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Limits on Exact Learning from Membership and Equivalence
Queries

Abstract

In this paper we look at different combinatorial properties of concept classes that give bounds
on the query complexity of exact learning. We consider learning from equivalence queries,
membership queries and a combination of equivalence and membership queries. We examine
and present proofs regarding efficient query-learnability as it relates to the notions of polynomial
certificates, approximate fingerprints and the teaching dimension.

1 Introduction

In our study of learning theory, we have primarily focused on a learning model known as Probably
Approximately Correct (PAC), where a learner is able to identify a close approximation of the target
concept. While the PAC model enables efficient learning of concept classes, including decision lists
and boolean conjunctions, it provides less satisfying results for learning more complex classes such
finite automata and boolean formulas. We would therefore like to examine other learning models
that produce more efficient results for learning such concept classes.

In this paper we will discuss and present results concerning a particular learning model known
as Exact Learning, in which a learner obtains examples by making queries to an oracle. Developed
primarily by Angluin, this model requires that the learner outputs a hypothesis that is exactly
equivalent to the target concept. Exact learning with queries gives a learner the power to actively
request examples from an oracle, in a fashion that will benefit its learning process thus improving
the complexity of the learning. We are particularly be concerned with exact learning using two
types of queries known as equivalence queries and membership queries. We consider three different
learning settings using (i)equivalence queries (ii) membership queries and (iii) a combination of
equivalence and membership queries. For each setting, we discuss properties that give limits on the
number of queries needed to efficiently exactly learn a concept.

In particular, it was shown by Angluin that a concept class is not efficiently exactly learnable
using equivalence queries alone if we can find a concept from our set of candidate hypotheses that is
consistent with only a superpolynomially small number of hypotheses from the set. Such a concept
is defined as an approximate fingerprint and we present the proof by [2] showing that a concept
class that possesses the approximate fingerprints property cannot be efficiently exactly learnable
from equivalence queries.

We also present a bound on the number of membership queries needed to learn a concept in
terms of the teaching dimension. The teaching dimension from Goldman and Kearns [6] provides
a measure of the smallest number of examples needed in order exactly identify a concept c. We
can therefore present a proof showing that the teaching dimension gives a bound on the number of
membership queries needed to efficiently exactly learn c.

For learning with equivalence and membership queries, we present very interesting results from
[1] which relate efficient exact learning using equivalence and membership queries to a property of
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representation classes defined as polynomial certificates. We use this notion to show that a target
class is polynomial query learnable with equivalence and membership queries if and only if it has
polynomial certificates.

More specifically, we begin by discussing the polynomial query learnability of Boolean concept
classes using equivalence and membership queries. We will define the idea behind polynomial
certificates and show that a representation of a Boolean concept class is polynomial query learnable
if and only if it has polynomial certificates [1]. Next we discuss Angluin’s results in [2] concerning,
proving that a concept class is not efficiently exactly learnable using equivalence queries if it has
approximate fingerprints. We also show the results from Goldman and Kearns [6], proving a
bound on the number of membership queries needed to learn in terms of the teaching dimension.
Finally, we show that projection-closed Boolean concept classes are efficiently exactly learnable
from membership queries only if they have a polynomial teaching dimension [1].

2 Preliminaries

A representation class R is defined by 〈Σ,∆, R, µ〉 where Σ and ∆ are finite alphabets, R is a subset
of ∆∗ and µ maps R to subsets of Σ∗. A concept c is a subset of Σ∗ and R is the set of concept
representations. µ is a mapping that determines whether a concept c ∈ Σ∗ is represented by a given
representation from R. The concept class C is defined by the representation class R as the set of
concepts that have representations in R. In this paper, we refer to the size of a concept c in terms
of the smallest representation r ∈ R such that µ(r) = c. Cm,n is the concept class over n variables
of length at most m. A Boolean concept class Cn is a concept class over n Boolean variables. an
assignment to these variables is a string x ∈ {0, 1}n. For any c ∈ C, we use c(x) to denote the
classification of x by c, where c(x) = 1 if x is in c and c(x) = 0 otherwise.

