

Efficient Algorithms for Clustering and Classifying High Dimensional Text and
Discretized Data using Interesting Patterns

Hassan H. Malik

Submitted in partial fulfillment of the
Requirements for the degree

of Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2008

© 2008

Hassan H. Malik
All Rights Reserved

Abstract

Efficient Algorithms for Clustering and Classifying High Dimensional Text and

Discretized Data using Interesting Patterns

Hassan H. Malik

Recent advances in data mining allow for exploiting patterns as the primary means

for clustering and classifying large collections of data. In this thesis, we present three

advances in pattern-based clustering technology, an advance in semi-supervised

pattern-based classification, and a related advance in pattern frequency counting.

In our first contribution, we analyze numerous deficiencies with traditional pattern

significance measures such as support and confidence, and propose a web image

clustering algorithm that uses an objective interestingness measure to identify

significant patterns, yielding measurably better clustering quality.

In our second contribution, we introduce the notion of closed interesting itemsets,

and show that these itemsets provide significant dimensionality reduction over

frequent and closed frequent itemsets. We propose GPHC, a sub-linearly scalable

global pattern-based hierarchical clustering algorithm that uses closed interesting

itemsets, and show that this algorithm achieves up to 11% better FScores and up to 5

times better entropies as compared to state-of-the-art agglomerative, partitioning-

based, and pattern-based hierarchical clustering algorithms on 9 common datasets.

Our third contribution addresses problems associated with using globally

significant patterns for clustering. We propose IDHC, a pattern-based hierarchical

clustering algorithm that builds a cluster hierarchy without mining for globally

significant patterns. IDHC allows each instance to "vote" for its representative size-2

patterns in a way that ensures an effective balance between local and global pattern

significance, produces more descriptive cluster labels, and allows a more flexible soft

clustering scheme. Results of experiments performed on 40 standard datasets show

that IDHC almost always outperforms state-of-the-art hierarchical clustering

algorithms and achieves up to 15 times better entropies, without requiring any tuning

of parameter values, even on highly correlated datasets.

In our fourth contribution, we propose CPHC, a semi-supervised classification

algorithm that uses a pattern-based cluster hierarchy as a direct means for

classification. All training and test instances are first clustered together using our

instance-driven pattern-based hierarchical clustering algorithm, and the resulting

cluster hierarchy is then used directly to classify test instances, eliminating the need

to train a classifier on an enhanced training set. For each test instance, we first use the

hierarchical structure to identify nodes that contain the test instance, and then use the

labels of co-existing training instances, weighing them proportionately to their pattern

lengths, to obtain class label(s) for the test instance. Results of experiments performed

on 19 standard datasets show that CPHC outperforms a number of existing

classification algorithms even with sparse training data.

Our final contribution deals with the problem of finding a dataset representation

that offers a good space-time tradeoff for fast support (i.e., frequency) counting and

also automatically identifies transactions that contain the query itemset. We compare

FP Trees and Compressed Patricia Tries against several novel variants of vertical bit

vectors. We compress vertical bit vectors using WAH encoding and show that simple

lexicographic ordering may outperform the Gray code rank-based transaction

reordering scheme in terms of RLE compression. These observations lead us to

propose HDO, a novel Hamming-distance-based greedy transaction reordering

scheme, and aHDO, a linear-time approximation to HDO. We present results of

experiments performed on 15 common datasets with varying degrees of sparseness,

and show that HDO-reordered, WAH encoded bit vectors may take as little as 5% of

the uncompressed space, while aHDO achieves similar compression on sparse

datasets. With results from over 109 database and data mining style frequency query

executions, we show that bitmap-based approaches result in up to 102 times faster

support counting, and that HDO-WAH encoded bitmaps offer the best space-time

tradeoff.

 i

Table of Contents

1 Introduction and Prior Work 1

 1.1 Prior Work... 6

 1.1.1 Pattern-based Clustering.. 6

 1.1.2 Semi-supervised Pattern-based Classification....................... 8

 1.1.3 Pattern Frequency Counting.. 10

 1.2 Thesis Outline... 12

2 Clustering Web Images using Association Rules, Interestingness

 Measures, and Hypergraph Partitions 14

 2.1 Visual and Textual Mining.. 14

 2.2 A Novel Approach... 16

 2.3 Related Work... 17

 2.3.1 Web Image Clustering... 17

 2.3.2 Association Rules and their Interestingness Measures.......... 18

 2.3.3 Mining Association Rules from Images................................ 20

 2.3.4 Clustering Based on Hypergraph Partitioning....................... 21

 2.4 Mining Association Rules.. 22

 2.4.1 Data Gathering and Preprocessing... 22

 2.4.2 Feature Extraction.. 23

 2.4.3 Rule Generation... 25

 2.5 Generating Hypergraphs.. 26

 ii

 2.6 Interestingness Measures... 27

 2.7 Clustering via Partitioning... 29

 2.8 Experimental Results... 31

 2.8.1 Cross Validation... 34

 2.8.2 Rules with More Than Two Features..................................... 36

 2.9 Conclusions…………….. 36

3 High Quality, Efficient Hierarchical Document Clustering using

 Closed Interesting Itemsets 37

 3.1 Mining Closed Interesting Itemsets... 40

 3.1.1 Motivation.. 40

 3.1.2 Overview of Closed Interesting Itemsets............................... 42

 3.1.3 Itemset Mining... 45

 3.2 Hierarchical Document Clustering and Itemset Pruning................... 46

 3.2.1 Inner Termset Removal.. 47

 3.2.2 Constraining Document Duplication..................................... 49

 3.2.3 Bottom-up Hierarchy Assembling, Constraining

 Node Duplication and Pruning of Itemsets............................ 49

 3.3 Merging First Level Nodes.. 51

 3.4 Experimental Evaluation.. 53

 3.4.1 Parallelization.. 53

 3.4.2 Evaluation Metrics.. 54

 3.4.3 Setting the Initial Support Threshold for First-level

 iii

 Itemsets.. 56

 3.4.4 Using Cross Validation to Determine Thresholds for

 Interestingness Measures... 56

 3.4.5 Setting Values for MAX_DOC_DUP and

 MAX_NODE_DUP... 57

 3.4.6 Clustering Quality Comparison... 58

 3.4.7 Comparison of Closed Interesting Itemsets with

 Closed Frequent Itemsets... 60

 3.4.8 Parallel Processing and Hyper-threading............................... 62

 3.4.9 Runtime Performance and Scalability................................... 64

 3.5 Conclusions…………….. 66

4 An Instance-Driven Approach to Pattern-Based Hierarchical Clustering 67

 4.1 Motivation.. 67

 4.1.1 Problem 1: Sensitivity of Globally Significant Patterns to

 Threshold Values... 69

 4.1.2 Problem 2: Unnecessary Coupling between Pattern Size

 and Node Height…….. 71

 4.1.3 Problem 3: Artificial Constraints on Soft Clustering............. 71

 4.1.4 IDHC: A More Flexible Instance-driven Hierarchical

 Clustering Algorithm... 73

 4.2 Related Work... 74

 4.3 Dimensionality Reduction... 76

 iv

 4.4 Instance-Driven Hierarchical Clustering... 77

 4.4.1 Stage 1: Select Significant Patterns with Respect to Each

 Instance.. 78

 4.4.2 Stage 2: Prune Duplicate Clusters.. 83

 4.4.3 Stage 3: Generate the Cluster Hierarchy................................ 85

 4.5 Discussion.. 88

 4.6 Experimental Results... 89

 4.6.1 Clustering Performance... 90

 4.6.2 Robustness in the Number of Patterns................................... 93

 4.6.3 Optional Parameter Tuning.. 94

 4.7 Conclusions…………….. 95

5 Classification by Pattern-Based Hierarchical Clustering 96

 5.1 Introduction and Motivation.. 96

 5.1.1 The Significance of Pattern Lengths in Pattern-based

 Cluster Hierarchies... 98

 5.1.2 CPHC: A Novel Classification Algorithm............................. 99

 5.1.3 Contributions.. 100

 5.2 Related Work.. 101

 5.3 The CPHC Algorithm... 103

 5.3.1 Step 1: Noise Elimination and Feature Selection................. 103

 5.3.2 Step 2: Hierarchical Clustering of Training and Test

 Instances.. 106

 v

 5.3.3 Step 3: Classifying Test Instances.. 107

 5.4 Experimental Results.. 109

 5.4.1 Classification Performance... 109

 5.4.2 Impact of the Percentage of Training Instances on

 Classification Performance... 113

 5.4.3 Optional Parameter Tuning... 115

 5.5 Conclusions……………... 115

6 Optimizing Frequency Queries for Data Mining Applications 117

 6.1 Introduction and Prior Work.. 117

 6.1.1 Trie-based Representations.. 117

 6.1.2 Bitmap-based Representations... 121

 6.1.3 Contributions... 123

 6.2 Compressing Vertical Bit Vectors... 124

 6.2.1 WAH Compressed Bitmaps... 125

 6.2.2 Counting Support Using WAH Compressed Bitmaps........... 126

 6.3 Increasing Bitmap Compressibility by Reordering Transactions...... 128

 6.3.1 Reordering Rows Using Gray Code Sorting.......................... 129

 6.3.2 Reordering Rows Using LSB Radix Sort.............................. 129

 6.3.3 HDO, a Greedy, Hamming-distance-based Transaction

 Reordering Scheme.. 130

 6.3.4 A Linear-time Approximation to HDO.................................. 134

 6.4 Experimental Results... 135

 vi

 6.4.1 Space Comparison of Various Structures.............................. 136

 6.4.2 Performance of Frequency Queries....................................... 139

 6.5 Conclusions…………….. 142

7 Contributions, Conclusions and Future Work 143

 7.1 Contributions... 143

 7.2 Conclusions.. 144

 7.3 Future Work... 145

A Glossary of Terms.. 146

B Interestingness Measures... 149

C Datasets……………….. 151

References... 153

 vii

List of Figures

1 Features extracted from one of the 3364 images crawled from the web........ 24

2 Number of rules generated at various support levels.................................... 27

3 18 images assigned to ground truth hierarchy... 29

4 Comparison of clustering quality of various measures across both datasets. 32

5 Clustering quality comparison on Dataset1 using text-only, signal-only,

 and both features... 33

6 A small cluster generated from the first dataset using signal-only features

 and Correlation Coefficient as interestingness measure................................. 33

7 Portion of a cluster from the first dataset using text-only features

 and Correlation Coefficient.. 34

8 Portions of two clusters from the first dataset using combined textual and

 signal features and Correlation Coefficient.. 35

9 Our hierarchical document clustering process.. 40

10 A simple closed interesting itemset mining algorithm................................... 44

11 Inner-termset removal algorithm, where k = size of the largest discovered

 itemset... 47

12 Hierarchy construction... 50

13 Impact of parallel processing on Reuters and Ohscal datasets with Mutual

 Information as interestingness measure.. 63

14 Runtime performance and scalability comparison of GPHC, with bisecting

 k-means and FIHC……………….. 65

 viii

15 A recent article, found at www.cnn.com.. 70

16 One of the retirement related categories in the open directory, found at

 http://dmoz.org.. 72

17 The IDHC algorithm... 78

18 Supporting methods for the IDHC algorithm... 80

19 A running example of various stages in our clustering process.................... 82

20 Average entropies of nodes with respect to their pattern sizes on anneal,

 adult, sports and classic datasets... 99

21 The CPHC algorithm.. 103

22 A pattern-based cluster hierarchy obtained by applying the IDHC

 algorithm in Figure 17.. 108

23 Classification accuracies on Classic and Re0 datasets with increasingly

 sparser training data.. 114

24 The FP Tree of dataset in Table 19, each node contains an item:frequency

 pair, and dotted arrows represent node links.. 119

25 A binary trie, nodes contain the count of transactions with the same

 prefix, and dotted arrows represent pointers from the horizontal lists......... 119

26 A Compressed Patricia Trie.. 120

27 Applying HDO.. 132

28 The break-ties method... 132

29 The aHDO algorithm.. 133

30 Performance comparison of various structures on 200 million random,

 variable-sized frequency queries... 139

 ix

List of Tables

1 A few association rules generated from images of cars and animals along

 with their support... 25

2 List of interestingness measures used... 28

3 List of interestingness measures used with their corresponding threshold

 values.. 42

4 A 2 x 2 contingency table between super item S and item C....................... 43

5 Interesting 2-itemsets and their support.. 45

6 Mining closed interesting 3-itemsets, using 2-itemsets from Table 5,

 (NC = not calculated)... 46

7 FScore comparison of state-of-the-art hierarchical document clustering

 algorithms with GPHC, using the top 6 interestingness measures............... 58

8 Entropy comparison of state-of-the-art hierarchical document clustering

 algorithms with GPHC, using the top 6 interestingness measures............... 58

9 The performance of closed interesting itemsets over closed frequent

 itemsets, at various support levels.. 61

10 Clustering quality on text datasets; higher FScores and lower entropies

 are better.. 91

11 Clustering quality on UCI datasets; GPHC uses YulesQ outperforming

 MI on these datasets.. 92

12 Number of size-2 patterns... 93

13 Parameter tuning on a few UCI datasets; CF = Certainty Factor,

 x

 AV = Added Value.. 95

14 Breakeven performance on Reuters-21578... 111

15 Classification accuracies on 13 small UCI datasets...................................... 112

16 Classification accuracies on 2 large UCI datasets.. 112

17 Classification accuracy on the Sports dataset... 113

18 Tuned accuracies on UCI datasets.. 115

19 A transaction database as running example, assuming minimum

 support = 2.. 118

20 Vertical bit vectors and corresponding WAH compressed bitmaps for the

 dataset in Table 19, assuming 4-bit words for WAH encoding.................... 122

21 A transaction dataset in original order, an optimal ordering, and reordered

 using two schemes.. 128

22 Datasets used in our experiments, #entries correspond to the total number

 of 1-bits (i.e., columns with non-zero values), Sp = sparseness as the

 average number of 0’s for each 1, rounded to nearest integer...................... 135

23 Space comparison of trie-based structures.. 137

24 Compression achieved by various reordering schemes. Best results

 highlighted.. 138

25 Itemset mining performance... 141

26 2 x 2 contingency table for variables A and B.. 149

27 Formulas of interestingness measures used in this thesis............................. 150

28 Datasets used in this thesis….. 152

 xi

Acknowledgments

First and foremost, I would like to express my deepest appreciation to my advisor

Professor John Kender for his continuous support, dedication, patience, appreciation,

and for always believing in me. I was not a typical graduate student for him. Both in

terms of my research interests and because I worked full time, all this time. This

required conducting research meetings at odd times and handling many special

situations, including some that only a great teacher with infinite patience could have

handled. I will always consider myself the most fortunate to have had Professor

Kender as my advisor.

I would like to thank Dr. Paul Natsev for serving on all three of my doctoral

committees, and for providing great feedback on my earlier clustering algorithms. I

would like to thank Professor Luis Gravano for serving on my thesis proposal and

defense committees, and for providing extremely valuable feedback that helped me

focus on core data mining. I would like to thank Professor Howard Hamilton for his

work on interestingness measures that has had significant impact on my research, and

for taking the time to serve on my thesis defense committee. I would also like to

thank Professor Tony Jebara for serving on my thesis defense committee.

I am extremely grateful to my friends and colleagues at Libgo Travel, Inc. for

always understanding my educational priorities, and for holding the fort when I was

at Columbia taking classes, or when I had both an exam and a work-related priority to

balance. In particular, I would like to extend my sincere thanks to Majid Khan,

Jawwad Sultan, Parshuram Patki, Rao Manepalli, Armughan Rafat, Bryan Woody,

Dory Velten-Lerescu, Rich Meyer and Mitch Talisman.

 xii

I would like to thank my parents for always supporting me, and for making endless

sacrifices to help me achieve my dreams. I would also like to thank my grandmother

for continuously encouraging me to pursue further education.

Last but not the least, I would like to thank my beloved wife Annie, and my

daughters Rakiya and Arfa for their unconditional love, countless sacrifices,

continuous support, and for bringing in joy and happiness to my everyday life.

 xiii

This thesis is dedicated to my late grandfather Iftikhar

H. Malik; the most honest and selfless person I have ever

known. I also dedicate this thesis to Nobel Laureate Dr.

Abdus Salam and his life-long efforts to promote scientific

research as a shared heritage of all mankind.

1

1. Introduction and Prior Work

Clustering is the partitioning of a dataset into subsets (clusters), so that the data in

each subset (ideally) share some common trait, and it continues to be the focal point

in unsupervised learning research. Recent advances in data mining allow for

exploiting patterns (e.g., a set of binary attributes) as primary means for clustering

large collections of data. Pattern-based clustering algorithms differ from traditional

clustering algorithms in that they first find a set of patterns, and then build hard (i.e.,

each instance is assigned to exactly one cluster) or soft (i.e., each instance is assigned

to one or more clusters) clusters around these patterns. The patterns used for

clustering are typically selected by a mining process (i.e., itemset mining or

association rule mining) that considers patterns based on their global significance.

In this thesis, we first analyze numerous deficiencies with traditional pattern

significance measures used in association rule mining (i.e., support and confidence),

and evaluate 20 alternative objective interestingness measures. We compare these

measures by using the resulting association rules for clustering web images, in a way

similar to [34]. Our experiments indicate that objective interestingness measures

significantly outperform support and confidence in terms of clustering quality.

Additionally, we show that combining textual and linear-time-extractable signal

features result in better clustering as compared to signal-only or text-only approaches.

2

Next, we consider the problem of using patterns to generate cluster hierarchies. A

cluster hierarchy is a hierarchical representation of a set of (possibly non-disjoint)

clusters such that each node in the hierarchy represents a cluster, and each node may

have zero or more child nodes, without allowing for cycles. We introduce the notion

of closed interesting itemsets (i.e., closed itemsets with high interestingness), and

show that these itemsets provide significant dimensionality reduction over frequent

and closed frequent itemsets, meaning that this approach leads to a reduction in the

number of attributes under consideration (Appendix A defines “dimension”). We

propose GPHC, a global pattern-based hierarchical clustering algorithm that uses

closed interesting itemsets as the primary means to generate a cluster hierarchy. In

addition, GPHC uses an objective interestingness measure to efficiently select node

parents strictly based on their cluster labels (i.e., patterns), without requiring

inspection of node contents. This allows us to improve the efficiency of the

framework followed by existing pattern-based hierarchical clustering algorithms [25,

5, 88]. These improvements include the use of bitmaps (i.e., spatially mapped arrays

of bits), and the replacement of UPGMA with bisecting k-means for merging top-

level nodes. Results of experiments performed on 9 common datasets show that

GPHC achieves up to 11% better FScores and up to 5 times better entropies as

compared to state-of-the-art agglomerative (i.e., bottom-up), partitioning-based (top-

down), and pattern-based hierarchical clustering algorithms. Furthermore, we show

that GPHC scales sub-linearly on the size of document collections, since the number

of features (i.e., attributes) in these collections grows slower than their number of

documents, as anticipated by Heaps' law [37].

3

Even though closed interesting itemsets provide substantial improvements over

frequent and closed frequent itemsets, we found that using globally significant

patterns for clustering can be problematic in general. In order to prune an

exponentially large search space, global pattern mining algorithms use a threshold

(i.e., minimum support, minimum confidence, or minimum interestingness in the case

of closed interesting itemsets). Consequently, these algorithms may result in an

unpredictable number of patterns. Even so, the final set of globally significant

patterns may not cover all instances, especially on unbalanced datasets. On high

dimensional, highly correlated datasets, we found that the number of globally

significant patterns of closed interesting itemsets can even be tens to thousands of

times higher than the number of instances in the dataset.

Led by these observations, we propose IDHC, a pattern-based hierarchical

clustering algorithm that builds a cluster hierarchy without mining for globally

significant patterns. IDHC allows each instance to vote for its representative size-2

patterns in a way that ensures an effective balance between local and global pattern

significance. The number of patterns selected for each instance is dynamically

determined using a principled local standard deviation-based scheme, and the rest of

the cluster hierarchy is obtained by following a unique iterative cluster refinement

process that simultaneously grows patterns and clusters. In addition, this algorithm

accounts for local feature frequencies, produces more descriptive cluster labels, and

adopts a soft clustering scheme that allows instances to exist in suitable nodes at

various levels in the cluster hierarchy. Results of experiments performed on 40

standard datasets show that IDHC almost always outperforms state-of-the-art

4

hierarchical clustering algorithms and achieves up to 15 times better entropies,

without requiring any tuning of parameter values. Most importantly, IDHC is stable

and is equally effective on highly correlated datasets, where it uses only a few

hundred patterns, as compared to millions of patterns used by global pattern-based

clustering algorithms.

Next, we use the cluster hierarchy produced by our pattern-based hierarchical

clustering algorithm as a direct means for classification. Classification is a procedure

in which individual instances (Appendix A) are placed into groups (classes) based on

information on one or more characteristics inherent in the instances (referred to as

traits, variables, characters, etc.) and based on a training set of previously labeled

instances, where each label is a string that uniquely identifies a class in the output

space. Traditional inductive classifiers are trained on instances in the training set to

produce a classification model (such as decision trees). This model is later used to

classify previously unseen test instances. Considering that these classifiers may not

fully exploit the distribution of test instances in the context of the whole dataset, a

number of recent approaches [68, 89, 45] adopted a semi-supervised model for

classification. These approaches first apply an unsupervised, flat clustering algorithm

(i.e., k-means clustering) to cluster all (i.e., training and test) instances in the dataset,

and then use the resulting clustering solution to enhance the training set (i.e., by using

clusters to generate additional training instances). A classifier is then trained on the

enhanced training set.

Pattern-based hierarchical clustering algorithms have numerous advantages over

flat clustering algorithms. They organize data in a general to specific fashion without

5

requiring the number of clusters to be known in advance, automatically produce

cluster labels, and more easily support soft clustering. Our semi-supervised

classification algorithm CPHC therefore applies our IDHC algorithm on the whole

dataset to produce a cluster hierarchy. We empirically observe that the average node

entropies almost always linearly improve (i.e., decrease) with increasing pattern

lengths. Motivated by this observation, CPHC uses node-pattern-lengths to determine

cluster (i.e., node) weights. To classify a test instance, CPHC first uses the

hierarchical structure to identify nodes that contain the test instance, and then uses the

labels of co-existing training instances, weighing them by node pattern-lengths to

obtain class label(s) for the test instance. Results of experiments performed on 19

standard datasets show that CPHC outperforms a number of existing classification

algorithms both on single-label classification problems (measured in terms of

classification accuracy) and on multi-label classification problems (measured in

terms of micro-averaged precision-recall breakeven point), even with sparse training

data.

A common challenge faced by data mining algorithms in general, and pattern-

based hierarchical clustering algorithms in particular, is to find an effective dataset

representation that supports fast support (i.e., frequency) counting while also

automatically identifying transactions that contain the query itemset. We compare the

memory requirements and support counting performance of FP Trees and

Compressed Patricia Tries (see Appendix A) against several novel variants of vertical

bit vectors (i.e., bitmaps). First, borrowing ideas from the very large databases

(VLDB) domain, we compress vertical bit vectors using Word-Aligned Hybrid

6

(WAH) encoding. Second, we evaluate the Gray code rank-based transaction

reordering scheme and show that, in practice, simple lexicographic ordering, obtained

by applying least-significant-bit first (LSB) radix sort, outperforms this scheme.

Led by these results, we propose HDO, a novel Hamming-distance-based greedy

transaction reordering scheme, and aHDO, a linear-time approximation to HDO. We

present results of experiments performed on 15 common datasets with varying

degrees of sparseness, and show that HDO-reordered, WAH encoded bit vectors can

take as little as 5% of the uncompressed space, while aHDO achieves similar

compression on sparse datasets. Finally, with results from over 109 database and data

mining style frequency query executions, we show that bitmap-based approaches

result in up to 102 times faster support counting, and HDO-WAH encoded bitmaps

offer the best space-time tradeoff.

1.1 Prior Work

This subsection provides a brief overview of prior art in the areas of pattern-based

clustering, semi-supervised pattern-based classification, and pattern frequency

counting. Each of the four following chapters includes a more detailed overview of

their corresponding previous work.

1.1.1 Pattern-based Clustering

The history of pattern-based clustering goes back to the early years of data mining. A

number of pattern-based clustering algorithms were proposed as the field evolved,

and have achieved initial successes on a variety of clustering problems. However, the

7

progress in pattern-based clustering remained limited because of persistent problems

with underlying data mining methods such as association rule mining and itemset

mining. One of these problems is due to the use of frequency-based measures for

identifying significant patterns, which may result in pruning highly discriminating but

less frequent patterns. Another problem is using global thresholds for mining patterns,

which does not guarantee coverage and also does not provide an upper bound on the

number of initial patterns mined.

Han et al. [34] proposed a pattern-based flat clustering framework that uses

association rules to generate a hypergraph of patterns (i.e., with atomic patterns

(binary attributes) used as vertices and rules used to form hyperedges). An efficient

hypergraph partitioning algorithm is then applied to obtain pattern clusters, and

instances are clustered by assigning each instance to its best pattern cluster. This

framework was later used in many applications, such as topic identification [16] and

our web image clustering algorithm [55]. However, we found that the quality of

clustering achieved by hypergraph-partitioning-based clustering methods may

significantly vary on each execution, as hypergraph partitioning algorithms use

various randomized heuristics to approximately solve this NP-complete problem. In

addition, this framework does not provide clear ways of associating features with

multiple feature clusters, or of generating cluster hierarchies.

In another approach, Wang and Karypis [80] applied efficient search space

pruning techniques to obtain a global summary set that contains one of the longest

frequent patterns for each transaction. This set is later used to form clusters. As noted

8

in Section 8 of [15], this approach has many shortcomings, including its dependence

on difficult-to-specify minimum support threshold values.

In contrast to the flat clustering algorithms mentioned above, Beil et al. [5]

proposed a pattern-based hierarchical clustering framework that is based on globally

frequent itemsets. This framework was later enhanced by Fung et al. [25] and Yu et

al. [88], who improved various stages of the clustering process. In a different

approach, Xiong et al. [85] first mine globally significant maximum hyperclique

patterns (i.e., patterns with high h-confidence), and then associate instances to all

applicable pattern clusters. These clusters are later merged by applying hierarchical

agglomerative clustering (i.e., UPGMA), which was also used by [25] to merge top

level nodes. Results in [85] show that this approach results in clustering quality that is

similar to that of UPGMA, with an added advantage of automatically identifying

cluster labels. Recent research [91], however, suggests that partitioning-based

hierarchical clustering algorithms such as bisecting k-means outperform

agglomerative algorithms both in terms of clustering quality and runtime

performance. Consequently, our GPHC algorithm (Chapter 3) [56] replaces UPGMA

with bisecting k-means (using the I2 criterion function) to merge top-level nodes in

the initial cluster hierarchy.

1.1.2 Semi-supervised Pattern-based Classification

A number of existing algorithms use patterns as primary means for classification.

These algorithms mine patterns from instances in the training set to form a

classification model, which is later used to classify previously unseen test instances.

9

Rule-induction-based classifiers like FOIL [66], RIPPER [19], CPAR [87] and C4.5

[65] use heuristics, such as Gini Index and Information Gain (or Information Gain

variants), to identify the best literal by which to grow the current rule [81]. Many of

them follow the sequential database covering paradigm (i.e., learn one rule, remove

the data it covers, then repeat). In contrast, association rule-based classifiers such as

CBA [50], CAEP [23], CMAR [48], ARC-BC [4], and DeEPs [46] first mine a large

set of association rules that satisfy user-defined support and confidence thresholds,

and then extract the final set of classification rules by following a sequential database

covering technique. With Harmony [81], Wang and Karypis proposed an instance-

centric approach to mine classification rules. Harmony builds the classification model

by directly mining some user-defined number of highest-confidence rules for each

training instance that satisfy minimum support. Furthermore, Harmony

simultaneously mines rules for all classes in the training set.

Considering that these classifiers may not fully exploit the distribution of test

instances in the context of the whole dataset, a number of recent approaches [68, 89,

45] adopted a semi-supervised model for classification. In a way similar to

transductive learning [78], which allows the structure of the test set to play a role in

classification, these semi-supervised approaches use clustering as a way of enhancing

the training set. Raskutti et al. [68] used unlabeled data that is not part of the test set

to improve the performance of text classification. This is achieved by clustering

labeled and unlabeled instances together, and extracting new features from these

clusters to enhance the classification model (i.e., features that may only exist in

unlabeled instances). In another approach, Zeng et al. [89] first clustered training and

10

test sets together. The resulting clustering solution is then used to obtain labels for

some of the unlabeled test instances, and the newly labeled instances are added to the

training set. The extended training set is finally used to train a classifier. In a similar

approach [45], Kyriakopoulou and Kalamboukis first clustered training and test sets

together. The dataset is then augmented with meta features extracted from the

resulting clusters, and a classifier is trained on the expanded training set.

However, existing pattern-based classification algorithms and existing semi-

supervised classification algorithms suffer from many related problems. In addition to

ignoring the distribution of test instances in the context of the whole dataset,

traditional pattern-based inductive classifiers rely excessively on frequency-based

measures for identifying significant patterns, and on global thresholds. Similarly,

existing semi-supervised classification algorithms excessively depend on the

underlying flat clustering algorithm, which requires the number of clusters to be

known in advance. Finally, these algorithms ignore the significance of pattern-

lengths.

