label each cluster and achieved
substantial agreement (k=0.83). We discuss our handling of annotator disagreements on
the test set in the description of our evaluation.

Training Classifiers: We train a classifier to distinguish between trending event and
non-event clusters (RW-FEvent). We extracted cluster-level features for each cluster in the
training set, as described in Section 4.2.2. We also used a few additional features that did
not fall under the groups described in Section 4.2.2, such as the cluster size and average
length of cluster tweets. We used the Weka toolkit [ | to train our event classifier. We
first applied a resampling filter to balance the class distribution, which was skewed towards
the non-event class, and then we trained and evaluated the classifier using 10-fold cross
validation. We explored a variety of classifier types and selected support vector machines
(specifically, Weka’s sequential minimal optimization implementation) for RW-Event, as it
yielded the best overall performance in exploratory tests over the training set. We also fit
logistic regression models to the output of the support vector machine, to obtain probability

estimates of the class assignment.
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As a baseline, we use a strong text classification approach that identifies events based

on the textual content of the messages in the cluster. Specifically, we trained a Naive Bayes
classifier (NB-Text) that treats all messages in a cluster as a single document, and uses the
tf-idf weights of textual terms as features. This classifier, distinguishing between events and
non-events, is similar to the one used by Sankaranarayanan et al. [ ] as part of their
approach for identifying news in Twitter messages. We train this Naive Bayes classifier
using Weka, with the same methodology described above.
Evaluation: We use our annotated test set of 100 randomly selected clusters to evaluate
the performance of each classifier. For this, we use the macro-averaged F; metric | ].
This evaluation metric is widely used and is effective for evaluating classification results
where it is desirable to assign an equal weight to the classifier’s performance on each class.
Here, macro-averaged Fj is preferable to its alternative, micro-averaged F | |, which
weighs each instance equally, causing predictions on the larger non-event class to dominate
the score. In this evaluation we omit test clusters on which our annotators disagree.

In addition to classification performance, we evaluate our RW-Event classifier’s ability
to identify events among a set of top clusters, ordered by their probability of belonging to
the event class at the end of each hour. We refer to this task as “event surfacing.” Since the
number of clusters in the stream may be large, we only classify clusters that have over 100
messages. Similarly, we do not classify clusters that did not have newly added documents
in the hour prior to the time when we invoke the classifier.

As a baseline for the event surfacing task, we consider the event thread selection ap-
proach presented by Petrovié et al. | |, which selects the fastest-growing threads in a
stream of Twitter messages and then re-ranks them based on thread entropy and unique
number of users. Exploratory experiments on our training data indicated that selecting
clusters based on such re-ranking strategies (i.e., selecting clusters with the highest num-
ber of unique users and entropy above a threshold) yields similar results as selecting the
fastest-growing clusters. Note that the re-ranking strategies were not used to select the
top clusters, which is our goal, and optimizing the selection of fastest-growing clusters that
have the highest number of unique users and low entropy is reserved for future work (in

fact, similar features already exist in our models). In addition to the fastest-growing clus-
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ters baseline (Fuastest), we compare our approach against a technique that selects clusters
randomly (Random).

To evaluate the event surfacing task, we select two standard metrics, namely, Precision @K
and NDCG | ], which capture the quality of ranked lists with focus on the top results.
Precision@QK simply reports the fraction of correctly identified events out of the top-K se-
lected clusters, averaged over all hours. Precision@K is set-based and does not consider
the relative rank of the clusters. An alternative metric that is sensitive to the rank of the
events in the top selected clusters is the normalized discounted cumulative gain (NDCG)
metric. We use the binary version of NDCG | ], to measure how well our approach
ranks the top events relative to their ideal ranking. To handle annotator disagreements
in this scenario, where we need to examine ordered lists, removing the disagreements from
the evaluation is not desirable given the evaluation metrics used. Instead, we penalize the
RW-FEvent classifier if either annotator disagreed with our classifier’s prediction, but only
penalize the baselines if both annotators disagreed with their predicted label. We thus give

the “benefit of the doubt” to the baselines, hence making our results more robust.

4.2.4.2 Experimental Results

We begin by examining the performance of our RW-Event classifier against the NB-Text
baseline classifier on the training and test sets. The performance on the training set reflects
the accuracy of each classifier computed using 10-fold cross-validation. The test performance
measures how well each classification model predicts on the test set of 100 randomly selected
clusters.

Table 4.1 shows the F scores of the classifiers on both the training and test sets. As we
can see, the RW-Fvent classifier outperformed NB-Text over both training and test sets,
showing that it is overall more effective in predicting whether or not our clusters contain
trending event information. A deeper examination of our results revealed that the NB-Text
classifier was especially weak at classifying event clusters, accurately predicting only 25%
of event clusters on the test set. A sample of event clusters identified by RW-FEwvent, and
their most frequent terms, are presented in Table 4.2.

The next set of results describes how well our RW-Fvent classifier performs for the
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Classifier

Validation | Test

NB-Text
RW-Event

0.785 0.702
0.849 0.837

Table 4.1: Fj score of our classifiers on validation and test sets.

Description

Terms

Senator Bayh’s retirement
Westminster Dog Show
Obama & Dalai Lama meet

NYC Toy Fair

Marc Jacobs Fashion Show

bayh, evan, senate, congress, retire
westminster, dog, show, club
lama, dalai, meet, obama, china
toyfairny, starwars, hasbro, lego

jacobs, marc, nyfw, show, fashion

Table 4.2: Sample events identified by the RW-FEvent classifier.
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Figure 4.4: Distribution of labels for our classifier and baselines.
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“event surfacing” task. Recall that the goal of this task is to identify the top events in
the stream per hour. Figure 4.4 shows the distribution of labels for clusters surfaced by
our classifier RW-FEvent and baselines Fastest and Random (Section 4.2.4.1) over the entire
test dataset. In this figure, annotator disagreements were considered as non-event labels.
As this figure clearly shows, RW-FEvent was able to identify about 5 times the number of
events that each baseline technique identified. Interestingly, out of the random sample of
100 clusters, only 12% were labeled as events. Surprisingly, the number of events identified
by Fastest was similar to the number of events identified by Random, implying that the
growth rate of clusters is not an effective indication of event content. However, since Fustest
identified the largest number of clusters that were labeled as “Twitter-centric,” it is possible
that the growth rate of clusters, to some extent, captures the trending behavior that is
characteristic of trends in social media, which include both trending events and Twitter-
centric endogenous trends (Chapter 3).

Since the event surfacing task aims to identify the top-K event clusters in the Twit-
ter stream at each hour, it is important to consider the performance of our classifier and
baselines with respect to the number of event clusters and relative rank of event clusters
identified at each hour. For this, we report Precision@K (Figure 4.5) and NDCGQK (Fig-
ure 4.6) scores for varying K, averaged over the five hours selected for the test set. Not
surprisingly, the proportion of events identified by the Random technique is very low, as
most data on Twitter does not contain event information. The proportion of events iden-
tified by the Fastest technique was higher than that of Random. The RW-FEvent classifier
performed well across the board, better than both baselines according to both precision and
NDCG.

Next, we examine the performance of our classifier and baselines for each of our 5 test
hours, using NDCG computed over the top 20 clusters per hour. Recall that we sampled
the hours for our test set such that the volume of messages per hour varies (Section 4.2.4.1).
Figure 4.7 shows the hourly performance of the alternative event surfacing techniques, for
hours ordered according to increasing message volume. While our classifier still outperforms
the baselines at each hour, this figure reveals several interesting points. First, even though

the performance of all techniques was most similar during the highest-volume hour (i.e.,



CHAPTER 4. IDENTIFICATION OF UNKNOWN EVENTS

AND THEIR CONTENT

NDCG
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Figure 4.5: Precision@K for our classifier and baselines.
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Figure 4.6: NDCGQK for our classifier and baselines.
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I I I L Random
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Hour
Figure 4.7: NDCG@20 of our classifier and baselines for each hour over the test set.

Hour 5), there is no indication that the hourly volume of messages effects the performance
of either RW-FEvent or the baselines. Second, RW-Fvent and Fastest had the worst perfor-
mance on the same hour (i.e., Hour 3), possibly indicating that there was less “fresh” event
content during that hour, since, unlike Random, both of these techniques only consider
clusters that are temporally relevant (e.g., as indicated by the number or percentage of new
documents added to the cluster in recent hours). Since the temporal features we defined
earlier were, not surprisingly, strongly correlated with the presence of event content in a
cluster, reduced trending behavior for event clusters during a particular hour could explain
this slight drop in performance.

Overall, Figure 4.7 shows that our classifier was very successful during three of the test
hours (i.e., Hours 1, 2, and 4), and less successful during two of the test hours (i.e., Hours
3 and 5). Interestingly, these less successful test hours were also chronologically later than
the hours on which RW-FEvent showed the best performance. Still, there are many factors
that might contribute to this variation in performance, such as the availability of new event
content, as discussed above. As another example, for Hour 5, there were several Twitter-
centric clusters that were mistakingly identified by RW-FEvent as events. For some of these
clusters, it was especially difficult to automatically distinguish the endogenous Twitter-
centric characteristics from those of events (e.g., with single-term hashtags like #haiku).

Examining the general mistakes made by the RW-FEwvent classifier, the most prominent
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misclassification occurs in cases where a Twitter user (usually a company or service) posts
messages on a broad topic (e.g., job listings with tags such as #jobs, #nycjobs) using
multiple Twitter accounts and a similar message “template,” complete with hashtags. A
possible reason for this behavior is that features of our model such as the number of messages
from the top author were not adequately captured in the training process. Since we selected
training data by sampling from the fastest-growing clusters per hour, many of our training
examples did not exhibit this behavior and, therefore, we were not able to properly model

it. We plan to explore this behavior further in future work.

4.3 Conclusions

In this chapter, we presented an end-to-end approach for unknown identification of trending
events on Twitter. Specifically, we explored approaches for analyzing a stream of Twitter
messages to distinguish between messages about trending events and non-event messages.
We proposed a general clustering framework for the unknown event identification task, and
customized it to group together topically similar Twitter messages. We then defined a rich
family of revealing cluster-based features, including temporal, social, and topical features.
Importantly, our insights into trending event behavior from Chapter 3 helped us identify
a set of Twitter-centric features, which was used along with the other features to train
state-of-the-art classification models, which, in turn were used to identify events and their
associated Twitter messages. Our techniques offer a significant improvement over baseline
and existing approaches, showing that we can identify trending event content in real time
over a large-scale stream of social media content. We thus help unveil important information
from, and about, real-world events as they are reflected through the eyes of hundreds of
millions of users of Twitter and similar social media sites.

Additional social media sites such as Flickr and YouTube often also contain timely,
unknown content related to events. These sites, unlike Twitter, have a set of associated
context features (e.g., title, description, location) that can provide complementary cues
for determining when social media documents correspond to the same event. In the next

chapter, we explore ways to use these context features in concert, to learn a similarity metric
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for the clustering framework that we introduced in this chapter. Additionally, we propose
ways to improve our clustering framework, using explicit social links (e.g., user comments)

to connect fragmented event clusters.
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Chapter 5

Similarity Metric Learning for

Identification of Unknown Events

With the increasing use of cameras on mobile devices, photo- and video-sharing sites (e.g.,
Flickr, YouTube) are gradually becoming a valuable source of event information captured
during trending events (e.g., natural disasters, political riots) | |. While event doc-
uments on these sites generally lag behind their counterparts on social media sites such
as Twitter, their accompanying multimedia content adds a useful dimension, as evidenced
by the growing use of such content in mainstream media reports [ ]. Such event
documents exhibit opportunities for unknown event identification due to their wealth of
associated context features, including user-provided annotations (e.g., title, tags), and au-
tomatically generated information (e.g., upload or content creation time). Individual fea-
tures might be noisy or unreliable, but collectively they provide revealing information about
events, and this information is valuable to address the unknown event identification prob-
lem.

In this chapter, instead of using a simple text-based document similarity metric for our
clustering framework as we did in Chapter 4, we propose using a variety of context features
in concert, to determine if two social media documents (or a social media document and
a cluster) correspond to the same event. Specifically, in Section 5.1 we explore distinc-

tive representations of social media documents and define appropriate similarity metrics
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for each document representation. We then develop a variety of techniques for combining
these different similarities into a single metric for our clustering framework. We experiment
with ensemble-based and classification-based similarity learning techniques, and use them
in conjunction with a scalable, online clustering algorithm, to generate a clustering solu-
tion where each cluster corresponds to an event and includes the social media documents
associated with the event.

Beyond context features, in Section 5.2 we explore the use of social links (e.g., comment
and authorship connections) for enhancing the results of our cluster-based event identifica-
tion approach. To understand the potential benefits of using social links for this task, we
analyze a network of author comments associated with photographs in a large-scale Flickr
data set. Our exploratory experiments, building on the results of Section 5.1, suggest that
social links can provide a useful indication of document similarity for event identification.

In summary, the contributions presented in this chapter are:

e We develop several techniques for learning a combination of the feature-specific sim-
ilarity metrics, and use them to indicate social media document similarity for our

clustering framework

e We explore ways to use explicit social links between social media documents to improve

the quality of the clusters produced by our framework

e We evaluate our alternative similarity metric learning techniques and social-link-based
cluster merging techniques on two real-world datasets of social media event content

from Flickr

In this chapter, we focus on learning multi-feature similarity metrics that can be used in
conjunction with our proposed clustering framework (Section 4.1). To tailor this similarity
metric to event content, our techniques rely on an assumption that the stream of social media
documents to cluster contains only event documents. Techniques for filtering non-event
content from a stream of social media documents have been previously developed | ;

|, using text classification approaches | ; ] or documents produced by
users who are classified as “seeders” of event information | ]. An interesting direction

for future work is to develop our own pre-clustering non-event filtering approach or use the
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multi-feature similarity metric in our end-to-end unknown event identification approach
described in Chapter 4.

We proceed to describe several social media document representations using a variety
of context features (Section 5.1.1) that we can incorporate into our clustering framework
(Section 5.1.2), and propose alternative models for combining these similarities into a single
clustering similarity metric (Sections 5.1.3 and 5.1.4). We evaluate our techniques on large-
scale datasets of Flickr images (Section 5.1.5), and then explore ways to improve our clus-

tering results using social links (Section 5.2). The bulk of this chapter appeared in [ ;

l.

5.1 Learning Similarity Metrics for Clustering

Given a set of social media documents associated with events, the problem that we address in
this chapter is how to identify the events that are reflected in the documents (e.g., President
Obama’s inauguration, or Madonna’s October 6, 2008 concert in Madison Square Garden),
and to correctly assign the documents that correspond to each event. As in the previous
chapter, we cast our problem as a clustering problem over social media documents (e.g.,
photographs, videos), but with the particular requirement that each document includes a
variety of “context features” with information about the document. Some of these features
(e.g., title, description, tags) are manually provided by users, while other features (e.g.,
upload or content creation time) are automatically generated. Formally, we define the

problem we address in this chapter as follows:

Problem Definition 2 Consider a set of social media documents where each document is
associated with an (unknown) event. Our goal is to partition this set of documents into
clusters such that each cluster corresponds to all documents that are associated with one

event.

As we discussed, our setting assumes a stream of social media documents such that
each document contains event information. However, we do not have any knowledge of the

events that exist in the stream, or which social media document corresponds to which event.
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For this, we employ our clustering framework (Section 4.1) with alternative multi-feature

similarity metrics that we propose, learn, and evaluate in this section.

5.1.1 Social Media Document Representations

As a distinctive characteristic, social media documents, particularly from digital-media-
sharing sites such as Flickr, include a variety of context features that are dependent on the
type of document (e.g., a “duration” feature is meaningful for videos but not photographs).
However, many such sites share a core set of features. These features include: author, with
an identifier of the user who created the document (e.g.,“said&done” is the author of the
photograph in Figure 5.1); title, with the “name” of the document (e.g., “DSC01325” in
Figure 5.1); description, with a short paragraph summarizing the document contents (e.g.,
“radiohead performing” in Figure 5.1); tags, with a set of keywords describing the document
contents (e.g., “apw, All, Points, West” in Figure 5.1); time/date, with the time and date
when the document was published (e.g., August 9, 2008 in Figure 5.1);' location, with
the location associated with the document (e.g., Jersey City, New Jersey in Figure 5.1).
These context features, collectively, will prove helpful for capturing social media document
similarity and, in turn, for identifying events and their associated documents, as we discuss
next.

The context features of social media documents provide complementary cues for deciding
when documents correspond to the same event. Individual features are often insufficient
for this purpose, and all features collectively provide more reliable evidence. For example,
the description of two images associated with the same event (e.g., the “All Points West”
music festival) might be ambiguous or not very revealing (e.g., the description might read
“my favorite band in concert” and “radiohead in concert”); but the images’ time/date and
location (e.g., August 8, 2008, Liberty State Park, New Jersey) provide strong evidence
that they are likely to be about the same event.

In this section, we consider social media document representations using each individual

feature, according to its type (e.g., textual or time data). In addition, we use one textual

!Often documents include their capture or creation time (e.g., capture time/date, August 8, 2008 in

Figure 5.1).



CHAPTER 5. SIMILARITY METRIC LEARNING FOR
IDENTIFICATION OF UNKNOWN EVENTS 81

DSC01325

Uploaded on August 9, 2008
by said&done

Tags

Additional Information

l Some rights reserved
o]

Jersey City, New Jersey
map
Sony Ericsson K810i
More properties
August 8, 2008

radiochead performing

Figure 5.1: A Flickr photograph associated with the “All Points West” music festival event.

document representation that contains the textual representations of all the document fea-
tures (title, description, tags, time/date and location). This representation, all-tect, is
commonly used in similar domains [ | and similar to the representation we used in
Chapter 4 (although we did not use a textual representation of the time/date feature).
Next, we list the key types of features we extract from social media documents, and
define individual similarity metrics for these feature types. It is possible, of course, to
cluster the documents by using individual features according to an appropriate similarity
metric. Such a clustering approach is not ideal, since it does not exploit the wealth of
context features collectively; instead, the rest of this section describes strategies to consider
the similarity metrics in concert.
Textual features: To exploit the various context features for our clustering task, we define
a similarity metric for each feature, in a way that is appropriate for the feature’s domain.
Specifically, we represent each textual feature (e.g., title, description, tags) as a tf-idf weight
vector and use the cosine similarity metric, as defined in [ ], as the feature similarity

metric. We considered alternative tf-idf formulas such as Okapi [ |; however, they did
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not perform as well, so we do not discuss them further.