In the model of exact learning, we are interested in finding a learning algorithm A such that
for all x ∈ X, X ⊆ Σ∗ outputs a hypothesis h such that h(x) = c(x). Therefore A outputs a
representation of a concept that is exactly equivalent to the target concept. The learning algorithm
can acquire the information to compute h by making queries to an oracle. The two kinds of queries
that we discuss are equivalence queries and membership queries.

Definition 1 An Equivalence Query EQ(h) asks ”is h(x) = c(x) for all x?”. The response to this
type of query is either ”yes” if the learner successfully identified the target concept, or a counterex-
ample x where h(x) 6= c(x).

Definition 2 A Membership Query MQ(x) asks ”is x a member of the unknown concept c?”. The
learner receives in response the value of c(x).

The query complexity of A is the sum of the lengths of inputs to equivalence queries, membership
queries and the counterexamples received in response to equivalence queries. Note that if A only
uses membership queries then its query complexity is the sum of the length of inputs to membership
queries, and if it only uses equivalence queries then its query complexity is the sum of the length
of inputs to equivalence queries and counterexamples received as output.

A representation class C is efficiently exactly learnable using equivalence and membership queries
if there exists a learning algorithm A and a two-variable polynomial p such that for any unknown
c ∈ C and any positive integer m:
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• A has query complexity of at most p(m,n) at any stage of its execution, where m is the size
of c and n is the maximum length of any counterexample received from an equivalence query.

• A outputs a hypothesis h ∈ C such that h(x) = c(x) for all instances x

• We refer to the ”running time” of A as the bound on the number of queries made by A and
the length of inputs to each of these queries, which is also p(m,n).

This definition is slightly modified when we discuss learning from equivalence or membership
queries alone.

3 Learning with Equivalence and Membership Queries

In this section, we discuss the results given by [1] regarding the learnability of Boolean concept
classes from membership and equivalence queries. We show that polynomial query learnability of
a representation class R is implied by a characteristic known as polynomial certificates.
Let C be a Boolean concept class defined by the representation classR. We present the halving algorithm
for learning C, which outputs hypotheses according to a majority vote. We would like to show the
conditions under which it is possible to efficiently exactly learn a target concept class using this
algorithm. The input to this algorithm is n, the number of variables in the target concept c ∈ C.
Let H = Cn be the initial set of all potential hypotheses. At each stage of the algorithm, H contains
the concepts that are consistent with the labeled examples known to H thus far. For any set T of
concepts, the majority concept denoted MAJ(T ) is a concept which contains an instance x if and
only if at least half of the concepts in T contain x. The algorithm repeats the following steps until
it receives a ’Yes’ from an equivalence query

• Find the majority concept h of the set H

• Make an equivalence query EQ(h)

• If a counterexample 〈x, c(x)〉 was received, eliminate all concepts h′ ∈ H where h′(x) 6= c(x).
Otherwise, return h.

The number of queries used by the halving algorithm is dlog2|Cn|e since every iteration elimi-
nates at least half of the candidate hypotheses in H. In order to show that C is polynomial query
learnable using the halving algorithm we must overcome two problems. We first argue that the
query complexity of C is poly(n, size(c)). If we know the value of m = size(c) we can initially
set H = Cm,n so the algorithm makes at most dlog2|Cm,n|e queries which is polynomial in m. If
we do not know the size of c, we can run the algorithm with H = Cl,n with l = 1. If H is empty
and no equivalence query returned a ’Yes’, then we double l and run the algorithm again. Since
in the worst case we will run the algorithm log(m) times, the number of queries used is at most
dlog2|C2m,n|e(log2m) which is also poly(m,n).