1.1.3 Pattern Frequency Counting

Calculating itemset support (or frequency counting) is a fundamental operation that

directly affects space and time requirements of many widely used data mining

algorithms. For example, frequent itemset mining and association rule mining are

often only concerned with identifying the support and confidence of a given query

itemset, while pattern-based clustering algorithms must in addition identify the

transactions that contain the query itemset.

11

First generation data mining algorithms used the trie data structure to improve the

itemset support counting performance. In the following years, a number of

improvements [9, 3] were proposed to further optimize support counting using tries.

These approaches, however, did not address the major drawback of overwhelming

space requirements, possibly exponential in depth [86]. With FP Trees, Han et al. [35]

eliminated the need to insert each transaction into all paths corresponding to the

subsets of the transaction by first preparing a global F-List [35] (i.e., a list that

contains items in the dataset in their frequency descending order), and then inserting

transactions to the trie in the order of this list. In another approach, Yang et al. [86]

first generated a binary trie that limits the branching factor to 2 by considering

presence or absence of all items in each transaction. All degree-1 nodes in the trie are

later merged with their children to obtain a Compressed Patricia Trie.

However, using trie-based structures for frequency counting can be problematic

for two reasons. First, the time needed to execute frequency queries may greatly vary

on datasets with different characteristics. These queries may execute faster on

datasets that have many transactions sharing common prefixes. On the other hand, the

frequency queries may take significantly longer to execute on datasets that do not

have many transactions sharing common prefixes because there are more upward

paths to consider. Second, trie structures do not directly identify the transactions that

contain the query itemset. One solution, proposed by Yu et al. in a hierarchical

clustering algorithm [88] is to store a list containing the applicable transaction IDs at

each node of the trie. This approach may work for small datasets but is clearly

impractical for large datasets because of its significant space requirements. In the

12

worst case (i.e., where each transaction contains each item), IDs of all transactions are

replicated at each node in the trie.

As an alternative to trie-based representations, a number of recent approaches [56,

39, 57, 79, 11, 54] represented the dataset as a set of uncompressed bitmaps (i.e.,

vertical bit vectors). In these approaches, a bitmap is generated for each item in the

dataset, where each bit represents presence or absence of the item in a transaction.

Itemset frequency is calculated by ANDing bitmaps of all items in the itemset, and

counting the number of one-bits in the resulting bitmap. Transactions containing the

query itemset are also readily available in the resulting bitmap. However,

uncompressed vertical bit vectors may still have high space requirements; for a

dataset containing n transactions and m items, the amount of space needed is always

m x n bits.

1.2 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 analyzes deficiencies with

traditional association rule mining pattern significance measures and presents our

hypergraph-partitioning-based web image clustering algorithm, which utilizes both

textual and visual features. Chapter 3 introduces closed interesting itemsets, presents

the GPHC algorithm, and evaluates its performance. Chapter 4 analyzes issues with

global pattern mining, and presents and evaluates our instance-driven hierarchical

clustering algorithm. Chapter 5 introduces and evaluates our semi-supervised

classification algorithm that uses a pattern-based cluster hierarchy as a direct means

for classification. In Chapter 6, we provide an empirical comparative analysis of

13

various trie and bitmap-based structures for frequency counting. We present HDO, a

Hamming-distance-based transaction reordering scheme and aHDO, a linear-time

approximation to HDO, and show that these algorithms outperform existing

reordering schemes and increase the compressibility of bitmap indices. Finally, we

conclude and present our ideas for future work in Chapter 7.

14

2. Clustering Web Images using Association Rules,

Interestingness Measures, and Hypergraph Partitions

In this chapter, we consider the problem of unsupervised clustering of web images

(i.e., images augmented with text extracted from their referring web pages). Given n

images, each with a (possibly empty) text string describing the image, our goal is to

find a (flat) clustering of the images that is as close as possible to a manually derived

clustering according to the tree-distance evaluation measure (Section 2.7), while

minimizing the space and time requirements of the algorithm.

2.1 Visual and Textual Mining

The last two decades have seen significant research in the field of data mining,

resulting in a number of successful techniques such as finding associations between

data items by mining association rules [1]. These techniques have proven to be useful

in symbolic and structured domains such as market basket analysis. Limited research,

however, has been conducted to apply these techniques on unstructured, signal-based

domains like images [31, 60, 71].

Unlike structured data where features such as keywords and alphanumeric values

can be easily identified and extracted, images contain implicit features and patterns

that are not straightforward to identify and extract [38]. The fundamental challenge in

15

image mining is to determine how low-level pixel representations can be efficiently

and effectively processed to identify these high-level patterns [38]. Once identified,

these patterns could be used in a variety of methods.

Clustering is one such method that uses features to organize data in a number of

groups called clusters. Two major approaches exist to cluster images: content-based

and text-based. Content-based clustering is normally used by the image analysis and

computer vision communities and focuses on exploiting low-level signal features like

color, shape, and texture to cluster images, while text-based clustering is normally

used by the web mining and information retrieval communities. A common

perception exists in web and information retrieval communities [36] that content-

based features are computationally expensive to extract and hence infeasible for the

web domain. However, some features such as color and orientation can be extracted

in time that is linear in the number of pixels in the image. Furthermore, applying

simple techniques like image scaling can further reduce computational requirements.

In contrast, the availability of reasonable textual information is not always

guaranteed. A large number of images on the web either do not have any textual

information associated with them, or the associated textual information does not

provide much information about the image (i.e., insufficient to disambiguate from

other images that belong to different semantic categories but share some keywords).

Text-only clustering techniques are very likely to assign such images to wrong

clusters, resulting in low-quality clustering. Similarly, unless sophisticated and

computationally intensive techniques are used to capture semantics, signal-only

clustering techniques are also likely to produce low quality clusters. We show that

16

using a combination of textual and simple signal features results in better clustering

as compared to clustering solely based on either textual or signal features.

2.2 A Novel Approach

Hypergraphs have proven useful in data mining and high-dimensional document

clustering problems [33, 34]. In a typical hypergraph, each vertex represents a

dimension and each hyperedge represents an affinity (or relationship) between two or

more dimensions represented by the corresponding vertices. Weights assigned to

vertices indicate importance of these vertices and weights assigned to hyperedges

indicate the strength of the relationship between dimensions represented by the

vertices connected by a hyperedge. In this chapter, we first extract signal and text

features from images, calculate their frequencies, and apply well-known

dimensionality reduction techniques such as stemming, stop word elimination, and

Zipf’s law to prune non-interesting features. The remaining features are used to

generate association rules.

 Similar to [34], we use features as hypergraph vertices and all association rules

between a set of vertices to generate hyperedges. In the last decade or so, various

researchers questioned the usefulness of support and confidence as association rule

interestingness measures and have proposed alternatives [10, 51]. Unfortunately,

researchers comparing interestingness measures [27, 76] do not agree on any single

domain-independent objective measure. Considering this, we compared the

effectiveness of twenty-two objective interestingness measures to assign weights to

hyperedges in the context of web image clustering, rather than using confidence [34].

17

Once the association rule hypergraph is available, we apply a widely used

hypergraph partitioning algorithm called hMETIS [41] to obtain partitions (or

clusters) of features. Images are assigned to these clusters using a simple scoring

function. This clustering method eliminates the need of calculating distances from (or

similarities to) other images. Finally, we use a tree-distance-based evaluation measure

to evaluate the quality of the resulting image clusters with respect to manually

generated ground truth.

Most of the steps in this approach, including feature extraction, reduction, rule

generation, feature hypergraph generation, and hypergraph partitioning can be

performed offline. Assignment of images to clusters is the only real-time step, which

is computationally inexpensive.

2.3 Related Work

We now discuss the literature related to web image clustering, association rule

mining, interestingness measures for association rules, mining association rules from

images, and clustering by graph partitioning.

2.3.1 Web Image Clustering

There have been several web image clustering and categorization approaches

proposed in recent years. We discuss only a few representative approaches here.

Lienhart and Hartmann [49] use signal-only features to categorize web images.

Images are divided into photo-like images, and graphical images. Photo-like images

are further divided into photos and artificial photo-like images; graphical images are

18

further divided into slides, cartoons, and other images. This approach produces coarse

categories containing too many images. Although syntactically meaningful, the

resulting clusters are likely to contain images that are not semantically related. In

contrast, ImageSeer [36] uses the VIPS algorithm [12] to segment web pages into

several semantic blocks. These blocks are further used to extract surrounding text of

web images. Page-to-block, block-to-image, and block-to-page relationships are

obtained using the link structure and page layout analysis, and an image graph is

constructed. Techniques from spectral graph theory and Markov chain theory are

applied for image ranking, clustering, and embedding. Like any other text-only

approach, this approach is likely to assign images with insufficient textual

information to incorrect clusters.

2.3.2 Association Rules and their Interestingness Measures

The problem of mining association rules was first introduced in [1]. If I = {i1, i2, …,

im} is a set of literals, called items, and D is a set of transactions, an association rule is

an implication of the form X → Y, where X ⊂ I, Y ⊂ I and X ∩Y = 0. The rule X → Y

holds in the transaction set D with confidence c if 100c% of transactions in D that

contain X also contains Y. The rule X → Y has support s in the transaction set D if

100s% of transactions in D contain X ∪ Y. Although a number of algorithms have

been proposed improving various aspects of association rule mining [9, 28, 29],

Apriori [2] remains the most commonly used algorithm.

One of the most significant problems with association rules mining is that it often

results in too many rules [77], especially when attributes (i.e., features) in a data set

19

are highly correlated [51]. On one of our small datasets containing 295 images,

several of which had both signal and textual features associated, we extracted over

1.5 million rules when minsup and minconf were set to 0.02 (or 2%) each and rules

were limited to at most two features on the left hand side and one feature on the right

hand side. Increasing the support threshold significantly reduces the number of rules

discovered, but risks losing useful associations. In addition, it is non-trivial to set

good values for the support and confidence thresholds; they depend on the size of the

dataset, the sparseness of data, and the particular problem under study [10].

Considering these issues, a number of researchers have proposed alternative

interestingness measures to evaluate and rank discovered associations. These

measures are generally divided into subjective and objective interestingness

measures. Brijs et al. [10] provide an overview of a number of symmetric objective

interestingness measures, five of which are Lift (or Interest), Chi-Square, Correlation

Coefficient, Log linear analysis and Empirical Bayes correction. Shekar et al. [73]

proposed three measures for capturing relatedness between item pairs. Based on the

Chi-Square test, Liu et al. [51] introduce the concept of direction-setting and non-

direction-setting rules for summarizing association rules. In a follow up paper [52],

they propose a subjective approach that assists the user in finding interesting rules.

Hilderman and Hamilton [27] survey various objective and subjective interestingness

measures for classification rules, association rules, and generalized relations. Tan et

al. [76] discuss the properties of twenty-one objective interestingness measures and

analyze the impacts of support-based pruning and contingency table standardization.

20

2.3.3 Mining Association Rules from Images

Utilizing object generation capabilities of UC Berkeley’s BlobWorld content-based

image retrieval system [6, 13], Ordonez and Omiecinski [60] proposed an algorithm

to extract association rules from images. The BlobWorld system represents an image

as a collection of Blobs (i.e., regions). In order to generate association rules, objects

extracted by BlobWorld are considered analogous to items and images are considered

analogous to transactions. Candidate itemsets are generated from the set of objects,

and the support is calculated by checking individual images for presence or absence

of objects. This information is further used to calculate confidence. This approach

works well on a small set of images containing a small number of simple geometric

objects, but may not be suitable for images containing a large number of complex

objects because of the high computational costs of the object identification step in

[60], which compares all identified objects in the system to all blobs in each image.

Haddad and Mulhem [31] proposed a more efficient approach that considers both

manual textual annotations and signal features like dominant colors, directions, and

texture indicators to generate association rules from images. Images are first

segmented into regions based on their spatial connectivity and visual similarity.

Principal color, secondary color, principal direction, and texture features are

computed for regions, and annotations are added manually using a list of predefined

terms. Finally, association rules are generated using regions as transactions and

region features as items. Because of its inherent dependence on human intervention

for term identification and region annotation, this approach may not be suitable for

clustering web images.

21

2.3.4 Clustering Based on Hypergraph Partitioning

Based on the observation that using association rules directly for clustering may result

in clusters that are too granular, Han et al. [34] proposed an approach to cluster

transactions using association rule hypergraphs. A hypergraph is similar to a graph

except that each edge, called a hyperedge, can connect two or more vertices. In order

to generate a hypergraph from a set of association rules, each unique item that exists

in the set is assigned to a unique vertex in the graph. All rules containing a set of

items would generate a hyperedge, with average confidence of such rules used as the

weight. For example, if {A} → {B, C} and {C} → {A, B} are all possible rules

between items A, B, and C with confidences 0.6 and 0.4 respectively, there would be

a hyperedge between A, B, and C with a weight of 0.5. The hMETIS [41]

hypergraph-partitioning algorithm, which is widely used in the VLSI domain, is used

to partition this hypergraph. Transactions are assigned to these partitions using a

simple scoring function (Section 2.7) resulting in clusters of transactions.

The hMETIS algorithm [41] is based on the multilevel paradigm, where a

sequence of successively coarser hypergraphs is constructed. A bisection of the

coarsest hypergraph is computed and it is used to obtain a bisection of the original

hypergraph by successively projecting and refining the bisection to the next level

finer hypergraph. hMETIS achieves this in three phases. During the coarsening phase,

the size of the graph is successively decreased; during the initial partitioning phase, a

bisection of the smaller graph is computed; and during the uncoarsening and

22

refinement phase, the bisection is successively refined as it is projected to the larger

graphs.

2.4 Mining Association Rules

We now discuss our approach of mining association rules from web images,

including preprocessing and feature extraction.

2.4.1 Data Gathering and Preprocessing

Over 3000 images were crawled from the Internet and saved to local disk, along with

referring web pages, preserving the links. These images were divided into two

separate datasets, called Dataset1 and Dataset2, and the same set of steps was

performed on each dataset.

A hash table was generated using references to images as keys and the lists of their

referring web pages as values. All the HTML tags and formatting commands (e.g.,

“ ”) were stripped out from the web pages, and stop words were eliminated

using the standard list of 571 stop words initially designed for the SMART system

[70]. The remaining terms were stemmed using the Paice stemmer [61]. Next, the

unique terms from all referring web pages were added as textual features for each

image, i.e., the image-word vector was binary valued. Images were scaled to an

empirically selected size of 168 x 168 maintaining their aspect ratios, enabling faster

processing times for the signal feature extraction phase.

23

2.4.2 Feature Extraction

In addition to the terms extracted from referring web pages, image file names were

processed to extract keywords. Terms separated using standard delimiters like space,

underscore, and hyphen were isolated and further parsed for potential words, taking

case changes and appearance of numbers into account. The resulting keywords were

stemmed, checked against the stop words list, and added to the list of textual features

associated with the image. The final set of textual features associated with an image

then contains both the keywords extracted from the referring web pages and the

keywords extracted from its file name.

HSV color histograms were computed and used to identify the two most dominant

colors. In order to calculate significant orientations, horizontal and vertical Sobel

filters were applied to the image. The resulting values were used to generate a 2D

histogram of gradients. Small image gradients were eliminated and the remaining

ones were quantized to acquire a coarse representation of the four most significant

orientations. The image was then checked for the presence of two major orientations,

by comparing the magnitude of the two most significant orientations against the third

orientation. If the first two orientations were found to be close to each other but

significantly apart from the third orientation, the image were assumed to contain grid

like objects; an extra feature indicating this finding was added for such images. The

resulting binary color and orientation features were added as image signal features in

a textual form (i.e., Color = BLUE) prefixed as “@SIGNAL_” to avoid potential

conflicts with textual features. Color names were assigned to HSV ranges in a way

similar to [53], except that we have dealt with relatively fewer colors. Figure 1 shows

24

an image and the set of extracted signal and textual features. Note that the running

time of our signal feature extraction phase was linear in the number of pixels in the

image.

A web image:

Textual features extracted from the referring web page(s):
tiger panthera tigris tiger panthera tigris there are five subspecies of tigers and three more have become
extinct in recent decades tigers are the largest cats and the only ones besides the jaguar that like water
they are distributed over east asia tigers usually make a kill every three days and if they don't eat within
ten days chances are they will be too weak to hunt and they will die

Textual features extracted from the image file name:
tiger

Signal features:
@SIGNAL_ORIENTATION=1
@SIGNAL_COLOR=Black
@SIGNAL_COLOR=Brown
@SIGNAL_ORIENTATION=3

Final set of features with textual features stemmed, and duplicates and stop words eliminated:
@SIGNAL_ORIENTATION=1 hunt die subspecy as @SIGNAL_COLOR=Black distribut kil tig chant
extinct wat weak @SIGNAL_COLOR=Brown eat jagu ten east day mak panther tigr cat rec decad
largest @SIGNAL_ORIENTATION=3

Figure 1: Features extracted from one of the 3364 images crawled from the web, found at

http://cogsci.indiana.edu/farg/harry/bio/zoo/tiger.htm

25

2.4.3 Rule Generation

In terms of classical association rule terminology, images were considered as

transactions, and textual and signal features were considered as items. An algorithm

similar to Apriori-TID [2] was used to generate association rules. Frequent itemsets

were computed by checking for the presence or absence of features in images.

Table 1. A few association rules generated from images of cars and animals along with their
support. Note the stemming of "Jaguar", "Horse" and "Animal"

Rule Support

{@SIGNAL_COLOR=Brown}→{suv} 0.027118
{@SIGNAL_COLOR=Brown}→{wild} 0.030508
{model}→{car} 0.183050
{jagu}→{turbo} 0.030508
{import}→{hors} 0.027118
{anim}→{@SIGNAL_ORIENTATION=1} 0.054237
{livestock}→ {@SIGNAL_ORIENTATION=1} 0.040677
{@SIGNAL_ORIENTATION=1}→ {@SIGNAL_COLOR=Pink} 0.020338

Zipf’s law states that items that occur too frequently or very infrequently are not

significant, and this has been proven as a useful feature reduction technique in the

context of classifying hidden-web databases [30]. Checking for the support threshold

essentially eliminates infrequent items, and stop word elimination eliminates some of

the most frequent items. We applied an additional feature reduction step on frequent

1-itemsets (i.e., an itemset containing a single item) and eliminated items with very

high support (greater than 0.9). Once generated, rules were written to a file along with

their support, confidence, and additional information required to calculate the values

of various interestingness measures discussed in the next section. Table 1 shows a

few rules extracted from Dataset1.

26

2.5 Generating Hypergraphs

A unique vertex was generated from each unique item that existed in the final set of

extracted association rules. A hyperedge was generated between a set of vertices if

there was at least one association rule containing exactly the features that existed in

the set. As an example, three hyperedges were generated for the following set of four

rules:

{Color = YELLOW}→{bart} supp = 0.2, conf = 0.4

{bart}→{Color = YELLOW} supp = 0.2, conf = 0.8

{Color = YELLOW}→{lisa} supp = 0.25, conf = 0.3

{bart} → {lisa} supp = 0.1, conf = 0.5

The first hyperedge was generated between vertices labeled as ‘Color =

YELLOW’ and ‘bart’, the second hyperedge was generated between vertices labeled

as ‘Color = YELLOW’ and ‘lisa’, and the third hyperedge was generated between

vertices labeled as ‘bart’ and ‘lisa’.

In order to assign weights to these hyperedges, we used one of our set of 22

interestingness measures, taking averages if more than one rule participated in the

hyperedge. For example, as in [34], using average “confidence” of all rules covered

by the first hyperedge results in a weight of 0.6 (i.e., the average of 0.4 and 0.8).

Similarly, the second and third hyperedges will have 0.3 and 0.5 assigned as weights,

respectively.

27

2.6 Interestingness Measures

As discussed above, support and confidence are widely criticized as interestingness

measures for association rules. For uneven datasets (i.e., datasets with a high degree

of class imbalance), a high support threshold results in pruning useful associations

between items [76] that are not present in a large number of transactions, and a low

support threshold results in too many rules. Figure 2 shows the number of rules we

have obtained on our smallest dataset of 295 images for various support levels. Note

the non-linearity of the x-axis.

Number of rules at various support levels

0

5000

10000

15000

20000

25000

30000

35000

40000

of rules 4 200 372 1392 19866 19932 20184 20648 22864 36318

0.3 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04

Figure 2. Number of rules generated at various support levels

Nonetheless, [76, 77] show that if the support threshold is set to a very low value,

rules that are pruned contain items that are either uncorrelated or negatively

correlated, and thus of no value. We use this property to reduce the initial number of

rules obtained from our datasets.

On the other hand, confidence is criticized because of its asymmetry and its failure

to incorporate the baseline frequency of the consequent [8].

28

Therefore, we experimented using various statistically inspired interestingness

measures as functions to assign weights to hyperedges. Table 2 lists all such

measures. See Appendix B for computational details of these measures.

Some of these measures offer properties that can be used to distinguish significant

rules from insignificant rules. We used these properties to identify and prune

insignificant rules. As an example, Correlation Coefficient and Certainty Factor range

between –1 and +1 with a value of 0 indicating independence and negative and

positive values indicating negative and positive correlation (or in the case of Certainty

Factor, dependence) respectively. We used this property to prune all rules having

negative or no correlation and kept only the rules containing positively correlated

features. The third column of Table 2 presents the pruning thresholds used in this

chapter.

Table 2. List of interestingness measures used

Symbol Interestingness Measure Pruning Threshold
1 AV Added Value <= 0
2 F Certainty Factor <= 0
3 χ 2 Chi Square none
4 S Collective Strength none
5 c Confidence <= 0.2
6 V Conviction none
7 Φ Correlation Coefficient <= 0
8 IS Cosine none
9 G Gini Index <= 0

10 I Interest <= 1
11 ζ Jaccard none
12 J J-Measure none
13 к Kappa <= 0
14 K Klosgen’s <= 0
15 L Laplace none
16 mc Max Confidence <= 0.2
17 M Mutual Information none
18 α Odds Ratio none
19 RI Piatetsky-Shapiro's Interest <= 0
20 s Support none
21 Q Yule's Q <= 0
22 Y Yule's Y <= 0

29

2.7 Clustering via Partitioning

In our preliminary experiments, we used a widely used hypergraph partitioning

algorithm, called hMETIS [41], to partition the feature hypergraph. hMETIS

produces “balanced k-way” partitions where k, the number of partitions, is specified

in advance. For this chapter, we set the number of partitions based on ground truth.

Once features were partitioned, images were clustered by calculating a score of

each image against each partition, based on the features in the partition and the

features in the image. All images were assigned to partitions with their highest score,

with ties broken arbitrarily. A simple function was used to calculate this score:

i

i

P
PIS ∩=

where I is the set of image features and Pi is the set of features in cluster i.

Figure 3. Eighteen images assigned to the ground truth hierarchy

The main goal of clustering is to organize data in clusters so that intra-cluster

similarity is maximized and inter-cluster similarity is minimized [34]. We developed

a tree-distance-based evaluation measure to evaluate the overall clustering quality,

comparing the clustered images with a ground truth hierarchy of image clusters. Each

image is evaluated in three ways, and then these individual image scores are summed.

30

The first way assigns a score of ‘p’ to the image for every other image in its cluster

that appears in the same ground truth cluster that is the image’s ground truth cluster.

The second way deducts a score of ‘n’ from the image for each image in its cluster

that appears in a sibling ground truth cluster of the image’s ground truth cluster. The

third way deducts a score of ‘z’ for any image in its cluster that does not meet the first

two conditions (for example, the image appears in a cousin ground truth cluster rather

than a sibling).

As an example, Figure 3 presents a hierarchy with 18 images assigned to various

root nodes based on ground truth. Suppose a clustering algorithm generates the

following six clusters:

Cluster1: img5, img9

Cluster2: img2, img10, img1, img8

Cluster3: img3, img12

Cluster4: img14, img18, img17

Cluster5: img11, img16, img13

Cluster6: img4, img6, img7, img15

We compute the score of cluster 2 as follows:

Using p = z = 1 and n = 0:

img2: (-1 for img10) + (+1 for img1) + (-0 for img8) = 0

img10: (-1 for img2) + (-1 for img1) + (-1 for img8) = -3

img1: (+1 for img2) + (-1 for img10) + (-0 for img8) = 0

img8: (-0 for img2) + (-1 for img10) + (-0 for img1) = -1

Cluster2: 0 – 3 + 0 – 1 = -4

31

Scores for other clusters can be calculated in a similar fashion. The overall

clustering score is then computed by adding total scores for all clusters. In order to

compare clustering quality across datasets of different sizes, max and min bounds for

the raw score can be calculated using the ground truth hierarchy, and these extremes

can be used to normalize the raw score. We used this technique in this chapter; cluster

fit therefore is in a range of [0, 1].

Graph partitioning is an NP-hard problem. Efficient partitioning algorithms such

as hMETIS [41] use various randomized heuristics to achieve the desired level of

performance. A major drawback of this approach is that multiple executions of the

algorithm on the same hypergraph using the same parameters often result in different

partitions. As suggested in [42], we executed hMETIS ten times on each feature

hypergraph (in part because of the lack of perfect balance in our datasets) and picked

the partition with highest overall clustering score.

2.8 Experimental Results

A dataset containing 295 images of cars and animals with a ground truth hierarchy

as shown in Figure 3 was used for initial experiments. In the ground truth, the

smallest cluster had 7 images and the largest cluster had 80 images. A second dataset

containing 3069 images of animals and cartoons was used to validate our results. The

smallest cluster in this dataset contained 100 images and the largest cluster contained

1970 images. Both datasets included some categories that could challenge any

clustering algorithm because of inherent ambiguity, for example, Jaguar cars and

32

Jaguar animals in the first dataset, and images of ducks and Donald Duck in the

second dataset.

Figure 4. Comparison of clustering quality of various measures across both datasets (the hand-
drawn line separates measures succeeding on both datasets from other measures)

Additionally, for computational efficiency purposes, these first experiments were

performed using rules that contain one item on the left and one item on the right (see

Section 2.8.2 for experiments with more than 2 features). Figure 4 graphs the overall

clustering quality of various interestingness measures on each of these datasets.

Clearly, support and confidence are among the worst 10 performers on both datasets.

Max confidence, a symmetric version of confidence, outperformed confidence on

both datasets, which adds credence to the claim that the asymmetric property of

confidence is not as useful in the web image domain.

Although individual measures do not appear to be strongly correlated across the

two datasets, Correlation Coefficient, Kappa, J-Measure, and Gini Index perform

consistently well. However Jaccard poses a surprising problem. We suspect that this

is due to the imbalance of cluster sizes in the second dataset.

33

Clustering Quality of Top 5 Measures Compared w.r.t.
Types of Features Used

0

0.2

0.4

0.6

0.8

1

Text + Signal 0.92 0.79 0.78 0.78 0.75
Text Only 0.65 0.62 0.72 0.77 0.73
Signal Only 0.39 0.33 0.34 0.25 0.49

Correlation
Coefficient J-Measure Kappa Laplace Piatetsky

Shapiros

Figure 5. Clustering quality comparison on Dataset1 using text-only, signal-only, and both

features

Figure 5 compares the clustering quality of the top 5 measures on the first dataset

when signal-only, text-only, or both kinds of features are used. Signal-only

techniques performed worst in terms of clustering quality. For example, Figure 6

presents a small signal-only cluster generated using Correlation Coefficient on

Dataset1. Although all seven images in this cluster look visually similar, they belong

to four different semantic categories.

Figure 6. A small cluster generated from the first dataset using signal-only features and
Correlation Coefficient as interestingness measure

34

Figure 5 also shows that combining textual and signal features provide

improvement over clustering using text-only features. Figure 7 presents portion of a

cluster generated using text-only features and Correlation Coefficient on Dataset1.

While most of the images may have the keyword ‘Jaguar’ associated with them, they

lacked further information that could have helped separate animals from cars. When

signal features were added, the same clustering technique using the same

interestingness measure was able to isolate animals and cars in two separate clusters,

achieving a much higher level of clustering quality, as shown in Figure 8.

Figure 7. Portion of a cluster from the first dataset using text-only features and Correlation
Coefficient

2.8.1 Cross Validation

To validate our findings, leave-n-out cross validation was applied on the first dataset,

using two of the top 5 measures as shown in Figure 5 and both signal and textual

features used to generate rules. ‘n’ was set to 10, which resulted in 29 unique sets of

randomly selected images. 29 experiments were performed for each of the two

measures and one of the image sets was left out in each experiment. The remaining

35

images were used to generate rules, and all images from the original dataset (images

used to generate rules, as well as images that were left out) were clustered using the

hypergraph partitions obtained. Experiments performed using Kappa resulted in an

average clustering quality of 0.75, with max = 0.85, min = 0.70 and standard

deviation = 0.72 whereas experiments performed using J-Measure resulted in an

average clustering quality of 0.73 with max = 0.79, min = 0.69 and standard deviation

= 0.70, validating our initial results.

Figure 8. Portions of two clusters from the first dataset using combined textual and signal
features and Correlation Coefficient

36

2.8.2 Rules with More Than Two Features

We performed preliminary experiments to find if hypergraph partitions generated

using higher order rules would result in better clustering, as compared to rules that

contain only one item on the left and one item on the right. Using a relatively higher

support threshold on the first dataset, we generated two sets of rules. The first set

contained rules with one item on the left and one item on the right and the second set

contained rules with two items on the left and one item on the right. All of the top 5

measures were used to generate hypergraphs that were further used to cluster all

images in the dataset. We observed that hypergraphs based on rules containing two

items on the left results in an average clustering quality improvement of 19% across

all measures, as compared to clustering obtained using hypergraphs containing one

item on the left and one item on the right. Specifically, Laplace gained the most and

Piatetsky-Shapiro's Rule Interest gained the least improvement.