In addition, we considered traditional text processing steps such as stop-word elimination
and stemming, and examined the effect of each of these with respect to the individual
textual features. Instead of applying the same text processing treatment to all features, we
conjectured that only some features would benefit from stemming or stop-word elimination.
For instance, since tag keywords are meant to be a select set of descriptive keywords for the
contents of the social media document, stop-word removal may not be appropriate (e.g.,
removing the tag “All” in our “All Points West” example). We empirically determined the
appropriate stemming and stop-word settings for each textual feature (see Section 5.1.5.1).
Time/date: For time/date, an important feature in social media documents, we represent
values as the number of minutes elapsed since the Unix epoch (i.e., since January 1, 1970)
and compute the similarity of two time/date values t; and t9 as follows: if ¢; and ¢9 are more
than one year apart, we define their similarity as 0 (it is unlikely that the corresponding
documents are associated with the same event in this case); otherwise, we define their

t—t . . .
‘171/2', where ¥ is the number of minutes in a year.

similarity as 1 —
Location: For location metadata associated with social media documents, we represent
values as geographical coordinates (i.e., latitude-longitude pairs) and compute the similarity
of two locations £1 = (lat1,long;) and Lo = (lata,longs) as 1—H (L1, L2), where H(.) is

the Haversine distance [ |, an accepted metric for geographical distance.

5.1.2 Clustering Quality Metrics and Parameter Settings

Recall that our clustering algorithm presented in Section 4.1 relies on two input parameters,
a threshold p and a similarity metric o(d, ¢). As we discussed, the similarity o(d, ¢) between
a document d and a cluster ¢ can be computed by comparing the features of d to those of
the cluster ¢; or by directly comparing d to the documents in cluster c¢. In this chapter,
we propose methods that use both approaches. In Section 5.1.3.2, we describe a simple
similarity approach, comparing d to every document in the cluster ¢, and define o(d,c)

as the average similarity score, for a suitable document similarity metric. In other words,

o(dd)
el

we can define o(d,c) = >, ce This approach is not efficient because it requires

comparing document d against every document in cluster c.
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A more efficient approach is to represent each cluster using the centroid of its documents.
Depending on the document representation we use (see Section 5.1.1), our centroids can be
the average tf-idf score per term (for textual document features such as title, description,
tags), the average time in minutes (for time/date), or the geographic mid-point (for location)
of all documents in ¢. We use the centroid similarity approach in the majority of our
techniques, described in detail in Sections 5.1.3.3 and 5.1.4.

To tune the clustering threshold for a specific dataset, we run the clustering algorithm
on a subset of labeled training data. We evaluate the algorithm’s performance on the
training data using a range of thresholds, and identify the threshold setting that yields the
highest-quality solution according to a given clustering quality metric. Although several
clustering quality metrics exist (see [ 1), we focus on Normalized Mutual Information
(NMI) | : | and B-Cubed | ]. Both NMI and B-Cubed balance our
desired clustering properties: maximizing the homogeneity of events within each cluster,
and minimizing the number of clusters that documents for each event are spread across.

NMI is an information-theoretic metric that was originally proposed as the objective
function for cluster ensembles | ]. NMI measures how much information is shared
between actual “ground truth” events, each with an associated document set, and the
clustering assignment. Specifically, for a set of clusters C' = {e¢1,...,c;} and events
E = {e1,...ex}, where each ¢; and e is a set of documents, and n is the total num-
ber of documents, NMI(C, E) = %, where I(C,E) =37, >, |ekgc"‘ log "‘J:Hlﬁ‘,
H(C) = -3, ﬁi‘log@ and H(E) = =%, %log |eﬂ—’“‘ NMI can be interpreted as the

n

harmonic mean of cluster homogeneity and completeness, as defined by Rosenberg and
Hirschberg | ]. We present a proof of this claim in Appendix A.

B-Cubed estimates the precision and recall associated with each document in the dataset
individually, and then uses the average precision P, and average recall R, values for the

dataset to compute B-Cubed = 21'35 ig:. For each document, precision is defined as the

proportion of items in the document’s cluster that correspond to the same event, and recall
is defined as the proportion of documents that correspond to the same event, which are also
in the document’s cluster.

As we mentioned, the choice of clustering quality metric serves an important role in our
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clustering approach since it is used to tune the threshold parameter p. Although NMI and
B-Cubed capture the clustering properties that we are interested in, it is not always the case
that the best threshold setting according to NMI is also the best setting according to B-
Cubed. In order to select the threshold setting that optimizes both metrics, we use a single
aggregate objective function, averaging NMI and B-Cubed. The threshold setting that
yields the highest average NMI and B-Cubed value is considered Pareto optimal | ],
meaning that we cannot find a threshold with higher NMI value that does not have a lower

B-Cubed value and vice versa.

5.1.3 Ensemble-based Similarity

Our first attempt at learning a similarity metric using the wealth of context features present
in social media documents involves an ensemble algorithm, which considers each feature as
a weak indication of social media document similarity, and combines all features using a
weighted similarity consensus function. Ensemble clustering is an approach that combines
multiple clustering solutions for a document set | ; ; ]. The advan-
tage of using an ensemble approach is its ability to account for different similarity metrics
during the clustering process, by learning their optimal weighted contribution to the final
clustering decision. In this section, we discuss ensemble clustering and show how we use it
in conjunction with our clustering framework from Section 4.1 to learn a similarity metric

for social media documents.

5.1.3.1 Training a Cluster Ensemble

The first step in any ensemble clustering approach is to select techniques for partitioning the
data. These techniques, also referred to as clusterers (Cy, ..., Cy, in Figure 5.2(b)), produce
mappings from documents to clusters. Each of these techniques should have a unique view
of the data (Ry,..., R, in Figure 5.2(a)), or use a different underlying model to generate
the data partitions. For our ensemble, we select clusterers that partition the data using
the different social media features and appropriate similarity metrics discussed in Section
5.1.1. In particular, we have separate clusterers for features such as title, description, tags,

location, and time. Following the logic of Section 4.1, we use the single-pass incremental
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clustering algorithm for each feature individually, with its respective similarity metric from
Section 5.1.1, as the clustering similarity function o. We tune the threshold p for each
clusterer on a set of training data, and select the best threshold based on each clusterer’s
performance according to NMI and B-Cubed (see Section 5.1.2). This results in clusterers

Cy,...,Cp (Figure 5.2(b)).

R1 Sims C1 G
Wi
Rz s Cz e e C:
- ™ Wm -
sim I:C)
Rm = Cm C:
(a) (b) (d)

Figure 5.2: A conceptual diagram of an ensemble clustering process.

The clustering quality metrics described in Section 5.1.2 serve two important purposes
in our ensemble approach. The first, as previously mentioned, is to select the most suitable
threshold setting for each clusterer. The second is to assign a weight to each clusterer,
indicating our confidence in its predictions. The weights are assigned during a supervised
training phase, and used to determine each clusterer’s influence on the overall ensemble
similarity assignment. By assigning a weight to a clusterer, we indicate how successful the
clusterer was in capturing document similarity on a training set, and, therefore, how likely
it is to correctly indicate the similarity of unseen document pairs.

Once we select the best performing thresholds for all clusterers C1, ..., Cy,, we set their

weights wy, . .., wy, to equal their respective combined NMI and B-Cubed scores (see Section
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5.1.2), and then normalize the ensemble weights such that )", w; = 1. In the conclusion
of the ensemble training phase, we have learned an optimal threshold for each clusterer, as
well as a quality measure that will be used to weigh its decisions. With this information,
we can proceed in two distinct ways: the first is to combine individual clusterer partitions
as in the traditional ensemble clustering setting (Section 5.1.3.2), and the second is to use
the learned weights and thresholds as a model for the similarity metric, without further
influence from the individual clusterers (Section 5.1.3.3). We elaborate on these approaches

next.

5.1.3.2 Combining Individual Partitions

The first ensemble-based approach for learning a similarity metric follows the traditional
cluster ensemble framework | ] that utilizes individual clusterers’ similarity judgments
on document pairs. Given a set of documents, we use each clusterer with its learned thresh-
old to generate a clustering partition. Our challenge is to develop a consensus mechanism
for combining these individual partitions into one clustering solution (Ci,...,C, in Figure
5.2(d)). The consensus that our algorithm reaches using the clusterers’ similarity judgments
is translated into a similarity metric o that can be used in our general clustering framework
(Section 4.1).

Intuitively, each clusterer can be regarded as providing an expert vote on whether two
documents belong in the same cluster. The consensus function we use is a weighted binary
vote: for a pair of documents (d;,d;) and clusterer C, we define a prediction function

2. Then, we

Pc(d;, dj) as equal to 1, if d; and d; are in the same cluster, or 0 otherwise
compute the consensus score for d; and d; as )~ Pc(d;, d;) - we, where we is the weight of
clusterer C'. For example, consider a simple ensemble with three clusterers Ciime, Clocation
and Ciqgs, whose weights are 0.25,0.35, and 0.4, respectively. To determine whether two
documents d; and d; belong in the same cluster, we compute their prediction Pg,(d;, d;), for
i = time, location, and tags. Suppose that Ciime and Cioeation cluster d; and d; together,

but Ciegs does not. The consensus score for d; and d; is then 0.25+0.35=0.6.

Note that our general single-pass incremental clustering algorithm has to compare each

2Similarly, we can use the raw similarity score.
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document to existing clusters at every step. However, in the cluster ensemble formulation
we can only obtain the clusterers’ similarity judgments for document pairs. Therefore, in
order to measure the similarity of a document to a cluster, we compare the document against
all documents in the cluster using the ensemble consensus function, and use the average
consensus score as our similarity metric o for this document-cluster pair.

Learning a similarity metric using this ensemble approach yields a simple model, which
uses a weighted combination of the data partitions obtained by clustering according to
each feature and corresponding similarity metric from Section 5.1.1. While this approach
provides an intuitive solution that models the contribution of each feature-specific similarity
in a clustering context, one of its main drawbacks is its best-case quadratic running time in
the size of the dataset. Therefore, in the next section we consider a modified approach that
still uses the knowledge from the ensemble training phase to combine the similarity metrics,

while at the same time improves efficiency with a centroid-based similarity technique.

5.1.3.3 Combining Individual Similarities

The second ensemble-based technique for learning a similarity metric uses the threshold
and weight assignment learned in the ensemble training phase (Section 5.1.3.1) as the only
input from the clusterers. Instead of computing the consensus score using the clusterers’
predictions, we now compute the documents’ feature-specific similarity metrics directly for
documents and cluster centroids. The advantages of this modification to the ensemble
similarity learning technique include improved efficiency via the use of centroids, providing
for a more direct similarity metric computation.

To compute a similarity between a document d; and a cluster centroid cj, we repeat
the same decision procedure for the similarity of document pairs, described above, us-
ing the weight and threshold that we learned for each individual feature. For similar-
ity metric o¢, threshold pc, and weight we associated with a clusterer C, we define
Pc(di,c¢j) = 1if oc(di,¢j) > pe, and 0 otherwise, and compute the combined similar-
ity metric )~ Pc(di, ¢;) - we. Note that while this formulation of the similarity function
uses a weighted binary vote for each feature, we could alternatively use the raw similarity

score, as we suggest in the next section.
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Note that we can now use the one-pass incremental clustering algorithm with centroid
similarity. Depending on the document representation, the centroid is either the average
tf-idf score per term (for textual features such as title, description, tags), the average time
in minutes (for time/date), or the geographic mid-point (for location). Centroids can be
updated and maintained with little cost using the general framework described in Section

4.1.

5.1.4 Classification-based Similarity

In this section, we use classification models to learn document similarity functions for social
media, as an alternative to the ensemble-based approach. In other words, we use a classifier
with similarity scores as features to predict whether a pair of documents belongs to the
same event. Formally, given a pair of social media documents d; and dj, we compute the
raw similarity scores o1(d;,d;), ..., om(d;,d;), corresponding to the document features and
individual similarity metrics defined in Section 5.1.1. Using this formulation of the problem,
we are able to utilize a variety of state-of-the-art classification algorithms for learning the
combined similarity metric o for our general clustering framework.

Before we can train a similarity metric classifier, we must decide whether to model
similarity between document pairs, or documents-centroid pairs. Although we are interested
in learning a similarity metric that would indicate when social media documents correspond
to the same event, in our clustering framework we compare documents to cluster centroids.
Therefore, we consider the alternative of training the classifiers on document-centroid pairs,
which more closely resembles the data that the classifier will be predicting on.

Intuitively, modeling the similarity between documents and centroids would be more
robust than modeling similarities between document pairs. For example, consider a pair of
documents that does not share any tag keywords, yet relates to the same event. Having
this pair as a positive example (i.e., the documents are about the same event) provides
a false indication that tag keywords do not contribute towards a positive prediction. For
centroids, since we aggregate and average the tf-idf values of multiple documents, there
exists a better chance to capture some overlapping tag vocabulary and, therefore, to more

accurately gauge the contribution of tag keywords to the overall similarity metric.
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One key challenge for the classification-based approach involves the selection of training
examples from which to learn the similarity classifiers. Ideally, we want our model to cor-
rectly predict the similarity of every document to every other document (or every centroid,
based on the modeling choice described above) in the dataset. However, creating a training
example for each document (or document-centroid) pair results in a skewed label distri-
bution, since a large majority of pairs in the training dataset do not belong to the same
event. Using a classifier trained with a skewed label distribution as a similarity metric for
clustering yields poor clustering solutions since this classifier is much more likely to predict
that two items do not belong in the same cluster, thus splitting single events across many
clusters.

With this in mind, we can outline two sampling strategies to balance the label distri-
bution. The first strategy is to take the first n documents in the training set according to
their upload time, and compare them to every other document in that set. In the case of
document-centroid similarities, we compare each document against all centroids, which are
computed in advance for each event. To handle the skewed label distribution, we produce
a random subsample of this data such that the number of positive and negative examples
is balanced. We empirically found that generating a subsample that is 10% of the original
sample size, with a balanced label distribution, yields a more accurate similarity metric
classifier than other sampling techniques that we experimented with.

The second strategy is to select documents at random, pairing each document with one
positive example, randomly selected from the set of documents that share the same event,
and one negative example, randomly selected from the set of documents related to different
events. For document-centroid pairs, we only have one choice for the positive example
per document, but we randomly select among different event centroids for the negative
document-centroid pair.

For this family of similarity metric learning techniques, we consider a variety of state-of-
the-art classification algorithms, and train them using the datasets discussed in this section.

We elaborate on our choice of classifiers and the training process in the next section.
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5.1.5 Experiments

We evaluated our work on a large dataset of real world data from popular social media sites,

with these goals:

e Examine which sampling and modeling methods, and what classification algorithms

perform well for the classification-based approach.

e Determine which similarity metrics and techniques perform best for the event identi-

fication task.

e Gain insight about these approaches by analyzing the weights that the similarity

metric learning approaches assign to each feature-specific similarity.

We report on the dataset and experimental settings, then turn to the results of our experi-

ments.

5.1.5.1 Experimental Settings

Data: For our experiments, we collected two datasets of labeled event photographs from
Flickr, a popular photo-sharing service, using the site’s API3. The Upcoming dataset consists
of all photographs that were manually tagged by users with an event id corresponding to
an event from the Upcoming event database?. These Upcoming tags provide the “ground
truth” for our clustering experiments. Each photograph corresponds to a single event, and
each event is self-contained and independent of other events in the dataset. The Upcoming
dataset contains 9,515 unique events, with an average of 28.42 photographs per event, for
a total of 270,425 photographs, taken between January 1, 2006, and December 31, 2008.
Our second dataset is the Last.fm dataset, which consists of all Flickr photographs that
were manually tagged by users with an id corresponding to an event from the Last.fm music

event catalog®. The Last.fm dataset contains 24,958 unique events, with an average of 23.84

Shttp://www.flickr.com/services/api
4http://www.upcoming.org

Shttp://www.last.fm/events


http://www.flickr.com/services/api
http://www.upcoming.org
http://www.last.fm/events

CHAPTER 5. SIMILARITY METRIC LEARNING FOR
IDENTIFICATION OF UNKNOWN EVENTS 91

photographs per event, for a total of 594,946 photographs, taken between January 1, 2006,
and December 31, 2008.

The context features associated with each photograph include the title, description,
tags, time/date of capture, and location. On average, 32.2% of the photos include location
information in the form of geo-coordinates. On this subset of the data, we perform reverse
geo-coding using the Flickr API, to obtain a textual representation of the location of each
photo, which we use for the all-text feature.

Training Methodology: We train our clustering algorithms on data from the Upcom-
ing dataset, and test them on unseen Upcoming data, as well as Last.fm data. We order the
photographs in the Upcoming dataset according to their upload time, and then divide them
into three equal parts. We use the earliest two thirds of the data as training and validation
sets. We use the training set to tune the clusterer thresholds for the ensemble-based tech-
niques and train classifiers for the classification-based techniques. We use the walidation
set to learn the weights for the ensemble and tune the threshold for the general single-pass
incremental clustering algorithm. The last third of the Upcoming data and all of the Last.fm
data are used as test sets, on which we report our results. We chose a time-based split since
it best emulates real-world scenarios, where we only have access to past data with which
we can train models to cluster future data. We train our similarity metrics once and for
all, without adapting them as we observe more data. Dynamically modifying the similarity
metrics as new documents arrive is reserved for future work.

Document Representations: The Lemur Toolkit® is used to index our documents
according to each textual representation discussed in Section 5.1.1. These representations
include Title, Tags, Description, and All-Text. We use all possible settings of stemming
and stop-word elimination for each document representation, and create a separate index
for every possible combination. We use the index to compute tf-idf vectors for each textual
document representation. Finally, we create additional document representations using
numeric time/date (Time/Date-Prozimity) and location coordinates (Location-Proximity)
as described in Section 5.1.1. If a document representation cannot be created due to missing

data (e.g., an unspecified location), we assign it a similarity value of 0 to any other document

Shttp://www.lemurproject.org
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for this representation.