According to our definition of polynomial query learnability, we must also show that the hypoth-
esis h which we use to call EQ(h) has a polynomial size representation in R, or give an alternate
way to achieve a polynomial bound on the query complexity. To show that polynomial query
complexity is achievable, we will first need to define a property called Polynomial Certificates.
Polynomial Certificates were first introduced by Hellerstein et al. [1].
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3.1 Polynomial Certificates and Polynomial Query Learnability

Consider a Boolean concept class C and its representation classR. We say thatR has polynomial certificates
if there exist two-variable polynomials p and q such that for all m,n > 0 and all concepts h ∈ {0, 1}n

with size(h) > p(m,n), there is a set Q ∈ {0, 1}n where |Q| ≤ q(m,n) and for all concepts c ∈ C
there exists at least one x ∈ Q such that c(x) 6= h(x).
We will proceed to present the important result by [1] that gives a condition on polynomial query
learnability from equivalence and membership queries.

Theorem 3 A representation class R is polynomial query learnable with equivalence and member-
ship queries if and only if R has polynomial certificates.

Proof We will first show that if R has polynomial certificates then it is polynomial query
learnable. This is achieved using a modification of the halving algorithm.
Assume we want to learn a target concept c ∈ C where C has a representation class R with
polynomial certificates. Since R has polynomial certificates, there exist polynomials p(m,n) and
q(m,n) where n is the number of variables in c and m is the size of c. The learning algorithm works
as follows:

• Initialize H = Cm,n

• Repeat the following steps until an equivalence query returns Yes

(i) If the size of MAJ(H) ≤ p(m,n) then make a query EQ(h) where h ∈ R is a represen-
tation of MAJ(H) and |h| ≤ p(m,n). If we receive a counterexample 〈x, c(x)〉 eliminate
all concepts h′ ∈ H where h′(x) 6= c(x).

(ii) If the size of MAJ(H) > p(m, n) then we know that since R has polynomial certificates
we can find a set Q such that |Q| < q(m,n) and for all concepts in c′ ∈ C there is some
x ∈ Q where c′(x) is different than the labeling of x by MAJ(H). For all x ∈ Q make a
query MQ(x) and receive the value c(x). For some x ∈ Q, eliminate all concepts h′ ∈ H
where h′(x) 6= c(x).

We would like to show that this algorithm only make poly(m,n) number of queries. At each
iteration, we cut the number of concept in H by at least one half since both (i) and (ii) can identify
a counterexample to the majority concept and eliminate the concepts in H that this counterex-
ample is not consistent with. In (i) it is easy to see that the algorithm gets the counterexample
from the equivalence query. In (ii) the algorithm can find x using the fact that R has polynomial
certificates and therefore there must exist some x ∈ Q that the target concept and the majority
concept label differently. Since there are less than q(m,n) elements in Q, the number of queries
made by step (ii) is polynomial in m,n. The total number of queries made by this algorithm is
therefore dlog2|Cm,n|e, which is polynomial in m and n and so the total query complexity of this
algorithm is also polynomial in m,n.

We now show that if R is polynomial query learnable then it must have polynomial certificates.
Consider an algorithm L that learns R with polynomial query complexity. Assume that the query
complexity of L is p(m’,n’) for some polynomial p, where m’ is the size of the target concept c’ and
n’ is the number of variables in c’. Let c be a Boolean concept over n variables and size(c) > p(m,n)
for an arbitrary m. We construct the learning algorithm L such that it terminates if either (a) it’s
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query complexity exceeds p(m,n) or (b) L receives a ’Yes’ in response to a call to EQ(h) and out-
puts the correct hypothesis h. L has access to a membership query oracle MQ(x) for x ∈ {0, 1}n,
which returns the value c(x). L also has access to an equivalence query oracle EQ(h) which will
return a counterexample x where h(x) 6= c(x). Note that if |h| > p(m,n) the algorithm will termi-
nate since the query complexity will exceed p(m,n). Therefore any call to EQ(h) guarantees that
|h| ≤ p(m, n) and so h 6= c and we can always find a counterexample x.
Let Q contain x ∈ {0, 1}n if x is either a counterexample returned to L from an equivalence query
or an input to a membership query made by L. By our assumption regarding the query complexity
of Q we can easily see that |Q| ≤ p(m,n). To complete the proof we must only show that there is
no concept in the class Cm,n that is consistent with c on all x ∈ Q.
By contradiction, assume that there exists a concept d such that d(x) = c(x) for all x ∈ Q. This
means that d agrees with our target concept on all labeling of examples returned from member-
ship queries and all counterexamples returned from equivalence queries. Since we assumed that L
terminates when it receives a ’Yes’ from a membership query where L’s query complexity at most
p(m,n), we know that L must ask an equivalence query EQ(r) where |r| ≤ p(m,n) is a hypoth-
esis representation of d. By our definition of EQ, L would receive a counterexample x such that
d(x) 6= c(x). Since x is a counterexample returned to L by an equivalence query, it is a member
of the set Q. This contradicts our assumption about d, since now there is an element in Q where
d(x) 6= c(x). �

This theorem also holds for representation classes of general concept classes. The definition
of polynomial certificates and the proof of the theorem can be extended to apply to classes with
concepts defined over Σ∗ as opposed to {0, 1}n. The main difference stem from the fact that in
learning general concepts classes we must a way to show that the length of any counterexample is
also polynomial in m and n. However, these result will not be discussed in this paper.

4 Learning From Equivalence Queries

We would like to explore limitations on exact learning of concept classes using equivalence queries
alone. We will present the results of [2] which showed that certain concept classes such as DFA
and DNF are not exactly learnable using equivalence queries. The proof of these results relies on
the existence of a property of a concept’s representation class, known as approximate fingerprints.

The idea behind approximate fingerprint is that they allow an adversary to find a counterex-
ample that eliminates only very few concepts from the learner’s set of candidate hypotheses. The
representation classes that have approximate fingerprints share a similar structural characteristic;
every concept in the target concept class C has a polynomial size representation but the majority
concept MAJ(C) does not.

Definition 4 (From [2]) Approximate Fingerprints. Consider a concept class T, x ∈ Σ∗,
b ∈ {0, 1} and α ∈ R such that α > 0. 〈x,b〉 is an α-approximate fingerprint with respect to T if

|{c ∈ T : c(x) = b}| < α|T |
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This simply states that the number of concepts c ∈ T such that c(x) = b is less than an α-fraction
of the number of concepts in T. In order to show the conditions under which a representation class
has approximate fingerprints, we need look at a sequence of concept classes S = C1, C2, C3, ... where
each Cn represents a concept class. A sequence of concept classes is said to be bounded by f(n)
with respect to R if every concept in Cn has a representation r ∈ R whose length is at most f(n)
for a large n.
A representation class R has approximate fingerprints if an only if there exist two positive nonde-
creasing polynomials p1(n) and p2(n) such that for every positive nondecreasing polynomial q(n)
we can find a sequence of concept classes T1, T2, T3, ... bounded by p1(n) with respect to R where
|Tn| ≥ 2 and if r ∈ R, |r| ≤ q(n) then there is x ∈ Σ∗, |x| ≤ p2(n) and for µ(r) = c′

|{c ∈ Tn : c(x) = c′(x)}| < |Tn|/q(n)

This means that 〈x, c′(x)〉 is an α-approximate fingerprint with respect to Tn where α = 1/q(n).

Theorem 5 If a representation class R has approximate fingerprints then R is not efficiently
exactly learnable using only equivalence queries

The proof of this theorem relies on the intuition discussed earlier, where an adversary can
return a counterexample x in response to an equivalence query made by the learner such that x
is an approximate fingerprint of the class of potential hypotheses known to the learner. Thus, the
learner can only eliminate a superpolynomially small number of hypothesis with every equivalence
query made. This implies that the learner cannot identify the target concept in polynomial time.
To make this more formal, consider the following proof by contradiction given by Angluin [2].
Proof Consider an algorithm A that can exactly learn R using equivalence queries and has a
running time bounded by p(m,l) where m is the size of the smallest representation of a the target
concept and l is the length of the longest counterexample received. Since R has approximate finger-
print we may assume the existence of polynomials p1(n) and p2(n) and let q(n) = 2p(p1(n)p2(n)).
We also know that there exists a sequence of concept classes bounded by p1(n) with respect to R
where |Tn| ≥ 2 and if r ∈ R, |r| ≤ q(n) then there is x ∈ Σ∗, |x| ≤ p2(n) and for µ(r) = c′, 〈x, c′(x)〉
is an α-approximate fingerprint with respect to Tn for α = 1/q(n).
Suppose that there exists an adversary that answers equivalence queries EQ(r) made by our algo-
rithm A for r ∈ R using the following method:

• If |r| > q(n) answer ’Yes’

• If |r| ≤ q(n) answer ’No’ and return a counterexample x such that x ∈ Σ∗, |x| ≤ p2(n) and
for µ(r) = c′, 〈x, c′(x)〉 is a 1/q(n)-approximate fingerprint with respect to Tn.

Note that in order to exactly learn R, our algorithm A needs to exactly learn each concept class
Tn.

Claim 6 For all 1 ≤ i ≤ q(n)/2, A makes at least i equivalence queries and as a result, the number
of inconsistent concepts that A can eliminate from the original |Tn| known concepts is less than
(i/q(n))|Tn|, and the length of any counterexample given is ≤ p2(n).

We proceed to prove this claim by induction.
Recall that our algorithm A runs in time p(m, l) where m =size(c) which we defined to be the length
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of c’s representation r ∈ R. Since we know that the length of every representation in Tn is at most
p1(n), A’s running time is bounded by p(p1(n), l) with l being the length of the longest counterexam-
ple received or 0 if no counterexamples were received. In the case that A asks only one equivalence
query EQ(r), we can see that |r| ≤ p(p1(n), 0) ≤ q(n). Our adversary will therefore answer with
a ’No’ and return the counterexample x of length at most p2(n) where for µ(r) = c′, 〈x, c′(x)〉 is a
1/q(n)-approximate fingerprint with respect to Tn. Therefore we have shown that when A makes
one query it can eliminate less than (1/q(n))|Tn| from the original known |Tn| concepts.

Assume the claim is true for i such that 1 ≤ i ≤ q(n)/2, we need to show that it holds for i + 1.
After the ith query, we know that by our assumption we can eliminate less than (1/2)|Tn| concepts
that are inconsistent with Tn on the counterexamples received by A. Since |Tn| ≥ 2 we can find at
least two distinct concepts in Tn that agree on the labeling of all instances known to A. A must
therefore make another equivalence query EQ(r). Since the length of every counterexample x is
at most p2(n), we can see that |r| ≤ p(p1(n), p2(n)) ≤ q(n) and therefore the adversary will reply
with ’No’ and a counterexample x of length at most p2(n) where for µ(r) = c′, 〈x, c′(x)〉 is a 1/q(n)-
approximate fingerprint with respect to Tn. This counterexample eliminated less than (1/q(n))|Tn|
concepts in addition to the (i/q(n))|Tn| concepts that were already eliminated. Therefore, after i+1
queries we have eliminated less than ((i+1)/q(n))|Tn| concepts, which by induction proves the claim.

To complete our proof we must show that no algorithm A can exist for exactly learning R.
After A makes q(n)/2 queries, we have shown that it eliminates less than half of the concepts in
Tn that are inconsistent with the target concept. Since |Tn| ≥ 2 we can find at least two distinct
concepts in Tn that agree on the labeling of all instances known to A. Since A did not receive a
’Yes’ as a reply to an equivalence query it must request another EQ(r) from the adversary. How-
ever, since A already made q(n)/2 queries, its query complexity is p(p1(n), p2(n)) and therefore if
A makes another query it will exceed its query complexity, which contradicts our assumption that
R is efficiently-exactly learnable using A. �

5 Learning from Membership Queries

We would like to explore the bound on exact learning using only membership queries as it relates
to a combinatorial property of known as the teaching dimension. The Teaching Dimension [6] of a
concept class C is defined as the smallest number of labeled examples 〈x, c(x)〉 needed in order to
exactly learn any concept c ∈ C. We can think of it as an optimal mistake bound for exact-learning
c.
A teaching sequence T for c ∈ C is a sequence of labeled examples such that c is the only concept in
C that is consistent with T. T (c) denotes all teaching sequences for c. More formally, the teaching
dimension of a concept class C denoted TD(C) is

TD(C) = maxc∈C(minτ∈T (c)|τ |)

We will present two results relating the exact learnability of concept classes from membership
queries to the teaching dimension. In [6] it was shown that any concept class is efficiently exactly
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learnable if it has a polynomial teaching dimension. The converse was proven in [1] for a special
category of concept classes known as projection closed Boolean concept classes.

Theorem 7 (from [6]) The number of membership queries made by a learner that exactly-learns
a concept c ∈ C is at least TD(C)

Proof In order to exactly-learn a concept c ∈ C using membership queries, a learner must return
an exact representation of c given a set of labeled examples 〈x, c(x)〉. The learner can exactly
identify c when it has enough examples to distinguish c from any other concept in C. This is the
set of examples that agree with c and not with any other concept in C. The smallest such set for
any c ∈ C is by definition TD(C). Therefore, the learner needs at least TD(C) examples in order
to exactly learn c. �

Consider a Boolean concept class C with a representation class R such that Cm,n is the class of
Boolean concepts on n variables with a representation r ∈ R, |r| ≤ m for m, n > 0. An example x
consists of an assignment xi ∈ {0, 1} for i = 1, 2, . . . , n. For b ∈ {0, 1} define xi←b as the assignment
with x with the ith variable set to b. Let c ∈ Cm,n, b ∈ {0, 1} we say that c’ is the concept ci←b

which is the result of projecting i to b in c, and c′(x) = c(xi←b).

Definition 8 A concept class C is projection-closed if for m,n > 0, c ∈ Cm,nandb ∈ {0, 1}, the size
of ci←b is at most m.

We say that C is polynomial query learnable using membership queries if there exists an algo-
rithm A and a polynomial p(·, ·) such that for all m,n ≥ 1 and all concepts c ∈ Cm,n, A can exactly
identify c given n using at most p(m,n) membership queries.

Theorem 9 (from [1]) For a projection-closed Boolean concept class C with a representation class
R, if C has polynomial teaching dimension then R is polynomial query learnable from membership
queries.

The intuition behind the proof of this theorem is to first show that if C has a polynomial teaching
dimension then it also has polynomial certificates. We have shown in a previous section that if C
has polynomial certificates then it is polynomial query learnable using equivalence and membership
queries. We can then easily show how to transform an algorithm that learns C using equivalence
and membership queries into one that uses membership queries only and a total number of queries
that is polynomial in the relevant parameters. This will complete the proof, showing that there
exists an algorithm that exactly learns c using a polynomial number of membership queries.
Proof Let a two variable polynomial p(·, ·) be the teaching dimension of the projection-closed
Boolean concept class C. Consider a concept c ⊆ {0, 1}n which has a size greater than m. If Cm,n

has only one concept d then it suffices to find one x such that d(x) 6= c(x) since setting Q = {x}
proves the existence of a polynomial certificate. If Cm,n has more than one element then by de-
finition of projection-closed Boolean classes we can show that it contains concepts corresponding
to the ’True’ and ’False’ functions and therefore we can claim that there is an i, 0 ≤ i < n and
an example x with assignment bj ∈ {0, 1} to each xj , 1 ≤ j < n such that cx1←b1,x2←b2,...xi←bi

is not in Cm,n but c1 = cx1←b1,x2←b2,...xi←bi,xi+1←0 and c2 = cx1←b1,x2←b2,...xi←bi,xi+1←1 are in
Cm,n. Let X1, X2 be the specification sets of c1 and c2, each of size at most p(m,n). Define
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X ′1 = {cx1←b1,x2←b2,...xi←bi,xi+1←0|x ∈ X1} and X ′2 = {cx1←b1,x2←b2,...xi←bi,xi+1←1|x ∈ X2}. Since
cx1←b1,x2←b2,...xi←bi

is not in Cm,n, no concept in Cm,n is consistent with c over X = X ′1 ∪ X ′2 and
since |X| ≤ 2p(m,n) we can say that R has polynomial certificates.