2.9 Conclusions

We conclude that using statistically inspired, objective interestingness measures to

assign weights to hyperedges may result in better clustering as compared to using

traditional measures such as support and confidence. We also conclude that

combining textual and signal based features result in better clustering as compared to

signal-only or text-only approaches.

37

3. High Quality, Efficient Hierarchical Document

Clustering using Closed Interesting Itemsets

In this chapter, we consider the problem of unsupervised hierarchical clustering of

text documents. Given n documents, the goal is to produce a cluster hierarchy of the

documents that maximizes the FScore and minimizes the entropy, allowing each

document to exist in multiple clusters.

Organizing data into a tree-like hierarchy has many applications. A hierarchy

provides a view of the data at different levels of abstraction, helping users deal with

the common problem of information overload. With an interactive browser for the

hierarchy, the user expands nodes at different levels in the hierarchy, revealing the

structure within the broad topic where parent and child nodes are organized in a

general to specific fashion. These benefits make hierarchies a logical choice to

organize large collections of documents and during last few decades, various

approaches were proposed to produce cluster hierarchies from document collections.

Agglomerative and partitioning-based approaches represent the two most popular

categories of hierarchical document clustering techniques [91]. Agglomerative

approaches start with a singleton cluster for each document and build the hierarchy

bottom-up by applying various pair-wise similarity measures on clusters, and merging

the cluster pair with highest similarity at each step, until only one cluster remains.

38

Agglomerative methods generally suffer from their inability to perform adjustments

once a merge is performed, resulting in lower clustering accuracy. They also have a

high computational cost [91], making them infeasible for large document datasets. On

the other hand, partitioning approaches obtain hierarchical clustering solutions via a

sequence of repeated bisections [91] and are generally scalable and efficient.

Steinbach et al. [75] showed that for document clustering, Unweighted Pair Group

Method with Arithmetic Mean (UPGMA) [43] and bisecting k-means, a variant of

standard k-means are the most accurate agglomerative and partitioning methods,

respectively [90]. Furthermore, Zhao and Karypis [91] recently showed that the I2

criterion function outperforms other criterion functions when used with bisecting k-

means.

A recent trend in hierarchical document clustering is to use frequent itemsets to

produce cluster hierarchies. HFTC [5] was the first algorithm in this class and

achieves accuracy comparable to 9-secting k-means, and worst than bisecting k-

means. Fung et al. [25] showed that HFTC is not scalable for large document

collections and proposed FIHC; a frequent itemset based clustering approach, which

they claim outperforms HFTC and the best-known agglomerative and partitioning-

based methods (i.e., UPGMA and bisecting k-means) both in terms of accuracy and

scalability. More recently, Yu et al. [88] proposed TDC, an algorithm that uses only

closed frequent itemsets and further reduces dimensionality, while improving

document clustering quality and scalability over FIHC. To our surprise, our

comparison (Section 3.4.6) revealed that both FIHC and TDC actually perform worse

than UPGMA and bisecting k-means for clustering documents in our datasets.

39

Based on the observation that higher frequency does not necessarily mean higher

quality, and combining ideas from research in selecting the most interesting

association rules, and closed frequent itemset mining, we introduce the notion of

closed interesting itemsets in this chapter. A closed interesting itemset is an itemset

that satisfies a minimum interestingness threshold, and has support that is different

from any of its subset itemsets. We provide a simple, parallelizable algorithm, and

necessary heuristics to efficiently mine these itemsets. We present results from

extensive experiments performed on standard datasets of varying characteristics and

sizes, and show that using the same support threshold for first level (single word)

itemsets results in significantly smaller number of closed interesting itemsets as

compared to the number of closed frequent itemsets generated. Even so, when used

for hierarchical document clustering, we show that a method based on closed

interesting itemsets outperforms state-of-the-art clustering algorithms in terms of both

clustering quality and runtime performance.

We present GPHC (i.e., Global Pattern-based Hierarchical Clustering), a

hierarchical clustering algorithm that uses globally significant closed interesting

itemsets to generate a cluster hierarchy. GPHC adopts a hierarchy assembling

approach that supports soft clustering and prunes unwanted itemsets along the way. In

order to make the hierarchy more compact, existing approaches [25, 88] use

agglomerative clustering to merge the first-level nodes. Although significantly less

expensive than applying agglomerative clustering on the whole dataset, this step is

still expensive. We used bisecting k-means to reduce the computational complexity of

this step. Finally, we propose various implementation-level optimizations throughout

40

the chapter. Figure 9 provides an overview of the hierarchical document clustering

process followed by our GPHC algorithm.

Figure 9. Our hierarchical document clustering process; numbers refer to sections in this thesis

3.1 Mining Closed Interesting Itemsets

We now discuss Closed Interesting Itemsets in detail, and provide a simple algorithm

for mining these itemsets.

3.1.1 Motivation

Frequent itemset mining often results in too many itemsets. Using a faster mining

algorithm does not always help as it is fundamentally a combinatorial problem and

the mining time exponentially increases as support threshold linearly decreases [88,

35], regardless of the mining algorithm used. Researchers found that most of the

frequent itemsets found in real life datasets share support with one or more of their

parent (subset) itemsets. These itemsets are considered insignificant as they represent

specializations of the more general concept represented by the parent itemset. Closed

frequent itemset mining utilizes this finding and imposes the additional requirement

41

of closure for frequent itemset generation. Specifically, in addition of meeting the

minimum support threshold, closed frequent itemsets must also have support that is

different from (practically less than) any of their subset itemsets. Generally, the same

support threshold results in significantly fewer closed frequent itemsets than frequent

itemsets on the same dataset. In addition, closed frequent itemsets are more useful

than frequent itemsets in a number of applications, such as hierarchical document

clustering [88].

Finding the most interesting association rules is another significant thread in data

mining research. A number of association rules can be generated from each frequent

itemset at each level, which often results in a large association rule base [77],

especially when attributes in the data set are highly correlated [51]. A low support

threshold results in too many discovered associations. Increasing the support

threshold significantly reduces the number of rules discovered, but risks losing useful

associations, especially on uneven datasets. On the other hand, confidence is

criticized because of its asymmetry and its failure to incorporate the baseline

frequency of the consequent [8]. In addition, it is non-trivial to set good values for

support and confidence thresholds; it depends on the size of dataset, sparseness of

data, and the particular problem under study [10]. Considering these issues, a number

of researchers [10, 27, 51, 76] proposed alternative interestingness measures to

evaluate and rank discovered associations. Inspired from various statistical and

mathematical principles, these measures are considered less sensitive to the properties

of specific datasets.

42

3.1.2 Overview of Closed Interesting Itemsets

We argue that while the closure requirement of closed frequent itemsets is useful and

based on solid principles, the other requirement of meeting a minimum support

threshold is problematic and difficult to generalize. Combining the stronger aspects of

closed frequent itemset mining with research in finding the most interesting

association rules, we propose a new kind of itemsets called closed interesting

itemsets.

Table 3. List of interestingness measures used with their corresponding threshold values

Symbol Interestingness Measure Threshold
1 AV Added Value 0.4
2 c Symmetric Confidence 0.6
3 F Certainty Factor 0.4
4 χ 2 Chi-Square unit = 50, p = 3000
5 S Collective Strength 1.45
6 V Conviction 1.7
7 Φ Correlation Coefficient 0.35
8 IS Cosine 0.33
9 G Gini Index 0.017
10 I Interest 12
11 Ζ Jaccard 0.23
12 J J-Measure 0.02
13 к Kappa 0.35
14 K Klosgen’s 0.068
15 L Laplace 0.6
16 M Mutual Information 0.1
17 α Odds Ratio 25
18 RI Piatetsky-Shapiro's Interest 0.02
19 Q Yule's Q 0.85
20 Y Yule's Y 0.65

These itemsets retain the closure property of closed frequent itemsets, but replace

the minimum support requirement with meeting the minimum threshold of a

symmetric, statistically inspired objective interestingness measure. Table 3 lists the

measures used in our experiments and Section 3.4.4 provides details on the threshold

values. See Appendix B for computational details of these measures. Some of these

measures are not inherently symmetric and are converted to a symmetric version by

43

calculating the interestingness values for both directions and selecting the maximum

value, as proposed by Tan et al. [33]. In Section 3.4, we compare their relative

performance and recommend a small number of measures that we found least

sensitive to the properties of specific datasets in our experiments.

Furthermore, most of these measures are meant to calculate correlation or

interdependence between two-way contingency tables (i.e., two variables), which

makes them unusable for generating closed interesting itemsets with more than two

items. While measures like log-linear analysis [10] exist to calculate interdependence

between multi-way contingency tables, they are computationally expensive. We

define a simple greedy heuristic to deal with this problem:

Super item: If an itemset p at level k is used to generate a candidate itemset q at

level k + 1 (i.e., itemset q contains all k items from itemset p and exactly one

additional item u), all items in itemset p are used to form a super item S, with support

(S) = support (p). Items S and u are used to form a two-way contingency table and to

calculate interestingness values.

Example: Considering a dataset of 200 transactions, support (A) = 98, support (B)

= 120, support (C) = 65, support (A, B) = 80 and support (A, B, C) = 45. If itemset

{A, B} at level 2 is used to generate a candidate itemset {A, B, C} for level 3, a super

item S is formed with support (S) = support (A, B) = 80. Since C is the additional

item in the candidate itemset, a contingency table is formed between S and C, as

shown in Table 4.

Table 4. A 2 x 2 contingency table between super item S and item C

 C ¬C Total
S 45 35 80
¬S 20 100 120
Total 65 135 200

44

Using the contingency table shown in Table 4 and Correlation Coefficient as the

interestingness measure, we get an interestingness value of 0.414, which shows that

the super item S and item C are positively correlated [33].

Similar to frequent itemset mining, we prune candidate itemsets for level k if any

of their k subsets of size k - 1 do not exist in the previous level, with a caveat that

frequent itemset mining uses support that has a downward closure property, providing

theoretical foundation for this step. We empirically found this step to be useful in

increasing the quality and reducing the number of closed interesting itemsets

generated. We leave the theoretical analysis for future work.

1) result = Φ
2) I1 = U1 = {frequent 1-itemsets}
3) for (k = 2; Ik-1 != 0; k ++) do begin
4) Ik = find-interesting-itemsets(Ik-1, Uk-1)
5) append(result, Ik)
6) Uk = get-unique-items(Ik)
7) end
8) answer = result

(a) Algorithm CII-MINE

1) find-interesting-itemsets(super_items, unique_items)
2) interesting_itemsets = Φ
3) for (i = 0; i < size(super_items); i ++) do begin
4) for (j = index-of(get-last-item(super_items[i]), unique_items) + 1; j < size(unique_items); j ++) do begin
5) candidate_itemset = super_items[i] U unique_items[j]
6) subset_itemsets = find-subset-itemsets(candidate_itemset)
7) if (contains(Ik-1, subset_itemsets)) then
8) if (closed(candidate_itemset, subset_itemsets, Ik-1)) then
9) val = apply-measure(super_items[i], unique_items[j])
10) if (val >= min_interestingness_threshold) then
11) append(interesting_itemsets, candidate_itemset);
12) end
13) end
14) end
15) end
16) end
17) answer = interesting_itemsets
18) end

(b) Method find-interesting-itemsets

Figure 10. A simple closed interesting itemset mining algorithm

45

3.1.3 Itemset Mining

Figure 10 (a) presents CII-MINE, a simple algorithm to mine closed interesting

itemsets. The algorithm starts with mining frequent 1-itemsets (individual words) in a

way similar to frequent itemset mining. In our experiments, we found that using a

very low support threshold for this step results in best quality itemsets (Section 3.4.7),

adding credence to the claim that using a high support threshold results in pruning

useful associations [33]. In the kth step (where k ≥ 2), the method forms candidate

itemsets by considering all closed interesting itemsets found in the k - 1th step as super

items, and adding the unique individual items that follow the last item in the super

item. Each candidate is checked for downward closure and closure, and candidates

that satisfy both requirements are checked for meeting the interestingness threshold.

Candidates that satisfy all three requirements are added to the set of closed interesting

itemsets for step k. Mining stops when all closed interesting itemsets can be formed.

Example: If mining closed interesting itemsets with k = 2 and frequent 1-itemsets

resulted in the closed interesting 2-itemsets (I2) in Table 5, U2 = {a, b, c, d, e, f}.

Mining closed interesting itemsets for k = 3 would be done as represented in Table 6.

Note that super items {b, f}, {d, f} and {e, f} are not considered because there are no

items following ‘f’ in U2.

Table 5. Interesting 2-itemsets and their support

2-itemset Support
count

2-itemset Support
count

2-itemset Support
count

{a, b} 150 {b, d} 140 {c, e} 200
{a, d} 280 {b, e} 320 {d, f} 94
{b, c} 120 {b, f} 85 {e, f} 10

Since k = 3, size of each super item is k – 1 = 2. The algorithm first explores all

candidate items for super item {a, b}. Since ‘b’ is the second item in U2, four

46

candidates {a, b, c}, {a, b, d}, {a, b, e} and {a, b, f} are formed, using items that

follow ‘b’ in U2. Each candidate is checked for the meeting the downward closure

requirement, and candidates that do not meet it are pruned (i.e., {a, b, c} is pruned as

{a, c} does not exist in I2). Similarly, candidate itemsets that do not meet the closure

requirement (i.e., {b, c, e}) are pruned. Interestingness values of the remaining

candidates are calculated by calling “apply-measure”, and passing super and unique

items, (i.e., {{a, b}, d} and {{b, d}, f}). Candidates that satisfy the minimum

interestingness threshold are added to the result. Support for candidate itemsets is

only calculated if they meet the downward closure requirement. In addition, we

optimized the support calculation performance by using bitmaps that indicate

presence / absence of individual, frequent 1-items in all documents (i.e., where each

bit represents a document) and ANDing the bitmaps of all items in an itemset.

Table 6. Mining closed interesting 3-itemsets, using 2-itemsets from Table 5, (NC = not
calculated)

super_item Candidate

itemset
Supp.
Count

Comments

a b {a, b, c} NC {a, c} not in I2
a b {a, b, d} 52 Calculate interestingness ({a, b}, d)
a b {a, b, e} NC {a, e} not in I2
a b {a, b, f} NC {a, f} not in I2
a d {a, d, e} NC {a, e} not in I2
a d {a, d, f} NC {a, f} not in I2
b c {b, c, d} NC {c, d} not in I2
b c {b, c, e} 120 Not closed: same as (b, c)
b c {b, c, f} NC {c, f} not in I2
b d {b, d, e} NC {d, e} not in I2
b d {b, d, f} 72 Calculate interestingness ({b, d}, f)
b e {b, e, f} 10 Not closed: same as (e, f)
c e {c, e, f} NC {c, f} not in I2

3.2 Hierarchical Document Clustering and Itemset Pruning

Our hierarchy construction approach is similar to FIHC [25] and TDC [88], with

various differences, the most significant of which relates to how parent nodes are

47

selected. An initial cluster is formed for each closed interesting itemset, containing all

documents that contain the itemset, with items in the itemset used as the cluster label.

In fact, these clusters are readily available as a byproduct of calculating support using

the bitmap-based representation discussed in the previous section. These initial

clusters are not disjoint, as a document can contain multiple closed interesting

itemsets of varying sizes. Sections 3.2.1 and 3.2.2 discuss our approach to limit

document duplication. Section 3.2.3 presents our hierarchy construction algorithm.

This step significantly differs from existing approaches as it allows selecting multiple

parents, using the difference in interestingness between parent and child nodes

without inspecting cluster contents.

3.2.1 Inner Termset Removal

If a document is contained in multiple clusters that are based on itemsets of varying

sizes, we reduce document duplication by pruning the document from all but the

clusters based on the largest sized itemsets. Later, when these itemsets are used to

build the hierarchy, this step results in each document assigned to all applicable nodes

at the highest possible (i.e., most specific) level in the hierarchy. Figure 11 presents

an algorithm that performs this step in a single pass on discovered closed interesting

itemsets, without processing individual documents.

1) {allocate array global_map}
2) {allocate array lev_maps with size = k}
3) for (i = k; i >= 1; i--) do begin
4) forall itemsets t ∈ Ii do begin
5) bitmapt = bitmapt AND (NOT global_map)
6) lev_maps [i] = lev_maps [i] OR bitmapt
7) end
8) global_map = global_map OR lev_maps [i]
9) end

Figure 11. Inner-termset removal algorithm, where k = size of the largest discovered itemset

48

The algorithm starts by allocating a global, and individual coverage maps for each

level, where the number of levels is the size of largest discovered itemset. A level

coverage map is similar to an itemset bitmap except that an itemset bitmap indicates

documents that contain the itemset whereas a level coverage (bit) map indicates

documents that contain any itemset at that level. Similarly, the global coverage map

indicates documents that contain any discovered itemset. Levels are iterated in largest

to smallest order and at each level; bitmaps of all itemsets that exist at that level are

ANDed with the inverse of the bits in the global coverage map, which results in

eliminating documents that already existed at a higher level. The updated bitmap is

used to update the current level’s coverage map. Finally, after each level, the current

level’s documents are added to the global coverage map. This results in pruning

documents from all but their largest-sized itemsets.

Example: Considering a dataset of 10 documents, and itemset x at level i, with

bitmapx = {0100100001}, and global map updated with all documents that exist on

levels i + 1 to k, such as global_map = {0010100101}, we have:

bitmapx = {0100100001}
NOT global_map = {1101011010} AND
bitmapx = {0100000000}

Note that two documents were pruned from bitmapx, as they existed in at least one

itemset at a higher level.

49

3.2.2 Constraining Document Duplication

The inner-termset removal algorithm (Figure 11) also prepares coverage maps for

individual levels. These coverage maps are used to limit document duplication at the

same (their largest) level, as inner-termset removal eliminates documents from all but

their largest applicable itemsets, and documents may still exist in multiple itemsets at

their largest level. Using level coverage maps, documents that exist at each level are

checked for existence in itemsets (clusters) at that level. If a document exists in more

than MAX_DOC_DUP (user defined parameter) itemsets, a score is calculated

against each matching itemset and the document is assigned to the MAX_DOC_DUP

itemsets with the highest scores. We used a score calculation method similar to TDC

[12], which uses the document’s TFIDF vector (includes frequent 1-itemsets only)

and adds the term frequencies of items that existed in the itemset.

3.2.3 Bottom-up Hierarchy Assembling, Constraining Node

Duplication and Pruning of Itemsets

TDC [88] builds a cluster hierarchy by linking each itemset of size k with all of its

(up to k) subsets at level k - 1. This approach may result in boosting values for the

FScore measure, but would affect the overall clustering quality because of too much

node duplication. On the other hand, FIHC [25] applies an expensive similarity

calculation method, which first prepares a conceptual document for each node (i.e.,

by merging the TFIDF vectors of all documents that exist in the node or any of its

children) and calculating a score against each of its (up to k) parents. The node is

linked to the parent with the highest similarity. This method is expensive because it

50

requires preparing conceptual documents for nodes at all levels in the hierarchy

(conceptual documents for first level are not needed by this step, but at the time of

merging first level nodes later), and also because the similarity calculation method

uses the notion of “cluster frequent items” which requires an additional step to find

these items for each node, using the documents that exist in that node and any of its

child nodes. It also adds another parameter to the system (i.e., “minimum cluster

support”) and as discussed earlier, support thresholds are not easy to generalize.

Finally, assigning each node to exactly one parent does not support soft clustering,

which is an essential element of real-life hierarchies. As an example, a large number

of nodes in the “Yahoo Directory” are cross-linked between various categories.

1) for (i = k; i >= 1; i--) do begin
2) forall itemsets t ∈ Ii do begin
3) if (document-count(bitmapt) > 0 .OR. contains(parentsi+1, t) then
4) if (i = 1) then
5) add(childrenroot, t);
6) else
7) S = get-k-subsets(t)
8) sorted_list = Φ
9) forall itemsets super_item ∈ S do begin
10) if (contains(Ii-1, super_item)) then
11) interestingness_val = apply-measure(super_item, t - super_item)
12) add(sorted_list, super_item, interestingness_val)
13) end
14) end
15) for (j = 0; j < MAX_NODE_DUP .AND. size(sorted_list) >= j; j++) do begin
16) itemset = get-itemset(Ii-1, sorted_listj)
17) add(childrenitemset, t)
18) if (.NOT. contains(parentsi, itemset)) then
19) add(parentsi, itemset)
20) end
21) end
22) end
23) else
24) prune(t)
25) end
26) end
27) end

Figure 12. Hierarchy construction

51

We avoid both extremes (i.e., TDC, which assigns each node to all available

parents and FIHC which assigns each node to exactly one parent) and propose a more

balanced approach that assigns each node to up to a user-defined number of best

matching parents. Our method is also computationally efficient, as it does not prepare

conceptual documents for nodes at various levels in the hierarchy and also does not

calculate cluster support, and hence, avoids the additional mining step. Instead, we

used the same interestingness measure that was used to mine closed interesting

itemsets in the previous step, and our super item heuristic to calculate the

interestingness between the itemset at level k and its (up to k) parent itemsets at level

k - 1 (i.e., by considering the parent itemset as super item). A node is linked to up to

MAX_NODE_DUP (user defined parameter) parents with the highest interestingness

values. This method does not look into the documents contained in the cluster and

selects parents solely using the itemsets (i.e., cluster labels).

Figure 12 presents our bottom-up hierarchy construction algorithm. Because of

inner termset removal and constraining maximum document duplication, a number of

itemsets may no longer have any documents associated with them (i.e., empty

clusters). They are pruned on the way unless they were used as a parent by a node at

level k + 1.

3.3 Merging First Level Nodes

Generally, itemset mining results in a large number of frequent 1-itemsets (frequent

single words), making the first-level nodes very sparse. Removing inner termsets and

constraining document duplication results in a number of empty clusters, which are

52

pruned during the hierarchy construction. Still, there may be a large number of nodes

at level 1. Similar to FIHC and TDC, we merge the first level nodes to reduce

sparseness of this level.

TDC uses a heuristic to compute pair-wise similarities, and at each step, the pair

with highest similarity is merged in a way similar to agglomerative clustering. This

heuristic uses the number of common documents between nodes as the primary

goodness criteria. We found this heuristic problematic, as it does not support hard

clustering (i.e., MAX_DOC_DUP = 1 results in no common docs between nodes),

and does not consider the actual similarities between clusters. FIHC, on the other

hand, applies agglomerative clustering to the first level nodes and uses a similarity

function similar to the one it uses for selecting parents during hierarchy construction.

This function uses the notion of “cluster frequent items” and inspects the documents

assigned to each node and all of its children to find these items, making it expensive.

We first prepare conceptual documents for first-level nodes by merging term

frequencies of frequent 1-itemsets from all applicable documents in the cluster.

Unlike FIHC, which prepares conceptual documents for nodes at all levels, we do it

only for first-level nodes, which is significantly less expensive. We applied bisecting

k-means, using the I2 criterion function on these conceptual document vectors,

reducing the computational complexity of this step from O(n2* log(n)) to O(e *

log(k)) [91], where n is the number of first-level nodes, and e is the number of non-

zero entries in the feature vectors of all conceptual documents. Applying bisecting k-

means to the conceptual document vectors of first-level nodes is significantly less

expensive than applying bisecting k-means to all document vectors in the data set,

53

making this approach more scalable than state-of-the-art approaches including

bisecting k-means (Section 3.4.9).

3.4 Experimental Evaluation

We performed extensive experiments on nine standard datasets of varying

characteristics (see Appendix C for more details on the datasets used) and compared

GPHC against state-of-the-art agglomerative (UPGMA), partitioning-based (bisecting

k-means with I2 criterion function), frequent itemset based (FIHC) and closed

frequent itemset based (TDC) approaches using multiple hierarchical clustering

evaluation metrics. We used the Cluto clustering toolkit [17] to generate clustering

solutions for UPGMA and bisecting k-means, and to merge our top-level conceptual

document vectors. Furthermore, we did not remove documents assigned to multiple

categories from Reuters dataset but removed documents without category assignment.

3.4.1 Parallelization

A large percentage of modern computer systems contain multiple processors,

processors with multiple cores, or processors that offer hyper-threading capabilities.

We utilized SIMD parallelism to take advantage of these features, and to increase

run-time performance of various steps used in the clustering process. The closed

interesting itemset mining algorithm was extended by creating N threads with IDs 0

to N-1, with each thread using its ID to independently explore a subset of possible

candidate itemsets, without requiring any intra-step synchronization. This was

achieved by simply replacing line 3 of find-interesting-itemsets method with:

54

for (i = thread ID; i < size(super_items); i = i + N) do begin

A barrier was added between lines 4 and 5 of CSII-MINE to wait for all threads to

finish, and append () on the next line was called on all threads.

Similarly, each thread handled a subset of itemsets at each level of inner termset

removal, with updates to the current level’s bitmap synchronized. To constrain

maximum document duplication, each thread independently handled a level as there

are no inter or intra-step dependencies in this step. We parallelized the hierarchy

generation step by having each thread handle a subset of the itemsets at each level,

with updates to parent nodes synchronized. Finally, feature vectors for individual

first-level nodes were generated in parallel by a number of threads.

3.4.2 Evaluation Metrics

We used two standard hierarchical clustering evaluation metrics, namely FScore and

entropy as defined by Zhao and Karypis [91], to compare the quality of clustering

results produced by GPHC with other, state-of-the-art approaches. FIHC and TDC

also used FScore in the same way.

FScore combines the standard precision and recall functions commonly used in

Information Retrieval [69], and evaluates the overall quality of hierarchical tree using

a small number of its nodes. For each ground truth class, FScore identifies the node in

the hierarchical tree that best represents it and then measures the overall quality of the

tree by evaluating this subset of clusters. Specifically, given a particular class Lr of

size nr and a particular cluster Si of size ni, suppose i
rn documents in the cluster Si

belong to Lr, then the F value of this class and the cluster is defined as:

55

),(),(
),(*),(*2),(

irir

irir
ir SLPSLR

SLPSLRSLF
+

=

where r
i
rir nnSLR /),(= is the recall value and i

i
rir nnSLP /),(= is the precision value

defined for the class Lr and the cluster Si. The FScore of class Lr is the maximum F

value attained at any node in the hierarchical tree T. That is,

),(max)(irTSr SLFLFScore
i∈

=

The FScore of the entire hierarchical tree is defined to be the sum of the individual

class specific FScores weighted according to the class size. That is,

)(
1

r

c

r

r LFScore
n
nFScore ∑

=

=

where c is the total number of classes. In general, higher FScore values indicate a

better clustering solution.

On the other hand, entropy takes into account the distribution of documents in all

nodes of the tree. Given a particular node Sr of size nr, the entropy of this node is

defined to be:

∑
=

−=
q

i r

i
r

r

i
r

r n
n

n
n

q
SE

1

log
log

1)(

where q is the total number of classes and i
rn is the number of documents of the ith

class that were assigned to the rth node. Then, the entropy of the entire tree is defined

to be:

∑
=

=
p

i
rSE

p
TE

1

)(1)(

where p is the total number of non-leaf nodes of the hierarchical tree T. In general,

lower entropy values indicate a better clustering solution.

56

3.4.3 Setting the Initial Support Threshold for First-level Itemsets

A major issue with any support-based approach, like FIHC [25], is to find the optimal

support threshold. Yu et al. [88] proposed to dynamically probe the support threshold

by starting with a high value and decreasing the threshold until full coverage of the

dataset is achieved. We believe that this approach is problematic, as even a single

noisy document would cause this approach to determine ‘zero’ as support threshold.

We addressed this issue by applying a very low support threshold (i.e., 0.2% for the

three largest, and 1% for all the other datasets used in this chapter) to generate first

level itemsets and generating a “miscellaneous” top-level node containing documents

not represented by any itemset. Typically, the number of such documents is very

small (i.e., less then 0.1% of the dataset). The support threshold is not used beyond

the first level (i.e., to find individual frequent words), and second level and higher

itemsets use statistical interestingness measures.

3.4.4 Using Cross Validation to Determine Thresholds for

Interestingness Measures

As explained in Sections 3.2 and 3.2.3, GPHC uses an “interestingness threshold” to

prune itemsets and to select parent nodes while assembling the hierarchy. This

threshold affects both the efficiency and the quality of clustering, which makes it the

most important parameter in our system. While it is often possible to tune parameters

and achieve good results on individual datasets, such tuning can cause the problem of

over-fitting, and has little practical value. One of our most important goals was to find

57

measures and corresponding threshold values that are robust across datasets with

varying characteristics. We attempted to achieve this goal by randomly selecting a

dataset (i.e., WAP), and trying a number of threshold values for each interestingness

measure. The value that resulted in best results on the randomly selected dataset was

blindly used across all datasets. In addition, since the Chi-Square test is known to

depend on the number of transactions in the dataset, and to overestimate the

interestingness of itemsets in large datasets [10], we used a simple heuristic to

calculate the Chi-Square threshold values for each of the datasets used in our

experiments:

))_(1(*
p

sizedatasetceilunithresholdchiSquareT +=

This heuristic results in a minimum threshold value of (2 * unit) which linearly

increases in unit increments for each p documents. In order to maintain consistency, a

number of values for unit and p were applied on our randomly selected dataset and

the values that resulted in a threshold that produced best results on the selected

dataset were used to produce Chi-Square thresholds for all other datasets. Table 3

presents the threshold values obtained using this procedure, for all measures. We used

these values throughout our experiments.