Weighing Clusterers: For the ensemble-based approaches, we use Lemur’s single-
pass incremental clustering implementation to cluster the training data according to each
document representation and corresponding similarity metric from Section 5.1.1. We tune
the clustering threshold for each clusterer using the training set, considering thresholds
in the range [0, 1], with 0.05 increments. For time and location features, we apply log
scaling to the similarity metric in order to perform the selection of thresholds with a finer
granularity, as appropriate to those metrics. For each document representation, we select
the threshold that yields the highest combined NMI and B-Cubed score (Section 5.1.2). For
textual document representations, we select one threshold setting per feature and associated
parameter settings (stemming and stop-word elimination). We use the best-performing
setting for each textual representation when creating future document representations for
that feature. The best settings for Title and Description were no stemming or stop-word
elimination, while Tags benefited from stemming and All-Text from stop-word elimination.

We proceed to cluster the validation set according to each document representation and
corresponding similarity metric, using the selected threshold setting for each clusterer. To
determine the weight of each clusterer, we compute its combined NMI and B-Cubed scores
on the validation set. Finally, we run the ensemble algorithm on the validation set using
the selected clusterers, and tune the clustering threshold for the ensemble approach using
NMI and B-Cubed.

Training Classifiers: To train similarity classification models (Section 5.1.4), we used
the training set to construct four training samples according to the modeling and sampling

strategies that we discussed in Section 5.1.4:

e TIME-DD: all possible document-document pairs from the first 500 documents or-

dered according to their time of creation.

¢ RANDOM-DD: 10,000 document-document pairs chosen randomly from all possible

pairings between documents.

e TIME-DC: all possible document-centroid pairs from the first 500 documents, ordered

according to their time of creation, and their corresponding centroids.
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¢ RANDOM-DC: 10,000 document-centroid pairs chosen randomly from all possible

pairings between documents and centroids.

For the document-centroid modeling approach, we computed all event centroids based on
the ground truth labels.

We used the Weka toolkit [ ] to build classifiers for all of the above training sets.
We explored a variety of classifier types and selected two techniques that yielded the best
overall performance in preliminary tests using the training set, although differences were not
substantial. We selected support vector machines (Weka’s sequential minimal optimization
implementation), and logistic regression.

Comparing Techniques: We consider all individual clusterers as baseline approaches,
namely, All-Text, Title, Description, Tags, Time/Date-Proximity, and Location-Prozimity.
We compared them against our clustering approaches using four different similarity metric

learning techniques:
e ENS-PART: Ensemble-based approach, combining partitions (Section 5.1.3.2).
e ENS-SIM: Ensemble-based approach, combining similarity scores (Section 5.1.3.3).
e CLASS-SVM: Similarity classifier, using Support Vector Machines (Section 5.1.4).
e CLASS-LR: Similarity classifier, using Logistic Regression (Section 5.1.4).
To evaluate the clustering solutions of these different techniques, we use the clustering
quality metrics of Section 5.1.2, namely, NMI and B-Cubed.
5.1.5.2 Experimental Results

We begin with the task of finding the best modeling and sampling strategies for the
classification-based techniques, which is of course critical for the performance of these ap-
proaches. We trained a classifier using support vector machines and logistic regression for
the different sampling and modeling strategies, and tested the quality of clustering results
for each classifier and sampling method. The results are shown in Table 5.1, indicating that
time-based sampling is consistently superior to random sampling according to both NMI

and B-Cubed. Similarly, the document-centroid modeling techniques yield higher-quality
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Algorithm Sample NMI | B-Cubed
CLASS-SVM TIME-DC 0.9492 | 0.8226
CLASS-SVM TIME-DD 0.9396 0.7868
CLASS-SVM | RANDOM-DC | 0.9082 0.6954
CLASS-SVM | RANDOM-DD | 0.8227 | 0.4180

CLASS-LR TIME-DC 0.9508 | 0.8258

CLASS-LR TIME-DD 0.9360 0.7743

CLASS-LR | RANDOM-DC | 0.8991 0.6483

CLASS-LR | RANDOM-DD | 0.8257 | 0.4360

Table 5.1: Performance of classification-based techniques using different sampling strategies

over the validation set.

Algorithm NMI | B-Cubed
All-Text 0.9240 0.7697
Tags 0.9229 0.7676
ENS-PART | 0.9296 0.7819
ENS-SIM 0.9322 0.7861
CLASS-SVM | 0.9425 0.8095
CLASS-LR | 0.9444 | 0.8155

Table 5.2: Performance of all similarity metric learning techniques and the best individual

clustering techniques over the Upcoming test set.

clustering solutions than techniques that model similarity between document pairs. There-
fore, we proceed to test our classification-based techniques using classifiers trained on the
time-based document-centroid training sample (TIME-DC).

Next, we compared our similarity metric learning techniques against each other, as well
as against the top performing individual clusterers, on the Upcoming test set. Table 5.2
presents the clustering performance of all similarity metric learning techniques, as well as

the All-Text and Tags clusterers, in terms of NMI and B-Cubed. Not surprisingly, the top

performing individual clusterer is All-Text.
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Title Date Location #Docs
Street Art Photowalk | 7/14/08 London 411
Cherry Blossom Festival | 4/12/08 | San Francisco | 269
American Music Union | 8/8/08 Pittsburgh 209
How Weird Street Fair | 5/4/08 | San Francisco 52

Table 5.3: Some events identified by CLASS-LR.
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Figure 5.3: NMI scores on the Upcoming test dataset.
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More importantly, the similarity metric combination approaches that we consider in

this work outperform all individual clusterers, including All-Text (which also considers all

document features, but with a single text-based similarity metric). Among the similarity

metric learning techniques, the classification-based techniques CLASS-SVM and CLASS-
LR outperform the ensemble-based techniques ENS-PART and ENS-SIM. CLASS-LR is the

best overall technique in terms of both NMI and B-Cubed. The least successful of our tech-

niques is ENS-PART, implying that learning the similarity metric directly is more effective

than combining individual feature-based clustering partitions. Some events identified by

CLASS-LR are shown in Table 5.3.

We also compared our techniques using the Last.fm dataset as an independent test
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Figure 5.4: NMI scores on the Last.fm test dataset.
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Figure 5.5: B-Cubed scores on the Upcoming test dataset.
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Figure 5.6: B-Cubed scores on the Last.fm test dataset.

set (with the training and validation set from the Upcoming dataset). As Figures 5.3-5.6
show, the test on the Last.fm dataset resulted in similar, albeit not identical, outcomes.
In that test, all similarity metric learning techniques still outperform the baselines, but
the top-performing technique is now ENS-SIM. Recall that the analysis of our techniques
is performed over data from Flickr, with one dataset containing content annotated with
events from Upcoming, and the other from Last.fm. Different properties of Last.fm events
compared to Upcoming events could be the source of these relative performance differences
(e.g., Tags similarity is better than All-Text for the Last.fm dataset), in which case ENS-
SIM may be most robust in the face of these differences. Interestingly, the strong results for
all methods over Last.fm are encouraging, as some real-world scenarios will require training
on datasets different than the eventual data to be analyzed.

To determine if our results are statistically significant, we executed a set of tests by
partitioning the Upcoming test dataset into 10 equal subsets according to document upload
time, and ran each clustering technique on every subset. We discuss detailed results only
for the NMI metric (while trends for B-Cubed were equivalent to trends observed for NMI,
the differences between approaches as measured by B-Cubed were not as significant). We

used the Friedman test [Dem06], a non-parametric statistical test for comparing a set of
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Figure 5.7: Comparison of all techniques using the Nemenyi test. Groups of techniques

connected by a line are not significantly different at p < 0.05.

alternative models. The Friedman test’s null hypothesis states that all the approaches have
similar performance. The results of the test comparing the 10 runs show that we can reject
this null hypothesis with p < 0.05, meaning that the performance of some approaches is
significantly different.

A post-hoc statistical test is required to expose the relationship between the individual
techniques. Figure 5.7 shows the results of the post-hoc analysis of our data using the
Nemenyi test and the graphical representation as proposed by Demsar to visualize the
relationships between the techniques [ ]. Techniques are plotted according to their
average rank for the test datasets, and a line spans each group of techniques that is not
different in a statistically significant manner. The figure demonstrates that, for the 10 tests,
while CLASS-SVM and CLASS-LR are significantly better than both baseline approaches,
they are not significantly different from each other, or the other similarity metric learning
techniques, at the p < 0.05 level. For p < 0.1, we can claim that CLASS-SVM is also
significantly better than ENS-PART.

Since NMI can be intuitively interpreted as the harmonic mean of the clusters’ homo-
geneity and completeness scores (Appendix A), we also examine our competing approaches
using these metrics. Figure 5.8 shows the homogeneity scores of our similarity metric learn-
ing techniques and baselines on the Upcoming test set. Interestingly, even though CLASS-
LR has a higher NMI score than CLASS-SVM, CLASS-SVM produced clusters that are
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Figure 5.8: Homogeneity scores on the Upcoming test dataset.

more homogenous, with a larger proportion of documents in each cluster corresponding to
the same event, compared to CLASS-LR. Another interesting insight is that Tags has a
higher homogeneity score than All-Text, which implies that the Tags similarity metric is
more precise but less inclusive than the All-Text similarity.

To complement the homogeneity results, we report the completeness scores of our simi-
larity metric learning techniques and baselines on the Upcoming test set. Here, we see that
the completeness score of CLASS-SVM is lower than that of CLASS-LR, which explains
why the NMI score, which balances homogeneity and completeness, indicated that CLASS-
LR is the best approach. Recall from our discussion of cluster quality metrics (Section
5.1.2) that homogeneity and completeness are the two properties of the clustering solution
that we aim to optimize. Therefore, while CLASS-SVM may be better than CLASS-LR
according to homogeneity, CLASS-LR is better in terms of completeness, and, importantly,
strikes a better balance between these two properties. This is also the case for Tags, whose
completeness score is the lowest overall, again supporting our claim that tag-based similar-
ity is very conservative and, therefore, spreads event documents across more clusters than
All-Text.

To gain more insight into the results of the various techniques, we analyzed the similarity
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Figure 5.9: Completeness scores on the Upcoming test dataset.

metric models. Since the techniques use different modeling assumptions, we examined their
differences in terms of the weight coefficients that they assign to each similarity feature.
These coeflicients, while not comparable in absolute terms, hint at the relative contribution
of each similarity feature towards the model’s final similarity prediction. CLASS-LR con-
siders All-Text as the most important feature, followed by Time/Date-Prozimity. CLASS-
SVM, on the other hand, considers Title, followed by All-Text as the top two features. A
surprising result is that both classifiers agree that, in the presence of all other features,
Location-Proximity is an indication of document dissimilarity. In contrast, our ensemble
model gives the lowest weights to Title and Time/Date-Prozimity, and Location-Proximity
has the third highest weight (after Tags and All-Text). These observations can form the

basis of a more detailed analysis in the future.

5.2 Exploiting Social Links

In the previous section, we focused on learning social media document similarity metrics,
and used them in conjunction with a scalable clustering algorithm. As we discussed, ideally

each cluster corresponds to an event and includes the social media documents associated
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with the event. While this work significantly outperformed the appropriate baselines, it
did not exploit the variety of social links available in social media sites. We expect social
links to be useful in situations where we cannot determine if documents are similar based
on their context features alone (e.g., often documents have missing location information).
Therefore, we explore ways to judiciously leverage social links for event identification, to

complement the similarity learning models identified in the previous section.

5.2.1 Link-based Similarity

Links such as social network connections, comments, and shared group memberships provide
important cues for document similarity in social media. To understand the potential benefits
of using (inherently noisy) social links for our event identification task, we analyzed the
network of author comments associated with photographs in (a 90,288-document subset
of) a large-scale Flickr data set (see Section 5.2.2). Out of the distinct document authors
in the data set, 45% commented on some other author’s document. Interestingly, 44% of
authors who made such comments did so purely within one event (i.e., these authors created
documents for an event and only commented on documents for that event, not others).
Furthermore, 80% of authors made more comments on documents inside events on which
they have published content than on documents for other events in the data set. These
exploratory statistics hint that social links (e.g., based on author-comment relationships)
might help in identifying event content.

We consider different ways to incorporate social links into a document similarity met-
ric. One way is to use different types of link-based similarities on context features (e.g.,
author) as features for a similarity metric learning model. These similarities may be binary
indicators of the authors’ social network connections, shared group memberships, and so
forth. In isolation, these features are not very revealing, but combined with other similarity
metrics (e.g., based on the documents’ context features) they may prove helpful for cap-
turing document similarity. However, incorporating social links into the similarity models
is a challenging task: for ensemble-based models (Section 5.1.3), clusterers using just link-
based similarities will likely group together many documents relating to different events,

and create a large number of singleton clusters where no links exist; for classification-based
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models, the true contribution of link-based similarity features might be difficult to capture,
since social links are often sparse.

While social links between document pairs may be too weak to capture similarity, links
between clusters of documents may be more revealing. We observed that when our clus-
tering algorithm (Section 4.1) incorrectly splits an event across multiple clusters, it is often
due to insufficient similarity between the event’s documents rather than due to a strong
similarity to documents from other events. As a result, many “pure” clusters, where all
documents in the cluster belong to the same event, are created. In a preliminary analysis
performed over clusters created by applying our algorithm to (a 90,288-document subset
of) the Flickr data set (Section 5.2.2), we found that 24% of the events were split across
multiple clusters, and half of these were split into “pure” clusters exclusively. These “pure”
clusters represent a simple case where strong evidence of social links between two clusters
could help us detect that they belong to the same event.

Therefore, we proceed to explore this alternative direction, using links between social
media document clusters to learn whether they should be merged. We analyzed social links
in the form of author comments on social media documents within Flickr. Out of the set
of distinct authors of documents in our data, 45% commented on some other author’s doc-
ument. Interestingly, 44% of authors who made such comments did so purely inside events
(i.e., commented on documents relating to the same events as documents they posted)
and 80% of authors made more comments on documents inside events than on other event
documents in the dataset. Figure 5.10 shows the authors’ comments graph, where each
node corresponds to an author, and a directed link from one author to another indicates
that the author commented on the other’s document. The documents are grouped together
according to their cluster assignment. The clusters in Figure 5.10 are two “pure” clusters
corresponding to the same event. The strong links between these clusters provide encour-
aging evidence that social links may be useful to detect social media document similarity

where feature-based metrics alone are unable to.
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Figure 5.10: Comments between authors in two event clusters.

5.2.2 Exploratory Experiments

We describe our exploratory experiments using author-comment links associated with Flickr
photographs to improve the clustering results of a classification-based similarity model based
on logistic regression (CLASS-LR). We perform our experiments over the Upcoming dataset
described in Section 5.1.5.1. Specifically, we develop our social link-based cluster merging
strategies on the validation set and then report the results of the entire procedure (clustering
and merging) on the test set.

To decide whether to merge any pair of clusters, we train a learning model using the
comments associated with each document across “pure” cluster pairs. We consider a variety
of link-based features, including the total number of comments between authors in the
clusters, the number of mutual comments (i.e., author A; from cluster C; commented on
the document of author A, in cluster Cy and vice versa), and the percentage of shared
comments out of all comments associated with each cluster in the pair.

In our learning scenario, we would like to avoid false positives: a false positive corre-
sponds to merging clusters for different events and hence hurts the quality of the initial
clustering solution on which we build. Therefore, we use a cost-sensitive classification
approach, training a model that assigns the highest cost to false positive errors. We experi-

mented with different classification models and cost values using the Weka toolkit | ],
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Model NMI | B-Cubed
CLASS-LR 0.9508 0.8155
Merge-ALL 0.8689 0.6765

Merge-FCEFS | 0.9404 0.7923
Merge-FCFS-0 | 0.9514 | 0.8226

Table 5.4: Clustering results for the baseline and alternative merging methods.

and found a Multilayer Perceptron to be the best performing model, keeping the number
of false positives to just 425 for 397,386 cluster pairs.

Using this classifier, we can predict whether any pair of clusters should be merged.
However, we have to address the special case where the classifier’s predictions disagree.
For example, consider clusters C,Cy, and C3 where the classifier predicts that (C1,C3)
and (C1,C3) should be merged, but (Co,C3) should not. We can either merge Cy, Co, and
Cs5 into a single cluster (Merge-ALL), or merge Cy and Cy but not Cs, where C7 and Cy
appear earlier in the data set (Merge-F'CFS). For the latter approach, we add a confidence
threshold 6, to ensure that only high-probability merge predictions would be used (Merge-
FCFS-0). We experimented with different threshold settings on the validation set and used
the conservative setting that yielded the best performance (#=0.995) for experiments over
the test set.

To evaluate our approach, we used the clustering quality metrics discussed in Section 5.1,
namely, NMI and B-Cubed. Table 5.4 shows the clustering quality over the test set using
the original logistic regression similarity model CLASS-LR and our alternative merging
strategies. CLASS-LR is a strong baseline, outperforming both merging strategies Merge-
ALL and Merge-FCFS. However, Merge-FCFS-6 provides a small improvement over this
baseline, according to both NMI and B-Cubed.

To analyze these results, we deconstruct the B-Cubed score into its precision and recall
components, which intuitively explain the observed performance of our alternative strate-
gies. Not surprisingly, all merging strategies hurt the B-Cubed precision, which corresponds
to the average proportion of items in every document’s cluster that belong to the same event.

Similarly, all merging strategies improve the B-Cubed recall, which reflects a decrease in
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Figure 5.11: B-Cubed Precision scores on the Upcoming test dataset.

the number of clusters that each event is spread across. However, the only strategy that
creates a better balance between the two, measured by the combined B-Cubed score, is
the least aggressive strategy, Merge-FCFS-0. While the overall performance improvement
offered by this merging strategy is modest, it serves as an indication that social links can
be useful for event identification in social media. Further improvements may be obtained

by considering additional types of social links, which we intend to explore in future work.

5.3 Conclusions

In the previous chapter, we introduced a clustering framework for unknown event identifi-
cation in social media, and showed how we can use it with a post-clustering classification
step to distinguish between event and non-event clusters. In this chapter, we focused on
learning a similarity metric for the clustering framework, specifically tailored to social media
event documents that contain a variety of context features. We discussed and experimented
with ensemble-based and classification-based techniques for combining a set of similarity
metrics to predict when social media documents correspond to the same event. Our experi-
ments suggest that our similarity metric learning techniques yield better performance than

the baselines on which we build. In particular, our classification-based techniques show
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Figure 5.12: B-Cubed Recall scores on the Upcoming test dataset.

significant improvement over traditional approaches that use text-based similarity.