We must now show that we can translate the algorithm that learns a concept in c ∈ Cm,n from
membership and equivalence queries into an algorithm that learns c using only membership queries.
We show this by replacing every equivalence query by a polynomial number of membership queries.
The existence of polynomial certificates implies the existence of an algorithm A that learns C using
equivalence and membership queries with query complexity q(m,n) for some polynomial q. Since
we assume that n is known, for h ∈ C, the size of h is at most q(m,n) and therefore we can find
a specification set S for h of size p(q(m,n), n). If A makes an equivalence query with h we can
simply make membership queries MQ(y) where y ∈ S for each y, get the correct value of c(y) and
then check if c(y) = h(y). If this is true for every y ∈ S return ’Yes’ otherwise, pick an instance
y ∈ S where c(y) 6= h(y) and return y as the counterexample. This yields an algorithm that exactly
learns C using a polynomial number p(m,n) of membership queries. �

We would also like mention briefly that similar results were presented by Hegedüs [4] who gave
a bound on the number of membership queries needed for learning a concept class C in terms of a
property he defined as the extended teaching dimension. The extended teaching dimension of C is
the minimum number of elements in a specifying set S, which is a set defined for h ∈ X such that
there is at most one c ∈ C that is consistent with h on S. The exact bounds can be found in [5] to
be similar to minimum value of q(m,n) in [1] defined as the bound on the size of the set Q.

6 Conclusion

In this paper we have shown the existence of combinatorial properties of concept classes that give
bounds on the number of queries needed to exactly identify a concept. Although we have not shown
specific applications of the results we discussed, such applications are the subject of many papers
concerning exact learning from queries. More specifically, [2] presents negative results, showing that
DFAs, NFAs, CFGs, DNF and CNF are not polynomially query learnable using only equivalence
queries. On a positive note, it was shown [1,5] that DFA and monotone DNF are polynomial query
learnable with equivalence and membership queries combined, due to the existence of polynomial
certificates. [6] gives tighter bound in terms of the teaching dimension for classes such k-term DNF
formulas and monotone decision lists. These are very exciting results since they prove that classes
such as finite automata and boolean formulae that are not efficiently learnable in the PAC model,
can be learned efficiently in the model of exact learning.

There are several papers that extend the results covered in this report. [8] Introduces a property
called the consistency dimension which provides combinatorial bounds on learning with equivalence
queries. The consistency dimension is then used in [7] along with polynomial certificates and the
extended teaching dimension to give a new combinatorial characteristic on learning using member-
ship queries, equivalence queries and a combination of membership and equivalence queries. This
new parameter is claimed to be the exact-learning equivalent of the PAC model’s VC dimension.
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[4] Tibor Hegedüs, Generalized teaching dimensions and the query complexity of learning, Pro-
ceedings of the eighth annual conference on Computational learning theory, p.108-117, July
05-08, 1995, Santa Cruz, California, United States

[5] M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory.

[6] S. Goldman and M. Kearns. On the Complexity of Teaching. Proceedings of the Fourth Annual
Workshop on Computational Learning Theory, pages 303–314, 1991.

[7] Jos L. Balczar, Jorge Castro, David Guijarro: A New Abstract Combinatorial Dimension for
Exact Learning via Queries. J. Comput. Syst. Sci. 64(1): 2-21 (2002)

[8] Jos L. Balczar , Jorge Castro , David Guijarro , Hans-Ulrich Simon, The consistency dimension
and distribution-dependent learning from queries, Theoretical Computer Science, v.288 n.2,
p.197-215, 16 October 2002

limits on exact learning from membership and equivalence queries - 10