3.4.5 Setting Values for MAX_DOC_DUP and MAX_NODE_DUP

MAX_DOC_DUP controls the maximum document duplication at their most specific

level, as explained in Section 3.2.2. Recall that documents have already been

removed from all but their most specific level because of inner termset removal

(Section 3.2.1). Similarly, MAX_NODE_DUP controls the maximum number of

58

parent nodes allowed. TDC [12] uses a parameter similar to MAX_DOC_DUP, with

a value of 10, and does not impose any restrictions on the number of parent nodes.

We experimentally found that this approach helps boosting the FScore, but degrades

the overall clustering quality (i.e., entropy) because of too much duplication.

Therefore, we used a value of 2 for both of these parameters, allowing soft clustering,

and avoiding unnecessary duplication.

Table 7. FScore comparison of state-of-the-art hierarchical document clustering algorithms with
GPHC, using the top 6 interestingness measures

UPGMA

bi k-
means
with I2 FIHC TDC

Mutual
Information Conviction

Certainty
Factor

Added
Value

Chi-
Square

Yule’s
Q

Hitech 0.499 0.561 0.458 0.57 0.540 0.559 0.541 0.531 0.533 0.498
Re0 0.584 0.590 0.529 0.57 0.672 0.641 0.701 0.621 0.593 0.614

Wap 0.640 0.638 0.391 0.47 0.663 0.619 0.626 0.628 0.634 0.618
Classic 0.848 0.764 0.623 0.61 0.880 0.817 0.786 0.793 0.802 0.781
Reuters 0.729 0.793 0.506 0.46 0.851 0.771 0.783 0.815 0.775 0.836

LA12 0.700 0.741 0.432 N/A 0.661 0.616 0.626 0.709 0.617 0.669
Ohscal 0.399 0.493 0.325 N/A 0.530 0.515 0.507 0.509 0.547 0.485

K1a 0.646 0.634 0.398 N/A 0.654 0.610 0.626 0.639 0.638 0.622
K1b 0.892 0.890 0.768 N/A 0.903 0.869 0.876 0.879 0.881 0.890

Table 8. Entropy comparison of state-of-the-art hierarchical document clustering algorithms

with GPHC, using the top 6 interestingness measures

UPGMA

bi k-
means
with I2 FIHC TDC

Mutual
Information Conviction

Certainty
Factor

Added
Value

Chi-
Square

Yule’s
Q

Hitech 0.262 0.236 1.258 N/A 0.172 0.210 0.200 0.236 0.153 0.142
Re0 0.136 0.136 1.239 N/A 0.077 0.098 0.095 0.117 0.133 0.064
Wap 0.131 0.131 1.561 N/A 0.047 0.052 0.048 0.067 0.056 0.054
Classic 0.074 0.069 0.886 N/A 0.025 0.069 0.063 0.073 0.029 0.014
Reuters 0.101 0.086 1.853 N/A 0.155 0.158 0.149 0.165 0.116 0.084
LA12 0.151 0.134 1.076 N/A 0.062 0.109 0.102 0.091 0.076 0.072
Ohscal 0.279 0.232 1.775 N/A 0.237 0.300 0.288 0.322 0.230 0.106
K1a 0.129 0.126 1.645 N/A 0.045 0.058 0.056 0.077 0.044 0.063
K1b 0.043 0.042 0.544 N/A 0.042 0.033 0.036 0.056 0.042 0.049

3.4.6 Clustering Quality Comparison

Tables 8 and 9 compare the clustering quality of the GPHC algorithm against state-

of-the-art approaches in terms of FScore and entropy. Considering that GPHC uses

the Cluto clustering toolkit [17] to merge top-level nodes, which has some

59

randomness built in to it, we ensured a fair comparison by executing GPHC with each

of the interestingness measures exactly once and recorded the results. The same

approach was followed to obtain results for UPGMA and bisecting k-means.

For FIHC, we executed the software several times on each dataset with a number

of support thresholds and recorded the best results. We noticed that support

thresholds that worked best on one dataset resulted in low-quality clustering on other

datasets. In several cases, applying the same threshold causes itemset mining to take

an indefinite amount of time. As an example, a support threshold of 3% resulted in

the best FScore on Classic. When the same support threshold was applied to LA12, it

resulted in 100,000+ frequent 1, 2, and 3-itemsets, after which the itemset mining did

not return for 10+ minutes and the application had to be manually terminated. Since a

TDC implementation was not available, we used results from [88].

Furthermore, Cluto generates both hierarchical and flat clustering solutions for

UPGMA and bisecting k-means. The hierarchical clustering solution does not change

with the number of desired clusters, which only affects the flat clustering solution,

since the desired number of flat clusters are obtained from the hierarchical tree using

cluster analysis techniques. For existing frequent itemset based approaches [25, 88],

comparisons seem to have been made between their hierarchical solutions and flat

clustering solutions obtained for UPGMA and bisecting k-means, using 3, 15, 30 and

60 as the desired number of clusters. For itemset-based approaches, the number of

desired clusters is less significant as it only represents the number of top-level nodes

in the hierarchy, and not the total number of clusters in the solution. To obtain values

for Tables 8 and 9, we used the hierarchical clustering solutions for UPGMA and

60

bisecting k-means instead, and observed that they perform better than both of the

existing frequent itemset based approaches (FIHC and TDC). The FScores we

obtained are also similar to the FScores reported by Zhao and Karypis [90] on the

same datasets.

We report results of the top six measures here, as determined by averaging the

FScores and entropies of each measure on all nine datasets. Note that some measures

that are not included in Tables 8 and 9 performed very well on few datasets, but failed

to generalize when the same interestingness threshold was applied on other datasets.

As an example, j-measure with the threshold given in Table 3 resulted in an FScore of

0.584 on Hitech, and entropy of 0.061 on LA12. Even though these results are better

than all approaches we experimented with, the same threshold did not perform as well

on other datasets. Our results (Table 7) indicate that Mutual Information results in the

best overall FScore, followed by Added Value and Chi-Square. On the other hand,

Yule’s Q results in best overall entropy (Table 8) followed by Mutual Information and

Chi-Square. We conclude that Mutual Information offers the best balance as it

outperforms all previous approaches (and interestingness measures using GPHC) in

terms of FScore on five out of nine datasets, and performs better than previous

approaches on seven out of nine datasets in terms of entropy.

3.4.7 Comparison of Closed Interesting Itemsets with Closed

Frequent Itemsets

We compared closed interesting itemsets against closed frequent itemsets, by mining

closed frequent itemsets at various support levels on Reuters dataset (one of the most

61

popular research datasets), and applying our clustering process on the mined itemsets.

When an interestingness measure is used to mine itemsets, the hierarchy generation

process uses the same measure for parent selection, as explained in Section 3.2.3. For

closed frequent itemsets, we used support for this purpose in a way that up to

MAX_NODE_DUP parents that share the most documents with the child node (i.e.,

parent nodes with lowest support) were selected. We found that this approach

achieves better FScores as compared to TDC [12], which also uses closed frequent

itemsets.

Using the support thresholds that were used to generate closed frequent itemsets,

we generated frequent 1-itemsets and used them to mine closed interesting itemsets

using a few of our top measures. The interestingness thresholds were held constant

(i.e., as defined in Table 3). The resulting itemsets were used to cluster the Reuters

dataset. We report the number of level 2 and higher itemsets generated, along with the

corresponding FScores, for closed frequent itemsets and each of the measures used to

generate closed interesting itemsets. We omitted the number of 1-itemsets because it

remains the same for both closed frequent itemsets and closed interesting itemsets,

when the same minimum support threshold is used.

Table 9. The performance of closed interesting itemsets over closed frequent itemsets, at various
support levels

Closed

Frequent
Mutual

Information Yule’s Q
Added
Value Min

Supp # F # F # F # F
1% 92880 0.71 1613 0.83 2445 0.80 836 0.78
2% 12246 0.67 842 0.80 548 0.78 397 0.78
3% 4015 0.67 435 0.76 209 0.75 235 0.75
4% 1792 0.64 308 0.70 146 0.68 170 0.71
5% 933 0.62 231 0.68 109 0.68 135 0.69

62

Table 9 presents the results of this experiment. Clearly, the number of closed

interesting itemsets found at all support levels is significantly smaller than the number

of closed frequent itemsets. Even so, the proposed method achieved better FScores.

Also, the quality of clustering decreases for all itemset types, as the minimum support

threshold increases, adding credence to the claim that higher support thresholds result

in pruning useful associations [76].

3.4.8 Parallel Processing and Hyper-threading

In order to analyze the impact of parallel itemset mining and hierarchy generation, we

performed experiments on a system that contains two hyper-threaded 2.8 GHz Intel

Xeon based processors. Each hyper-threaded processor is seen as two logical

processors by the OS, resulting in a total of four processors available for executing

programs. We started with a single thread and executed the clustering process on two

largest datasets (i.e., Reuters and Ohscal) used in our experiments ten times in order

to maximize the expected difference, and averaged the execution times. The same

process was repeated with number of threads set to 2, 3 and 4. Note that our run-time

environment (i.e., 64-bit Java) mapped individual threads to separate processors.

Figure 13 presents results of this experiment. Using four threads resulted in an

average total speedup (computed as the ratio of old to new execution times) of 1.67

on Reuters and 1.5 on Ohscal dataset, when compared with the corresponding single-

threaded solutions. Itemset mining enjoyed the most significant performance

improvement as threads were added because it does not require intra-step

synchronization. On the other hand, hierarchy generation performance improved only

63

when a new thread could map to a separate physical processor (i.e., from one thread

to two threads) and decreased if more threads were added, requiring execution on a

logical processor, because of intra-step synchronization on node modifications, and

bitmap updates. This suggests that using a different number of threads for each of

these steps could result in better overall performance. Finally, comparing the

performance of two-threaded solution with four-threaded solution, we can see that

hyper-threading resulted in an average itemset mining speedup of 15% and 13% on

Reuters and Ohscal datasets, respectively.

Figure 13. Impact of parallel processing on Reuters and Ohscal datasets with Mutual Information
as interestingness measure, and threshold as in Table 3

64

3.4.9 Runtime Performance and Scalability

We used the full Ohsumed [59] collection (34,389 unique documents, and 36,250

unique attributes) to evaluate the run-time performance and scalability of GPHC. The

Ohsumed collection was used to generate ten datasets, containing 20K to 200K

documents in 20K increments. Each of these datasets was generated by selecting N

documents randomly (where N is the size of desired dataset) from existing

documents, and replacing approximately 40% of words with other words from the

corpus, retaining the frequencies of replaced words. Using Mutual Information as the

interestingness measure and the threshold value from Table 3, we executed both the

parallel (using 4 threads), and single-threaded versions of GPHC, and also executed

bisecting k-means, and FIHC on these datasets. For FIHC, we used the support

threshold that resulted in best FScore on the full Ohsumed collection. In order to

ensure a fair comparison, we turned off all cluster analysis, and output options for

bisecting k-means, and excluded I/O and reporting times. In addition, the reported

times of GPHC include execution times of all steps, except offline preprocessing to

form document vectors and bitmaps.

Figure 14 presents results of this experiment. We found that bisecting k-means

scaled up linearly, and FIHC scaled worse than linearly, possibly because of its

frequent accesses to document vectors and its agglomerative merging of top-level

nodes. The parallel version of GPHC outperformed the single-threaded version, as

expected. Both versions of GPHC scaled sub-linearly, because of significant

dimensionality reduction achieved by using closed interesting itemsets for clustering,

and because GPHC reduces the need to refer to full document vectors. These vectors

65

are referred to only once: i.e., to generate frequent 1-itemsets. All interesting k (where

k ≥ 2) itemsets are generated using the bitmaps of frequent 1-itemsets, and most

documents are clustered without ever referring back to the document vectors. The

number of such documents increases with the size of the dataset, as GPHC primarily

uses itemsets for forming clusters, and the number of words in the corpus does not

linearly increase with new documents. Partial vectors (i.e., applicable frequent 1-

itemsets) of a small percentage of documents are referred to remove document

duplication from clusters at the same level, and to generate conceptual documents for

first level nodes. Finally, we expect GPHC to scale better than TDC, because the

number of closed interesting itemsets is significantly smaller than the number of

closed frequent itemsets (Section 3.4.7), and other optimizations made throughout the

clustering process (i.e., using bisecting k-means to merge the first-level nodes).

0

50

100

150

200

250

300

20 40 60 80 100 120 140 160 180 200

of documents (thousands)

Ti
m

e
(s

ec
on

ds
)

GPHC - Single threaded
GPHC - Parallel
Bi k-means
FIHC

Figure 14. Runtime performance and scalability comparison of GPHC, with bisecting k-means
and FIHC

66

3.5 Conclusions

We conclude that using a lower number of closed interesting itemsets may achieve

better clustering quality as compared to using a significantly higher number of closed

frequent itemsets for the same purpose, and only a small number of interestingness

measures were stable across datasets. We also conclude that GPHC may outperform

existing hierarchical clustering algorithms in terms of both FScore and entropy.

67

4. An Instance-Driven Approach to Pattern-Based

Hierarchical Clustering

In this chapter, we consider the problem of unsupervised hierarchical clustering of

instances in transactional datasets with discrete valued features. Given n instances,

the goal is to produce a cluster hierarchy of the instances that maximizes the FScore

and minimizes the entropy, allowing each instance to exist in multiple clusters at any

level in the hierarchy, with each cluster automatically assigned a set of patterns as its

label.

4.1 Motivation

The quality of clustering achieved by traditional flat clustering algorithms (e.g., k-

means clustering) heavily relies on the desired number of clusters (i.e., the value of

k), which must be known in advance. Unfortunately, finding the right number of

clusters is a non-trivial problem and no successful methods exist to automatically

determine this value for a new, previously unseen dataset. Therefore, these algorithms

require the user to provide the appropriate number of clusters. This approach,

however, may be problematic because users with different backgrounds and varying

levels of domain expertise may provide different values for k. Consequently, a

clustering solution obtained by one user may not satisfy the needs of other users.

68

 Additionally, large clusters in a flat clustering solution may not provide further

insights about intra-cluster relationships (e.g., a large cluster containing instances

about animals may not provide additional information to distinguish land animals

from marine animals). Similarly, small clusters may not provide further information

about inter-cluster relationships.

In an attempt to avoid these problems, hierarchical clustering is widely used as a

practical alternative to flat clustering. Nodes in a hierarchical clustering solution are

organized in a general to specific fashion, and users have the option to analyze data at

various levels of abstraction by expanding and collapsing these nodes.

The most successful hierarchical clustering algorithms include agglomerative

algorithms such as UPGMA [91] and partitioning based algorithms such as bisecting

k-means [91]. Additionally, a number of pattern-based hierarchical clustering

algorithms have achieved success on a variety of datasets [25, 5, 88, 56, 85]. These

algorithms come with an added advantage of automatically identifying cluster labels

(i.e., the set of atomic patterns defining each cluster), and many of them easily

support soft clustering. However, these features are not readily available in

agglomerative and partitioning based algorithms. There are three major problems

with existing pattern-based hierarchical clustering algorithms: sensitivity of globally

significant patterns to threshold values, unnecessary coupling between pattern size

and node height, and artificial constraints on soft clustering. These problems are

discussed in the three subsections of this section.

69

4.1.1 Problem 1: Sensitivity of Globally Significant Patterns to

Threshold Values

Most of the existing pattern-based hierarchical clustering algorithms [25, 5, 88, 56,

85] follow a similar framework. These algorithms first mine a set of globally

significant patterns (e.g., frequent itemsets [25, 5], closed frequent itemsets [88], high

h-confidence itemsets [85], or closed interesting itemsets [56]), and then use these

patterns to build a cluster hierarchy. Instances are assigned to one or more applicable

nodes (i.e., patterns) and various heuristics are applied to eliminate insignificant

nodes.

Most of the above mentioned pattern-based hierarchical clustering algorithms use

a user defined threshold (e.g., minimum support or minimum h-confidence) to prune

an exponentially large search space, and to obtain the final set of globally significant

patterns used for clustering. Consequently, these algorithms face two potential

problems. First, the final set of globally significant patterns might not cover all

instances (i.e., each instance represented by at least one pattern in the final pattern

set), especially on datasets with a high degree of imbalance in cluster sizes. Second,

the number of globally significant patterns found heavily depends on the threshold

value used. On high dimensional, highly correlated datasets with many shared

patterns, the number of these patterns can be as much as thousands of times higher

than the number of instances in the dataset. As we show in Section 4.6.2, this is not

merely a matter of elegance; the excessive number of patterns can even cause global

pattern-based algorithms to fail. In our previous work [56] as described in Chapter 3,

we replaced minimum support with an interestingness threshold, which reduced the

70

number of globally significant patterns. Still, there was no way to set an upper bound

on the number of patterns, and the final set of global patterns sometimes did not cover

all instances.

Figure 15. A recent article, found at www.cnn.com

Additionally, instances in many text and web datasets may contain a feature (i.e.,

atomic pattern) more than once. Existing algorithms do not fully utilize these local

feature frequencies. Some approaches [25, Chapter 3] use these values in scoring

functions to select suitable hierarchy nodes for instances, or to select node parents.

However, none of the existing pattern-based hierarchical clustering algorithms utilize

a local pattern significance measure in the process of mining the initial set of patterns

used for clustering. For example, we observe that local feature frequencies may

provide useful insights about a pattern's significance with respect to an instance. As

shown in Figure 15, consider a recent news article about certain types of dinosaurs

that are believed to be good swimmers. The word "dinosaurs" occurs 19 times in the

article whereas the word "marine" occurs only once. Clearly, considering both of

71

these words with equal importance can be problematic. Note that the idea of having a

quantitative basis instead of a binary one for pattern mining in general is not new. For

example, the share measure [14] captures the percentage of a numerical total that is

contributed by the items in an itemset.

4.1.2 Problem 2: Unnecessary Coupling between Pattern Size and

Node Height

Many existing pattern-based clustering algorithms [25, 88, Chapter 3] tightly couple

the sizes of cluster labels with the node heights in the initial cluster hierarchy. In these

approaches, the first level in the cluster hierarchy contains all size-1 patterns, the

second level contains all size-2 patterns, and so on. This tight coupling is merely a

consequence of the way global patterns are discovered (i.e., by first discovering size-

1 patterns, which are used to form size-2 candidates, etc.), and does not necessarily

reflect a real-life setting, where users would appreciate more descriptive cluster labels

(i.e., labels that describe the clusters well, regardless of their corresponding node

heights).

Some of these approaches later merge some child nodes with their parents if

certain conditions are met, which does increase the label sizes. Still, a large

percentage of nodes may remain with labels that have this property.

4.1.3 Problem 3: Artificial Constraints on Soft Clustering

Instances in real datasets may contain multiple patterns in the corresponding cluster

hierarchy. As a consequence, pattern-based hierarchical clustering algorithms more

72

easily support soft clustering when compared with traditional hierarchical clustering

algorithms. However, existing algorithms require the user to provide "maximum

instance duplication" [88, Chapter 3] as an input parameter, and always select the

maximum number of clusters whenever possible for each instance. This approach

may be problematic for applications to document clustering, where different instances

can belong to a varying numbers of topics, and the same maximum value may not

work for all instances.

Additionally, instead of allowing instances to exist in the most suitable clusters at

any level in the hierarchy, some of these approaches first force all instances to their

most specific levels (i.e., called "inner termset removal" [88, Chapter 3]), and then

select the top-n (with n user defined) most suitable clusters at that level. This

restriction appears to be a matter of convenience (i.e., a quick way of constraining

instance duplication), and may not be useful for real-life hierarchies.

Figure 16. One of the retirement related categories in the open directory, found at
http://dmoz.org

Example: Figure 16 presents one of the many retirement related nodes in the Open

Directory [22], found at level 5 (i.e., Society->People->

73

Generations_and_Age_Groups->Seniors->Retirement). Figure 16 also points to two

other retirement related nodes (i.e., Business->Investing->Retirement_Planning, and

Home->Personal_Finance->Retirement), both of which are found at level 3. The

Open Directory is currently maintained by a large group of human editors. But if one

were to automate the hierarchy generation process, the "inner termset removal" step

in [88, Chapter 3] would assign a general retirement related instance only to the most

specific node at level 5, and eliminate this instance from both nodes at level 3, which

might be against the user's expectations.

4.1.4 IDHC: A More Flexible Instance-driven Hierarchical

Clustering Algorithm

Led by these observations, we propose IDHC (i.e., Instance Driven Hierarchical

Clustering), a novel pattern-based, hierarchical clustering algorithm which is briefly

summarized here. Instead of following the usual framework (i.e., first mining globally

significant patterns and then using these patterns to build a cluster hierarchy), IDHC

first allows each instance to "vote" for a variable number of representative size-2

patterns in a way that ensures an effective balance between local and global pattern

significance. At this step, the number of votes permitted is dynamically determined

using a standard deviation based scheme, upper bounded by a small constant maxK.

Since there is no global pattern mining step, we do not need to use a global threshold

(i.e., minimum support). Furthermore, the number of initial size-2 patterns is

guaranteed to be linear to the total number of instances in the dataset, and all

instances are guaranteed to be covered.

74

Next, these initial clusters are refined to obtain the rest of the cluster hierarchy by

following an iterative, instance-driven process that inherently avoids combinatorial

explosion. This process directly finds clusters for the next level, and prunes duplicate

clusters in each iteration. In addition, this process produces more descriptive cluster

labels than previous approaches, without tightly coupling node label sizes with node

heights in the initial cluster hierarchy. This also allows us to avoid forcing instances

to their longest pattern clusters and enables instances to exist at multiple levels in the

hierarchy.

With results of experiments performed on 40 standard datasets, we show in

Section 4.6.1 that IDHC outperforms state-of-the-art hierarchical clustering

algorithms both in terms of FScore and entropy (Section 3.4.2). Furthermore, we

show that our parameters are robust across datasets and that the same untuned

parameter values achieved high clustering quality on all datasets used in our

experiments. We briefly show in Section 4.6.3 that tuning these parameters to each

dataset increases performance even further.

4.2 Related Work

The history of pattern-based clustering goes back to the early years of data mining.

Han et al. [34] proposed a pattern-based flat clustering framework that uses

association rules to generate a hypergraph of patterns (i.e., with atomic patterns used

as vertices and rules used to form hyperedges). An efficient hypergraph partitioning

algorithm is then applied to obtain pattern clusters, and instances are clustered by

assigning each instance to its best pattern cluster. This framework was later used in

75

many applications, such as topic identification [16] and web image clustering [55]. In

another approach, Wang and Karypis [80] applied efficient search space pruning

techniques to obtain a global summary set that contains one of the longest frequent

patterns for each transaction. This set is later used to form clusters. As noted in

Section 8 of [15], this approach has many shortcomings including its dependence on

the minimum support threshold.

Based on globally frequent itemsets, Beil et al. [5] proposed an early pattern-based

hierarchical clustering framework. This framework was later enhanced by Fung et al.

[25] and Yu et al. [88], who improved various stages of the clustering process. In a

different approach, Xiong et al. [85] first mined globally significant maximum

hyperclique (i.e., with high h-confidence) patterns, and then associate instances to all

applicable pattern clusters. These clusters are later merged by applying hierarchical

agglomerative clustering (i.e., UPGMA), which was also used by [25] to merge top

level nodes. Results in [85] show that this approach results in clustering quality that is

similar to UPGMA, with an added advantage of automatically identifying cluster

labels.

In Chapter 3, we improved the framework in [25, 5, 88] by using closed interesting

itemsets as globally significant patterns used for clustering, and by using an

interestingness measure to efficiently select hierarchical relationships. We showed

that this approach outperformed both existing pattern-based hierarchical clustering

algorithms, and the best known agglomerative (i.e., UPGMA [91]) and partitioning-

based (i.e., bisecting k-means with I2 criterion function [91]) algorithms on 9

76

commonly used datasets. All previous global pattern-based approaches, including

ours, suffer from many of the limitations discussed in Section 4.1.

Our work also relates to subspace clustering [62], an extension of traditional

clustering that seeks to find clusters in different subspaces within a dataset. Subspace

clustering algorithms localize the search for relevant dimensions allowing them to

find clusters that exist in multiple, possibly overlapping subspaces. These algorithms

either follow a top-down, or a bottom-up search strategy. Top-down algorithms find

an initial clustering in the full set of dimensions and evaluate the subspaces of each

cluster, iteratively improving the results. On the other hand, bottom-up algorithms

find dense regions in low dimensional spaces and combine them to form clusters.

4.3 Dimensionality Reduction

Reducing the dimensionality of the feature space can significantly improve the

performance of pattern-based clustering approaches, as the number of non-atomic

patterns discovered directly depends on the initial atomic patterns (i.e., 1-itemsets).

The availability of a labeled training set in supervised problems (i.e., classification)

allows for applying more sophisticated dimensionality reduction (i.e., feature

selection) techniques, such as Information Gain. In contrast, there is limited

information (i.e., global and local feature frequencies) available in unsupervised

problems, such as clustering. Therefore, existing pattern-based clustering algorithms

use a global threshold (e.g., minimum support) as the primary dimensionality

reduction technique. As discussed in Section 4.1.1, these approaches may not

guarantee coverage.

77

To address the need to reduce dimensionality while attempting to ensure coverage,

we adapt a two-phased heuristic approach in this chapter. First, we apply Zipf's law to

eliminate too frequent and too rare features. Next considering coverage issues, and

the significance of local feature frequencies (Section 4.1.1), we ensure that the final

set of selected features contains at least the k locally most frequent features for each

instance. Our method consists of the following two steps:

Step 1 (select initial features): Heuristically select the globally most useful

features by applying Zipf's law to select features that are neither too frequent nor too

infrequent. All experiments reported in this chapter selected features that exist in less

than or equal to 95% of the instances, and at least two of them.

Step 2 (ensure local coverage): For each instance i in the dataset, first sort all

features in i in the decreasing order of their local frequencies. Next, select the top-k

highest frequency features and add them to the set of selected features. Our empirical

evaluation suggests that k = 10 works well in practice, and appears insensitive to the

dataset. Consequently, we used this value for all experiments in this chapter.

4.4 Instance-Driven Hierarchical Clustering

As discussed in Section 4.1.1, the threshold-based global pattern mining step in

existing algorithms may result in an unpredictable number of patterns, with no

coverage guarantees. The IDHC algorithm in Figure 17 addresses these issues by

using a novel approach. Subsections 4.4.1-4.4.3 explain the three major stages in the

algorithm.

78

01) build-hierarchy(dataset, min_std_dev, maxK, measure)
02) {reduce dimensionality as explained in Section 4.3}
03) top_level_clusters = Φ
04) instance_cluster_pointers = Φ
05) forall transactions t ∈ dataset do begin
06) list = Φ
07) forall size-2 patterns p ∈ t do begin
08) significancelocal = average(freq(p1, t), freq(p2, t))
09) significanceglobal = interestingness(p, measure, dataset)
10) significance(p) = significancelocal* significanceglobal
11) append (list, p)
12) end
13) {sort list in decreasing order of significance values}
14) {calculate mean and standard_deviation of significance values in list}
15) add-to-cluster(top_level_clusters, list(1), t)
16) append(instance_cluster_pointers(t) , list(1))
17) min_significance = mean + (standard_deviation * min_std_dev)
18) for (i = 2; i <= maxK - 1; i ++) do begin
19) if significance(list(i)) < min_significance then break
20) add-to-cluster(top_level_clusters, list(i), t)
21) append(instance_cluster_pointers(t), list(i))
22) end
23) end
24) prune-duplicates(instance_cluster_pointers, top_level_clusters)
25) clusters_to_refine = top_level_clusters
26) while size(clusters_to_refine) > 0 do begin
27) refined_clusters = refine-clusters(instance_cluster_ptrs, clusters_to_refine)
28) {regenerate instance_cluster_pointers using refined_clusters}
29) prune-duplicates(instance_cluster_pointers, refined_clusters)
30) clusters_to_refine = refined_clusters
31) end
32) {apply bisecting k-means to merge top_level_clusters}
33) end

Figure 17. The IDHC algorithm

4.4.1 Stage 1: Select Significant Patterns with Respect to Each

Instance

After reducing the dimensionality of the feature space and initializing the necessary

data structures, instances in the dataset are processed in a purely local way (i.e., on an

instance by instance basis). Each size-2 pattern in an instance is processed (lines 7-12

in Figure 17) to compute its "overall" significance with respect to the current

instance, considering the pattern significance at both local and global levels.

First, we determine the local pattern significance (line 8) by averaging the local

frequencies of both of the atomic patterns (i.e., p1 and p2) in the size-2 pattern (i.e., p).

79

Next, we use a common interestingness measure to determine the global pattern

significance (line 9). In Chapter 3, we evaluated 22 interestingness measures [27, 76],

in the context of global pattern-based hierarchical clustering, and found that only a

small number of measures were stable across the 9 datasets used in Chapter 3. We

have found that the same measures are useful to determine the global significance

values in this context. See Appendix B for computational details of these measures.

Following the intuition that most of the interestingness measures are based on

probability, we then multiply local and global significance values to determine the

overall pattern significance with respect to the current instance (line 11).