In addition, we described an exploratory direction for leveraging information from social
links to improve the similarity learning models we introduced in this chapter. Our initial
statistics and experiments suggest that these links may be useful similarity cues, especially
when context features of social media documents are not sufficient for inferring similarity.
In the next chapter, we turn to the known event identification scenario, where we use known

features of planned events to identify event documents across different social media sites.
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Chapter 6

Identification of Content for

Known Events

In the previous chapters, we presented techniques for identifying events and their associated
social media documents in the unknown identification scenario, where no information is
available on the events that exist in a document stream. However, for planned events
(e.g., concerts, parades, conferences), there is revealing and structured information (e.g.,
title, description, time, location) that is often explicitly available on user-contributed event
aggregation platforms (e.g., Last.fm events, EventBrite, Facebook events). For such events,
we explore approaches to automatically identify diverse social media content, under the
known event identification scenario. Importantly, we address the challenge of automatically
identifying user-contributed content for these planned events across different social media
sites.

Automatically identifying social media content associated with planned events is a chal-
lenging problem due to the heterogenous and noisy nature of the data. These properties
of the data present a double challenge in our setting, where both the planned event in-
formation and its associated social media content tend to exhibit missing or ambiguous
information, and often include short, ungrammatical textual features. In our “Celebrate
Brooklyn!” example, event features (e.g., title, description, location) are supplied by a

Last.fm user; therefore, these features may consist of generic titles (e.g., “Opening Night
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Concert”), missing descriptions, or insufficient venue information (e.g., “Prospect Park,”
with no exact address). Similarly, social media content associated with this event may be
ambiguous (e.g., a YouTube video titled “Bird singing at the opening night gala”) or not
have a clear connection to the event (e.g., a tweet stating “#CB! starts next week, very
excited!”).

To identify content for planned events, we leverage explicitly provided event features
such as title (e.g., “Celebrate Brooklyn! Opening Gala”), description (e.g., “Singer /songwriter
Andrew Bird will open the 2011 Celebrate Brooklyn! season”), time/date (e.g., June 10,
2011), location (e.g., Brooklyn, NY), and venue (e.g., “Prospect Park”) to automatically
formulate queries used to retrieve related social media content from multiple social media
sites. Importantly, we propose a two-step query generation approach: the first step com-
bines planned event features into several queries aimed at retrieving high-precision results;
the second step uses these high-precision results along with text processing techniques such
as term extraction and frequency analysis to build additional queries, aimed at improving
recall. We experiment with formulating queries for each social media site individually, and
also explore ways to use retrieved content from one site to improve the identification process

on another site. In summary, the contributions of this chapter are as follows:

e We pose the problem of identifying social media content for planned events as a query

generation and retrieval task (Section 6.1)

e We develop precision-oriented query generation strategies using planned event features

(Section 6.2)

e We develop recall-oriented query generation strategies to improve the often low recall

of the precision-oriented strategies (Section 6.3)

e We demonstrate how query generation strategies developed for one social media site
can be used to inform the event content identification process on other social media

sites (Section 6.4)

We evaluate our proposed query generation techniques on a set of planned events from

several sources and corresponding social media content from Twitter, Flickr, and YouTube
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(Section 6.5). We also present an interactive proof-of-concept system that uses our query
generation techniques with two alternative user interfaces to retrieve social media documents
for planned events (Section 6.6). Finally, we conclude with a discussion of our findings

(Section 6.7). The bulk of this paper appeared in [BING11; BCT 11].

6.1 Motivation and Approach

The problem that we address in this chapter is how to identify social media documents across
sites for a given planned event with known features (e.g., title, description, time/date,
location). Records of planned events—including the event features on which we rely—
abound on the Web, on platforms such as Last.fm events, EventBrite, and Facebook events.

Figure 6.1 shows a snapshot of such a planned-event record on Last.fm.

l(.\St.fm Music Radio Events Charts Community

Come work with us! Last.fm is hiring »

Event

Celebrate Brooklyn! Opening Night Celebrate Brookiyn!
Attendance Opening Night Gala &

Gala & Concert with Andrew Bird Concertwith SndrewiBid
Images Andrew Bird
Similar PAST EVENT

) 10 Friday 10 June 2011
Reviews

9 Prospect Park

—— 0th Street & Prospect Park West
Brooklyn NY 11215 Prospect Park
United States Friday 10 June 2011
Show on Map Upload poster
Web: www bricartsmedia.org/performing-arts

www _bricartsmedia.org/performing-arts/celebrate-brooklyn/2011-gala

Celebrate Brooklyn!
Prospect Park Bandshell
FREE

Rain or Shine

Figure 6.1: A Last.fm event record for the “Celebrate Brooklyn!” opening night gala and

concert.

As we discussed in Chapter 2, we regard a social media document as relevant to an event
if it provides a reflection on the event before, during, or after the event occurs. Consider the

“Celebrate Brooklyn!” opening gala concert example (see Figure 6.1). This event’s related
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documents can reflect anticipation of the event (e.g., a tweet stating “I’'m so excited for this
year’s Celebrate Brooklyn! and the FREE opening concert!”), participation in the event
(e.g., a video of Andrew Bird singing at the opening gala), and post-event reflections (e.g.,
a photo of Prospect Park after the concert titled “Andrew Bird really knows how to put on
a show”). All of these documents may be relevant to a user seeking information about this
event at different times.

For the known event identification scenario that we address in this chapter, the events
that we aim to identify are planned events, as defined in Chapter 2. Operationally, a planned
event is any record posted to one of the public event aggregation platforms available on the
Web (e.g., Last.fm events, EventBrite). Unfortunately, not all user-contributed records on
these sites are complete and coherent, and while we expect our approaches to handle some
missing data, a small subset of these records lack critical features that would make them
difficult to interpret by our system and humans alike. Therefore, we do not include in our

analysis records that are potentially noisy and incomplete. Specifically, we ignore:
e Records that are missing both start time/date and end time/date
e Records that do not have any location information
e Records with non-English title or description

e Records for endogenous events (Chapter 3) (i.e., events that do not correspond to
any real-world occurrence, such as “profile picture change,” a Facebook-specific phe-

nomenon with no real-world counterpart)

Regardless of the platform on which they are posted, user-contributed event records gener-
ally share a core set of context features that describe the event along different dimensions.
These features include (see Figure 6.1): title, with the name of the event (e.g., “Celebrate
Brooklyn! Opening Night Gala & Concert with Andrew Bird”); description, with a short

43

paragraph outlining specific event details (e.g., Celebrate Brooklyn! Prospect Park
Bandshell FREE Rain or Shine”); time/date, with the time and date of the event (e.g.,
Friday 10 June 2011); venue, with the site at which the event is held (e.g., Prospect Park);

location, with the address of the event (e.g., Brooklyn, NY). These context features, collec-
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tively, will prove helpful for constructing queries that can retrieve different types of social

media documents associated with the event.

Problem Definition 3 Consider any planned-event record posted on an event aggregation
platform. Our goal is to retrieve relevant social media documents for this event on multiple
social media sites, and identify the top-k such documents from each site, according to given

site-specific scoring functions.

We define the problem of identifying social media documents for planned events as a
query generation and retrieval task. Specifically, we design query generation strategies using
multi-dimensional features of events on the Web (e.g., textual description, time, location).
For each event we generate a variety of queries, which we use collectively to retrieve match-
ing social media documents from multiple sites. Since each event could potentially have
many associated social media documents, we further narrow down the set of documents
we present to a user to the top-k most similar documents, using given site-specific scoring
functions (e.g., the multi-feature function in Chapter 5). The similarity metrics that we
use, and which are not the focus of this chapter, might differ slightly across social media
sites since documents from different sites vary in terms of their associated context features
(e.g., documents from Flickr and YouTube have titles and descriptions whereas documents
from Twitter do not).

Addressing the above problem presents multiple challenges. Notably, event records are
generally informative, but they are also far from perfect. Specifically, sometimes context
features are missing altogether, as is occasionally the case with the description feature.
Some other times, features have incomplete values (e.g., missing state in the location fea-
ture), or values at varying granularities (e.g., “Celebrate Brooklyn! Opening Night Gala &
Concert with Andrew Bird” vs. “Opening Night Concert” for the title feature). Still, these
event platforms are a rich source of planned event information, so our goal is to develop
a variety of query generation strategies, designed to overcome the various challenges that
this data presents. Also, social media sites contain highly heterogeneous documents, and
the vast majority of these documents are, needless to say, not relevant to an event of in-

terest. Designing queries to target these documents across sites is, therefore, a challenging
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proposition.

Our approach for associating social media documents with planned events consists of
two steps. First, we define precision-oriented queries for an event using its known context
features (Section 6.2). These precision-oriented queries aim to collectively retrieve a set of
social media documents with high-precision results. Then, to improve the (generally low)
recall achieved in the first step, we use term extraction and frequency analysis techniques
on the high-precision results to generate recall-oriented queries and retrieve additional doc-
uments for the event (Section 6.3). Figure 6.2 presents an overview of our query generation

approach.

Event: title isi i
’ Precision-Driven
Event_ description, Que
LUl date, location ju

Site Construction

- Event, photos, .
videos, tweets Recall-Driven

Query
[ el Construction

query,, ...,query,

Figure 6.2: Our query-generation approach.

6.2 Precision-Oriented Query Building Strategies

Our first step towards retrieving social media documents for planned events consists of
simple query generation strategies that are aimed at achieving high-precision results. These

strategies form queries that touch on various aspects of an event (e.g., time/date and venue),
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following the intuition that these highly restrictive queries should only result in messages
that relate to the intended event. We consider a variety of query generation strategies for
this step, involving different combinations of the context features, namely, title, time/date,
and location, of each event.

The precision-oriented queries for an event consist of combinations of one or more event
features. One intuitive feature that we include in all strategies is a restriction on the time
at which the retrieved social media documents are posted. In a study of trends on Twitter,
Kwak et al. [ | discovered that most trends last for one week once they become
“active” (i.e., once their associated Twitter messages are generated). Since our (planned)
events can be anticipated, unlike the trends in | |, we follow a similar intuition and
set the time period T, that is associated with the event (see Chapter 2) to start a week
prior to the event’s start time/date and to end a week after the event’s end time/date.
Note that this time period setting is not the same as the one we used in Chapter 3 (i.e.,
72-hours before and after the trend’s peak time), because the documents that we collect
serve a different purpose from the documents considered in Chapter 3. Specifically, we aim
to capture many documents that might be associated with an event, while in Chapter 3
we aim to capture the distribution of documents produced immediately before and after
an event. For documents that contain digital media items (e.g., photos, videos), we only
consider them if their associated media was created during or after the event’s start time.
This step, while potentially eliminating a few relevant documents, is aimed at improving
precision since we do not expect many digital media items associated with an event to
be captured prior to the start of the event. We experimented with more restrictive time
windows but observed that relevant documents that contain digital media are generally
posted within a week of the event, possibly due to a high barrier to post (e.g., having to
upload photos from a camera that does not connect directly to the Internet).

In addition to restricting by time, we always include the title of the event in our precision-
oriented strategies, as it often provides a precise notion of the subject of the event. As
discussed in Section 6.1, title values exhibit substantial variations in specificity across event
records. Some event titles might be too specific (e.g., “Celebrate Brooklyn! Opening Night

Gala & Concert with Andrew Bird”); for any such specific title, any social media documents
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matching it exactly will likely be relevant to the corresponding event. If the titles are too
specific, however, no matching documents might be available, which motivates the recall-
oriented techniques described in the next section. In contrast, other event titles might be too
general (e.g., “Opening Night Concert”). To automatically accommodate these variations in
title values, we consider different query generation options for the title feature. Specifically,
we generate queries with the original title as a phrase, to capture content for events with
detailed titles. We also generate queries with the original title as a phrase augmented with
(portions of!) the event location, to capture content for events with broad titles, for which
the location helps narrow down the matching documents. Finally, we consider alternative
query generation techniques that include the title keywords as a list of terms—rather than
as a phrase—for flexibility, as well as variations of the non-phrase version that eliminate
stop words from the queries.

The intuition for the precision-oriented strategies we define is motivated by the informal
results of these strategies over planned events from a pilot system. Our system (Section
6.6) has a customizable interface that allows a user to select among different retrieval
strategies. We selected precision-oriented strategies that include three variations of the
title (i.e., phrase, list of terms, and list of terms with removed stop words), optionally
augmented with either the city or venue portion of the location. We use these precision-
oriented strategies to retrieve social media documents for a set of planned events, and
verify that they indeed return high-precision results (Section 6.5). The final set of selected
precision-oriented strategies is listed in Table 6.1. These strategies, by design, generally

offer high precision, though often at the expense of recall.

6.3 Recall-Oriented Query Building Strategies

While the strategies outlined in Section 6.2 often return high-precision social media doc-
uments for an event, the number of these high-precision documents is generally low. To

improve recall, we develop several strategies for constructing queries using term-frequency

"We observed that social media documents usually mention a single, broad aspect of the event’s location,

such as city or venue, rather than a full address.



CHAPTER 6. IDENTIFICATION OF CONTENT FOR KNOWN EVENTS

Strategy

Example

[ “title” + “City” ]

[“Celebrate Brooklyn! Opening Night Gala &
Concert with Andrew Bird” “Brooklyn”]

[title+ “city”]

[Celebrate Brooklyn! Opening Night Gala & Con-
cert with Andrew Bird “Brooklyn”]

[title-stopwords+ “city”]

[Celebrate Brooklyn! Opening Night Gala Con-
cert Andrew Bird “Brooklyn”]

[“title” 4+ “venue”]

[“Celebrate Brooklyn! Opening Night Gala &
Concert with Andrew Bird” “Prospect Park”]

[title+ “venue”]

[Celebrate Brooklyn! Opening Night Gala & Con-
cert with Andrew Bird “Prospect Park”]

[“title”] [“Celebrate Brooklyn! Opening Night Gala &
Concert with Andrew Bird”]
[title] [Celebrate Brooklyn! Opening Night Gala & Con-

cert with Andrew Bird]

[title-stopwords]

[Celebrate Brooklyn! Opening Night Gala Con-
cert Andrew Bird]

Table 6.1: Our selected precision-oriented strategies.
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analysis. Specifically, we treat an event’s title, description, and any retrieved results from
the precision-oriented techniques as “ground-truth” data for the event. We consider using
the precision-oriented results from each social media site individually, and also from all
social media sites collectively (Section 6.4).

Using the ground-truth data for each event, we design query formulation techniques
to capture terms that uniquely identify each event. These terms should ideally appear in
any social media document associated with the event but also be broad enough to match a
larger set of documents than possible with the precision-oriented queries. We select these
recall-oriented queries in two steps. First, we generate a large set of candidate queries for
each event using two different term analysis and extraction techniques. Then, to select the
most promising queries out of a potentially large set of candidates, we explore a variety of
query ranking strategies and identify the top queries according to each strategy.

Frequency Analysis: The first query candidate generation technique aims to extract
the most frequently used terms, while weighing down terms that are naturally common in the
English language. The idea is based on the traditional tf-idf approach | | commonly
used in information retrieval. To select these terms, we compute term frequencies over the
ground-truth data for word unigrams, bigrams, and trigrams. We then eliminate stop words
and remove infrequent n-grams (determined automatically based on the size of the ground-
truth corpus). We also eliminate any term that appears in the top 100,000 most frequent
words indexed by Microsoft’s Bing search engine as of April 2010%, with the assumption
that any of these queries would be too general to describe any event.

To normalize the n-gram term frequency scores, we use a language model built from a
large corpus of Web documents (see Section 6.5). With this language model, we compute
log probability values for any candidate n-gram term. The probability of a term in the
language model provides an indication of its frequency on the Web and can be used to
normalize the term’s computed frequency. We sort the n-grams extracted for each event
according to their normalized term frequency values, and select the top 100 n-grams as
candidate queries for the event.

Term Extraction: The second query candidate generation technique aims to identify

“http://web-ngram.research.microsoft.com/info/
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meaningful event-related concepts in the ground-truth data using an external reference
corpus. For this, we use a Web-based term extractor over our available textual event
data. This term extractor leverages a large collection of Web documents and query logs
to construct an entity dictionary, and uses it along with statistical and linguistic analysis
methodologies to find a list of significant terms | |. The extracted terms for each
event serve as additional recall-oriented query candidates, along with the term-frequency
query candidates described above.

Each of the techniques we describe could potentially generate a large set of candidate
queries. However, many of these queries could be noisy (e.g., [@birdfan]|, with the name
of a user that posts many updates about the event), too general (e.g., [concert tonight]),
or describing a specific or non-central aspect of the event (e.g., [Fitz and the Dizzyspells],
the name of an Andrew Bird song from the concert). Issuing hundreds of queries for each
event is not scalable and could potentially introduce substantial noise, so we need to further
reduce the set of queries to the most promising candidates. We explore a variety of strategies
for selecting the top candidate queries out of all possible queries that we construct for each
event. We consider two important criteria for ordering the event queries: specificity and
temporal profile.

Specificity: Specificity assures that we rank long, detailed queries higher than broad,
general ones. Since we use conjunctive query semantics, longer queries consisting of multiple
terms (e.g. [a,b]), are more restrictive than shorter queries consisting of fewer terms (e.g.,
[a]). Particularly, since we use term n-gram shingles with n=1,2, and 3 to construct the
recall-oriented queries, our set of candidate queries often includes bigram queries that are
subsets of trigram queries (e.g., [bird concert] and [andrew bird concert]). If both such
candidates are present in the set, we favor the longer, more detailed version, as we observed
that this level of specificity generally helps improve precision and yet is not restrictive
enough to hurt recall.

Temporal Profile: The historical temporal profile of a query is another criterion we
use to select among the candidate queries for an event. A local spike in document frequency
around the time of the event might serve as an indication that the query is associated with

the event. As we discussed in Chapters 3 and 4, this type of bursty temporal behavior is a
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useful, distinguishing characteristic of terms and phrases associated with trending events.
Even for planned events that are not trending, the bulk of associated documents is generally
posted or captured in close temporal proximity to the time of the event, so queries that are
useful for identifying these event documents will also exhibit some increase in document
frequency around that time. We keep a record of the number of documents retrieved by
each query during the week before and the week after the event, and compare this number
to the query’s document volume during shorter time periods (one or two days) around the
event’s time span.