All size-2 patterns are then sorted in decreasing order of their overall within-

instance significance values (line 14), and these significance values are also used to

calculate the mean and standard deviation of local significance (line 15). Considering

the problem in Section 4.1.3, we adopt a dynamic standard deviation based scheme

that selects a variable number of the most significant patterns (i.e., initial clusters) for

each instance. This scheme selects up to maxK patterns with significance values that

are greater than or equal to "min_std_dev" standard deviations from the mean, where

maxK and min_std_dev are user defined parameters. Furthermore, we ensure coverage

and account for boundary conditions (i.e., instances with a very small number of

patterns) by also always selecting the most-significant pattern (line 17).

Once size-2 patterns are selected for all instances, each unique size-2 pattern forms

an initial cluster, and instances are associated to the pattern clusters they selected (i.e.,

lines 18-22 in Figure 17 and method "add-to-cluster"). We maintain a list of pointers

for each instance to track instance-to-cluster relationships.

80

01) add-to-cluster(cluster_list, pattern, instance)
02) if pattern not in cluster_list then
03) {add a new cluster with label = pattern to cluster_list}
04) end
05) {append instance to cluster with label = pattern in cluster_list}
06) end

01) prune-duplicates(instance_cluster_ptrs, cluster_list)
02) forall ptr lists l ∈ instance_cluster_ptrs do begin
03) m = {clusters in l that also exists in cluster_list}
04) forall cluster pairs p(cluster1, cluster2) ∈ m do begin
05) if cluster1 and cluster2 contain same instances then
06) label(cluster1) = merge-labels(cluster1, cluster2)
07) remove(cluster_list, cluster2)
08) end
09) end
10) end
11) end

01) refine-clusters(instance_cluster_ptrs, cluster_list)
02) refined_clusters = Φ
03) forall ptr lists l ∈ instance_cluster_pointers do begin
04) m = {clusters in l that also exists in cluster_list}
05) {for each cluster c in m remove c from m if size(c) < 2}
06) forall cluster pairs p(cluster1, cluster2) ∈ m do begin
07) cluster_label = merge-labels(cluster1, cluster2)
08) if cluster_label not in refined_clusters then
09) {Add a new cluster to refined_clusters with label = cluster_label}
10) end
11) common_instances = cluster1 ∩ cluster2
12) {add instances in common_instances to cluster with label = cluster_label in refined_clusters}
13) {mark instances in common_instances for elimination in both cluster1 and cluster2}
14) {Add cluster with label = cluster_label as a child node to both cluster1 and cluster2}
15) end
16) end
17) {In one pass over clusters in cluster_list, prune all instances that were marked for elimination}
18) return refined_clusters
19) end

Figure 18. Supporting methods for the IDHC algorithm

(a) A transaction dataset as running example
Instance ID Feature-frequency pairs

T1 (A:2), (B:4), (D:1), (H:2), (J:4), (L:1)
T2 (A:3), (C:1), (D:6), (E:1), (G:4)
T3 (B:2), (C:3), (D:1), (I:5), (K:2)
T4 (B:3), (C:1), (D:2), (E:4), (J:3), (K:3), (L:2)
T5 (B:7), (C:2), (D:1), (H:3), (I:2)
T6 (A:1), (B:1), (C:1), (E:1), (J:3), (K:1)
T7 (B:9), (C:3), (F:4), (H:5), (J:1), (L:5)
T8 (C:6), (D:2), (G:1), (I:1), (K:3)
T9 (B:3), (D:2), (J:4), (K:1), (L:8)
T10 (A:4), (B:2), (D:7), (F:3), (I:6)
T11 (C:1), (E:1), (F:1), (G:2), (H:1), (I:4), (J:1)

81

(b) Global significance values of some size-2 patterns using Added Value (transformed to positive

scale)
Pattern AV Pattern AV Pattern AV Pattern AV
(B,D) 0.52 (B, K) 0.57 (E, J) 0.70 (J, K) 0.55
(B, E) 0.38 (B, L) 0.77 (E, K) 0.54 (J, L) 0.95
(B, J) 0.60 (D, E) 0.38 (E, L) 0.38 (K, L) 0.54

(c) Instance pattern selection

Instance
ID

size-2
patterns

Significance range Minimum
significance

Selected patterns

T1 15 0.52 2.42 1.95 (B, J) (J, L), (H, J)
T2 10 0.77 2.38 2.14 (D, G), (A, D)
T3 10 0.78 2.29 1.76 (C, I)
T4 21 0.57 2.46 1.93 (E, J) (J, L)
T5 10 0.59 2.61 2.05 (B, H) (B, D)
T6 15 0.33 1.40 1.03 (E, J) (B, J) (J, K)
T7 15 0.90 5.40 3.70 (B, L)
T8 10 0.71 2.70 2.16 (C, G) (C, K)
T9 10 0.85 5.72 3.79 (J, L) (B, L)
T10 10 1.19 3.72 2.95 (D, I) (F, I)
T11 21 0.38 2.13 1.33 (G, I) (F, I) (C, I) (H, I)

(d) Initial clusters with instance based duplicates identified in boxes; dotted arrows represent

instance pointers

82

(e) Duplicates pruned and labels merged

(f) Clusters expanded to next level

Figure 19. A running example of various stages in our clustering process (see Sections 4.4.1-4.4.3

for details)

Example: Figure 19(a) provides an example transaction dataset. Using Added

Value [9, 10] as the interestingness measure, and min_std_dev = 1.0, we obtain the

most significant patterns with respect to each instance, as shown in Figure 19(c).

These patterns are used to form the initial clusters in Figure 19(d), which also shows

instance-to-cluster pointers. For demonstration purposes, this example used a small

value for min_std_dev, which results in a relatively high number of initial patterns.

Experiments in Section 4.6.1 used a more realistic value for this parameter.

83

Figure 19(c) also demonstrates how the algorithm "balances" local and global

pattern significance. As an example, instance "T4" contains one atomic pattern (i.e.,

'E') with local frequency = 4, three atomic patterns (i.e., 'B', 'J' and 'K') with frequency

= 3, two atomic patterns (i.e., 'D' and 'L') with frequency = 2, and one atomic pattern

(i.e., 'C') with frequency = 1. In contrast, a pattern selection scheme that only

considers local significance would rank size-2 patterns that include two of {'E', 'B', 'J'

and 'K'} higher than the other size-2 patterns in this instance. Similarly, considering

the global significance values in Figure 19(b), a pattern selection scheme that only

considers global significance would rank patterns ('J', 'L') and ('B', 'L') higher than the

other patterns. The final set of patterns selected for this instance (i.e., ('E', 'J') and ('J',

'L')) does include the most frequent local atomic pattern (i.e., 'E'), but does not

include two of the three atomic patterns with frequency = 3. Instead, the algorithm

selects pattern ('J', 'L') that has a higher global Added Value as shown in Figure

19(b)), providing a better "balance" between local and global significance.

Finally, we observe that the number of patterns selected by our standard deviation

based scheme is not necessarily proportional to the number of available size-2

patterns. As an example, both T4 and T11 contain 21 size-2 patterns but our scheme

selected twice as many patterns for T11.

4.4.2 Stage 2: Prune Duplicate Clusters

The set of initial clusters may contain duplicates (i.e., clusters with different labels

but the exact same instances). As an example, there are four such duplicates identified

in boxes in Figure 19(d). From an instance-based perspective, these duplicate clusters

84

may not be very meaningful to the users, so we prune them in a way that enhances the

label of the retained unique cluster. The naïve way of performing this operation

requires comparing each cluster with all other clusters (quadratic time). Fortunately,

as a positive side effect of our instance-driven approach, we already know instance-

to-cluster relationships. We can therefore show that checking for and pruning

duplicate clusters locally also prunes all global duplicates.

Lemma 1: Given a set S of instances, an instance i in S, and a list L(i)

that contains pointers to all clusters that include i, comparing each

cluster pair in L(i) and pruning duplicates results in pruning all

duplicate clusters that include i. Furthermore, repeating this process

for all instances prunes all global duplicates.

Proof: Assume that some cluster c1 is a duplicate of another cluster

c2. For the sake of contradiction, let us assume that c1 and c2 remain

intact after instance-based duplication removal. There must be an

instance i that exists in both c1 and c2, and therefore the list L(i) of

cluster pointers for i must contain pointers to both c1 and c2. However,

this would mean that the local processing of instance i failed to notice

these local duplicates, a contradiction.

Method "prune-duplicates" in Figure 18 implements pruning based on this lemma,

avoiding quadratic time cluster comparisons. As a side effect, in addition to removing

cluster duplication, it also expands cluster labels. For this purpose, it merges the label

of the retained cluster with the duplicate cluster being pruned. This results in

increasingly more meaningful (more specific) labels as the duplication level

85

increases, partially addressing the problem described in Section 4.1.2; Section 4.4.3

addresses the rest.

Example: Considering the 17 initial clusters in Figure 19(d), the naïve way of

identifying duplicate clusters will need up to 136 cluster-pair comparisons. Using

instance-to-cluster relationships reduces the number of these comparisons to up to 18

(i.e., we perform only three cluster pair comparisons for T1; {('H', 'J'), ('B', 'J')}, {('H',

'J'), ('J', 'L')} and {('B', 'J'), ('J', 'L')}). After processing all instances, we easily identify

four duplicates (marked in boxes in Figure 19(d)). These duplicates are pruned and

their labels are merged to obtain the 13 clusters in Figure 19(e).

4.4.3 Stage 3: Generate the Cluster Hierarchy

Once the initial clusters have been created and duplicates from these clusters have

been pruned, we follow an iterative cluster refinement process (lines 26-31 in Figure

17) to generate the rest of the cluster hierarchy, by making patterns progressively

longer and cluster memberships progressively sparser. We make two intuitive

observations that are responsible for high efficiency. First, atomic clusters (i.e.,

clusters with only one instance) can not be any more specific. Therefore, there is no

need to consider these clusters for refinement (i.e., to generate child nodes for the

next level). Second, refinement is only necessary when a cluster c1 shares some

instances with another cluster c2. These common instances can be removed from both

c1 and c2, and added to a node that is a child to both of these nodes. This refined

node still retains the instance memberships of the originating clusters for retrieval

purposes (i.e., as child nodes are merely a specialization to, and are considered as a

86

part of, their parents). Furthermore, this determination of overlap exploits instance-to-

cluster pointers in a way similar to our duplicate cluster pruning scheme in Section

4.4.2.

Method "refine-clusters" in Figure 18, based on these observations, finds clusters

for the next level. For this purpose, on an instance by instance basis, it first identifies

cluster pairs from non-atomic clusters that share some instances (lines 4-6). Next, it

appends these shared instances to a child cluster, the label of which is obtained by

merging labels of the cluster pair itself (lines 7-18).

A child cluster with a "merged" label may already exist, for two possible reasons.

First, the same cluster pair may have existed in the pointer list of another instance that

has already been processed. Second, merging labels of two different cluster pairs may

result in a single label. As an example, merging labels of cluster pairs {('B', 'J'), ('J',

'L')} and {('J', 'L'), ('B', 'L')} in Figure 19(f) results in a single label (i.e., ('B', 'J', 'L')).

However, it is easy to prove that in all cases, that first appending shared instances to

the cluster with the resulting label, and then adding this cluster as a child to both the

originating clusters does not affect instance memberships of the originating clusters.

One final note: any cluster can share instances with several other clusters. These

shared instances are marked for elimination as they are found (line 15), and are

pruned after processing all instances (line 21).

Example of one level of refinement: Figure 19(f) demonstrates refining clusters in

Figure 19(e) to the next level. Processing cluster pointers from T1, we find only one

pair of non-atomic clusters (i.e., {('B', 'J'), ('J', 'L')}), with T1 itself as the only shared

instance. We then merge labels of the cluster pair to obtain ('B', 'J', 'L'), which is used

87

to form the new child node. Cluster pointers from T2 to T11 are processed in a

similar fashion to obtain 4 clusters for the next level. This process may result in

adding several children to the same cluster (i.e., two child clusters added to ('E', 'J'))

or appending several instances to an existing child cluster (i.e., two instances added to

cluster ('B', 'J', 'L')).

Hierarchy refinement continues from level to level. Efficiency is maintained by

tracking pointers to newly generated clusters (line 9 of method "refined-clusters").

These pointers are later used to regenerate instance-to-cluster pointers (line 28 of

Figure 17) in one pass over the newly generated clusters. Since at each step, newly

generated clusters can contain duplicates, we apply the duplicate cluster pruning

process in Section 4.4.2 in each iteration. The full process is repeated until all clusters

are refined (not shown in Figure 19).

Pattern-based clustering algorithms can result in a large number of initial clusters,

making the first-level nodes in the cluster hierarchy very sparse. Most of the existing

algorithms [25, 88, 85] merge first level nodes using agglomerative clustering to

reduce the sparseness of this level. In Chapter 3, considering those high

computational costs, we replaced agglomerative clustering with bisecting k-means

(using I2 criterion function [91]). We follow the same approach in this chapter. Unlike

existing algorithms, first-level clusters in our initial hierarchy are not based on size-1

patterns (Section 4.4.1).

88

4.5 Discussion

On the surface, it might seem like IDHC merely replaces some global thresholds (i.e.,

minimum support [25, 5, 88, 85] or minimum interestingness [56], and maximum

instance duplication [88, 56]) with a set of local thresholds (i.e., maxK and

min_std_dev). However, IDHC offers at least three major advantages over existing

global threshold based approaches.

First, selecting a dataset-independent value for any of the commonly used global

thresholds (i.e., minimum support) is non-trivial. Any selected value can result in a

very large or a very small number of patterns, with no upper bound on the number of

patterns mined. In contrast, our main threshold "min_std_dev" is supported by

existing statistical principles. As an example, all the experiments in Section 4.6.1

used a fix value of 1.5 for min_std_dev on all 40 datasets. In the case of normally

distributed significance values, with support from the central limit theorem, this value

would result in selecting patterns with significance values in the 93rd percentile. Even

if the distribution is not normal, Chebyshev's inequality provides an alternative, but

still fixed, upper bound on the number of patterns selected. Furthermore, our

empirical parameter maxK ensures that the number of initial patterns selected is

always linear to the number of instances in the dataset. Section 4.6.1 shows that both

of these parameters are robust across datasets.

Second, most of the existing approaches rely on a global itemset mining algorithm,

which only considers boolean presence or absence of items in instances. These

approaches therefore inherently ignore local pattern frequencies. On the other hand,

89

IDHC naturally uses these local values while selecting initial patterns, and does not

use a threshold for this purpose.

Third, by always including the most significant pattern for each instance, IDHC

guarantees that the resulting hierarchy covers all instances.

Finally, we observe that IDHC is similar to subspace clustering [62] in that it also

uses localized information to find clusters that are ignored by traditional clustering

algorithms. However, unlike subspace clustering, IDHC does not attempt to find

dense regions in low dimensional spaces and combine them to form clusters, or

iteratively evaluate subspaces for each cluster. Instead, IDHC first allows each

instance to identify its representative size-2 patterns in one pass over the dataset and

forms a (possibly non-disjoint) cluster for each of these size-2 patterns. Next, it

follows a unique instance-driven refinement process to obtain the rest of the cluster

hierarchy.

4.6 Experimental Results

We conduced an extensive experimental study, and evaluated the performance of

IDHC on 40 standard datasets with varying characteristics (see Appendix C for more

details on the datasets used). We used the two standard hierarchical clustering

evaluation metrics, FScore and entropy, as defined in Section 3.4.2, to compare the

quality of cluster hierarchies produced by IDHC with two leading state-of-the-art

hierarchical clustering algorithms.

We limited our comparison to these two existing algorithms, since we have shown

in Chapter 3 that GPHC significantly outperformed FIHC [25] and TDC [88].

90

Furthermore, [91] reported that bisecting k-means with I2 criterion function

outperforms UPGMA. Our findings in [56] were also consistent with this observation.

Consequently, we do not compare our algorithm against FIHC, TDC and UPGMA. In

addition, we do not compare our algorithm against HICAP as it is reported [85] to

have a performance that is comparable to UPGMA.

All three algorithms we tested used bisecting k-means as implemented in the Cluto

clustering toolkit [17], which has some randomness built in to it. Therefore, we

ensured fairness by using the same dedicated machine to execute each clustering

algorithm on each dataset 10 times, and reported the averages. In addition, we used

the same code to calculate FScore and entropy values for cluster hierarchies produced

by all three algorithms.

We do not analyze the runtime performance of IDHC here, but note that in

practice, the runtime of IDHC was linear to the number of instances.

4.6.1 Clustering Performance

We first evaluated the effectiveness of various interestingness measures [27, 76], to

determine global significance values (i.e., Section 4.4.1) on a number of datasets, and

found that the top measures we reported in Chapter 3 also consistently performed

well in this context. We observed that Added Value generally outperformed other

measures, while Chi-Square, Certainty Factor, Yule's Q and Mutual Information

achieved very similar performance. Consequently, results in this Section used Added

Value as the interestingness measure, with min_std_dev and maxK fixed to 1.5 and 6

respectively. We obtained this value for min_std_dev by executing IDHC on one

91

dataset (Reuters) and varying min_std_dev between 1.0 and 4.0, in intervals of 0.1,

selecting the value giving the best entropy score on the selected dataset. Section 4.6.3

discusses further improvements that may be realized by tuning min_std_dev and

measure for individual datasets. See Section 4.6.2 for a note on maxK.

4.6.1.1. Standard text datasets. We first evaluated IDHC against bisecting k-means

and GPHC on 16 common text datasets, 9 of which were also used in Chapter 3.

Since GPHC also uses an interestingness measure, we used MI (i.e., Mutual

Information), which we found to be the top measure on text datasets in Chapter 3; see

Section 4.6.2 for a note on the MI thresholds used for GPHC.

Table 10. Clustering quality on text datasets; higher FScores and lower entropies are better

FScores Entropies Dataset

bi-k I2 GPHC IDHC bi-k I2 GPHC IDHC
Reuters 0.835 0.851 0.846 0.075 0.155 0.005
Classic 0.782 0.880 0.759 0.060 0.025 0.021
Hitech 0.528 0.540 0.544 0.224 0.172 0.074

k1a 0.668 0.654 0.676 0.106 0.045 0.041
k1b 0.882 0.903 0.897 0.042 0.042 0.021
la12 0.741 0.661 0.748 0.120 0.062 0.038
Mm 0.774 0.943 0.909 0.073 0.053 0.014

Ohscal 0.601 0.530 0.554 0.198 0.237 0.081
re0 0.610 0.672 0.615 0.115 0.077 0.016

Reviews 0.801 0.818 0.833 0.073 0.048 0.013
Sports 0.882 0.886 0.870 0.030 0.016 0.005
tr11 0.795 0.519 0.790 0.107 0.141 0.038
tr12 0.689 0.604 0.769 0.133 0.161 0.037
tr23 0.667 0.487 0.679 0.136 0.042 0.038
tr31 0.837 0.584 0.840 0.041 0.114 0.013
Wap 0.683 0.663 0.670 0.106 0.047 0.043

average 0.736 0.700 0.750 0.102 0.090 0.031

Table 10 presents the results of this experiment. Among the 16 datasets, our IDHC

algorithm with fixed parameter values achieved the best FScores on 7 datasets, and

was ranked second on another 7 datasets, resulting in the highest average FScores

92

across all datasets. Most significantly, IDHC outperformed existing algorithms on all

datasets in terms of entropy, and achieved an average entropy that is about 3 times

smaller than the best competitor. As noted in [91], entropy considers the distribution

of instances in all nodes of the tree whereas FScore only considers one (best) node for

each ground truth class, and ignores the quality of all other nodes. Consequently,

entropy may be a more effective measure to evaluate the quality of cluster

hierarchies.

Table 11. Clustering quality on UCI datasets; GPHC uses YulesQ outperforming MI on these

datasets

FScores Entropies Dataset
bi-k I2 GPHC IDHC bi-k I2 GPHC IDHC

adult 0.768 0.811 0.812 0.213 0.352 0.111
anneal 0.817 0.778 0.825 0.049 0.094 0.012
auto 0.538 0.555 0.578 0.212 0.159 0.150

breast 0.853 0.885 0.922 0.133 0.362 0.095
cylbands 0.674 0.675 0.674 0.493 0.306 0.414

demotology 0.658 0.531 0.733 0.195 0.208 0.117
flare 0.808 0.807 0.805 0.133 0.221 0.256
glass 0.560 0.592 0.602 0.246 0.217 0.135
heart 0.533 0.628 0.623 0.337 0.231 0.168

hepatitis 0.834 0.798 0.858 0.285 0.136 0.103
horseColic 0.726 0.732 0.712 0.490 0.162 0.126
ionoSphere 0.829 0.814 0.790 0.179 0.129 0.047

iris 0.771 0.951 0.953 0.106 0.153 0.334
letRecog 0.218 0.228 0.279 0.143 0.180 0.083

mushroom 0.889 0.777 0.753 0.004 0.073 0.006
nursery 0.482 0.688 0.506 0.145 0.178 0.144

pageBlocks 0.903 0.867 0.894 0.064 0.206 0.203
penDigits 0.620 0.509 0.557 0.055 0.107 0.043

pima 0.733 0.719 0.694 0.451 0.655 0.483
soybean-large 0.837 0.532 0.760 0.047 0.145 0.059

tictacToe 0.695 0.695 0.695 0.462 0.528 0.132
waveform 0.601 0.643 0.603 0.361 0.236 0.323

wine 0.831 0.857 0.836 0.176 0.051 0.023
zoo 0.923 0.737 0.966 0.066 0.173 0.037

average 0.712 0.700 0.726 0.210 0.219 0.150

4.6.1.2. UCI datasets. We also evaluated IDHC on 24 UCI machine learning datasets

obtained from [18]. These datasets are from many different domains and differ from

text datasets in that they are low dimensional, and use only local feature presence.

93

This unfortunately means that our computation of pattern significance (line 10 of

Figure 17) reduces to the computation of global significance alone. Still, IDHC

ranked first on 11 datasets (Table 11), and second on another 7 datasets in terms of

FScores. Furthermore, IDHC achieved the best entropies on 16 datasets, and was

ranked second on another 6 datasets. Most significantly, IDHC achieved the highest

average FScores and entropies across all 24 datasets.

We conclude that when local feature frequencies are available (i.e., text datasets),

IDHC outperforms existing algorithms with a much higher margin in terms of

entropy, but is still very effective when these frequencies are not available.

4.6.2 Robustness in the Number of Patterns

In Section 4.1.1, we noted that the threshold-based global pattern mining step in

existing algorithms may result in an unpredictable number of patterns. During our

experiments, we found many examples that clearly demonstrate this problem. We

provide a few here and also show that IDHC does not suffer from this problem.

Table 12. Number of size-2 patterns

Approx. number of size-2 patterns Dataset #instances #features

GPHC, MI GPHC, YulesQ IDHC
mm 2,521 126,373 2.4 million {fails} 3,651

reviews 4,069 126,373 2.6 million {fails} 5,952
sports 8,580 126,373 1.4 million {fails} 12,607
tr11 414 6,429 4.3 million 11.4 million 604
tr12 313 5,804 3.6 million 8.8 million 464
tr23 204 5,832 7.6 million 12.2 million 282
tr31 927 10,128 7.0 million {fails} 1,360

In Chapter 3, we showed that the GPHC algorithm worked well on all 9 datasets

with interestingness threshold values of 0.1 and 0.85 for MI and YulesQ respectively.

However, when we used the same threshold values on some of the highly correlated

94

datasets, we obtained an extremely large number of size-2 patterns (Table 12), so

much so that the mining process could not continue because it exhausted the available

system recourses. In some cases, GPHC could not even finish mining size-2 patterns.

This required us to increase these threshold values to obtain the results reported in

Table 10.

The problem of generating too many patterns is not unique to GPHC. All global

pattern mining based clustering algorithms suffer from a similar problem. In fact, a

pure frequent or closed frequent itemset based algorithm would be expected to find an

even higher number of itemsets [56]. In contrast, our local standard deviation based

pattern selection scheme selected up to three orders of magnitude fewer size-2

patterns, without loss of performance in general (Table 10). We observe that in

practice the upper limit guarantees provided by the central limit theorem and

Chebyshev's inequality are sufficient and maxK is rarely used to limit the number of

size-2 patterns.

4.6.3 Optional Parameter Tuning

All results presented in Section 4.6.1 used the same fixed parameter values. In this

section, we demonstrate additional gains that might be realized by tuning our

parameters to each dataset. For this purpose, we varied min_std_dev between 1.0 and

2.0, in uniform intervals of 0.1, and used six different interestingness measures. Table

13 presents the best FScores and entropies achieved on each dataset used in this

experiment, along with the corresponding parameter values. Substituting results in

95

Table 11, we observe that IDHC almost always outperforms existing approaches with

parameter values tuned to each dataset.

Table 13. Parameter tuning on a few UCI datasets; CF = Certainty Factor, AV = Added Value

Dataset FScore Measure
min

stddev Entropy Measure min stddev
anneal 0.873 CF 1.1 0.005 yulesQ 1.6
breast 0.934 CF 1.5 0.054 conviction 1.8

cylbands 0.703 conviction 1.5 0.191 MI 1.2
flare 0.811 CF 1.3 0.103 CF 1.8

ionosphere 0.842 chi-square 1.5 0.046 AV 1.4
mushroom 0.862 yulesQ 1.8 0.002 yulesQ 1.7
pageblocks 0.911 CF 1.6 0.087 conviction 1.5

wine 0.935 chi-square 1.5 0.019 conviction 1.4

4.7 Conclusions

We conclude that local thresholds are more stable across datasets as compared to

global thresholds that are traditionally used in pattern mining, and also result in

guaranteeing instance coverage. We also conclude that the IDHC algorithm results in

better clustering quality as compared to existing hierarchical clustering algorithms

both in terms of FScore and entropy, even on highly correlated datasets.

96

5. Classification by Pattern-Based Hierarchical

Clustering

In this chapter, we consider the problem of classifying unlabeled instances in

transactional datasets with discrete valued features. Given n labeled training instances

and m unlabeled test instances, the goal is to predict labels for the test instances

maximizing classification accuracy for single-label classification problems and

precision-recall break-even points for multi-label classification problems.

5.1 Introduction and Motivation

Traditional inductive classifiers are trained on instances in the training set to produce

a classification model (or knowledge base). This model is later used to classify

previously unseen test instances. Considering that these classifiers may not fully

exploit the distribution of test instances in the context of the whole dataset (i.e., by

building the classification model only from the training instances, while ignoring test

instances altogether), a number of recent approaches [68, 89, 45] adopted a semi-

supervised model for classification. These approaches first apply an unsupervised, flat

clustering algorithm (i.e., k-means clustering) to cluster all (i.e., training and test)

instances in the dataset, and then use the resulting clustering solution to add

97

additional instances to the training set. A classifier is then trained on the enhanced

training set.

As discussed in Section 4.1, the quality of clustering achieved by traditional flat

clustering algorithms (i.e., k-means clustering) relies heavily on the desired number of

clusters (i.e., the value of k), which must be known in advance. Setting a good value

for k can be non-trivial and an inappropriate value can result in various implications

discussed in Section 4.1. In contrast, hierarchical clustering algorithms organize data

in a general to specific fashion, and do not require the number of clusters to be known

in advance.

Traditional agglomerative and partitioning-based hierarchical clustering

algorithms merge exactly two nodes at each step, which may result in a "mechanical

looking" hierarchy that may not resemble hierarchies produced by human experts. In

addition, these algorithms do not automatically generate cluster labels, and do not

support soft clustering. In contrast, pattern-based hierarchical clustering algorithms

allow each node in the cluster hierarchy to have a variable number of child nodes,

which may in general be closer to a real-life setting. Pattern-based hierarchical

clustering algorithms also automatically generate cluster labels (i.e., atomic patterns

in the pattern itself), and more easily support soft clustering.

Considering these advantages, we propose CPHC, a novel semi-supervised

classification algorithm that uses a pattern-based cluster hierarchy as a direct means

for classification. Unlike existing semi-supervised classification algorithms, CPHC

directly uses the resulting cluster hierarchy to classify test instances and hence

eliminates the extra training step.

98

The remainder of this section discusses the significance of pattern lengths and also

provides a brief overview of the CPHC algorithm. Section 5.2 summarizes existing

work that is related to this research. Section 5.3 provides details on various steps in

our classification process. Section 5.4 compares the performance of CPHC against

state-of-the-art machine-learning and data-mining-based classification algorithms.

5.1.1 The Significance of Pattern Lengths in Pattern-based Cluster

Hierarchies

The IDHC algorithm in Figure 17 (Section 4.4) first allows each instance to "vote"

for its representative size-2 patterns in a way that ensures an effective balance

between local and global pattern significance. The selected size-2 patterns form initial

clusters, and a unique iterative refinement process generates the rest of the cluster

hierarchy. In Section 4.6, we showed that this algorithm outperforms existing

hierarchical clustering algorithms both in terms of FScore and entropy.

As noted in Chapters 3 and 4, entropy considers the distribution of instances in all

nodes of the tree whereas FScore only considers one (best) node for each ground truth

class, and ignores the quality of all other nodes. This means that a cluster hierarchy

with better (i.e., lower) entropy is expected to have a higher percentage of nodes that

contain most instances that belong to the same ground truth class. We performed

further experiments to understand the class-label distributions over nodes with

varying pattern-lengths.