Figure 6.3 shows a document volume histogram over Twitter documents for two recall-
oriented queries retrieved around the week of Andrew Bird’s concert at “Celebrate Brook-
lyn!” We can see that the volume of a general query such as [state farm insurance] is
consistent over time, whereas the volume of [andrew bird concert], while lower, increases
around the time of the event. While this temporal analysis is promising for some social
media sites (e.g., Twitter) where the time of the messages generally coincides with the time
of the event, it may be problematic for other sites (e.g., YouTube, Flickr) that tend to
exhibit a delay between an event’s time and upload time of the associated digital media
documents for the event, because of the nature of these sites. Therefore, for sites containing
digital media, we use the content creation time rather than the upload time, if possible.
(This feature is, unfortunately, often noisy or missing, especially for YouTube videos.)
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Figure 6.3: Histogram of Twitter document volume over time for two queries around the

week of Andrew Bird’s Celebrate Brooklyn! concert.
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We consider using each of these query selection strategies individually, and also explore
ways of combining them, to identify the top candidate queries for any given event. With
these queries, we can retrieve associated social media documents from a variety of social
media sites. Interestingly, these social media sites can be used as complementary signals

for the recall-oriented query generation and retrieval process, as we will see next.

6.4 Leveraging Cross-Site Content

We query for event-related documents on multiple social media sites in order to provide
a holistic perspective on the event, complete with digital media and a variety of user per-
spectives. For the “Celebrate Brooklyn!” opening concert, for instance, we can use these
different social media sites to learn about the event (e.g., via a Twitter message “Cele-
brate Brooklyn kicks off TONIGHT with Andrew Bird concert in Prospect Park!”), watch
a video of a song performed at the event (e.g., “Andrew Bird - Effigy (Live) - Prospect Park
- Brooklyn, NY” on YouTube), and see up-close photos of Andrew Bird on stage during the
event (e.g., “Andrew Bird: Prospect Park Bandshell” photo set on Flickr).

We can leverage event content from one social media site to help retrieve event doc-
uments from another social media site in different ways, following the query generation
strategies proposed in the previous sections. One simple way, of course, is to generate
recall-oriented queries for each site individually and use these queries across sites. Specif-
ically, we can use the high-precision results obtained from an individual site to formulate
recall-oriented queries as described in Section 6.3. We can then use these site-specific recall-
oriented queries to obtain additional results from other social media sites. This is especially
useful when the precision-oriented strategies do not retrieve results from all sites. This is
the case for our “Celebrate Brooklyn!” example: since the event title is too specific, the
precision-oriented queries fail to retrieve any documents from YouTube, and, therefore, we
cannot generate recall-oriented queries for this site. Fortunately, as is often the case, Twit-
ter has a wealth of results for the precision-oriented queries for the event, and the resulting
recall-oriented queries (e.g., [andrew bird concert], [brooklyn celebrate]) retrieve relevant

videos from YouTube. In short, we manage to extract useful YouTube content through
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queries derived based on Twitter content.

An alternative way to leverage multi-site social media content is to generate recall-
oriented queries using the high-precision results returned from all social media sites col-
lectively. Whenever we obtain precision-oriented results from multiple sites, this approach
yields a larger “ground-truth” corpus for the recall-oriented query generation than the ones
obtained from each site individually, which may be helpful for identifying salient event terms
that appear frequently across sites. At the same time, the results may be dominated by
content from one site, possibly obscuring useful content from another site. This approach
may also introduce noise or irrelevant content that is often present in some sites and not
others (e.g., content-free titles of Flickr photos, Twitter username mentions).

Although content from different social media sites provides promising opportunities, it
also presents challenges for our techniques. First, site-specific notations and conventions
often introduce noise or inhibit recall. For example, Flickr users often tag photos with
their camera settings (e.g., “canoneosbdmarkii”), which may be mistakenly identified as an
important event term by the term frequency analysis, especially if the ground-truth corpus
for the event is small. In addition, each Flickr tag must consist of a single term, so users
often resort to very long multi-word tags (e.g., “greatcanadiancheesefestival”). In contrast,
YouTube tags may each consist of several terms, so querying for such long multi-word tags
on YouTube rarely yields results. We experimentally evaluate the merits of these alternative

multi-site approaches in Section 6.5.

6.5 Experiments

We evaluated our query selection and retrieval techniques using a large dataset of real-world
events from several event aggregation sites. For each event, we used our query generation
strategies to collect related documents from popular social media sites. We performed three

different sets of experiments:

e Comparison of the automatically generated queries against human-produced queries

for the events

e Evaluation by human judges of the automatically generated queries
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e Evaluation of the quality of the documents retrieved by the automatically generated

queries

We report on the dataset and experimental settings, then turn to the results of our experi-

ments.

6.5.1 Experimental Settings

Planned Event Dataset: We assembled a dataset of event records posted between May
13, 2011 and June 11, 2011 on four different event aggregation platforms: Last.fm events,
EventBrite, LinkedIn events, and Facebook events. We used the Last.fm API with a lo-
cation parameter set to “United States”® to collect a set of musical performance events.
Additionally, we filtered any returned events that did not fall into our specified date range.
To collect events from EventBrite, we simply used the EventBrite API with the date param-
eters set to our specified date range. For LinkedIn events, where an API was not available,
we retrieved and parsed event search pages in HTML format, using HTTP GET parameters
to specify the date range.

Facebook events deserve special attention due to the difficulty of collecting such data via
the site’s API. Facebook events can only be retrieved in response to a specific search query
or event id. To search for events, we used the most common event terms found in event titles
collected by our event tracking system (Section 6.6). This list includes terms that describe
specific types of events (e.g., [concert]) and also general terms commonly found in event
titles (e.g., [national], [international]). We removed any returned event records that had no
location or time information, and events that listed a virtual location (e.g., “everywhere”)
in their location or venue fields. Unfortunately, after filtering for these required fields we
were left with very few events that matched our criteria. Still, we included these events in
our experiments as they add diversity to our dataset.

To ensure that we collected events that would potentially have associated social media
documents, we filtered out obscure events by requiring a minimum number of event atten-

dees. We tuned this minimum threshold for each site given the observed distribution of

3This was the only way to retrieve a set of events from Last.fm without issuing specific queries.
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attendees over all collected events. At the end of the process, we collected a total of 393
events, with 90 events from Last.fm, 94 events from EventBrite, 130 events from LinkedIn,
and 25 events from Facebook. The above events constitute the test set over which we report
our results. For the training and tuning of the strategies, we used a separate set of 329
event records, collected between April 26 and May 11, 2011.

Social Media Documents: We collected social media documents for the events in our
dataset from three social media sites: Twitter, YouTube, and Flickr. Specifically, we used
each site’s respective search API to issue precision-oriented (Section 6.2) and recall-oriented
(Section 6.3) queries. From the retrieved results, we eliminated any document that did not
exactly match the search query since some site search engines (e.g., for Twitter) search for
the query in any content that is linked from the document, and return matching documents
as relevant results.

Note that part of our evaluation considers the quality of the top-k documents retrieved
by the automatically generated queries (see problem definition in Section 6.1). The ranking
of documents for an event is not the focus of this chapter. While we do explore techniques
for selecting relevant and useful documents for an event (see Chapter 7), the task of learning
a ranking function for event documents is reserved for future work, as we discuss in Chapter
9. For our evaluation, we rank the documents retrieved for an event by computing their
similarity to the event record using (an adaptation of) the multi-feature similarity function
in Chapter 5. As one additional component of the similarity, not present in Chapter 5, we
consider the percentage of queries that retrieve a given document when we compute the
score for the document and an event. Intuitively, we have observed that documents that
are retrieved by several of our queries for an event should be preferred over documents that
are retrieved by one such query.

Precision-Oriented Query Generation: For each event, we generate precision-
oriented queries as defined in Section 6.2 using the event’s context features, namely, title,
time/date, city and venue. As an exception, we do not generate queries using the three
title-only strategies for Last.fm events since we observed that many of the event titles on
Last.fm consist of the name of a performer without any other context. Even though we

restrict the social media documents that we retrieve to a specific time period around the
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event, it is often difficult in the Last.fm case to distinguish between two events held by
the same performer in close time proximity. By forcing the location (i.e., city or venue)
as part of the query for such events, we ensure that our precision-oriented queries produce
results from the intended performance. For event records from the rest of the sites we use
all precision-oriented queries from Section 6.2.

Recall-Oriented Query Generation: For each event, we generate recall-oriented
queries as described in Section 6.3. To perform the frequency analysis, we index the doc-
uments using Lucene?, with term n-grams, for n=1,2, and 3. To normalize n-gram term
frequency scores, we use the Microsoft Web n-gram Service®, which provides n-gram log
probability values. This service returns the joint probability of n-gram terms using a lan-
guage model created from documents indexed by Microsoft’s Bing search engine.

We extract meaningful queries from the high-precision results using the Yahoo! Term
Extraction Web Service®, which returns a list of significant terms or phrases given a segment
of text. This term extractor leverages a large collection of documents and query logs to
construct an entity dictionary and uses it along with a statistical and linguistic analysis
[ | to process the given textual event data. This term extraction service has shown
promising results on preliminary experiments with training data, to complement the first
term frequency analysis technique above. It has also been successfully used in prior work
for similar tasks [ ; ].

Query Generation and Ranking Techniques: Our experiments consider a subset of
the (potentially many) queries generated using the precision- and recall-oriented strategies
above. Different techniques will vary on how these subsets are selected. We consider two
basic options to rank the queries for selection, namely, using (1) the “specificity” of the
queries, as determined by the m-gram score on the Microsoft Web document corpus, or
(2) variations of a “temporal” profile of the queries, determined by analyzing the volume
of matching documents for the queries over time. Each alternative technique selects the

top-10 queries according to the associated ranking criterion, as follows:

“http://lucene.apache.org/
Shttp://research.microsoft.com/web-ngram

Shttp://developer.yahoo.com/search/content/V1/termExtraction.html
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MS n-gram Score (MS): n-gram score of the query from the Microsoft Web n-gram

Service

e Time Ratio (TR): ratio of the number of documents created in the 48 hours before
and after the event to the number of documents created in the week before and after

the event

e Restricted Time Ratio (RTR): ratio of the number of documents created in the 24
hours before and after the event to the number of documents created in the week

before and after the event
e MS n-gram Score and Time Ratio (MS-TR): MS score multiplied by TR score

e MS n-gram Score and Restricted Time Ratio (MS-RTR): MS score multiplied by RTR

score

We apply these techniques to documents from Twitter, YouTube, and Flickr individually
and also to documents from all three sites collectively. We use the site’s name or “All,” along
with the strategy name (e.g., Twitter-MS, All-TR) to distinguish among these alternatives.
We also compare the above techniques, which include both precision- and recall-oriented
queries, against a technique that selects all precision-oriented queries. We refer to this
technique as Precision.

Evaluation and Metrics: To evaluate our strategies, we collected annotations for a
random sample of 60 events in our dataset. For each event, we used two annotators for three
different tasks: comparison against human-produced queries, human evaluation of gener-
ated queries, and evaluation of document retrieval results. To compare our automatically
generated queries against human-produced queries, we asked each annotator to provide 5
different queries that would be useful for collecting social media documents for each event.
We use the Jaccard coefficient to measure the similarity of the set of automatically gen-
erated queries G to the set of human-produced queries H for each event. Specifically, for
each query ¢, € G and each query ¢, € H we compute J(qq,qn) = (¢g N qn)/(gg Y qp), with

set operations performed over query terms. The Jaccard value that we report for G is then

queG mazq,cr(J(aq,aqn))/|G|.
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For the human evaluation of the automatically generated queries, we asked two annota-
tors to label 2,037 queries selected by our strategies for each event on a scale of 1-5, based
on their relevance to the event. Here, we aim to gauge the potential of each query to retrieve
results related to the event. For our “Celebrate Brooklyn!” example, the queries [celebrate],
[celebrate brooklyn], and [andrew bird celebrate brooklyn] would receive scores of 1, 3, and
5, respectively. In cases of disagreement we use the average rating. For two events in this
set, our annotators were unable to provide queries due to ambiguous content (e.g., “ready
film” as the title, without description), and content in a foreign language (e.g., queries in
Italian for “FashionCamp,” despite setting our API parameters for English-only content).
These events were removed from the analysis.

Finally, for the evaluation of the quality of the documents retrieved by the automatically
generated queries, we used Amazon’s Mechanical Turk” to collect relevance judgments for
the top-20 documents retrieved from Twitter, YouTube, and Flickr for each of our query
selection techniques above. We collected two binary relevance judgments for each docu-
ment, and an optional third judgment in cases of annotator disagreement. To evaluate the
retrieved documents, we use a standard metric, namely, normalized discounted cumulative
gain, or NDCG' | ], which captures the quality of ranked lists with focus on the top
results. We use the binary version of NDCG | ], to measure how well our approach

ranks the top documents relative to their ideal ranking.

6.5.2 Experimental Results

We begin by comparing the similarity of the automatically generated queries and human-
produced queries for our events. Table 6.2 shows the results of our query generation methods
using documents from Twitter, Flickr, and YouTube separately, and documents from all
sites collectively. Across all strategies, queries generated using Flickr or YouTube doc-
uments were less similar to the human-produced queries compared to queries generated
using Twitter documents. For Flickr, this result can be explained by the common use
of long multi-word tags, which were often selected as the top queries by our strategies

(e.g., [20110603musichallofwilliamsburgbrooklynny]). While these queries may not reflect

"https://www.mturk. com
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Strategy | Twitter | Flickr | YouTube | All

MS 0.571 0.216 0.181 0.272
TR 0.524 | 0.254 0.097 0.277
RTR 0.517 | 0.253 0.094 0.317
MS-TR 0.531 0.209 0.141 0.244
MS-RTR | 0.523 0.209 0.141 0.263

Table 6.2: Jaccard coefficient for automatically generated queries and human-produced

queries.

human behavior, they could still be useful for retrieving event content, as we will see. In
contrast, Precision had the highest Jaccard value at 0.705, indicating that the human-
produced queries were most similar to the precision-oriented queries we defined in Section
6.2. Interestingly, using documents from all sites collectively did not improve the similarity,
possibly due to the presence of Flickr tags among the selected queries for this strategy.

For the next step in our analysis, Figure 6.4 shows the average annotator rating for
our alternative query generation approaches. Not surprisingly, Precision achieved the best
average rating since, by design, it produced very detailed queries that are expected to return
relevant results for their associated events. The query generation techniques that used
Twitter documents, especially Twitter-MS, were again the most successful set of techniques.
Based on our annotation guidelines, the score of Twitter-MS indicates that, on average,
queries generated by this strategy are expected to retrieve some results for their associated
event. The query generation techniques that used YouTube documents received the lowest
scores in this evaluation. One possible explanation is that the query-generation strategies
may not be effective when formulated using YouTube data alone, which may be related to
the lack of reliable temporal information for YouTube documents, as we discussed in Section
6.3.

For our third set of experiments, we examined the relevance of documents retrieved by
our query generation strategies to their associated events. Figure 6.5 shows the NDCG
scores for the top 5,10, 15, and 20 Twitter documents retrieved by Precision, Twitter-MS,
and Twitter-RTR (Twitter-TR, Twitter-MS-TR, and Twitter-MS-RTR produced similar
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Figure 6.4: Average annotator rating of our automatically generated queries.

Strategy 5 Docs | 10 Docs | 15 Docs | 20 Docs
Twitter-MS | 0.759 0.724 0.690 0.690
Twitter-RTR | 0.828 0.793 0.759 0.759

Precision 0.414 0.293 0.241 0.224

Table 6.3: Percentage of events with Twitter results at different recall levels for alternative

query strategies.

results to Twitter-MS and Twitter-RTR, and were, therefore, omitted). Validating our ear-
lier observation (Section 6.2), Precision retrieved highly relevant results. Both Twitter-MS
and Twitter-RTR also produced good results, demonstrating their effectiveness at retrieving
Twitter documents for planned events.

It is important to note that the NDCG scores at each level of recall were averaged over
the set of events that had some returned results for each strategy. Table 6.3 reports the
percentage of events in our dataset for which each strategy returned results at various levels
of recall. As expected, Precision returned results for a small fraction of the events. Interest-
ingly, Twitter-RTR returned results for a larger proportion of the events than Twitter-MS.
This can be explained by the way these alternative strategies select their top queries. Specif-

ically, all queries selected for Twitter-RTR must have some matching documents, since we
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Figure 6.5: NDCG scores for top-k Twitter documents retrieved by our query strategies.

consider each query’s document volume over time as the selection criterion. In contrast,
Twitter-MS is biased towards rare terms (i.e., terms with lower probability scores), making
it the second most precise among the strategies, following Precision.

Our next set of results examines the effectiveness of our approaches for retrieving event
documents across social media sites. Given our observations from the query-based eval-
uations, we evaluated the relevance of documents retrieved by the best performing query
generation approach, namely, MS-Twitter, from both YouTube and Flickr. Figure 6.6 shows
the NDCG scores of Precision, Twitter-MS, and YouTube-MS for the top-k YouTube doc-
uments, averaged over all events. In addition, the size of each point reflects the number of
events that had at least k¥ documents retrieved by the strategy. As we can see, Twitter-MS
performed better and retrieved results for more events than YouTube-MS, indicating that
Twitter documents can be potentially used to improve both precision and recall of YouTube
documents for planned events.

We performed a similar evaluation over documents from Flickr, using Precision, Twitter-
MS, and Flickr-MS. Precision, expectedly, retrieved relevant results for a small number of

events. Interestingly, unlike YouTube-MS, Flickr-MS achieved higher NDCG scores than



CHAPTER 6. IDENTIFICATION OF CONTENT FOR KNOWN EVENTS 129

1.1 | |
! 4 4
0.9
0.8 * * © Precision
0.7
306 +—— — I 7
g 0.6 39 36 ‘ © Twitter-MS
2 05 -
0.4
0.3 . YouTube-MS
0.2 9 8 8
0.1
0
0 5 10 15 20 25
Number of Documents k

Figure 6.6: NDCG scores for top-k YouTube documents retrieved by our query strategies.

Twitter-MS. However, the number of events covered by Flickr-MS is smaller than the num-
ber of events covered by Twitter-MS, showing that Twitter-MS can still retrieve relevant
Flickr documents and can be particularly useful in cases where Flickr-MS returns no results.

Overall, our evaluation showed that our query generation approaches can effectively
retrieve relevant social media documents for planned events on multiple social media sites.
In addition, we demonstrated that we can leverage social media documents on Twitter to
generate a query strategy (i.e., Twitter-MS) that can retrieve relevant event documents on

YouTube and Flickr.

6.6 Event Tracking System

To enable interaction with our various query formulation strategies described in this chapter,
we created a proof-of-concept system that, given an event record and a query formulation
strategy, builds the appropriate queries as outlined by the strategy and returns all match-
ing event documents. The current implementation uses records from the Upcoming event

database and retrieves event content from Twitter. We describe two applications that build
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Figure 6.7: NDCG scores for top-k Flickr documents retrieved by our query strategies.

on this query formulation system to create two user experiences for interacting with social

media content for planned events.

6.6.1 Browser Plug-In

Our first sample application uses a browser plug-in script that enables seamless embedding
of social media documents related to planned events on Upcoming (Figure 6.8). This
plug-in script calls a query formulation engine with the set of precision-oriented querying
strategies described in Section 6.2. These strategies may be modified via plug-in settings,
or dynamically selected based on event type. When a user navigates to an Upcoming event
page, the plug-in script collects the event ID and associated event features, and sends them
to the query formulation engine, along with the selected query building strategies. The
query formulation engine automatically constructs appropriate event-specific queries using
the event’s features, as required by each query building strategy. The engine then collects
all of the matching social media documents, and finally sends the results to the plug-in
script.

For efficiency, we issue asynchronous requests to the query formulation engine, where
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Figure 6.8: Browser plug-in.

131



CHAPTER 6. IDENTIFICATION OF CONTENT FOR KNOWN EVENTS 132

each strategy corresponds to one request, and post the documents in the order in which
they are returned. We use a hash-map to keep track of all documents that are already
displayed on the page, in order to avoid displaying duplicate documents, which may be
returned by the different strategies. Additional performance improvement is gained from
issuing a request for any locally cached documents that were previously retrieved for this
event by any user of our system. We dynamically append the resulting documents to the

Upcoming page, alongside the event description.

6.6.2 Customizable Web-based Interface

Our customizable interface enables users to select specific strategies for automatically re-
trieving documents for any given event record. Through this interface, users can either
search for events or select from a list of recent events (Figure 6.9). On the sidebar, we
display the list of query formulation strategies that, if checked, will be used in the retrieval
process. When a user selects the “search for tweets” link for an event, our interface issues
simultaneous, asynchronous calls to our query formulation engine, to retrieve documents
for this event according to each selected strategy.

We display the documents dynamically, as soon as they are retrieved, for efficiency
reasons. However, we also include options for ranking the documents according to various
criteria. One such ranking criterion is to order the documents according to the time at
which they were posted, in case a user is interested in the most up-to-date information
about an event. Another ranking option orders documents according to the number of
strategies for which they were retrieved. In the future, we plan to experiment with richer
ranking functions (Chapter 9).

This interface provides flexibility by allowing users to dynamically modify the set of
retrieval strategies, which is particularly useful when the high-precision strategies have in-
sufficient recall. Another feature is a user-driven option to remove generally high-precision
strategies when they are expected to introduce noise for a specific event: for example, this
scenario might happen with a “title-only” query strategy when an event title is ambigu-
ous (e.g., “4th of July Celebration,” referring to an event in Charleston, SC). While the

customization feature may be useful in some situations, the automatic query formulation



CHAPTER 6. IDENTIFICATION OF CONTENT FOR KNOWN EVENTS 133

e

© upcoming tweets

' HOME ABOUT LINKS CONTACT

©Event Name OFEventD Yoga at the Great Lawn
2010-06-22 Search for tweets
Popular Searches
This is the world's largest yoga event, led by renowned yoga teacher Elena Brower, and hosted
CO n Ce rt food&wine by Reggie Watts, with performances by Buddy Wakefield, Wah!, and more! Free yoga mats will be
provided.

festival July 4th live

show parade Event Tweets: Sort by Time

Check out Rebecca Pacheco's post of Yoga At The Great Lawn! The biggest ﬂ

Search Options yoga class ever! Complete with pictures &... http://fb.me/AUSeCYhz 5 days ago

™ "title" + city + time This is great of them! RT @flavorpill: Our statement to all who attended Yoga at

u.pr/2iWXax 5 days ago

RT @FosterFitness: #Yoga at The Great Lawn: Before We Were Rained Out. . .
http://goo.gl/81Mf @flavorpill @jetblue @namastemari @fitchicknyc @ericasara

the Great Lawn http:
™ title + city + time

™ title + city + time (- stop

@gaiam 5 days ago

o) one sweet surya A before the skies opened up, cutting short the #yoga at the
o “title" + city great lawn in NYC. @yogaglo vid here: http:/bit.ly/Sbee2i 5 days ago

m Our statement to all who attended Yoga at the Great Lawn http:/su.pr/2iWXax 5}
M title + citv YIRS
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strategies proposed in this chapter provide a viable alternative for such iterative user su-

pervision, ideally resulting in a satisfactory set of documents without manual intervention.

6.7 Conclusions

While our previous event identification efforts (Chapters 4 and 5) focused on identifying
unknown events, in this chapter we explored the known identification scenario, where we
have information about the events for which social media content is to be identified. In
this setting, we presented a query-oriented solution for retrieving social media documents
for planned events across different social media sites. Using a combination of precision-
oriented and recall-oriented query generation techniques, we showed how to automatically
and effectively associate social media documents with planned events from various sources.
Importantly, in accordance with our breadth goal, we demonstrated how social media doc-
uments from one social media site can be used to enhance document retrieval on another
social media site, thus contributing to the diversity of information that we can collect
for planned events. Overall, our techniques help unveil important information related to
planned events, presenting diverse, multi-faceted content from the points of view of users
who participate in and reflect on these events. As we will discuss, often the number of
documents that we identify for an event in social media, both in the known event identi-
fication scenario presented in this chapter and in the unknown scenario described in the
previous chapters, exceeds the number of documents that could be reasonably consumed
by a human looking for information about the event. Therefore, in the next chapter, we
consider techniques for selecting among the documents that we identify for each event, so

that we can focus on high-quality, relevant, and useful documents for each event.
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Chapter 7

Selection of Event Content

Events in social media often have vast amounts of associated content. For example, Presi-
dent Obama’s inauguration has over 30,000 associated YouTube videos as of January 2011.
A 2010 live broadcast of a U2 concert on YouTube drew over 130,000 posts on Twitter.
Even smaller events often feature dozens to hundreds of different documents. In the previ-
ous chapters, we described a variety of techniques to identify different types of events and
their associated social media documents across several social media sites. Important appli-
cations such as event browsing and search could greatly benefit from such identified event
content, but they need to prioritize and select from this content to avoid overwhelming
their users with too much information. In this chapter, we address this problem of selecting
social media content for an event.

Selecting the most salient social media content for an event is a challenging task, due
to the heterogeneity and varied quality of the data. For instance, seemingly related social
media documents with good textual quality might not be truly relevant to the event (e.g., a
Flickr photo titled “Bill cares about his health” for the United States health care reform bill
passage). At the same time, relevant, high-quality documents might not be useful (e.g., a
Twitter message stating “I can’t stop thinking about the health care reform bill passage”) as
they do not provide much information about the event in question. This chapter examines
several approaches for finding high-quality documents that are relevant and contain useful
information for each event. For any event, given its associated social media documents, we

aim to select documents that best represent the event. We use centrality-based techniques
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to select documents that have high textual quality, strong relevance to the event, and,
importantly, are useful to people looking for information about the event.

In summary, the contributions of this chapter are as follows:

e We suggest and define content selection goals for event content in social media (Section

7.1.1)

e We propose techniques for selecting the top documents for each event according to

our defined content selection goals (Section 7.1.2)

e We evaluate our proposed content selection techniques using a large-scale dataset from

Twitter (Section 7.2)

Finally, we discuss the implications of our findings and conclude (Section 7.3). The bulk of

this chapter appeared in | ].

7.1 Identifying Event Content

In this chapter, we consider several strategies for selecting social media documents for any
event, with focus on textual quality, relevance, and usefulness (Section 7.1.1). Formally, we

define the content selection problem that we address in this chapter as follows:

Problem Definition 4 Given an event e and its associated social media documents D.,
our goal is to select a set of documents from D, that exhibit high textual quality and strong
relevance to the event, and which include highly useful details for people who seek informa-

tion about the event.

For this content selection problem, we assume that we are given an event and a corre-
sponding set of social media documents associated with the event. As we discussed in the
previous chapters, there are a variety of ways by which we might arrive at this scenario. In
this chapter, we make a couple of assumptions about our given events and their associated
social media documents. First, we do not know any information about the given event.
With this assumption we can handle any type of event, including events discovered under

the unknown identification scenario (Chapters 4 and 5) and, of course, any event identified
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under the known identification scenario (Chapter 6). Second, we assume that the social me-
dia documents that we select consist primarily of textual content. With this assumption,
our techniques can handle content from Twitter, which generally consists of simple, short
textual messages. However, our centrality-based techniques can be easily extended to han-
dle the variety of document representations and corresponding similarity metrics discussed
in Chapter 5.

Regardless of the mode of identification or type of event, once we have an identified event
and its associated social media documents, we address the problem of selecting a subset of
these documents for presentation (Section 7.1.2). We describe our content selection goals

and approaches next.

7.1.1 Content Selection Goals

We select documents for each identified event with three desired attributes: quality, rele-
vance, and usefulness. Quality refers to the textual quality of the documents, which reflects
how well they can be understood by a human. As previously discussed, the quality of doc-
uments posted on social media sites varies widely. High-quality documents contain crisp,
clear, and effective text that is easy to understand (e.g., a Twitter message stating that
“The Superbowl is playing on channel 4 right now”). Low-quality documents, on the other
hand, contain incomprehensible text, heavy use of short-hand notation, spelling and gram-
matical errors, and typos (e.g., a YouTube video titled “obv maj fail lol”). Interestingly,
the quality of a document is largely independent of its associated event.

Relevance in our context refers to how well a social media document reflects information
related to its associated event. Highly relevant documents clearly refer to or describe their
associated event (e.g., a YouTube video, with description: “The steelers’ touchdown was
amazing - I wish they’d do it again” for the Super Bowl 2010 event). Documents are not
relevant to an event if they do not refer to the event in any way (e.g., a Twitter message,
stating “good morning, what are people doing today?” for the Super Bowl 2010 event). In
between these two extremes are documents that are somewhat relevant to an event, where
the event is not the main subject (e.g., A Flickr photo, with description: “I can’t believe

I'm stuck at work, I'd rather be watching the superbowl” for the Super Bowl 2010 event)
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or documents that are barely relevant and only obscurely refer to the event (e.g., a Twitter
messages, stating that “this game is so boring, but watching the commercials is mildly
entertaining” for the Super Bowl 2010 event).

Usefulness refers to the potential value of a social media document for someone who
is interested in learning details about an event. Useful documents should provide some
insight about the event, beyond simply demonstrating that the event occurred (e.g., via
a statement on Twitter, a photo of the event on Flickr). The level of usefulness of social
media documents varies. Documents that are clearly useful provide potentially interesting
details about the event (e.g., a Twitter message announcing that “The Packers and Steelers
are playing in this year’s Superbow!l” for the Super Bowl 2010 event). Documents that
are clearly not useful provide no context or information about the event (e.g., a message
by a Twitter user, stating “super bowl!!! that’s all folks” for the Super Bowl 2010 event).
Other documents may reflect a user’s opinion about the event, where somewhat useful
event information is directly stated or can be inferred (e.g., a Flickr photo titled “the best
superbowl game ever” for the Super Bowl 2010 event).

We use these three attributes, namely, quality, relevance, and usefulness as absolute
measures of user satisfaction with the selected event content, and as relative measures of

the success of our alternative content selection approaches, which we describe next.

7.1.2 Content Selection Approaches

With our content selection goals in mind, we now propose alternative approaches for select-
ing a subset of social media documents associated with a given event. These approaches
rely on the observation that the most topically central documents in a cluster of event doc-
uments are likely to reflect key aspects of the event better than other, less central cluster
documents. This notion of centrality in a cluster of social media documents can be defined
in a variety of ways:

Centroid: The centroid similarity approach computes the cosine similarity of the tf-idf
representation (as defined by Kumaran and Allan | ]) of each document to its associated
event cluster centroid, where each cluster term is associated with its average weight across

all cluster documents. It then selects the documents with the highest similarity value. Since
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a cluster’s centroid highlights important terms used to describe the event (e.g., for Tiger
Woods’s famous apology speech, centroid terms with high weight might include “tiger,”

“WOOdS,” [13

apology,” and “elin”), documents with high similarity to these key terms are
likely to reflect key aspects of the event, as desired by the relevance and usefulness goals.
In addition, since centroid term weights are based on frequency across all documents, they
tend to be high for quality terms (e.g., without typos or spelling errors), addressing our
quality selection goal.

Degree: An alternative view of centrality involves document similarity across all doc-
uments in an event cluster. In this alternative approach, we represent each document in
the cluster as a node in a graph, and any pair of nodes whose cosine similarity exceeds a
predetermined threshold is connected by an edge. Using this graph formulation, the degree
method selects nodes with the highest degree centrality, defined as the degree of each node,
weighted by the number of nodes in the graph. Using degree centrality enables us to select
documents that contain important terms that may not have been captured by the centroid
due to low support in the cluster documents (e.g., a small but highly connected subset
of documents might also include the word “mistress” when describing the Tiger Woods
apology). In this method, highly connected documents are also likely to include key event
terms, a desirable property for content selection.

The degree centrality method treats each edge as an equal vote for its adjacent nodes’
centrality. However, it is often beneficial to associate a weight with each edge, based on the
similarity value of the nodes it connects. In fact, this idea has been considered for the task of
extractive summarization [ ], a related task where sentences from multiple documents
are selected to form a summary. Our third approach, LexRank, is based on a state-of-the-art
technique by the same name used to select document sentences for summarization [ l.

LexRank: The LexRank approach | | defines centrality based on the idea that
central nodes are connected to other central nodes. In other words, every node has a
centrality value, which it distributes to its neighbors. This idea can be represented using
the formula p(m) = 3=, ¢ .4iim) (P(7)/deg(n)), where p(n) is the centrality of node n, adj[m]
is the set of nodes adjacent to node m, and deg(n) is the degree of node n. The value of p(m)

for each cluster document can be computed using the power method | ], which estimates
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the stationary probability distribution resulting from a random walk on the document graph.
We select the top documents in the cluster according to their LexRank value.

In addition to these centrality-based approaches, we considered baseline content selec-
tion techniques such as selecting the most recent documents added to a cluster or selecting
documents from popular users (i.e., users with many followers). Unfortunately, when used
in isolation, these techniques suffer from serious drawbacks (e.g., inability to reduce selec-
tion of noisy, irrelevant content) so we eliminated them from consideration after running
experiments on training data. These potentially useful signals could instead be incorpo-
rated with our centrality based approaches in a disciplined way (e.g., using a trained ranking

function), a task that we reserve for future work (Chapter 9).

7.2 Experiments

We evaluated our content selection strategies on a large dataset of Twitter messages. We
describe this dataset and report the experimental settings (Section 7.2.1), and then turn to

the results of our experiments (Section 7.2.2).

7.2.1 Experimental Settings

Data: We used the Twitter API to collect over 2,600,000 Twitter messages, or tweets,
posted during February 2010 by New York City users (i.e., by Twitter users whose location,
as entered by the users, is in the New York City area). This dataset was collected as part of
our work on unknown event identification described in Chapter 4, and is location-centric for
this reason. However, we believe that this characteristic of the data does not introduce any
bias in our evaluation since our techniques currently do not consider the tweets’ location in
the selection process.

We cluster our entire dataset in an online fashion as described in Section 4.1. We used the
data from the first week in February to calibrate the parameters of the clustering algorithm,
and then used the second week of February for the development of our centrality-based
approaches (and to rule out poorly performing alternatives such as time-based selection).

Finally, we report our results on test data selected from the latter half of February (i.e.,
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Weeks 3 and 4).

Annotations: To test the content selection approaches, we selected 50 event clusters,
with an average of 412 messages per cluster, from our test set (the presence of event content
in the cluster was determined by two annotators, with substantial agreement, with Cohen’s
kappa coefficient k=0.79). For each event cluster we selected the top-5 messages according
to each content selection approach. We used two annotators to label each message according
to our desired attributes: quality, relevance, and usefulness. The annotators labeled each
message on a scale of 1 to 4 for each attribute, where a score of 4 signifies high quality,
strong relevance, and clear usefulness, and a score of 1 signifies low quality, no relevance,
and no usefulness. Agreement between annotators on low (1, 2) and high (3, 4) ratings for
each attribute was substantial to high, with kappa coefficient values x = 0.92,0.89,0.61 for
quality, relevance, and usefulness, respectively. In our evaluation, we use the average score
for each message to compare the algorithmic results.

Techniques for comparison: We evaluate and compare our three content selection
approaches, namely, Centroid, Degree, and LexRank. To compute the degree centrality,
we set the similarity threshold for connecting two message nodes to 0.05. For the LexRank
approach we used the Mead toolkit | | with the LexRank feature option, which produces

a ranked list of messages according to their LexRank score.

7.2.2 Experimental Results

We evaluated our three competing approaches according to user-perceived quality, rele-
vance, and usefulness with respect to a specific event. Figure 7.1 summarizes the average
performance of these approaches across all 50 test events. All three approaches received
high scores for quality (where a score of 4 implies excellent quality). Degree and Centroid,
on average, selected messages that are either somewhat relevant or highly relevant. How-
ever, Centroid is the only approach that received a high score for usefulness, indicating
that, on average, its selected messages were either somewhat or clearly useful with respect
to the associated events.

To test for significant differences between the approaches, we also compared them against

each other in terms of the number of events that each approach was preferred for. Table
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Figure 7.1: Comparison of content selection techniques.