Intuitively, since IDHC (Figure 17) only assigns instances to nodes (i.e., clusters)

that represent their statistically selected patterns, we expected nodes with longer

99

patterns to have lower entropies. To validate our intuition, we applied the IDHC

algorithm to cluster two common machine learning datasets and two common text

datasets. We calculated the resulting individual node entropies, and grouped together

nodes that represented the same pattern sizes. We report average entropies of each

group in semi-log format in Figure 20. We observe that average node entropies

linearly decreased (i.e., improved) with increasing pattern-sizes on all four datasets,

confirming our intuition.

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
1 2 3 4 5 6 7 8 9 10

Node pattern size

A
ve

ra
ge

 e
nt

ro
py Anneal

Adult
Sports
Classic

Figure 20. Average entropies of nodes with respect to their pattern sizes on anneal, adult, sports
and classic datasets. Note that pattern size = 1 represent "logical" nodes obtained by applying

bisecting k-means to merge top-level nodes in the initial cluster hierarchy, as discussed in Section
4.4.3. Least-squares regression confirmed that the relationship is essentially linear

5.1.2 CPHC: A Novel Classification Algorithm

Motivated by this observation, we propose CPHC (i.e., Classification by Pattern-

based Hierarchical Clustering), a novel semi-supervised classification algorithm that

uses pattern-lengths as a way of establishing cluster (i.e., node) weights. CPHC first

100

applies the unsupervised instance-driven pattern-based hierarchical clustering

algorithm (i.e., IDHC) in Figure 17 to the whole dataset to produce a cluster

hierarchy. Unlike existing semi-supervised classification algorithms [68, 89, 45],

CPHC directly uses the resulting cluster hierarchy to classify test instances and hence

eliminates the extra training step. To classify a test instance, CPHC first uses the

hierarchical structure to identify nodes that contain the test instance, and then uses the

labels of co-existing training instances, weighing them by node pattern-lengths to

obtain class label(s) for the test instance. This allows CPHC to classify unlabeled test

instances without making any assumptions about their distribution in the dataset.

With results of experiments performed on 19 standard datasets, we show in

Section 5.4 that CPHC outperforms a number of existing classification algorithms

such as FindSim, Naïve Bayes, BayesNets, Trees, ARC-BC, FOIL and CPAR, and

achieves classification accuracies that are comparable to (or better than) SVM and

Harmony. Most importantly, CPHC was effective even with sparse training data.

5.1.3 Contributions

The main contributions of this chapter include: 1) A novel semi-supervised

classification algorithm that uses a unified pattern-based cluster hierarchy as a direct

means for classification, 2) Eliminating the need to train any classifier on the

enhanced training set and 3) Utilizing pattern-lengths to determine cluster (i.e., node)

weights.

Even though a number of existing classification algorithms [65, 66, 19, 87, 50, 23,

48, 4, 81, 46] use patterns (or rules that contain patterns) as a direct means for

101

classifying data, to the best of our knowledge, none of the existing pattern-based

classification algorithms exploit the distribution of test instances in the context of the

whole dataset. In addition, we are not aware of any existing classification algorithm

(pattern-based or non-pattern-based) that uses a cluster hierarchy as a direct means for

classification.

5.2 Related Work

Our work relates to existing rule and pattern-based classification algorithms, with

several important differences. Rule-induction-based classifiers like FOIL [66],

RIPPER [19], CPAR [87] and C4.5 [65] use heuristics such as Gini Index and

Information Gain (or Information Gain variants), to identify the best literal by which

to grow the current rule [81]. Many of them follow the sequential covering paradigm.

In contrast, association rule-based classifiers such as CBA [50], CAEP [23], CMAR

[48], ARC-BC [4], and DeEPs [46] first mine a large set of association rules that

satisfy user-defined support and confidence thresholds, and then extract the final set

of classification rules by following a database covering technique. With Harmony

[81], Wang and Karypis proposed an instance-centric approach to mine classification

rules. Harmony builds the classification model by directly mining some user-defined

number of highest-confidence rules for each training instance that satisfy minimum

support. Furthermore, Harmony simultaneously mines rules for all classes.

Our work also relates to a number of recently proposed approaches that use

clustering as a way of enhancing the training set. We mention only a few of those

approaches here. Raskutti et al. [68] used unlabeled data that is not part of the test set

102

to improve the performance of text classification. This is achieved by clustering

labeled and unlabeled instances together, and extracting new features from these

clusters to enhance the classification model. In another approach, Zeng et al. [89] first

clustered training and test sets together. The resulting clustering solution is then used

to obtain labels for some of the unlabeled test instances, and the newly labeled

instances are added to the training set. The extended training set is finally used to

train a classifier. In a similar approach [45], Kyriakopoulou and Kalamboukis first

clustered training and test sets together. The dataset is then augmented with meta

features extracted from the resulting clusters, and a classifier is trained on the

expanded dataset. In addition, a number of approaches like [63, 74] used clustering as

a way of improving the feature selection for classification. These semi-supervised

classification algorithms are similar to transductive learning [78] in that transductive

learning also allows the structure of the test set to play a role in classification.

Our CPHC algorithm is similar to existing pattern-based classification algorithms

in that we also use patterns. But unlike these algorithms, we do not attempt to

construct a classification model from the training set. Our approach also differs from

existing semi-supervised classification algorithms in that we do not use clustering as a

way of enhancing the training set. Instead, we directly utilize a cluster hierarchy to

classify test instances and therefore, avoid the extra step of training a classifier after

clustering. In addition, existing approaches do not use pattern lengths as a way of

establishing cluster weights.

103

5.3 The CPHC Algorithm

Step 1: Select features (Section 5.3.1)
Input: training instances trn1..trnn
 test instances tst1..tstm
 Select features as explained in Section 5.3.1
Output: trn'1..trn'n, and tst'1..tst'm with reduced features
Step 2: Obtain a cluster hierarchy of training and test instances (Section 5.3.2)
Input: training instances trn'1..trn'n
 test instances tst'1..tst'm
 Apply the IDHC algorithm in Figure 17 on (trn'1..trn'n U tst'1..tst'm)
Output: cluster hierarchy h
Step 3: Classify test instances (Section 5.3.3)
Input: cluster hierarchy h
 test instances tst1..tstm
 For each test instance tsti,
 Traverse h from root to leaves, identify set S of clusters that contain tsti
 Use clusters in S, and lengths of associated patterns as their weights to compute class scores
 Assign the label of top-scoring class (or classes for multi-label problems) to tsti
Output: predicted labels of test instances tst1..tstm

Figure 21. The CPHC algorithm

In this section, we explain various steps involved in the CPHC algorithm. Figure 21

summarizes these steps, and subsections 5.3.1-5.3.3 provide details on each step.

5.3.1 Step 1: Noise Elimination and Feature Selection

Studies [26, 72] show that reducing the dimensionality of the feature space may

significantly improve the effectiveness and scalability of traditional classification

algorithms, especially on high-dimensional datasets. Furthermore, dimensionality

reduction tends to reduce overfitting [72]. Pattern-based classification algorithms

equally benefit from dimensionality reduction, as both the quality and the number of

non-atomic patterns discovered directly depends on the initial, atomic patterns (i.e., 1-

itemsets).

Typically, features are selected by first sorting all available features in terms of

their significance, and then selecting top-n, or top-n-percent features (with a caveat

104

that selecting a suitable value for n is not straightforward). A recent study [26]

evaluated various measures to calculate feature significance and concluded that

Information Gain, Chi-Square and Bi-normal Separation worked equally well on a

number of datasets, with no statistically significant difference. Considering the

comparatively high computational cost of common feature selection methods, a

recent hidden-web classification algorithm [30] adapted an efficient, two-phase

approach. In its first phase, Zipf's law was applied as an inexpensive heuristic

dimensionality reduction technique to eliminate too frequent and too rare features. In

its second phase, a more expensive method was applied to select the final set of

features.

Unfortunately, none of these approaches guarantee coverage (i.e., that each

instance in the corpus is represented by the selected features). Furthermore, the

optimal number (or percentage) of features (i.e., the value of n) needed to achieve

good classification results remains unclear. The literature [72] is inconclusive on n:

some studies suggest that the number of selected features should be same as the

number of training examples, and others suggest that feature selection may make

matters worse, especially when the number of available features is small.

Since CPHC first produces a cluster hierarchy of the whole dataset, using a

supervised feature selection method (i.e., Information Gain) alone may leave some

test instances unrepresented in the cluster hierarchy. That is some test instances

entirely consist of features that do not exist in any training instance. Traditional

classification algorithms may not be able to classify such test instances at all. CPHC

however, improves the chances of classifying such test instances by inducing a type

105

of transitivity: as long as these isolated test instances share some features with more

common test instances that overlap the training set, they have a chance of being

clustered together in a "logical" node (see Section 5.3.3 for details).

Considering these issues, we adopt a heuristic feature selection method that is

efficient, and ensures that the final set of selected features covers all training and test

instances. Furthermore, using the number of training instances, and the number of

available features, our method automatically estimates the number of features used

for classification (i.e., the value of n). Our method consists of the following four

steps:

Step 1 (calculate n): ⎟
⎠
⎞

⎜
⎝
⎛ ×+=

i
fiin log

where i = number of training instances, and f = total number of available features.

This empirically derived formula ensures a reasonable base amount for low

dimensional datasets, while moderately growing this number for high dimensional

datasets.

Step 2 (select globally significant features): Heuristically select globally most

useful features by first applying Zipf's law to select features that are neither too

frequent, nor too infrequent. In other words, select features that exist in less than

min_supp, and more than max_supp instances (where min_supp and are max_supp are

user defined parameters). Further refine these features by first sorting them in

decreasing order of their Information Gain values (computed using labeled training

instances only), and then adding the resulting top-n features to set S (i.e., the set of

"selected" features).

106

Step 3 (ensure local coverage of training instances): First find all training

instances with no features in S (i.e., instances not covered by the selected features),

and then process these instances, on an instance-by-instance basis. Sort all features in

the current instance in the decreasing order of their (TF * Information Gain), where

TF = Term Frequency, calculated in the usual way. This "balances" the local

significance (i.e., TF) and the global significance (i.e., Information Gain). Finally,

add the resulting top-t features to set S. Our empirical evaluation suggests that t = 10

works well in practice, and appears insensitive to the dataset.

Step 4 (ensure local coverage of test instances): First find all test instances with

no features in S (i.e., instances not covered by the selected features), and then process

these instances, on an instance by instance basis. Sort all features in the current

instance in the decreasing order of their Term Frequency values. Finally, add the

resulting top-t features to set S (see Step 3 for a note on t).

5.3.2 Step 2: Hierarchical Clustering of Training and Test Instances

Once we have the features selected, we apply the IDHC algorithm (Figure 17) on the

whole dataset to obtain a cluster hierarchy. The algorithm computes interestingness

values for selecting size-2 patterns for instances (i.e., line 17 of Figure 17). However,

in the original algorithm these values are not stored, since cluster refinement was

done solely using instance-to-cluster pointers. But here, we need to use these values

to calculate class scores for test instances (Section 5.3.3), so we modified the

algorithm in Figure 17 to track these values. In addition, we obtain interestingness

values for patterns longer than size-2 by averaging the interestingness values of

107

patterns merged during cluster refinement (i.e., line 7 of method "refine-clusters" in

Figure 18). We also use the same process in a bottom-up fashion to obtain

interestingness values for "logical" nodes (i.e., clusters) generated by merging the

top-level nodes (i.e., Section 4.4.3).

5.3.3 Step 3: Classifying Test Instances

We use the following four-step process to classify test instances:

Step 3.1: Given a test instance t, and hierarchy h, first initialize scores for all

classes. Next, traverse h from root to leaves, identifying the set S of nodes that

contain t.

Step 3.2: For each node n in S, compute w such that:

w = node-pattern-length * node-interestingness

This weight is based on the relationship presented in Figure 20.

Step 3.3: For each class c represented by at least one training instance in n

(considering all instances in the node as well as instances in all child nodes, as usual),

add x to the score of c such that:

n
nc

wx
in instances training

in label with instances training =
×=

Step 3.4: For single-label classification problems, select the label of the class with

the highest score. For multi-label problems, select multiple classes using the

"weighted dominant factor-based" scheme in Section V(C-3) of [81], except replacing

all uses of confidence with the selected interestingness measure.

Since traditional inductive classifiers only use features in training instances to

obtain the classification model, these algorithms may not be able to classify test

108

instances that entirely consist of features that do not exist in any training instance,

even if these isolated test instances share some features with more common test

instances that overlap the training set. CPHC improves the chances of classifying

such test instances by inducing a type of transitivity: as long as these isolated test

instances share some features with more common test instances that overlap the

training set, they have a chance of being clustered together in a "logical" node (i.e.,

node obtained by merging top-level nodes in the initial cluster hierarchy; Section

4.4.3). As a result, the "logical" node may contribute towards score calculation.

Figure 22. A pattern-based cluster hierarchy obtained by applying the IDHC algorithm in Figure
17. The dotted nodes are "logical" nodes obtained by merging the top-level nodes in the initial

cluster hierarchy, as discussed in Section 4.4.3

Example: Figure 22 presents a pattern-based cluster hierarchy obtained by

applying the IDHC algorithm (Figure 17). Let us assume that T3 and T5 are test

instances that share some features, and the remaining instances are training instances.

Let us also assume that T5 is an "isolated" test instance, i.e., T5 does not share any

109

features with the training set. Since T5 shares some features with T3 (i.e., a test

instance that overlaps with the training set), T3 and T5 are clustered together in the

logical node formed by merging the node with pattern "X, Y", and a logical node that

contains T3. This structure allows the parent of node with pattern "X, Y" to predict

class labels for T5.

5.4 Experimental Results

We conduced an extensive experimental study, and evaluated the performance of

CPHC on 19 datasets with varying characteristics (see Appendix C for more details

on the datasets used). These datasets included both standard text datasets, and

numerical datasets from the UCI machine learning dataset collection. For each

dataset, we compared the classification results obtained by CPHC against existing

classification algorithms. In order to ensure a fair comparison, we obtained data from

the same resources and used the same evaluation metrics as used by the best reported

classifier.

5.4.1 Classification Performance

Our experiments in Chapters 3 and 4 indicate that Added Value, Chi-Square, Yule's Q,

Mutual Information, Certainty Factor and Conviction outperform other

interestingness measures [27, 76] in both global and instance-driven pattern-based

hierarchical clustering contexts. Since CPHC is also based on pattern-based

hierarchical clustering, we limited our experiments to these six measures. See

Appendix B for computational details of these measures.

110

To set values for the parameters for the algorithm in Figure 21 in a principled way,

we randomly selected a dataset, and tried a number of values for each parameter. The

values that resulted in best results on the randomly selected dataset were blindly used

across all datasets. Considering that text and UCI datasets are inherently different, we

selected one text and one UCI dataset for the parameter setting purpose. This resulted

in selecting Chi-Square as the interestingness measure for all text datasets, and Added

Value as the interestingness measure for all UCI datasets. In addition, we obtained

min_std_dev = 1.5, and maxK = 11. Finally, we fixed min_supp to 2 on all small UCI

datasets, and to 40 on all other datasets. Section 5.4.3 discusses further improvements

that may be realized by tuning min_std_dev and measure for individual datasets.

Additionally, all results reported here used the 10-fold cross validation scheme

(with averages of all 10 experiments reported, as usual), except on Reuters-21578

dataset, where we used the ModApte split [7] to ensure an apples-to-apples

comparison with results reported by existing studies.

5.4.1.1. Reuters-21578 (ModApte) text dataset. Reuters-21578 is the most-

commonly used benchmark dataset to evaluate the performance of multi-class, multi-

label classification algorithms. Existing studies given in [81, 24] used the precision-

recall breakeven points on the ten largest categories, as the main performance criteria.

We calculated these breakeven points in a way similar to [81], i.e., by changing the

dominant factor, and keeping a fixed "score differentia factor" (i.e., 0.6). As

mentioned above, we fixed the interestingness measure to Chi-Square and

min_std_dev to 1.5.

111

Table 14 presents the results of this experiment. The results for Find-Sim, Naïve

Bayes, Bayes-Nets, Trees (i.e., Decision-Trees), and linear-SVM are obtained from

[24], while the results for ARC-BC are obtained from [4]. Note that [81] also used the

same results. Finally, the results for Harmony are obtained from Table VIII of [81].

Among the ten largest categories, CPHC achieved the best break-even performance

on 3 categories (i.e., crude, interest and money-fx), and ranked second on another 2

categories (i.e., acq and trade), with ranks 3-5 achieved on the remaining 4 categories.

Most significantly, CPHC outperformed all existing classification algorithms in terms

of micro-average performance, and also achieved a macro-average that is very close

to SVM. Micro-average equally weights all the documents, thus favoring the

performance on common classes, while macro-average equally weights all the

classes, regardless of how many documents belong to a class.

Table 14. Breakeven performance on Reuters-21578

Category Harmony Find Sim Naïve
Bayes

Bayes
Nets

Trees SVM
(linear)

ARC-BC CPHC

Acq 95.3 64.7 87.8 88.3 89.7 93.6 90.9 94.5
Corn 78.2 48.2 65.3 76.4 91.8 90.3 69.6 77.2
Crude 85.7 70.1 79.5 79.6 85.0 88.9 77.9 90.7
Earn 98.1 92.9 95.9 95.8 97.8 98.0 92.8 96.5
Grain 91.8 67.5 78.8 81.4 85.0 94.6 68.8 91.1

interest 77.3 63.4 64.9 71.3 67.1 77.7 70.5 81.0
Money-fx 80.5 46.7 56.6 58.8 66.2 74.5 70.5 84.3

Ship 86.9 49.2 85.4 84.4 74.2 85.6 73.6 78.3
Trade 88.4 65.1 63.9 69.0 72.5 75.9 68.0 87.9
wheat 62.8 68.9 69.7 82.7 92.5 91.8 84.8 83.6

micro-avg 92.0 64.6 81.5 85.0 88.4 92.0 82.1 92.1
macro-avg 84.5 63.7 74.8 78.8 82.2 87.1 76.7 86.5

5.4.1.2. UCI machine learning datasets. UCI machine learning datasets are also

commonly used to evaluate classification algorithms. We compared the performance

of CPHC against existing algorithms on 13 small and 2 large UCI datasets, obtained

from [18].

112

Tables 16 and 17 present the results of this experiment. The results for FOIL,

CPAR, SVM (i.e., rbf-kernel), and Harmony are obtained from tables XII and XV of

[81], which also notes that C4.5, Ripper, and association-based algorithms did not

perform as well on these datasets. CPHC outperformed all existing algorithms, with

the highest average classification accuracies.

Table 15. Classification accuracies on 13 small UCI datasets

 FOIL CPAR SVM Harmony CPHC
anneal 96.90 90.20 83.83 91.51 93.82
auto 46.10 48.00 55.50 61.00 73.00

breast 94.40 94.80 96.80 92.42 93.33
glass 49.30 48.00 46.00 49.80 70.00
heart 57.40 51.10 60.36 56.46 58.33

hepatitus 77.50 76.50 81.83 83.16 83.33
horsecolic 83.50 82.30 83.31 82.53 73.61
ionoSphere 89.50 92.90 89.44 92.03 92.57

iris 94.00 94.70 94.67 93.32 94.67
pima 73.80 75.60 74.18 72.34 73.16

tic-tac-toe 96.00 72.20 70.78 92.29 72.74
wine 86.40 92.50 94.90 91.94 88.24
zoo 96.00 96.00 86.00 93.00 97.00

average 80.06 78.06 78.28 80.91 81.83

Table 16. Classification accuracies on 2 large UCI datasets

 FOIL CPAR SVM Harmony CPHC
adult 82.50 76.70 84.16 81.90 84.95

mushroom 99.50 98.80 99.67 99.94 99.98
average 91.00 87.85 91.92 90.92 92.46

5.4.1.3. Sports text dataset. We also evaluated the classification accuracy of CPHC

on the Sports text dataset (i.e., TREC, original source: San Jose Mercury News). The

results of SVM and Harmony are obtained from [81], which used various parameter

values to tune these algorithms. We follow a similar approach and used various

values for min_supp, which is our noise elimination parameter. The values for all

other parameters were kept fixed. From Table 17, we observe that CPHC resulted in

better classification accuracies than both of the existing algorithms.

113

Table 17. Classification accuracy on the Sports dataset. SVM and Harmony used various values for
C and minimum support. CPHC used various values for min_supp

Harmony (Min support) SVM (C) CPHC (min_supp)
75 100 125 150 2.0 1.0 0.5 0.25 5 10 20 30

94.2 94.9 94.3 94.1 95.79 95.79 95.76 95.72 96.40 96.24 96.12 95.98

5.4.2 Impact of the Percentage of Training Instances on

Classification Performance

To evaluate how CPHC reacts to a decreasing ratio of training instances to test

instances, we performed a number of experiments on the Classic and Re0 datasets

obtained from [17]. In each experiment, we randomly used a varying percentage p of

the instances as the training set, and the rest as test set. For each value of p, we

executed the algorithm in Figure 21 ten times and report the average classification

accuracies. For comparison, we executed Harmony (i.e., executables obtained from

the authors of [81]) in a similar fashion and report the average accuracies in Figure

23. Note that Harmony uses a minimum support threshold which we fixed to 1% of

the training instances in each execution.

From Figure 23, we observe that the two algorithms yielded similar accuracies

when a large percentage of the dataset was used as the training set. However, CPHC

significantly outperformed Harmony as the size of the training set decreased. On

Classic and Re0 datasets, the maximum difference in classification accuracy was as

great as 53% and 31% respectively! It appears that our algorithm's ability to classify

"isolated" test instances, as discussed in Section 5.3.3, is responsible for this

difference.

114

Classic

20

30

40

50

60

70

80

90

100

90% 50% 20% 10% 5% 1% 0.50% 0.25%

Percentage of instances used for training

Av
er

ag
e

cl
as

si
fic

at
io

n
ac

cu
ra

y

CPHC
Harmony

Re0

20

30

40

50

60

70

80

90

100

90% 50% 20% 10% 5% 1%

Percentage of instances used for training

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

y

CPHC
Harmony

Figure 23. Classification accuracies on Classic and Re0 datasets with increasingly sparser
training data. The non-linear scale is approximately logarithmic

115

5.4.3 Optional Parameter Tuning

Table XVI of [81] presents the classification accuracies achieved on the 13 small UCI

datasets by tuning SVM and Harmony using various parameter values. We follow a

similar approach to demonstrate additional gains that might be realized by tuning our

parameters. For this purpose, we varied min_std_dev between 0.9 and 2.0, in uniform

intervals of 0.1, and used six different interestingness measures.

Table 18 presents the best classification accuracy achieved on each dataset, along

with the corresponding parameter values. For comparison sake, we also include fully

tuned Harmony and SVM accuracies as reported in [81]. We observe that CPHC

achieved better accuracies on 5/13 datasets, and resulted in the highest average

classification accuracy across all 13 datasets.

Table 18. Tuned accuracies on UCI datasets

 Harmony SVM CPHC min_std_dev Interestingness measure
anneal 95.65 97.26 95.73 0.9 Certainty Factor
auto 61.50 58.90 73.00 1.2 Added Value

breast 96.14 95.09 94.06 1.3 YulesQ
glass 49.80 50.53 75.71 1.0 YulesQ
heart 58.40 57.46 62.00 1.3 Certainty Factor

hepatitus 85.99 85.50 84.67 1.8 Added Value
horsecolic 84.64 84.06 76.39 1.4 YulesQ
ionoSphere 93.45 89.43 92.29 1.5 Added Value

iris 95.99 93.33 95.33 1.5 Mutual Information
pima 73.79 71.06 75.92 1.0 Chi Square

tic-tac-toe 94.09 88.52 73.16 1.2 YulesQ
wine 94.90 97.25 95.88 1.0 Chi Square
zoo 96.00 97.00 98.00 1.1 Added Value

average 83.1 81.95 84.01

5.5 Conclusions

We conclude that the semi-supervised approach of first clustering both the training

and test sets together into a single cluster hierarchy, and then using this hierarchy as a

direct means for classification eliminates the need to train a classifier on an enhanced

116

training set. This approach also improves the chances of classifying isolated test

instances on sparse training data.

117

6. Optimizing Frequency Queries for Data Mining

Applications

In this chapter, we consider the problem of finding the dataset representation that

offers the best space-time tradeoff for counting pattern frequencies.

6.1 Introduction and Prior Work

Calculating itemset support (or frequency counting) is a fundamental operation that

directly affects space and time requirements of many widely used data mining

algorithms. Some data mining algorithms (i.e., frequent itemset mining [2]) are only

concerned with identifying the support of a given query itemset, while others (i.e.,

pattern-based clustering algorithms [25, 5, 88, 56, 85]) must in addition identify the

transactions that contain the query itemset.

6.1.1 Trie-based Representations

First generation data mining algorithms used the trie data structure to improve the

itemset support counting performance. In the following years, a number of

improvements [9, 3] were proposed to further improve support counting using a trie.

118

These approaches, however, did not address the major drawback of the overwhelming

(possibly exponential in depth [86]) space requirements.

Table 19. A transaction database as running example, assuming minimum support = 2

TID Items Frequent items ordered
w.r.t. decreasing supports

Bitmaps representing each
transaction

T1 {1, 2} {2, 1} 11000
T2 {1, 3, 4, 5} {3, 4, 5, 1} 10111
T3 {2, 3, 4} {3, 2, 4} 01110
T4 {2, 3, 4, 5} {3, 2, 4, 5} 01111
T5 {2, 3, 4} {3, 2, 4} 01110
T6 {1, 2, 3, 5} {3, 2, 5, 1} 11101
T7 {2, 3} {3, 2} 01100
T8 {3, 4} {3, 4} 00110
T9 {5} {5} 00001
T10 {3} {3} 00100

Han et al. [35] addressed this issue by introducing FP Tree, a trie-inspired data

structure that reduces the space requirements of the original trie data structure by

eliminating the need to insert each transaction into all paths corresponding to the

subsets of the transaction. The FP Tree is generated by identifying frequent 1-items in

one pass over the dataset. These items are sorted in descending order of their supports

and inserted into the F-List (i.e., a list that contains items in the dataset in their

frequency descending order). A second pass is made to construct the FP Tree in

which items are considered in the order of the FList. The first node corresponding to

each item is pointed to from a header table and each FP Tree node contains a link to

the next node corresponding to the same item.

119

Figure 24. The FP Tree of dataset in Table 19, each node contains an item:frequency pair, and
dotted arrows represent node links

Example 1: Considering the transaction database in Table 19, the FList contains

items in the order (3, 2, 4, 5, 1). Column 3 of Table 19 presents items in each

transaction ordered according to the FList, and Figure 24 presents the corresponding

FP Tree.

Figure 25. A binary trie, nodes contain the count of transactions with the same prefix, and dotted
arrows represent pointers from the horizontal lists

120

In another approach, Yang et al. [86] reduced the space requirements of the trie

data structure by limiting the branching factor to 2. This is achieved by generating a

binary trie which considers presence or absence of all items in the transaction, rather

than only considering items that exist in the transaction. For each item, a global list of

horizontal pointers containing pointers to all nodes that represent the item is

maintained. This list enables efficient support counting. The binary trie may contain

many single-child nodes, especially on sparse datasets. This observation is used to

merge these degree-1 nodes with their children, while maintaining the corresponding

horizontal pointer lists. The resulting data structure is called a Compressed Patricia

Trie.

Example 2: Column 4 of Table 19 contains a binary representation (i.e., presence

or absence of all features) for each transaction. The corresponding binary trie is

presented in Figure 25, and the Compressed Patricia Trie obtained by compressing

the binary trie is presented in Figure 26. Note that the binary trie presented in [86]

contains additional horizontal pointers to represent absence of items. We eliminate

these pointers as they are not relevant for support counting purposes.

Figure 26. A Compressed Patricia Trie

121

6.1.2 Bitmap-based Representations

Trie-based representations are suitable for algorithms that are not concerned with the

actual transactions that contain the query itemset, but they fell short when these

transactions must also be identified. One solution, used by Hu et al. in a hierarchical

clustering algorithm [88] is to store a list containing the applicable transaction IDs at

each node of the trie. This approach may work for small datasets but is impractical for

large datasets because of its significant space requirements. In the worst case (i.e.,

where each transaction contains each item), IDs of all transactions are replicated at

each node. Another possible, but very inefficient solution is to first find the support

count using the trie-based data structure and then scan the dataset once to find the

applicable transactions.

Considering these issues, a number of recent approaches [56, 39, 57, 79, 11, 54]

adapted uncompressed bitmap-based representations (i.e., vertical bit vectors). In

these approaches, a bitmap is generated for each item in the dataset, where each bit

represents presence or absence of the item in a transaction. Some of these approaches

[56] also reduce the number of bitmaps by eliminating infrequent 1-itemsets as a

preprocessing step. support is calculated by ANDing (i.e., intersecting) bitmaps of all

items in the itemset, and counting the number of one-bits in the resulting bitmap. In

level-wise itemset mining algorithms, the number of bitmaps ANDed to find support

of an itemset of size k (where k ≥ 2) is exactly 2, as the previous step would have

already generated and preserved bitmaps of all frequent k - 1 sized subsets of the

query itemset (i.e., guaranteed by the downward closure property). Unlike trie-based

122

approaches, no additional processing is needed to find the transactions containing the

query itemset, as these transactions are readily available in the resulting bitmap.