Method | Quality | Relevance | Usefulness

LexRank 2.23 2.4 2.4
Degree 2.02 2.09 2.08

Centroid 1.75 1.51 1.52

Table 7.1: Preference rank of content selection approaches, averaged over 50 test events.

7.1 shows the average rank of each approach according to the three desired attributes. We
performed a statistical significance analysis based on these ranked preferences using the
Friedman test [Dem06], a non-parametric statistical test for comparing a set of alternative
models. According to this test, there are significant differences between the approaches (p <
0.01) in terms of relevance and usefulness. Post-hoc analysis of our data using the Nemenyi
test [Dem06] determined that Centroid is significantly better than the other approaches in
terms of both relevance and usefulness. Significant differences between Degree and LexRank
could not be determined. Additionally, we could not reject the null hypothesis of the

Friedman test (i.e., that all approaches have similar performance) in terms of quality.

7.3 Conclusions

A single event might sometimes attract hundreds or thousands of social media content items,

so being able to rank and filter event content is a requirement for a variety of applications
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Tiger Woods will make his first public statement Friday
about returning to golf tour since the scandal

Tiger Woods skedded to make a public apology Friday and

Coiil talk about his future in golf. Will wife Elin be there? #cnn

Tiger Woods Returns To Golf - Public Apology | Gasparino
| Mediaite http://bit.ly/9Ui5jx

Watson: Woods needs to show humility upon return (AP):
Tom Watson says Tiger Woods needs to "show some
humility to... http://bit.ly/cHVH7x

This week on Tour: Tiger Woods must show humility, Tom
Degree Watson says: Mickelson is the only active player to have

wo... http://bit.ly/dppTIU

Wedge wars upstage Watson v Woods: BBC Sport
(blog),Tom Watson's comments in Dubai on Tiger Woods
are telling,but... http://bit.ly/bwa9VM

Tiger woods vyall.tiger,tiger.tiger,tiger,tiger woods yall!
LexRank Tiger Woods Hugs: http://tinyurl.com/yhf4uzw

tiger woods y'all,ah tiger woods y'all,tiger woods y'all,ah
tiger woods y'all

Figure 7.2: Sample tweets selected by the different approaches for the “Tiger Woods Apol-

ogy” event.
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that aim to communicate that content effectively. In this chapter, we presented content
selection approaches that provide a promising step towards this goal.

Among three centrality-based approaches, Centroid emerged as the preferred way to
select documents given a cluster of documents related to an event. Based on our observation
of the data, we believe that the success of this method is related to its inherent assumption
that each cluster revolves around one central topic. LexRank and Degree, on the other hand,
tend to select documents that are strongly similar to one another, but may sometimes
diverge from the main topic of the cluster (e.g., see Tom Watson’s comments on Tiger
Woods, selected by Degree, in Figure 7.2).

In addition to the centrality-based approaches described in this chapter, we developed
a variety of re-ranking techniques that boost the centrality score of documents with po-
tentially useful features (e.g., URLs, tags). Users can manually adjust these techniques
based on their preferences. An exploration of these re-ranking techniques using our Twit-
ter dataset revealed a disagreement among users on what aspects of a document (beyond
quality, relevance, and usefulness, as defined in our annotation guidelines) are desirable.
Some users tend to prefer Twitter content with accompanying URLs, due to the promise
of additional, potentially interesting information, while others see more value in verbose
messages, with self-contained information related to the event. We plan to explore this

further in future work (Chapter 9).
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Chapter 8

Related Work

This chapter reviews the literature that is relevant to this dissertation. Section 8.1 outlines
prior research on event identification in textual news documents, which consists of many
efforts that predated our own, and, in most cases, the rise of social media. Section 8.2
describes work on trend detection and analysis in social media, related to the study of
Twitter trends and trending events presented in Chapter 3. Section 8.3 discusses related
efforts on event identification in social media, for both the unknown and known identification
scenarios that we addressed in Chapters 4, 5, and 6. Section 8.4 provides an overview of
large-scale clustering and alternative metric learning techniques that we considered for the
clustering framework used in Chapters 4 and 5, and the similarity metric learning problem
in Chapter 5. Finally, Section 8.5 discusses related research on organizing and presenting

social media content, including event-driven analytics and social media summarization,

which is related to our content selection task in Chapter 7.

8.1 Event Identification in Textual News

The topic detection and tracking (TDT) event detection task [ | inspired many re-
search efforts that focused on discovering and organizing news events [ ; ;

]. While some efforts focused on online event detection in continuous text docu-
ment streams [ ; |, others explored retrospective detection of events and their

associated text documents [ ]. With an abundance of well-formed text, many of the
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proposed approaches (e.g., | ; ; ]) rely on natural language process-
ing techniques to extract linguistically motivated features. Zhang et al. [ | extracted
named entities and part-of-speech tags from textual news documents, and used them to
reweigh tf-idf representations of these documents for the new event detection task. Fila-
tova and Hatzivassiloglou | ] identified named entities corresponding to participants,
locations, and times in text documents, and then used the relationships between certain
types of entity pairs to detect event content. Hatzivassiloglou et al. [ ] used linguistic
features (e.g., noun phrase heads, proper names) and learned a logistic regression model for
combining these features into a single similarity value. Makkonen et al. | | extracted
meaningful semantic features such as names, time references, and locations, and learned a
similarity function that combines these metrics into a single clustering solution. They con-
cluded that augmenting documents with semantic terms did not improve performance, and
reasoned that inadequate similarity functions were partially to blame. As we previously dis-
cussed, social media documents have little textual content, and this content is often noisy,
and generally lacks well-established structure and semantics. Therefore, techniques that
rely on these properties of text are often not suitable for the social media domain. At the
same time, the idea of combining a variety of similarity metrics for event detection | ;
] was extended by our work and tailored to social media documents (Chapter 5).
Extracting events from text has been the focus of numerous studies as part of the NIST
initiative for Automatic Content Extraction (ACE) [ ; ]. The ACE program de-
fines event extraction as a supervised task, given a small set of predefined event categories
and entities, with the goal of extracting a unified representation of the event from text
via attributes (e.g., type, subtype, modality, polarity) and event roles (e.g., person, place,
buyer, seller). Ahn | | divided the event extraction task into different subtasks, in-
cluding identification of event keyword triggers (see Chapter 2), and determination of event
coreference, and then used machine learning methods to optimize and evaluate the results
of each subtask. Ji and Grishman [ | proposed techniques for extracting event content
from multiple topically similar documents, instead of the traditional approach of extracting
events from individual documents in isolation.

In contrast with the predefined templates outlined by ACE, Filatova et al. | ]
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presented techniques to automatically create templates for event types, referred to as “do-
mains,” given a set of domain instances (i.e., documents containing information related to
events that belong to the domain). Our goal is to identify events of different types over social
media documents. For this, we either operate in an unsupervised manner, or in a supervised
manner that does not impose restrictions on the event’s domain. For the supervised, known
event identification task, we do not use explicit templates but rather guide our identification

process using event-specific (as opposed to type- or domain-specific) attributes.

8.2 Trend Analysis in Social Media

The general topic of studying trends in social media has recently received considerable
research interest. Research efforts often examined a small number of such trends to produce
some descriptive and comparative characteristics of social media trends or popular terms.
Cheong and Lee | ] looked at four trending topics and two control terms, and a subset of
the messages associated with each, commenting on features such as the time-based frequency
(i.e., volume of messages) for each term, and the category of users and type of devices used
to post the associated messages. Yardi and boyd | | examined the characteristics of
content related to three topics on Twitter, two topics representing geographically local
news events, and one control topic. The authors studied the messages posted for each
topic (i.e., messages containing terms manually selected by the authors to capture related
content), and the users who posted them. Among other findings, the authors suggest that
local topics feature denser social connectivity between the posting users. Similarly, Sakaki
et al. | | suggest that the social connectivity for breaking events is lower, but have
only examined content related to two manually chosen events. In our study of Twitter
trends in Chapter 3, we were not able to verify this hypothesis.

To detect trends in Blogs, Glance et al. | ] used a measure of “burstiness,” among
other techniques, identifying trending terms and phrases. This measure of “burstiness” is
similar to the one we used in our study of trends and trending events on Twitter (Chapter
3). As an additional step, Glance et al. clustered the trending terms and phrases to create

trending topics, each consisting of a set of related terms. While we do not cluster terms for
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our study in Chapter 3, we do use clustering to identify events in our unknown identification
scenario (Chapters 4 and 5). However, we cluster documents rather than terms, to identify
the events and their associated social media documents simultaneously.

Singh and Jain | | examined Twitter messages with select hashtags and showed that
the content for each such set follows a power-law distribution in terms of popularity, time,
and geo-location. Kwak et al. | ] showed that different trending terms on Twitter
have different characteristics in terms of the number of replies, mentions, retweets, and
“regular” tweets that appear in the set of tweets for each term, but do not reason about
why and how exactly these trends are different. Some of the metrics we used in Chapter 3
for characterizing trends are similar to those used in these studies, but we go further and
perform a large-scale analysis of trends according to manual assignments of these trends to
distinct categories.

On a slightly larger scale, Kwak et al. | | also examined the time series volume
data of tweets for each trending term in their dataset, namely, a sample of 4,000 of the
trending terms computed and published by Twitter. The authors based their analysis on
the findings of Crane and Sornette | ], which analyzed time series viewing data for
individual YouTube videos. Crane and Sornette observed that YouTube videos fall into two
categories, based on their view patterns. When a time series shows an immediate and fast
rise in a video’s views, Crane and Sornette assert that the rise is likely caused by external
factors (i.e., attention was drawn to the video from outside the YouTube community) and,
therefore, dub this category of videos “exogenous.” When there is no such rise, the authors
suggest that a video’s popularity is due to “endogenous” factors. Videos are also classified as
“critical” or “sub critical,” again according to the time series data. Kwak et al. [ ]
use these guidelines to classify the Twitter trends in each of these two categories, showing
how many trends fit each type of time-series signature. However, the two groups of authors
never verified that the trends or videos labeled as exogenous or endogenous indeed matched
their labels. In Chapter 3, we used the time series data (amongst other characteristics)
while manually coding identified trends as exogenous or endogenous in order to observe
whether these categories show different time series effects.

The related problem of information dissemination has also attracted substantial atten-
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tion. As a notable example, recent work studies the diffusion of information in news and
blogs [ ; |. Leskovec et al. [ | studied how memes propagate and
diffuse across the Web, from mainstream media to blogs and vice versa. Specifically, they
observed that the peak of attention for a meme in blogs generally lags 2.5 hours behind the
peak of attention for the same meme in mainstream media. As another example, Jansen et
al. | | study word-of-mouth activity around brands on Twitter. The trends we iden-
tified on Twitter (Chapter 3) are, of course, both a product and a generator of information

dissemination processes.

8.3 Event Identification in Social Media

While event detection in textual news documents has been studied in depth, the identifica-
tion of events in social media sites is still in its infancy.

Several related papers explored the unknown event identification scenario in social me-
dia. Weng and Lee | | proposed wavelet-based signal detection techniques for identi-
fying “real-life” events on Twitter. These techniques can detect significant bursts or trends
in a Twitter data stream but, unlike our work in Chapter 4, they do not filter the vast
amount of non-event content that exists on Twitter. This, unfortunately, results in poor
performance, with very low precision scores compared with the precision achieved by our
methods. Related to our work in Chapters 4 and 5, Sankaranarayanan et al. | ]
identified late breaking news events on Twitter using clustering, along with a text-based

)

classifier and a set of news “seeders,” which are handpicked users known for publishing news
(e.g., news agency feeds). As we discussed, such text-based and seeder-driven filtering of
non-event data can be used to generate the event document stream we use in Chapter 5.
Petrovié¢ et al. | ] used locality-sensitive hashing to detect the first tweet associated
with an event in a stream of Twitter messages. We use the general text-based classifier
suggested in [ | and a method for identifying top events suggested by Petrovié et
al. [ ] as baseline approaches in our evaluation of the unknown identification methods

of Chapter 4.

While our work in the unknown event identification scenario focuses on timely, online,
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analysis, several efforts tried to address this task using retrospective analysis. Rattenbury et
al. [ | analyzed the temporal usage distribution of tags to identify tags that correspond
to events. Chen and Roy | | used the time and location associated with Flickr image
tags to discover event-related tags with significant distribution patterns (e.g.“bursts”) in
both of these dimensions.

Recent efforts proposed techniques for known identification of events in social media.
Many of these techniques rely on a set of manually selected terms to retrieve event-related
documents from a single social media site | ; |. Sakaki et al. | | developed
techniques for identifying earthquake events on Twitter by monitoring keyword triggers
(e.g., “earthquake” or “shaking”). In their setting, the type of event must be known a
priori, and should be easily represented using simple keyword queries. Most related to our
work in Chapter 6, Benson et al. | ] identified Twitter messages for concert events
using statistical models to automatically tag artist and venue terms in Twitter messages.
Their approach is novel and fully automatic, but it limits the set of identified messages for
concert events to those with explicit artist and venue mentions. Importantly, both of these
approaches are tailored to one specific social media site. In contrast, we propose methods
for identifying social media documents across multiple sites with varying types of documents
(e.g., photos, videos, textual messages). Our goal is to automatically retrieve social media
documents for any planned event, without any assumption about the textual content of
the event or its associated documents. While not exclusively in the social media domain,
Tsagkias et al. [ | extracted named entities and quotations from news articles, as
well as explicit links between news and social media documents, to identify social media
utterances related to individual news stories. In contrast with their well formed, lengthy
textual documents and explicitly linked content, content in our known event identification
setting (Chapter 6) is brief and often noisy, and generally does not contain explicit links to

social media documents.
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8.4 Large-Scale Data Clustering

There are many approaches for clustering large-scale data | |, trading off runtime per-
formance and clustering accuracy. One of the important issues to address when clustering
large-scale data is how to compare the data elements against each other, which is hard to
perform in a scalable manner as the size of the data grows.

Several solutions were proposed to alleviate this problem. One set of solutions [ ;

| uses statistical properties to represent subsets of the data, thus reducing the to-
tal number of comparisons to be made. Hatzivassiloglou et al. | ] and Allan et
al. [ ] showed that an incremental single-pass clustering algorithm can be effectively
used for event detection in textual news. Hatzivassiloglou et al. discovered that a single-
pass approach can offer good, inexpensive performance for text document clustering, given
a carefully selected clustering threshold. For the unknown event identification scenario, we
adopt this type of single-pass incremental solution, and represent clusters according to the
average value of their elements (i.e., centroid).

Other large-scale clustering solutions involve “blocking” methods [ ; ;
which partition elements into several subsets based on a rough measure of similarity. These
subsets are then clustered in parallel using traditional clustering algorithms (e.g., K-means,
EM | ]) with exact similarities. For our clustering framework (Section 4.1), recent work
by Reuter et al. [ ] showed that a time-based blocking function can offer efficiency
improvements over the complete-link similarity setting, which compares each incoming doc-
ument to all previously seen documents at any point in the stream. Alternatively, several
approaches | ; ] use locality-sensitive hashing, a method for finding approx-
imate nearest neighbors, to determine a small set of candidate clusters for each element.
This method reduces the number of comparisons that the clustering algorithm must make
for each element, thus increasing the algorithm’s efficiency.

The choice of clustering similarity metric is critical for obtaining high-quality cluster-
ing solutions. In domains where more than one similarity metric is appropriate, several
approaches have been proposed for combining multiple similarities using machine learning
techniques | ; ; ; ]. Bilenko et al. [ | used an online percep-

tron to combine several basis similarity functions, including cosine similarity, string edit
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distance, and relative difference (for numeric values), in the context of a system for link-
ing related database records. Similar to our work in Chapter 5, Chen et al. [ ] used
weighted ensemble voting and, in addition, context features of the clusterers in the ensemble,
to enable entity resolution in different domains (e.g., personal Websites and publications).

Other metric learning approaches use optimization techniques to learn a similarity metric
from labeled examples directly | ; ]. Xing et al. | ] posed the metric
learning problem as a convex optimization problem, and showed how such metric can be
learned from pairs of similar items using semidefinite programming. While they argue the
efficiency of their metric, they only performed experiments over small-scale datasets. Impor-
tantly, the optimized metric is part of a family of distance functions known as Mahalanobis
distances, which are a generalized form of the standard Euclidean distance. For social me-
dia documents, we are interested in a variety of similarity (or, conversely, distance) metrics
that reflect the natural, intuitive similarity for a given document representation (e.g., co-
sine similarity for textual features, geo-coordinate similarity for location-based features).
In Chapter 5, we defined document representations and corresponding similarity metrics,
and used them as basis functions for a trained similarity metric with classification-based

and ensemble-based techniques.

8.5 Social Media Content Summarization, Topic Discovery,

and Analytics

Research on summarizing, discovering, or otherwise presenting social media content has
gathered recent attention. The task of social media summarization is related to our con-
tent selection task (Chapter 7), but instead of selecting a set of potentially disconnected
messages, it aims to construct a coherent summary representation. Several efforts [ ;

| considered ways to summarize a set of social media documents related to a specific
topic. Sharifi et al. | | proposed approaches for summarizing a set of Twitter mes-
sages that were retrieved in response to a keyword query. They used graph-based phrase
reinforcement and tf-idf techniques to produce very short summaries, which often consist

of fewer than 10 words. Chakrabarti and Punera | | proposed techniques for summa-
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rizing Twitter messages for events. They used Hidden Markov Models to segment the set
of messages into sub-events, and then selected key messages from each “interesting” sub-
event, to include in the overall summary. This approach, as the authors note, is geared
towards structured, long-running events and its effectiveness has not been determined for
short events such as concerts or festivals.

Identifying latent, though not necessarily trending, topics on Twitter is the subject of
many recent efforts | ; ; ; |. Hong and Davidson [ | proposed
several schemes to train standard LDA, and the Author-Topic LDA models for topic discov-
ery over Twitter data. Ramage et al. [ | used Labeled LDA to map Twitter messages
into learned latent and labeled dimensions (e.g., using hashtags, emoticons). Interestingly,
they showed how topic models can be used to characterize users by the topics they most
commonly use. O’Connor et al. [ ] described a system for presentation of Twitter
search results, which uses a language modeling approach to identify topic phrases that are
most distinctive for a set of retrieved Twitter messages. Search results are then grouped by
topic and theme, and ranked based on topical diversity, size, and uniqueness of information.
Finally, Zhao et al. [ | extracted and ranked topical key phrases on Twitter, using
topic models and topic-biased PageRank. They defined relevance and interestingness with
respect to a topic as the properties of good key phrases they aim to extract. We considered
topic modeling as a potential approach for event identification, despite several drawbacks
of this type of solution for our task. We discuss this issue in detail in the following chapter.

Several recent efforts attempted to provide analytics for events detected or tracked on
Twitter. De Longueville et al. | | described a method for using Twitter to track for-
est fires and the response to the fires by Twitter users. Starbird et al. [ | described
the temporal distribution, sources of information, and locations in tweets from the Red
River Valley floods of April 2009. Nagarajan et al. [ ] downloaded Twitter data for
three events over time, and analyzed the topical, geographic, and temporal importance of
descriptors (e.g., different keywords) that can help visualize the event data. O’Connor et
al. [ | performed sentiment analysis on Twitter, and showed a correlation between
sentiment measured on Twitter and public opinions derived from polling data for the United

States presidential elections in 2008, and presidential job approval in 2009. Finally, Shamma
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et al. [ |, Diakopolous and Shamma | |, and Diakopoulos et al. | ] analyze
the tweets corresponding to large-scale media events (e.g., the United States President’s
annual State of the Union speech) to improve event reasoning, visualization, and analyt-
ics. These tasks may all be improved or better automated with the event identification

techniques presented in this dissertation.
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Chapter 9

Conclusions and Future Work

As users continue to share event-related content through social media channels, identifying
and characterizing this content remains critical to enable a variety of applications that build
on this useful source of information. Users should be able to interact with event content in
a timely manner, and also be exposed to a variety of content from different social media
sites, offering a multifaceted view of events, complete with textual content and multimedia.
Figure 9.1 illustrates an event browsing and search system, which is one potential application
that could benefit from temporally relevant and multifaceted social media event data.

In this dissertation, we presented event identification, characterization, and content
selection techniques, each of which serves as an integral part of such applications that
interact with events, and their associated documents, in social media. Specifically, we
outlined alternative social media identification scenarios, and the types of events that we
can identify under each scenario (Chapter 2). For the unknown identification scenario, where
events are identified in an unsupervised manner, we studied the different types of trending
events and non-event trends that exist in social media (Chapter 3). We then leveraged
the conclusions of our study to inform our event classifiers, which we used in conjunction
with a proposed clustering framework for unknown identification of events (Chapter 4). To
improve our clustering framework, we developed alternative approaches for learning multi-
feature similarity metrics, suitable for the social media domain, using the rich family of
context features associated with social media documents (Chapter 5). Then, in the known

identification scenario, we developed query formulation strategies to identify social media
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documents for planned events. Importantly, we showed how event content identified on one
social media site can be used to identify additional event content on other social media
sites (Chapter 6). Finally, we explored approaches for selecting a subset of the documents
associated with any event in social media, with focus on content quality, relevance, and

usefulness (Chapter 7).
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Figure 9.1: Mock-up illustration of an event search and browsing system.

While we developed key techniques for enabling important applications such as event
browsing and search, which rely on organized, timely, and multifaceted event data from
social media sites, there are many remaining opportunities for future work, to optimize,
connect, and extend the event identification and characterization techniques described in

this dissertation. We outline some of these directions for future work next.

9.1 Clustering Framework Optimization

The clustering framework developed in this dissertation (Section 4.1) is at the core of our

unknown event identification techniques and its results directly affect the events that we are
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able to discover. For this reason, we studied this framework and its alternatives extensively
prior to selecting it as part of our solution. Although we experimented with alternative
clustering algorithms and parameter settings while training our techniques (see Section
4.1), several optimizations of the clustering framework could be considered for future work.
Such optimizations could potentially improve the scalability and enhance the quality of our
clustering results.

There are several properties of a suitable clustering approach for the unknown event
identification scenario, as we previously discussed (Section 4.1). Specifically, recall that
the clustering approach we use should be able to efficiently process large amounts of data
incrementally, and not require a priori knowledge of the number of clusters. Although these
requirements eliminate many candidate clustering algorithms (e.g., K-Means, agglomerative
hierarchical clustering | ]), our chosen algorithm, as described in Section 4.1, is not the
only possible solution. As one alternative, we could consider applying several efficiency op-
timizations to our current single-pass incremental approach, specifically involving blocking
or canopy techniques [ ; ).

Recently, Reuter et al. | ] extended our clustering framework (as presented in
[ ]) to include a blocking technique, which considers only a subset of the already-
clustered documents as candidate “nearest-neighbors” for any newly posted document. The
“blocker” (i.e., candidate selection function) that they proposed is simply a sliding time win-
dow, which selects a subset of the clustered documents that are within an empirically-tuned
temporal proximity to the given document. Not surprisingly, this technique was significantly
more efficient than the baseline techniques that compute the similarity between all docu-
ment pairs. Unfortunately, Reuter et al. did not use a centroid representation of each cluster
but rather compared any document to all other seen documents in the stream that fit the
blocking criterion. An interesting direction to explore is the tradeoff between efficiency and
accuracy of the clustering algorithm, using document-document versus document-centroid
similarities with appropriate blocking functions. An additional option for the blocking func-
tion is a location-based candidate selection technique, using the location proximity between
the documents as a rough indicator that the documents correspond to the same event. This

location-based blocker might be more effective for certain types of events (e.g., local events)
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than others (e.g., global breaking news events).

As an alternative to clustering, we could consider approaches for grouping topically
similar social media documents using topic models [ ]. Topic models are a class of
unsupervised probabilistic modeling techniques [ ] that have grown in popularity over
the past several years and which have been used in a variety of applications. Broadly,
these models map a text document collection into sets of distributions over words. These
distributions serve as representations for the different topics in the document collection.
Recently, Hoffman et al. | ] developed scalable, online topic models, for detecting
topics in massive document collections. Their algorithm only requires a single pass over
the document collection, making it significantly more efficient than previously-proposed
batch topic modeling approaches, and, therefore, more suitable for our event identification
problem. Unfortunately, the number of topics must be specified as a parameter for this
algorithm, and this number is static, unlike the number of clusters in our framework, which
may change over time.

Extending online topic models to handle a variable number of topics is one possible
solution that would make this alternative approach suitable for our problem. One obvious
drawback of topic models for the social media domain is that they associate documents
with topics purely based on textual content. As we showed in Chapter 5, learning similarity
metrics using a variety of context features, textual and non-textual, is more effective than
text-based approaches at determining when social media documents correspond to the same
event. Still, topic modeling is an effective technique for characterizing social media content
[ ], and may prove to be a useful signal for identifying events and their associated

social media documents in our unknown identification scenario.

9.2 Identifying Unknown Events with Learned Similarity
Metrics Across Sites
In Chapters 4 and 5 we presented two alternative approaches for identifying events and their

associated social media documents in the unknown event identification scenario. In Chapter

4, we first clustered social media documents using our proposed clustering framework, and
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then employed a post-clustering classification step to determine which clusters correspond
to events. In that chapter, we used a simple text-based similarity metric as we were focused
on social media sites such as Twitter, whose documents consist of short textual messages. In
contrast, in Chapter 5 we used our clustering framework with a stream that consists of event
documents exclusively. Here, we assumed that non-event documents were filtered prior to
clustering. Importantly, we defined multi-feature similarity metrics to handle documents
from social media sites such as Flickr, which include a variety of rich and descriptive context
features. A natural extension of the work described in these chapters is to unify the main
contributions in each chapter, namely, the clustering and classification approach of Chapter
4, and the similarity metric learning techniques of Chapter 5, into an end-to-end unknown
event identification framework with learned similarity metrics.

As a potential improvement to the techniques presented in Chapters 4 and 5, this un-
known identification framework should be able to incorporate social media documents across
sites, as we do in the known event identification scenario (Chapter 6). For this, we may
choose to cluster documents from all social media sites simultaneously, or cluster documents
from each social media site in isolation, and then merge similar event clusters across sites. If
we choose to cluster documents across sites collectively, we must train a new similarity met-
ric to handle a generic representation of social media documents that would fit documents
from most social media sites. Fortunately, most social media documents can be represented
using a core set of features (Chapter 5). As a challenge, social media documents from sites
such as Twitter consist of short segments of text, frequently with no additional context
features. To handle such documents, we could consider core context features such as title or
location as “missing,” in the context of the generic social media document representation.
As an alternative, by clustering documents from each site in isolation, we could have the
advantage of tailoring the similarity metric to each specific site and potentially exploiting
additional, site-specific document features (e.g., video category on YouTube, “people in

photos” feature on Flickr).
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9.3 Improving Breadth of Event Content

To address our breadth requirement (Chapter 1), we considered several query-based tech-
niques for identifying event documents from different types of social media sites (Chapter
6). We were able to show that we can successfully use identified event content on one site
to retrieve additional event content on other sites. This process of bootstrapping examples
from one view of the data (e.g., event documents from Flickr) to inform the learning process
in a different, complementary view of the data (e.g., event documents from YouTube) is
related to the powerful notion of co-training [ ]. To extend this idea, we could cast
the cross-site event identification problem as a semi-supervised clustering problem | ],
where some events, and their associated social media documents, are available to us as
seed event clusters. In this scenario, we can use learned multi-feature similarity metrics to
identify social media documents that are highly similar to any existing event clusters.
Similar to the process we followed in Chapter 6, we can treat social media documents that
are highly similar to known event clusters as “ground truth.” As a challenging extension
to our work, we can use the newly identified documents to augment the event clusters
with additional context features that might not have been available initially (e.g., location,
title, tags). These additional features, in turn, could help identify new event documents on
complementary social media sites. This process repeats, as newly identified event documents
become “ground truth” and are iteratively used to identify more documents on other social

media sites.

9.4 Ranking Events for Search and Presentation

The events that we identified and characterized, along with their associated social media
documents, present many opportunities for improving and complementing search tools that
Web search engines provide. Specifically, as we discussed, we can enable social media-
augmented event browsing and search, where users are presented with a select set of rel-
evant events, for the search case in response to a keyword query. State-of-the-art search
applications rely on this notion of relevance to build domain-appropriate ranking models.

Therefore, one challenging direction for future work would be to learn a ranking model
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for events that would consider the event’s relevance for any user and query based on the
available social media context features.

Learning ranking models for information retrieval tasks has been the topic of many
; ; ; I

These ranking models use discriminative training over labeled examples to capture docu-

research efforts over the past several years | ;

ment relevance by combining possibly revealing features with respect to a global notion of
relevance, or as it relates to specific queries and users. Such features may be generated by
traditional information retrieval methods such as language modeling | | and PageRank
scoring | |. The challenges that must be addressed in order to learn successful ranking
models include feature generation, ranking model selection, and labeled data collection for
model training and evaluation.

Keyword searches are often ambiguous and their results are not equally relevant for
every user. For example, a user in New York searching for the query [concert in the park]
may expect a different set of events than a person searching for the same query in San
Francisco (“the park” likely meaning Central Park in the first case and Golden Gate Park
in the other). Furthermore, we would expect that a New York Philharmonic’s concert in
the park would be more relevant than a concert in the park by an unknown artist, based
on its overall importance (e.g., as measured using link analysis [ ]). Therefore, it is
important to define features that capture the static relevance of an event, as well as its

relevance to different queries and users. We could explore three different types of features:

e Static relevance features: capture the (query-independent, user-independent) impor-

tance of an event.

e Query relevance features: capture the relevance of an event for a specific keyword

query.
e Personalized relevance features: capture the relevance of an event for a specific user.

We elaborate on each of these types of features next.
Static relevance features: We could examine several possible feature indicators of
event importance that would help us gauge an event’s static relevance. These features reflect

an absolute notion of importance, which is not specific to any user or query. For example, a
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presidential inauguration should have a higher static rank than a speech by a local politician.
Yet, in some cases, the relative importance is not as clear (e.g., the New York City Marathon
versus the Macy’s Thanksgiving Day Parade), and, therefore, we could analyze different
factors that may be used to infer the global importance of an event. Specifically, we could
consider features such as the number of social media documents associated with the event,
the volume of comments, and the distribution of links between these social media documents
(e.g., using measures such as PageRank | ]). Understandably, local and community-
specific events would likely have fewer associated social media documents and, therefore, be
deemed as less important than popular, widely-known events, according to this definition
of importance. However, features based on user-specific and query-specific relevance, which
could be combined with the static relevance features using a trained ranking model, could
help adjust the predicted rank of these events in cases where they may be of relevance to
the specific user and query.

Query relevance features: Determining the relevance of an event with respect to a
query is a challenging task, with some queries containing ambiguous keywords (e.g., [police
concert 2011]), or simply not containing enough information (e.g., [www]| referring to the
World Wide Web conference). For our query relevance features, we could experiment with
the traditional information retrieval models such as Okapi BM25 | ], language models
[ |, and others [ ]. Additionally, since each event can be represented using a
record of values, some textual and some numeric, we could explore techniques for parsing
the query to extract and compare these structured features. For instance, for the keyword
query [macworld expo SF 2010], we would want to recognize that 2010 is the year, SF is the
location, and macworld expo is the title. We can compute the similarity along the event
features using the appropriate similarity metrics as described in Chapter 5. Finally, we may
consider representing each event using the content from all of its documents simultaneously,
or extract the query relevance features for each document separately, and report aggregate
statistics as the event-level query relevance features (the latter approach being less scalable
but possibly revealing).

Personalized relevance features: The personalized rank features reflect the impor-

tance of the event for a particular user. These features could be particularly important in
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the context of event browsing, where a query is not provided. Our ability to capture this
importance would improve with the amount of information that we have about the user.
For example, a New York Philharmonic concert in Central Park should be ranked higher
for a person who lives in New York than for a person who lives in California. Therefore,
it would be useful to include a feature that would indicate the geographical proximity of
the user to the event. We could also use signals from a user’s social network to compute
revealing personalized relevance features. For example, if the user’s social network contacts
search for or browse event content relating to a Columbia University commencement cere-
mony, this activity could provide an indication that this event would also be of interest to
the user. We could consider features such as the number (or percentage) of social network
connections that show interest in the event via browsing, search, or comments on associated
social media documents.

To train a ranking model using these features, we could explore different ways of collect-
ing labeled relevance judgments for document-query pairs and document-user pairs using
several user profiles. These relevance judgments may be obtained explicitly using human
annotators, or implicitly by analyzing user interaction with ranked results through click-
through behavior | |. Obtaining labels implicitly using clickthrough behavior is an easy
way to generate large amounts of training data, but this data may be noisy and influenced
by contextual factors such as the position of the item on the search results page | ].
While employing expert human annotators is often expensive, we could explore the use
of services such as Amazon’s Mechanical Turk that can efficiently distribute this type of
labeling task to many of its workers.

We could consider a variety of techniques for training a ranking model. With so many
existing models in the literature, researchers have created benchmarking datasets for com-
petitive evaluation of ranking techniques | ]. We could explore suitable ranking
models, using these benchmark datasets to identify techniques that optimize quality and
scalability. We could train ranking models that combine the three different types of features,
namely static, query, and personalized relevance features, to enable event search. Alterna-
tively, for event browsing, where no query is given, we could train a separate ranking model

using static and personalized features alone.
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In summary, this dissertation presents a variety of useful techniques for event-based
organization of social media content, to enable timely exploration and interaction with this
rich and valuable source of event information. Specifically, we provide important insights
regarding the types of events that exist in social media and the characteristics of their asso-
ciated content. We develop key methods for identifying different types of events and their
associated social media documents under two alternative scenarios, namely, the unknown
identification scenario, where we identify trending events and their associated documents
using an online clustering framework, and the known identification scenario, where we
identify social media documents for planned events using query formulation and retrieval
strategies. Since the number of identified social media documents for an event may be large
and, therefore, difficult for users to explore in its entirety, we also design techniques for
selecting a subset of high-quality, relevant event documents that reflect useful information
for each event. Overall, this dissertation provides a framework for studying events in social
media, and offers contributions for improving the utility of social media content through
event identification, characterization, and content selection. Promising directions for future
work could build on these contributions to provide a powerful interface to user-contributed
event content, reflecting the rich and diverse points of view of social media users around

the world.
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Appendix A

Normalized Mutual Information

and V-Measure

In our discussion of clustering evaluation metrics (Section 5.1.2) we described Normalized
Mutual Information (NMI) | |, a frequently-used measure of quality for clustering
results. In this appendix, we present a proof that NMI is equivalent to a recently pro-
posed clustering quality metric called V-measure | |, which represents the harmonic
mean of two desirable criteria for a clustering solution: homogeneity and completeness.
Homogeneity of a clustering solution reflects the degree to which documents in any single
cluster correspond to one event. Completeness of a clustering solution reflects the degree
to which all documents that correspond to one event are in a single cluster. Homogeneity
and completeness directly reflect the clustering properties that we aim to optimize (Section

5.1.2).

Formally, for a set of clusters C' = {c1,...,cs} and events E = {ey, ... ex }, homogeneity
his defined as h = 1 — ng?g) and completeness m is defined as m = 1 — HI-(I?CLE)? ). Therefore,
V-measure is defined as V' = ,?Jr—% Substituting the definitions of A and m, we have:

H(E|C) H(C|E)
y o ) (7 ey ) (A1)
- H(E|C H(C|E :
(1= ) + (- )
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which is equivalent to:

(HB)-HEC)) (HC)-H(CIE),
H(E) H(O)
H(E)—H(E|C H(C)—-H(C|E
( ()H(E()|))+( ()H(C()l))

V=

(A.2)

Since H(FE) — H(E|C) = H(C) — H(C|E), we get:

(A.3)

and
H(E) — H(E|C)
H(E)+ H(C)

Finally, since H(E) — H(E|C) = I(C, E), we have:

V=

1(C, B)

V= HE) + 1o

= NMI(C,E) (A.5)

By showing that NMI is equivalent to the harmonic mean of homogeneity and complete-
ness, we can reason about the quality of our clustering solution in terms of each component
separately, thus making our results more interpretable than when using the combined met-
ric alone. This proof unifies two frequently-used clustering quality metrics, which would
hopefully enable a direct comparison between clustering results evaluated according to these

metrics.
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