Table 20. Vertical bit vectors and corresponding WAH compressed bitmaps for the dataset in
Table 19, assuming 4-bit words for WAH encoding

Item Vertical bit

vector
WAH compressed

bitmap
1 1100010000 0110 0001 1001 0000
2 1011111000 0101 1101 0100 0000
3 0111111101 0011 1101 0110 0100
4 0111100100 0011 0110 0010 0000
5 0101010010 0010 0101 0001 0000

Example 3: Table 20 presents vertical bit vectors for the dataset in Table 19

(Section 6.2.1 provides details on the third column). Given a query itemset {2, 5}, we

obtain its support by ANDing 1011111000 with 0101010010. This results in a new

vertical bit vector 0001010000. Counting the number of 1-bits, we obtain the itemset

support count of 2. The resulting bit vector also identifies the transactions (i.e., 4, 6)

that contain the query itemset.

The most significant disadvantage of this approach is that for a dataset containing

n transactions and m frequent 1-items, the amount of space needed for these bitmaps

is always m x n bits, regardless of the characteristics of the underlying dataset. In

practice, many datasets are sparse, which results in bitmaps with a lot more zero-bits

than one-bits. Moonesinghe et al. [57] attempted to address this problem by first

generating a prefix graph that contains a node for each item, and then storing a

separate set of variable-sized horizontal bitmaps along with each node. This approach

facilitates fast support counting, and frequent itemset mining but does not

automatically identify corresponding transactions.

123

6.1.3 Contributions

In an attempt to find a space and time efficient dataset representation for fast support

counting, that also identifies corresponding transactions, we first identified

similarities between the support counting problem and the problem of performing

logical operations on equality coded index bitmaps in the VLDB domain. We then

considered various compressed bitmap representations of database indices, and limit

ourselves to schemes that allow efficient logical operations directly on two

compressed bitmaps, resulting in a compressed bitmap, without decompressing any of

the operand bitmaps. We evaluated the best of these representations (i.e., WAH

compressed bitmaps [82, 83, 84], with two different word sizes) against FP Tree,

Patricia Trie, and uncompressed vertical bit vectors, both in terms of space

requirements, and the query processing performance on more than a billion frequency

queries. We then evaluated the effectiveness of recently proposed [64] pre-

compression step of applying Gray code sorting to re-order transactions, on bitmaps

representing 15 widely used datasets and found that this reordering scheme does not

result in an optimal solution on real datasets, because of the large number of empty

cells (Section 6.3.2). We observe that in practice, even simple lexicographic ordering,

obtained by applying least-significant-bit first (LSB) radix sort on transaction

bitmaps, may outperform this scheme.

As a replacement, we propose two novel, Hamming-distance-based transaction

reordering schemes (Sections 6.3.3 and 6.3.4) with different space and time

characteristics, and show (Section 6.4.1) that these schemes increase the

compressibility of bitmaps.

124

6.2 Compressing Vertical Bit Vectors

We observe that when vertical bit vectors are used, the itemset support counting

problem is a specialization (i.e., subset) of the problem of processing bitmap indices

to find all rows from a database table that satisfy the given criteria. In database

querying, column values in a database table can be both equality and range coded,

and the criteria can contain a variety of logical operations (i.e., the 'where' clause in

SQL, ignoring joins and other cross-table operations). However, in case of support

counting, the values are equality coded (i.e., presence or absence of an item in a

transaction) and the problem is to find all rows that contain all items satisfying the

given criteria (i.e., matching the query itemset). Considering this observation, existing

techniques to optimize the performance of bitwise logical operations on equality

coded index bitmaps from the VLDB domain can be directly applied on the vertical

bit vectors used for itemset support calculation.

There exists a tradeoff between the degree of compression, and the amount of time

needed to perform logical operations on compressed bitmaps. Studies [82, 40] show

that well known lossless compression schemes, such as LZ coding, B-W text

compression and Huffman coding, are effective in compressing bit sequences, but

require decompressing operand bitmaps to perform logical operations. Even though

these schemes may achieve a higher compression ratio, the computational cost of

performing logical operations makes them impractical for query intensive and real-

time applications. Considering these issues, a number of schemes that mix run-length

encoding and direct storage were proposed. These schemes allow logical operations

125

directly on two compressed bitmaps, resulting in a compressed bitmap. Some of these

schemes like BBC, PackBits and PBM are byte-based, while other schemes like HRL,

WAH, PWC and WBC are word-based. Studies show that word-based schemes, such

as WAH, offer the best space-time tradeoff for performing logical operations. See

[82, 83, 84] for a detailed comparison of these schemes.

6.2.1 WAH Compressed Bitmaps

Word-Aligned Hybrid code (WAH) [82] is a simple linear-time compression scheme

that reads a bit sequence one bit at a time, and produces a word aligned compressed

bitmap, where the word size W is configurable. Each word in the resulting

compressed bitmap represents either a literal run or a fill run. Literal runs contain

uncompressed data while the fill runs contain a word-aligned sequence (i.e., fill) of

consecutive zero or one bits. The first bit in each word identifies the run type (i.e., 0 =

literal run, and 1 = fill run). In case of a literal run, the rest of the W - 1 bits in the

word contain a direct sequence of bits, whereas in the case of a fill run, the second bit

in the word identifies the fill bit b, and the remaining W - 2 bits contain a count c

which represents a sequence of c * (W - 1), b-bits. For an input bitmap with n bits, the

size of the WAH compressed bitmap is upper bounded by W
W

n
×⎥⎥
⎤

⎢⎢
⎡

−1
 bits, or O (n).

The worst case occurs when there are no fill runs in the resulting WAH compressed

bitmap. Furthermore, the absolute value for the worst case (and the overhead)

decreases as W increases.

Example 4: Column 3 of Table 20 presents WAH compressed bitmaps for vertical

bit vectors in column 2. Bold bits are run identifiers, and the highlighted bits are fill

126

bits. Many of the resulting WAH compressed bitmaps demonstrate the worst case

space scenario, because we used an artificially small value for W, and a very small

transaction database for simplicity sake. We show in Section 6.4.1 that WAH

encoded bitmaps do not use more space than the corresponding uncompressed

bitmaps on real datasets.

6.2.2 Counting Support Using WAH Compressed Bitmaps

Similar to vertical bit vectors, support of a query itemset is obtained by ANDing the

corresponding WAH compressed bitmaps, and counting one-bits in the resulting

bitmap. Two WAH compressed bitmaps are ANDed by iteratively decoding words

from each of the operand bitmaps, and applying the AND operation on the decoded

words [82]. The outcome is then added to the output bitmap. If both operand words

represent literal runs, the outcome is determined by simply ANDing the two words. If

one of the operand words represents a zero-fill, the same number of zeros is added to

the output, and an equal number of bits are skipped from the other operand bitmap.

Finally, if one of the operand bitmaps represents a one-fill, number of bits equal to

the fill size is added from the other bitmap. Since processing fill runs can result in left

over bits from either operand word, some bookkeeping is needed to track these

leftover bits. Also, when adding a fill run to the output bitmap, the previous word in

the output bitmap is checked for the presence of a matching fill, and the existing fill

count is incremented by the new fill count, in case of a match. For more details, see

[82].

127

Example 5: Considering WAH compressed bitmaps in the third column of Table

20, and a query itemset {2, 5}, we first decode the first word in the first operand

bitmap (i.e., 0101) and identify it as a literal run. We then decode the first word in the

second bitmap (i.e., 0010), and identify that it is a literal run as well. Therefore, we

AND 101 and 010 to obtain 000, which results in adding a zero-fill-run with count =

1 (i.e., 1001) to the output bitmap. Similarly, processing the next words (i.e., 1101

and 0101), we add a literal fill 0101 to the output bitmap (since the first operand is a

1-fill of size 1). Processing the next words (i.e., 0100 and 0001), we add a new zero-

fill 1001 to the output bitmap. Finally, we process the last two words (i.e., 0000 and

0000), and add a new zero fill with count = 1. Since the previous word in the output

bitmap was a zero-fill, we just increment it and the final output bitmap becomes 1001

0101 1010. Next, we count one-bits in the output bitmap to determine itemset

support. Decoding the first word (i.e., 1001), we find a zero-fill and continue to the

next word. Decoding the second word (i.e., 0101), which is a literal fill, we add 2

(i.e., the number of 1-bits) to the support count. Finally, the last word is decoded and

ignored as it is a zero-fill and we obtain the itemset support count of 2.

Note that support has an interesting property that the support of an itemset of size k

is less than or equal to the support of all of its k - 1 size subset-itemsets. In practice, a

large number of itemsets have supports that are less than their subset-itemsets. This

results in an important side effect of smaller and smaller WAH compressed bitmaps

as the itemset size increases. As an example, to calculate support of the itemset {1, 3,

4}, we AND the compressed bitmap for item {1} with the compressed bitmap for

itemset {3, 4} (above), and obtain the output bitmap 0010 1011, with only two words.

128

Consequently, this side effect makes WAH compressed vertical bit vectors even more

feasible (i.e., space efficient) for algorithms that store interim results.

6.3 Increasing Bitmap Compressibility by Reordering

Transactions

The amount of compression achieved by run-length-based compression schemes such

as WAH encoding depends heavily on the availability of long sequences of 0 or 1 bits

in the input bitmap. The best compression is achieved when the transactions are

organized in a way that minimizes the total number of bit shifts across all columns.

As an example, the first column of Table 21 presents a small transaction dataset. The

original order of the rows causes three bit shifts in the first column, three bit shifts in

the second column and four bit shifts in the third column, adding to a total of 10 bit

shifts. In contrast, the transaction ordering in the second column requires only two bit

shifts in each column, adding to a total of six bit shifts for the transaction dataset,

which represents a 40% reduction.

Table 21. A transaction dataset in original order, an optimal ordering, and reordered using two
schemes

 Original

order
Optimal

order
Gray code

sorted
Radix
sorted

 T1: 101
T2: 110
T3: 001
T4: 100

T3: 001
T1: 101
T4: 100
T2: 110

T3: 001
T2: 110
T1: 101
T4: 100

T3: 001
T4: 100
T1: 101
T2: 110

Bit changes in
each column

3, 3, 4 2, 2, 2 2, 3, 4 2, 2, 4

Total bit changes 10 6 9 8

Unfortunately, reorganizing transactions to achieve such an optimal ordering in

general is same as the consecutive block minimization problem (or CBMP) which

129

was proven NP-complete in 70’s by Kou [44]. More recently, even a fairly restricted

version of this problem which limits the number of 1’s in each row to 2, called

2CBMP [32], was also proven NP-hard.

6.3.1 Reordering Rows Using Gray Code Sorting

Pinar et al. [64] named this problem as the “Tuple Reordering Problem”, and proven

it NP-Complete by providing a reduction from the Traveling Salesman Problem. They

proposed a linear in time and space transaction reordering scheme that is based on

Gray code ranks, and showed that the reordered bitmaps achieve better WAH

compression. As an example, the Gray code rank-based reordering reduces the total

number of bit shifts from 10 to 9, on dataset in Table 21.

6.3.2 Reordering Rows Using LSB Radix Sort

It is important to note that Gray code rank-based transaction reordering results in an

optimal solution only if all cells are "full" [64]. This means that for a transaction

dataset with c columns, an optimal solution is obtained when there is atleast one

transaction covering each of the 2c possible combinations, which is not realistic.

Therefore, even on our toy dataset (Table 21), applying Gray code rank-based

reordering resulted in a small improvement.

As an alternative, simple linear-time least-significant-bit first (LSB) radix sort

[20], with one bin for zero-bits and one bin for one-bits, can be used which results in

a lexicographic ordering of transactions. We show in Section 6.4.1 that lexicographic

ordering outperforms the Gray code scheme on many real-life datasets. Column 4 of

130

Table 21 presents such an example, where lexicographic ordering results in 8 bit

shifts, which is better than the Gray code rank-based solution.

6.3.3 HDO, a Greedy, Hamming-distance-based Transaction

Reordering Scheme

From Table 21, we observe that both Gray code rank-based, as well as lexicographic

reordering may not result in close to optimal solutions on transaction datasets. We

propose HDO, a greedy algorithm that reorders transactions in a way that ensures a

high degree of similarity between neighboring transactions (i.e., minimizes

Hamming-distance), hoping that this greedy choice results in a near-optimal solution.

In other words, for each position i, HDO finds a transaction t that is closest to the

transaction at position i-1. If there is more than one such candidate, it selects the

transaction that results in least impact on the number of existing fill runs.

Definition 1 (inter-transaction distance): Let ti be a transaction at position i and tj

be a transaction at position j, distance between ti and tj is defined as

)(),(
ji ttji bitmapXORbitmaptscountOneBitttDist =

The function countOneBits(bitmap) returns the number of 1-bits in bitmap.

Furthermore, the smaller is the value of tDist between ti and tj, the closer are ti and tj

to each other. If tDist = 0, bitmaps for ti and tj are exactly the same.

Example 6: Considering transactions T1 and T2 in Table 21, tDist(T1, T2) =

countOneBits(101 XOR 110) = countOneBits(011) = 2.

Definition 2 (set of least-distant transactions): Let S be a set of transactions and t

be a transaction in S. Let S’ is a subset of S that does not include t and some other

131

transactions. The set CLt of transactions that are closest (i.e., least-distant) to t is

obtained by:

Step 1: For each transaction x in S’, calculate tDist(t, x) and store the outcome in

list L. Additionally, track the minimum Distance value MIN.

Step 2: For each transaction x in S, add x to CLt iff tDist(t, x) = MIN.

Definition 3 (HDO): Let S be a set of transactions, assume that transactions S1 to

Si – 1 are already in HDO. Let S’ = {S} – {S1..i-1}, the next transaction Si is HDOrdered

by:

Step 1: Using t = Si-1, and S’, obtain the set of least-distant transactions CLt using

the method above.

Step 2: If |CLt| = 1, swap the unique transaction with the transaction at Si.

Otherwise, call break-ties(S, i, CLt) in Figure 28, and swap the resulting transaction

with the transaction at Si. We explain this heuristic peephole (i.e., window)

optimization below.

To apply HDO on a transaction dataset with n transactions, we first swap the first

transaction in the dataset with a transaction with minimum number of columns, and

then iteratively call HDO on transactions 2 to n-1, using the method above. As an

example, Figure 27 demonstrates applying HDO on the dataset in Table 21. We can

see that the final reordered bitmap achieves a total bit count of 6, which is same as the

optimal ordering in this case. Note that our HDO algorithm is an in-place algorithm

and works linear in terms of space. However, it has a time complexity of O (|rows|2 x

|cols|), which is worst than both Gray code rank-based and radix sort-based

132

reordering schemes, since these schemes has a time complexity linear to the number

of bits in the dataset (i.e., O (|rows| x |cols|)). We address this issue in Section 6.3.4.

Step 1: Find a
transaction t with
minimum number
of 1-bits

1: T1: 101
2: T2: 110
3: T3: 001
4: T4: 100

Step 2: Swap row
1 with t (i.e., row
3)

1: T3: 001
2: T2: 110
3: T1: 101
4: T4: 100

Step 3: Calculate
difference bitmaps
and counts for
rows 2 to 4,
against row 1
 1: 001
 2: 110 = 111 = 3
 3: 101 = 100 = 1
 4: 100 = 101 = 2

Step 4: Swap rows
2 and 3

1: T3: 001
2: T1: 101
3: T2: 110
4: T4: 100

Step 5: Calculate
difference bitmaps
and counts for
rows 3 & 4
 1: 001
 2: 101
 3: 110 = 011 = 2
 4: 100 = 001 = 1

Step 6: Swap rows
3 and 4

1: T3: 001
2: T1: 101
3: T4: 100
4: T2: 110

Figure 27. Applying HDO

Breaking the ties: If |CLt| > 1 (i.e., there is more than one least-distant transaction

to t), we break the ties by selecting the candidate that minimizes the bit changes

among the three transactions (i.e., the transaction t, the transaction prior to t, and the

candidate itself). In other words, we select the candidate with maximum overlap in

difference bits against transaction t and its prior transaction, as these bits are part of

literal runs started in t. Selecting other bits may break existing fill runs and impact the

overall compressibility of the transaction dataset.

1) break-ties(S, i, candidates)
2) d = bitmap of Si-1 XOR bitmap of Si-2
3) L = Φ
4) for i = 1 to |candidates| do begin
5) temp = bitmap of candidates[i] XOR
6) bitmap of Si-1
7) L[i] = countOneBits(temp XOR d)
8) end
9) M = {minimum value in L}
10) C = {index of first candidate with M in L}
11) return candidates[C]
12) end

Figure 28. The break-ties method

133

Example 7: Consider t = 1001 and the transaction prior to t = 1101. Let us assume

that there are two candidate transactions in set CLt, i.e., c1 = 1100 and c2 = 1010,

such that tDist(t, c1) = tDist(t, c2) = 2. We first compute the difference bitmap

between t and its prior transaction, i.e., d = 1001 XOR 1101 = 0100. Considering c1,

we calculate the difference bitmap dc1 between c1 and t (i.e., dc1 = 1100 XOR 1001

= 0101), and find the number of different bits ndc1 between d and dc1, i.e., 0100

XOR 0101 = 0001 = 1. Candidate c2 is processed in a similar fashion, i.e., dc2 =

1010 XOR 1001 = 0011, and ndc2 = 0100 XOR 0011 = 0111 = 3. Since ndc1 < ndc2,

we select c1.

1) aHDO (S, k)
2) {find a row M with minimum number of columns}
3) {swap rows 1 and M}
4) interval = ⎣ |S| / k ⎦
5) for i = 0 to k - 1 do begin
6) L = Φ
7) for j = (i * interval) + 2 to |S| do begin
8) L[j] = tDist(S(i*interval)+1, Sj)
9) end
10) {Using values in L, apply counting sort
11) to order transactions S(i * interval)+2 to S|S|}
12) end
13) L = Φ
14) for i = 2 to |S| do begin
15) L[i] = tDist(Si, Si-1)
16) end
17) for i = 2 to k do begin
18) numberOfSwaps = 0
19) for j = 2 to |S| - 1
20) distj-1Andj+1 = tDist(Sj-1, Sj+1)
21) distjAndj+2 = tDist(Sj, Sj+2)
22) d1 = L[j] - distj-1Andj+1
23) d2 = L[j+2] - distjAndj+2
24) if (d1 > 0 OR d2 > 0) AND
25) (d1>=0 AND d2>=0) then
26) numberOfSwaps++
27) {swap rows at j, j+1}
28) L[j] = distj-1Andj+1
29) L[j+1] = distjAndj+2
30) end
31) end
32) if numberOfSwaps = 0 then break
33) end
34) end

Figure 29. The aHDO algorithm

134

6.3.4 A Linear-time Approximation to HDO

Because of its high worst-case computational cost, HDO might not be suitable for

very large, frequently updated transaction datasets. We propose aHDO, an

approximation to HDO that has a time complexity linear to the number of bits in the

dataset. Even so, it achieves close results, especially on sparse datasets.

Figure 29 presents the aHDO algorithm. The algorithm accepts the transaction

dataset S, and a constant k, which is used to select k positions in S at uniform

intervals, for the inter-loop processing. Hamming-distances of transactions at

positions i + 1 to |S| are calculated against each of the selected transaction ti, and

Counting Sort [49] is then applied to reorder these transactions, according to their

Hamming-distances against ti. Note that the linear-time Counting Sort is applicable in

this case because the worst case range of Hamming-distances, for a dataset with c

columns is already known (i.e., 0..c). Next, we calculate distances between all

consecutive rows (lines 14-16), and make another (up to) k passes over S. In each

pass, pairs of consecutive transactions are evaluated, and transactions in the pair are

swapped if it reduces the overall number of bit shifts in the solution. Considering four

rows at positions j - 1, j, j + 1 and j + 2, distances between consecutive row pairs (j -

1, j), (j, j + 1) and (j + 1, j + 2) are already available. Rows at positions j and j + 1 are

swapped only if tDist(j - 1, j) is greater than (j - 1, j + 1) or tDist(j + 1, j + 2) is greater

than tDist(j, j + 2), and neither of them results in a difference greater than the current

order of the four transactions. This guarantees that swapping a row pair results in

reducing the total number of bit changes by atleast 1. Note that reducing the total

number of bit changes does not guarantee that the overall size of the compressed

135

transaction dataset will also reduce (i.e., it may replace a long, existing fill run with

two small fill runs), as providing such a guarantee would require checking a number

of additional conditions, against all other bits and transactions in worst case, resulting

in an exponential-time algorithm. We do not demonstrate applying aHDO here, and

note that setting k in the range of 50 to 1,000, i.e., a small proportion to the number of

transactions, worked well on datasets used in our experiments.

6.4 Experimental Results

We evaluated the data structures and transaction reordering schemes discussed in this

chapter in terms of memory requirements, and run-time performance of the support

counting operation on fifteen widely used datasets (Table 22, Appendix C), with

varying degrees of sparseness.

Table 22. Datasets used in our experiments, #entries correspond to the total number of 1-bits (i.e.,
columns with non-zero values), Sp = sparseness as the average number of 0’s for each 1, rounded

to nearest integer

Dataset Source #rows #cols #entries Sp
Flare UCI ML 1,389 30 13,890 2

Mushroom UCI ML 8,124 88 176,248 3
Pima UCI ML 768 36 6,144 4

Anneal UCI ML 898 66 11,949 4
Adult UCI ML 48,842 95 677,323 6
FBIS TREC 2,463 2,000 393,386 12
TR 23 TREC 204 5,832 78,609 14
Hitech SJMN (TREC) 2,301 22,498 346,881 148

Reviews SJMN (TREC) 4,069 36,746 781,635 190
LA12 LA Times 6,279 30,125 939,407 200
Sports SJMN (TREC) 8,580 27,673 1,107,980 213

Reuters Reuters-21578 10,787 19,127 465,959 442
Ohsumed Ohsumed-233445 34,389 36,250 2,018,254 617

20NG 20 Newsgroups 9,840 57,675 871,808 650
Classic4 SMART 7,094 41,681 223,839 1320

136

6.4.1 Space Comparison of Various Structures

Table 23 compares the memory used by the trie-based structures on our datasets. On

our test (64-bit) system, each FP Tree node used 24 bytes of memory (i.e., 32-bits for

frequency, 32-bits for the item ID, 64-bits for the parent pointer, and 64-bits for the

node link), and the header table used 64-bits for each item. On the other hand, each

node in the Patricia Trie used 12 bytes (i.e., 32-bits for frequency, and 64-bits for the

parent pointer), and each pointer in the horizontal list used 64-bits. Interestingly

enough, if the features in each transaction are ordered with respect to FP Tree's FList,

the corresponding Patricia Trie contains exactly the same number of horizontal

pointers as the number of nodes in the FP Tree (trivial proof omitted).

On our test datasets, Compressed Patricia Tries resulted in space savings between

36% and 67%, with greater savings realized on sparser datasets (i.e., higher

percentage of degree-one nodes). In order to generate a Compressed Patricia Trie,

binary trie generation appears to be a necessary interim step [86], which can be very

expensive. Unlike FP Tree, where we only generate nodes for items that are present in

a transaction, binary tries consider both the presence and absence of items, resulting

in a significantly higher number of nodes. On our test datasets, Patricia Trie

generation needed between two and twenty times more computational time as

compare to FP Tree, with higher times observed on sparse datasets. Furthermore, it

was not always possible to generate the binary trie in memory. As an example, binary

trie generation exhausted the available memory on our test system (i.e., about 4GB)

on LA12, Sports, Ohsumed, and 20NG datasets when the total number of nodes in the

binary trie reached around 175 million.

137

Table 23. Space comparison of trie-based structures

Dataset FP Tree Compressed Patricie Trie
 #nodes Size (KB) #nodes #ptrs Size (KB)

Flare 1,361 32.13 599 1,361 17.65
Mushroom 20,799 488.16 10,073 20,799 280.54

Pima 389 9.40 228 389 5.71
Anneal 1,399 33.30 730 1,399 19.48
Adult 21,877 513.48 13,464 21,877 328.70
FBIS 367,553 8,630.15 3,911 367,553 2,917.34
TR 23 75,797 1,822.05 329 75,797 596.02
Hitech 337,474 8,085.31 3,316 337,474 2,675.38

Reviews 760,265 18,105.79 5,949 760,265 6,009.29
LA12 873,862 20,716.49 N/A N/A N/A
Sports 1,050,754 24,843.24 N/A N/A N/A

Reuters 399,439 9,511.28 15,359 399,439 3,300.61
Ohsumed 1,860,347 43,885.09 N/A N/A N/A

20NG 792,123 19,015.97 N/A N/A N/A
Classic4 208,414 5,210.34 8,454 208,414 1,727.30

Table 24 compares the space used by uncompressed bit vectors, WAH encoded

bitmaps in the original order, and after applying various reordering schemes. Our

experiments included both 32 and 64-bit words for WAH encoding, but we only

report the 32-bit results here, and note that 64-bit WAH encoded bitmaps used

between 4 and 71 percent more space as compare to the corresponding 32-bit

bitmaps, because with 64-bit words, uniform bit sequences smaller than 126 bits

result in no space savings (i.e., fill count = 2), while 32-bit words realize space

savings on shorter (i.e., >=62-bit) uniform bit sequences.

We observe that the uncompressed vertical bit vectors used less space as compare

to both trie-based representations on dense datasets (i.e., Mushroom) but used

significantly more space on highly sparse datasets (i.e., Classic). WAH encoding

resulted in significant space savings, especially on sparse datasets. Also,

lexicographic ordering outperformed Gray code rank-based reordering scheme on

12/15 datasets. Furthermore, HDO-WAH encoded bitmaps outperformed all other

reordering schemes on 14/15 datasets and resulted in the most significant overall

138

space savings. HDO even worked well on Hitech, Reviews, and Sports datasets,

where both Gray code and lexicographic schemes negatively impacted the

compression achieved on the original-ordered bitmap. Finally, aHDO resulted in

compression very close to HDO, especially on sparse datasets. The Classic dataset

exhibits an interesting behavior, where all reordering schemes negatively affected the

WAH compression achieved on the original-ordered bitmap, while HDO still

outperformed other reordering schemes.

Table 24. Compression achieved by various reordering schemes. Best results highlighted, WAH
compression uses a word size of 32-bit, IF = Improvement Factor as in [64], and all values

rounded to 2 decimal places

WAH, original
order

WAH, Gray
code

reordered

WAH, LSB
Radix sorted

WAH, HDO WAH, aHDO Size of the
uncomp. bit

vectors
(Kbytes) Size

(KBytes)
% of

original
Size

(KBytes)
IF Size

(KBytes)
IF Size

(KBytes)
IF Size

(KBytes)
IF

Flare 5.16 5.04 97.73 3 1.68 2.91 1.73 2.6 1.94 2.67 1.89
Mushroom 87.31 70.26 80.47 22.74 3.09 20.4 3.44 20.24 3.47 21.55 3.26

Pima 3.38 2.61 77.31 1.22 2.13 1.23 2.13 0.96 2.70 1.02 2.55
Anneal 7.73 5.02 64.85 3.82 1.31 3.51 1.43 3.33 1.51 3.58 1.40
Adult 567.03 292.53 51.59 70.24 4.16 68.3 4.28 71.21 4.11 82.08 3.56
FBIS 609.38 551.57 90.51 456.15 1.21 455.74 1.21 433.8 1.27 434.64 1.27
TR 23 182.25 173.58 95.24 154.08 1.13 153.67 1.13 144.11 1.20 144.66 1.20
Hitech 6,327.56 1,222.46 19.32 1,244.64 0.98 1,244.68 0.98 1,155.45 1.06 1,174.3 1.04

Reviews 18,373 2,689.43 14.64 2,807.85 0.96 2,806.11 0.96 2,571.97 1.05 2,592.99 1.04
LA12 23,299.80 3,410.82 14.64 3,143.75 1.08 3,144.02 1.08 2,807.72 1.21 2,875.78 1.19
Sports 29,186.37 3,103.27 10.63 3,445.02 0.90 3,441.88 0.90 2,949.74 1.05 3,010.04 1.03

Reuters 25,253.62 1,826.09 7.23 1,552.38 1.18 1,549.45 1.18 1,277.50 1.43 1,359.62 1.34
Ohsumed 152,363.28 7,594.60 4.98 7,119.27 1.07 7,118.09 1.07 6,502.91 1.17 6,657.52 1.14

20NG 69,390.23 4,121.75 5.94 3,705.17 1.11 3,701.30 1.11 2,955.54 1.39 3,364.05 1.23
Classic4 36,145.24 1,280.65 3.54 1,387.30 0.92 1,386.88 0.92 1,317.56 0.97 1,336.81 0.96

We do not report the times needed to apply various reordering schemes here, and

note that Gray code sorting, LSB radix sort and aHDO take comparable amount of

time while HDO takes the most amount of time. Counter-intuitively, for small values

of k (i.e., 50), we observe that aHDO may take less time than the other linear-time

schemes because it calculates the inter-transaction distances by XORing whole words

(i.e., 64 bits), while other schemes needs to decode and evaluate each bit, requiring

139

more operations. Furthermore, we trivially optimized the second most frequent

operation in aHDO (i.e., counting 1-bits in a word) by caching bit-patterns.

6.4.2 Performance of Frequency Queries

Database style frequency queries: We first compared the performance of various

structures by generating 25 million random frequency queries for each dataset, with 5

million queries for each of the max query sizes 1-5 (i.e., for max query size = 2, there

would be about 2.5 million size-1 queries, and an equal number of size-2 queries).

This adds to a total of 375 million queries on all datasets, with each query executed

on all available structures, adding to many billion query executions. We assumed no

prior knowledge about the query itemsets, which means that for a query itemset of

size k, all k-bitmaps were used for frequency calculation. This setting is close to real-

life database usage where variable-size, random query are common, with a higher

percentage of short queries. We report the query execution times on eight datasets in

Figure 30.

Figure 30. Performance comparison of various structures on 200 million random, variable-sized

frequency queries

140

We observe that bitmap structures resulted in an orders of magnitude faster

frequency counting as compare to trie structures on short queries. The performance

difference minimized as the query size increased, because the number of bitmaps

ANDed linearly increase with the number of items in the query, whereas the number

of upward paths considered in a trie remains constant, and more paths can be quickly

pruned for longer, randomly generated queries (i.e., decreasing number of co-

occurring items). Regardless of (potentially) better frequency counting performance

on long queries, trie structures are practically unusable for database style queries

because most database style queries (except COUNT) must also identify the

corresponding transactions. We also observe that Compressed Patricia Tries

outperformed FP Trees, (i.e., a smaller number of nodes traversed). Furthermore,

uncompressed vertical bit vectors resulted in shortest query execution times on dense

datasets, and HDO-WAH encoded vertical bit vectors outperformed uncompressed

vertical bit vectors as the sparseness increased. Finally, we observe that tries

performed poorly on datasets that do not have many transactions that share common

prefixes (i.e., more upward paths to consider), while the performance of bitmap

structures remained un-impacted. For example, on FBIS dataset with 393,386 non-

zero entries, the corresponding FP Tree contained 367,553 nodes. Consequently, it

took 3,854 seconds to execute 25 million queries using the FP Tree, as compare to

only 63 seconds using the HDO-WAH encoded bitmaps, a significant difference!

Data mining style frequency queries: To evaluate the performance of data mining

style frequency queries, we applied APRIORI [2] to mine frequent itemsets of sizes

1-5, on datasets in Figure 30. Unlike the previous test (i.e., no prior knowledge), we

141

stored the bitmaps of frequent itemsets found at each step. Consequently, support

calculation was performed by ANDing only two bitmaps (Section 6.1.2). An

advanced nanosecond timer was used to record individual query execution times, and

the total times are reported in Table 25.

We observe that bitmap structures significantly outperformed both tries.

Furthermore, unlike the previous test, the performance gap did not minimize with

increasing query sizes for atleast two reasons. First, the number of bitmaps ANDed

remained constant (i.e., 2), and second, the percentage of upward paths pruned in tries

may actually decrease because unlike the random test, where up to k - 1 items in a

query of size k can be non-existent in an upward path, all k - 1 sized subsets of each

query are guaranteed to meet minimum support.

Table 25. Itemset mining performance

Time (seconds) Dataset min
supp

#itemsets
(size 1-5) Patricia

Trie
FP Tree Uncompressed WAH 32 WAH 64

Flare 2 21,063 0.36 0.13 0.06 0.07 0.08
Pima 2 3,860 0.05 0.02 0.03 0.03 0.03
FBIS 250 654,525 172.87 361.65 1.07 2.29 1.43

Hitech 50 2,859,310 211.33 478.55 4.00 8.02 5.55
Sports 300 1,297,271 N/A 1543.58 5.04 10.50 7.03

Reuters 100 996,097 269.19 375.08 4.80 6.74 4.72
20NG 200 643,537 N/A 249.44 3.10 5.24 3.37

Classic4 10 5,800,199 212.23 278.21 20.22 15.25 12.77

Finally, we note that the runtime performance of bitmap-based schemes depends

on the program structure, and the underlying system architecture, in addition to the

total number of operations involved. As an example, in spite of their significantly

higher space usage (which translates to more instructions needed to AND bitmaps),

uncompressed bitmaps may outperform compressed bitmaps in time. This happens

because two uncompressed bitmaps can be ANDed in a simple loop, with no inter-

142

iteration dependencies. This simple structure allows exploiting maximum instruction

level parallelism, and enables compilers to apply techniques like loop unrolling. On

the other hand, the decoding logic of compressed bitmaps does not allow exploiting

the same level of ILP. Similarly 64-bit WAH compressed bitmaps used more space,

but outperformed 32-bit bitmaps on our 64-bit test system, because the system

processed twice as much data in each cycle. We conclude that HDO-WAH encoded

bitmaps offer the best space-time tradeoff for data mining style queries. For example,

performance was comparable to uncompressed bit vectors on Reuters and 20NG,

while consuming 20 times less space.

6.5 Conclusions

We conclude that Trie structures are viable for applications that mostly execute long,

random queries, as long as we are not concerned with identifying the actual

transactions. Furthermore, we conclude that HDO results in better compression, and

outperforms other structures on short database style frequency queries. Finally, we

conclude that uncompressed bitmaps can be a good choice for data mining

applications that are not concerned with high space requirements, while HDO-WAH

encoded bitmaps provide the best space-time tradeoff.

143

7. Contributions, Conclusions and Future Work

7.1 Contributions

The contributions of this thesis include the following:

1. An association-rule-hypergraph-based web image clustering algorithm that

replaces commonly used frequency-based rule significance measures with objective

interestingness measures, and also combines textual and signal-based features

(Chapter 2).

2. Combining the concepts of closure and interestingness into closed interesting

itemsets. Our empirical experiments demonstrate that these itemsets provide

significant dimensionality reduction over closed frequent itemsets (Chapter 3).

3. A sub-linearly scalable closed-interesting-itemset-based hierarchical clustering

algorithm (i.e., GPHC) that outperforms state-of-the-art approaches, in terms of both

FScore and entropy, on nine standard datasets (Chapter 3).

4. An instance-driven pattern-based hierarchical clustering algorithm (i.e., IDHC)

that builds a cluster hierarchy without mining for globally significant patterns. This

algorithm allows each instance to "vote" for its representative size-2 patterns in a way

that ensures an effective balance between local and global pattern significance, uses

instance-to-cluster relationships to refine clusters, produces more descriptive cluster

labels, and allows a more flexible soft clustering scheme. Our extensive experiments

demonstrate that this algorithm almost always outperforms state-of-the-art

144

hierarchical clustering algorithms and achieves up to 15 times better entropies,

without requiring any tuning of parameter values, even on highly correlated datasets

(Chapter 4).

5. A semi-supervised classification algorithm (i.e., CPHC) that uses a pattern-

based cluster hierarchy as a direct means for classification, eliminating the need to

train a classifier on an enhanced training set. In addition, this algorithm uses pattern-

lengths to establish cluster weights. Our experiments indicate that this algorithm

outperforms a number of existing classification algorithms even with sparse training

data (Chapter 5).

6. A detailed comparative analysis of two trie-based, and several novel bitmap-

based structures for itemset-frequency counting. This analysis clearly identified the

most suitable structures for a variety of real-life usage scenarios (Chapter 6).

7. Novel use of WAH compressed bitmaps for itemset frequency counting and

introducing HDO, a Hamming-distance-based greedy transaction reordering scheme

that outperforms existing transaction reordering schemes and provide the best space-

time tradeoff on equality coded WAH compressed bitmaps. We also introduce aHDO,

a linear time alternative to HDO that yields similar performance on sparse datasets

(Chapter 6).

7.2 Conclusions

As a result of our experiments presented in this thesis, we were able to identify many

fundamental issues with traditional data mining algorithms and we began to see the

field differently. First, we conclude that pure global-pattern-mining-based algorithms

145

may not be practical for large scale problems. Future research on large scale data

mining is likely to adapt more local and instance-driven approaches. Second, we

conclude that mining long patterns can be very expensive. Short patterns, as long as

they are chosen in a meaningful way, have surprising power and may suffice for a

number of applications. Third, we conclude that relying on training data alone may

result in suboptimal classification results, especially with sparse training data.

Therefore, we expect future research in classification to focus more on semi-

supervised approaches. Finally, we conclude that reordered, compressed bitmap-

based dataset representations may be more practical for large scale applications. They

are likely to replace widely used trie variants in the future.

7.3 Future Work

In the future, we would like to extend our work on instance-driven pattern mining to

real-time, incremental scenarios. In particular, we would like to investigate ways of

maintaining these pattern sets as the data evolves, and also investigate ways of

maintaining cluster hierarchies that use these pattern bases. In addition, we would like

to investigate more sophisticated ways of using the pattern-based hierarchical

structure to obtain class labels for test instances, possibly by importing ideas from

existing co-training and co-clustering research. Finally, we would like to apply our

transaction reordering schemes to various real-life server architectures and to identify

principled ways of evaluating the feasibility of index compression with respect to

target architecture.

146

A. Glossary of Terms

atomic pattern Same as item.

bitmap A spatially mapped array of bits.

class A group of instances ranked together as possessing common characteristics.

classification A procedure in which individual instances are placed into groups

(classes) based on information on one or more characteristics inherent in the instances

(referred to as traits, variables, characters, etc.) and based on a training set of

previously labeled instances.

class label A string that uniquely identifies a class.

cluster A subset (partition) of data, such that the data (instances) in the subset

(ideally) share some common trait.

clustering The partitioning of a dataset into subsets (clusters), so that the data

(instances) in each subset (ideally) share some common trait.

cluster hierarchy A hierarchical representation of a set of (possibly non-disjoint)

clusters such that each node in the hierarchy represents a cluster, and each node may

have zero or more child nodes, without allowing for cycles.

cluster label A pattern that uniquely identifies a cluster.

dimension The number of parameters required to describe the position of a point

within an abstract space.

dimensionality reduction The process of reducing the number of attributes (random

variables) under consideration.

147

hard clustering A technique that assigns each instance to exactly one cluster.

instance Let I = {i1, i2, i3, …, in} be the complete set of distinct items in a dataset.

An instance X is denoted as a pair <id, Y> such that id is an identifier that uniquely

identifies X and IY ⊆ represents the set of items in X.

item A binary attribute.

itemset Set of items that occur together.

macro-average A measure that weights equally all the classes, regardless of how

many documents belong to it.

micro-average A measure that weights equally all the documents, thus favoring the

performance on common classes.

multi-label classification A technique that is concerned with learning from a set of

examples (instances), each of which is associated with a set of class labels LY ⊆ ,

where L is the set of all class labels.

pattern Same as itemset.

single-label classification A technique that is concerned with learning from a set of

examples (instances) that are associated with a single label l from a set of disjoint

labels L, |L| > 1.

soft clustering A technique that assigns each instance to one or more clusters.

trie An ordered tree data structure that is used to store an associative array where the

keys are usually strings. Unlike a binary search tree, no node in the tree stores the key

associated with that node; instead, its position in the tree shows what key it is

associated with. All the descendants of any one node have a common prefix of the

string associated with that node, and the root is associated with the empty string.

148

Values are normally not associated with every node, only with leaves and some inner

nodes that happen to correspond to keys of interest.

149

B. Interestingness Measures

Table 27 presents the formulas of interestingness measures used in this thesis. These

measures are functions of a 2 x 2 contingency tables. A contingency table stores the

frequency counts that satisfy given conditions [27]. Table 26 is a contingency table

for variables A and B, where n(AB) denotes the number of instances satisfying both A

and B, and N denotes the total number of records.

Table 26. 2 x 2 contingency table for variables A and B

 B B

A)(ABn)(BAn)(An

A)(BAn)(ABn)(An
)(Bn)(Bn N

Note that we use symmetric versions of Added Value, Certainty Factor, Conviction,

JMeasure, and Laplace as defined by Tan et al. [76]. Similarly, Max Confidence is

the symmetric version of Confidence. See [27] for a detailed comparison of the

properties of these interestingness measures.

150

Table 27. Formulas of interestingness measures used in this thesis

Symbol Interestingness Measure Formula
 1 AV Added Value max(P(B|A) – P(B), P(A|B) – P(A))
 2 F Certainty Factor),max()(1

)()|(
)(1

)()|(
AP

APBAP
BP

BPABP
−

−
−

−
 3 χ 2 Chi Square

∑∑
−

x y xy

xyxy

E
EO 2)(

where Oxy is the observed frequency in the contingency table and Exy
is the expected frequency [10]

 4 S Collective Strength
)|()(1

)()()()(1
)()()()(

)|()(
ABPABP

BPAPBPAP
BPAPBPAP

ABPABP
−−

×−−
×+

+ ×

 5 c Confidence P(B|A)
 6 V Conviction),max(

)(
)()(

)(
)()(

ABP
APBP

BAP
BPAP

 7 Φ Correlation Coefficient
))(()()(

)()()(

BAPBPAP

BPAPABP −

 8 IS Cosine
)()(

)(
BPAP

ABP

 9 G Gini Index

))()(])|()|()[(])|()|()[(

,)()(])|()|()[(])|()|()[(max(

222222

222222

APAPBAPBAPBPBAPBAPBP

BPBPABPABPAPABPABPAP

−+++

−+++

10 I Interest

)()(
)(
BPAP

ABP

11 ζ Jaccard
)()()(

)(
ABPBPAP

ABP
−+

12 J J-Measure

)))(
)|(

log()())(
)|(

log()(

),)(
)|(

log()())(
)|(

log()(max(

AP
BAP

BAPAP
BAP

ABP

BP
ABP

BAPBP
ABP

ABP

+

+

13 к Kappa
)()()()(1

)()()()()()(
BPAPBPAP

BPAPBPAPBAPABP
−−

−−+

14 K Klosgen’s))()|(),()|(max(),(APBAPBPABPBAP −−
15 L Laplace),max(2)(

1)(
2)(
1)(

+
+

+
+

BPN
ABPN

APN
ABPN

16 mc Max Confidence max(P(B|A), P(A|B))
17 M Mutual Information

))(log)(,)(log)(min(

)()(
)(

log)(

22

2

∑∑

∑∑
−−

×

j
jj

i
ii

ji

ji

i j
ji

BPBPAPAP

BPAP
BAP

BAP

18 α Odds Ratio
)()(

)()(
BAPBAP

BAPABP
−

19 RI Piatetsky-Shapiro's
Interest

P(AB) – P(A)P(B)

20 s Support P(AB)
21 Q Yule's Q

)()()()(
)()()()(

BAPBAPABPABP
BAPBAPABPABP

+
−

22 Y Yule's Y

)()()()(

)()()()(

BAPBAPABPABP

BAPBAPABPABP

+

−

151

C. Datasets

Table 27 lists all datasets used in this thesis, along with their corresponding attributes.

We obtained Classic, FBIS, Hitech, K1a, K1b, LA12, MM, Ohscal, Re0, Reviews,

Sports, TR11, TR12, TR23, TR31, and WAP datasets from the Cluto clustering toolkit

[17]. The Reuters dataset was obtained from [67], and the Reuters ModApte training /

test set split used in Chapter 5 was obtained from [7]. In addition, we obtained the

Ohsumed dataset from [59] and 20NG dataset from [58]. Since the UCI datasets are

numerical and the algorithms presented in this thesis require binary valued input data,

we used the discretised versions of these datasets available at [18]. Note that many of

the existing pattern-based learning algorithms, such as [81], also used the same

versions of these datasets.

152

Table 28. Datasets used in this thesis

Dataset Source # classes #rows #cols #entries
20NG 20 Newsgroups 20 9,840 57,675 871,808
Adult UCI Machine Learning Repository 2 48,842 95 677,323

Anneal UCI Machine Learning Repository 6 898 66 11,949
Auto UCI Machine Learning Repository 7 205 129 5,066

Breast UCI Machine Learning Repository 2 699 14 6,275
Classic4 SMART Project 4 7,094 41,681 223,839
Cylbands UCI Machine Learning Repository 2 540 120 17,901

Demotology UCI Machine Learning Repository 6 366 43 4,384
FBIS TREC 17 2,463 2,000 393,386
Flare UCI Machine Learning Repository 9 1,389 30 13,890
Glass UCI Machine Learning Repository 7 214 40 1,926
Heart UCI Machine Learning Repository 5 303 45 3,933

Hepatitis UCI Machine Learning Repository 2 155 50 2,778
Hitech San Jose Mercury News (TREC) 6 2,301 22,498 346,881

HorseColic UCI Machine Learning Repository 2 368 81 6,171
IonoSphere UCI Machine Learning Repository 2 351 155 11,934

Iris UCI Machine Learning Repository 3 150 16 600
K1a WebACE 20 2340 21,839 349,792
K1b WebACE 6 2340 21,839 349,792

LA12 LA Times (TREC) 6 6,279 30,125 939,407
LetRecog UCI Machine Learning Repository 26 20,000 76 320,000

MM Movies / Music 2 2521 126,373 490,062
Mushroom UCI Machine Learning Repository 2 8,124 88 176,248

Nursery UCI Machine Learning Repository 5 12,960 27 103,680
Ohscal Ohsumed-233445 10 11,162 11,465 674,365

Ohsumed Ohsumed-233445 23 34,389 36,250 2,018,254
PageBlocks UCI Machine Learning Repository 5 5,473 39 54,730
PenDigits UCI Machine Learning Repository 10 10,992 76 175,872

Pima UCI Machine Learning Repository 2 768 36 6,144
Re0 Reuters-21578 13 1,504 2,886 77,808

Reuters Reuters-21578 90 10,787 19,127 465,959
Reviews San Jose Mercury News (TREC) 5 4,069 36,746 781,635
Sports San Jose Mercury News (TREC) 7 8,580 27,673 1,107,980

Soybean-Large UCI Machine Learning Repository 19 683 99 21,568
TicTacToe UCI Machine Learning Repository 2 958 27 8,622

TR 11 TREC 9 414 6,429 116,613
TR 12 TREC 8 313 5,804 85,640
TR 23 TREC 6 204 5,832 78,609
TR 31 TREC 7 927 10,128 248,903
Wap WebACE 20 1,560 8,460 220,482

Waveform UCI Machine Learning Repository 3 5,000 98 105,000
Wine UCI Machine Learning Repository 3 178 65 2,314
Zoo UCI Machine Learning Repository 7 101 35 1,616

153

References

[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association rules between set of items in large
databases”, In Proceedings of the ACM SIGMOD International Conference on Management of Data,
Washington, DC, May 1993.

[2] R. Agrawal, and R. Srikant, “Fast Algorithms for Mining Association Rules in Large Databases”,
In Proceedings of the 20th International Conference on Very Large Databases, pp. 487-499, Santiago,
Chile, 1994.

[3] A. Amir, R. Feldman and R. Kashi, "A New and Versatile Method for Association Generation",
Information Systems, Volume 22, No. 6, pp. 333-347, 1997,

[4] M. Antonie and O. Zaiane, "Text Document Categorization by Term Association", In Proceedings
of the 2002 IEEE International Conference on Data Mining, 2002.

[5] F. Beil, M. Ester, and X. Xu, “Frequent term-based text clustering”, In Proceedings of the
International Conference on Knowledge Discovery and Data Mining, 2002, pp. 436-442.

[6] S. Belongie, C. Carson, H. Greenspan, and J. Malik, “Recognition of images in large databases
using a learning framework”, Technical Report TR 97-939, U.C. Berkeley, 1997.

[7] S. Bergsma, "The Reuters-21578 (ModApte) dataset", Dept. of Computer Science, University of
Alberta, http://www.cs.ualberta.ca/~bergsma/HTML/Courses/650/.

[8] F. Berzal, I. Blanco, D. Sánchez and M.A. Vila, "Measuring the Accuracy and Importance of
Association Rules: A New Framework", Intelligent Data Analysis, 2002.

[9] F. Bodon, “A fast apriori implementation”, In Proceedings of the IEEE ICDM Workshop FIM
Implementations, 2003.

[10] T. Brijs, K. Vanhoof, and G. Wets, “Defining interestingness for association rules”, International
journal of information theories and applications, 10:4, 2003.

[11] D. Burdick, M. Calimlim, and J. Gehrke, "MAFIA: A Maximal Frequent Itemset Algorithm for
Transactional Databases", In Proceedings of the 17th International Conference on Data Engineering,
Heidelberg, Germany, April 2001.

[12] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, “VIPS: a vision based page segmentation algorithm”,
Technical Report MSR-TR-2003-79, Microsoft, 2003.

[13] C. Carson, S. Belongie, H. Greenspan, and J. Malik, “Region-based image querying”, In IEEE
Workshop on Content-Based Access of Image and Video Libraries, 1997.

[14] C. L. Carter, H. J. Hamilton and N. Cercone, "Share Based Measures for Itemsets", In
Proceedings of the First European Symposium on Principles of Data Mining and Knowledge
Discovery, pp. 14-24, 1997.

154

[15] V. Chandola, and V. Kumar, "Summarization - Compressing Data into an Informative
Representation", Knowledge and Information Systems, Volume 12, No. 3, pp. 355-378, August 2007.

[16] C. Clifton, R. Coolie, and J. Rennie, "TopCat: Data Mining for Topic Identification in a Text
Corpus", IEEE Transactions on Knowledge and Data Engineering, Volume 16, No. 8, pp. 949-964,
August 2004.

[17] Cluto, http://glaros.dtc.umn.edu/gkhome/views/cluto.

[18] F. Coenen, "The LUCS-KDD Implementations of the FOIL, PRM, and CPAR algorithms",
http://www.csc.liv.ac.uk/~frans/KDD/Software.

[19] W. Cohen, "Fast effective rule induction", In Proceedings of the 12th International Conference on
Machine Learning, 1995.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to Algorithms, 2nd
Edition”, McGraw Hill / MIT Press, ISBN: 0-07-013151-1.

[21] W. Dai, G.-R. Xue, Q. Yang, and Y. Yu, "Co-clustering based classification for out-of-domain
documents", In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 210-219, 2007.

[22] The Open Directory, http://dmoz.org/.

[23] G. Dong, X. Zhang, L. Wang and J. Li, "CAEP: Classification by aggregating emerging patterns",
Discovery Science, Volume 1721, 1999.

[24] S. Dumais, J. Platt, D. Heckerman and M. Sahami, "Inductive Learning Algorithms and
Representations for Text Categorization", In Proceedings of the seventh international conference on
Information and knowledge management, pp. 148-155, 1998.

[25] B. Fung, K. Wang, and M. Ester, “Hierarchical document clustering using frequent itemsets”, In
Proceedings of the SIAM International Conference on Data Mining, pp. 59-70, 2003.

[26] E. Gabrilovich and S. Markovitch, "Text Categorization with Many Redundant Features: Using
Aggressive Feature Selection to Make SVMs Competitive with C4.5", In Proceedings of the Twenty-
First International Conference on Machine Learning, pp. 321-328, 2004.

[27] L. Geng and H. J. Hamilton, "Interestingness Measures for Data Mining: A Survey", ACM
Computing Surveys, Volume 38, No. 3, September 2006.

[28] B. Goethals, “Efficient Frequent Pattern Mining”, PhD thesis, Transnational University of
Limburg, Belgium, 2002.

[29] K. Gouda, and M. J. Zaki, “Efficiently mining maximal frequent itemsets”, In Proceedings of the
1st IEEE International Conference on Data Mining, Nov. 2001.

[30] L. Gravano, P. Ipeirotis, and M. Sahami, “QProber: A System for Automatic Classification of
Hidden-Web Databases”, ACM Transactions on Information Systems, Volume 21, No. 1, Jan. 2003.

[31] H. Haddad, P. Mulhem, “Association Rules for Symbolic Indexing of Still Images”, In
Proceedings of the 2001 International Conference on Artificial Intelligence, June 2001.

[32] S. Haddadi, “A note on the NP-hardness of the consecutive block minimization problem”,
International Transactions in Operational Research, Volume 9, No. 6, 2002.

155

[33] E.-H. Han, G. Karypis, and V. Kumar, “Clustering in a high-dimensional space using hypergraph
models”, Technical Report 97-063, University of Minnesota, 1998.

[34] E.-H. Han, G. Karypis, V. Kumar, and B. Mobasher, “Clustering based on association rule
hypergraphs”, Research Issues on Data Mining and Knowledge Discovery, 1997.

[35] J. Han, J. Pei, Y. Yin and R. Mao, “Mining Frequent Patterns without Candidate Generation: A
Frequent-Pattern Tree Approach”, Data Mining & Knowledge Discovery, 2004.

[36] X. He, D. Cai, J.-R. Wen, W.-Y Ma, and H.-J. Zhang, "ImageSeer: Clustering and Searching
WWW Images Using Link and Page Layout Analysis", Technical Report MSR-TR-2004-38, Microsoft,
2004.

[37] H. S. Heaps, "Information Retrieval - Computational and Theoretical Aspects", Academic Press,
1978.

[38] W. Hsu, M. L. Lee, and Ji. Zhang, “Image Mining: Trends and Developments”, in Journal of
Intelligent Information System (JISS): Special Issue on Multimedia Data Mining, Kluwer Academic,
2002.

[39] X. Hu, T.Y. Lin, and E. Louie, "Bitmap techniques for optimizing decision support queries and
association rule algorithms", In Proceedings of the Seventh International Database Engineering and
Applications Symposium, 2003.

[40] T. Johnson, "Performance Measurements of Compressed Bitmap Indices", In Proceedings of the
25th International Conference on Very Large Data Bases, pp. 278-289, 1999.

[41] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Hypergraph partitioning: Applications in
VLSI domain”, Technical Report TR-96-060, University of Minnesota, 1996.

[42] G. Karypis, and V. Kumar, “hMETIS user manual”, http://www-
users.cs.umn.edu/~karypis/metis/hmetis.

[43] L. Kaufman, and P. J. Rousseeuw, “Finding Groups in Data: An Introduction to Cluster
Analysis”, Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics,
New York, March 1990.

[44] L.T. Kou, “Polynomial complete consecutive information retrieval problems”, SIAM Journal on
Computing, Volume 6, 1977.

[45] A. Kyriakopoulou, and T. Kalamboukis, "Using clustering to enhance text classification", In
Proceedings of the 30th annual international ACM SIGIR conference on Research and development in
information retrieval, 2007.

[46] J. Li, G. Dong, K. Ramamohanarao and L. Wong, "DeEPs: A New Instance based Discovery and
Classification System", Machine Learning, Volume 54, No. 2, 2004.

[47] J. Li, and Y. Zhang, "Direct Interesting Rule Generation", In Proceedings of the Third IEEE
International Conference on Data Mining, 2003.

[48] W. Li, J. Han and J. Pei, "CMAR: Accurate and Efficient Classification based on multiple class-
association rules", In Proceedings of the First IEEE International Conference on Data Mining, 2001.

[49] R. Lienhart, and A. Hartmann, “Classifying images on the web automatically”, Journal of
Electronic Imaging, Volume 11, No. 4, pp. 445-454, Oct 2002.

156

[50] B. Liu, W. Hsu and Y. Ma, "Integrating Classification and Association Rule Mining", In
Proceedings of the Fourth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 1998.

[51] B. Liu, W. Hsu, and Y. Ma, “Pruning and Summarizing the Discovered Associations”, In
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 1999.

[52] B. Liu, W. Hsu, S. Chen and W.-Y. Ma, "Analyzing the Subjective Interestingness of Association
Rules", IEEE Intelligent Systems, Volume 15, No. 5, 2000.

[53] Y. Liu, D. Zhang, G. Lu and W.-Y. Ma, "Region-Based Image Retrieval with High-Level
Semantic Color Names", In Proceedings of the 11th International Multimedia Modeling
Conference, 2005.

[54] C. Lucchese, S. Orlando, and R. Perego, "Fast and Memory Efficient Mining of Frequent Closed
Itemsets", IEEE Transactions on Knowledge and Data Engineering, Volume 18, No. 1, Jan. 2006.

[55] H. H. Malik, and J. R. Kender, "Clustering web images using association rules, interestingness
measures, and hypergraph partitions", In Proceedings of the Sixth International Conference on Web
Engineering, 2006.

[56] H. H. Malik, and J. R. Kender, "High Quality, Efficient Hierarchical Document Clustering Using
Closed Interesting Itemsets", In Proceedings of the Sixth IEEE International Conference on Data
Mining, pp. 991-996, 2006.

[57] H. D. K. Moonesinghe, S. Fodeh, and P.-N. Tan, "Frequent Closed Itemset Mining Using Prefix
Graphs with an Efficient Flow-Based Pruning Strategy", In Proceedings of the Sixth IEEE
International Conference on Data Mining, pp. 75-86, 2006.

[58] 20 Newsgroups, http://people.csail.mit.edu/jrennie/20Newsgroups/.

[59] Ohsumed, ftp://medir.ohsu.edu/pub/ohsumed.

[60] C. Ordonez, and E. Omiecinski, “Discovering Association Rules based on Image Content”, In
Proceedings of the IEEE Forum on Research and Technology issues in Digital Libraries, 1999.

[61] C. D. Paice, "Another Stemmer", ACM SIGIR Forum, Volume 24, No. 3, pp. 56-61, 1990.

[62] L. Parsons, E. Haque, and H. Liu, “Subspace Clustering for High Dimensional Data: A Review”,
ACM SIGKDD Explorations Newsletter, Volume 6, No. 1, 2004.

[63] F. Pereira, N. Tishby, and L. Lee, "Distributional clustering of English words. In Proceedings of
the 31st Annual Meeting of the Association for Computational Linguistics, 1993.

[64] A. Pinar, T. Tao and H. Ferhatosmanoglu, “Compressing Bitmap Indices by Data
Reorganization”, In Proceedings of the 21st International Conference on Data Engineering, 2005.

[65] J. Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufman, ISBN:1-55860-238-0,
1993.

[66] J. Quinlan and R. Cameron-Jones, "FOIL: A Midterm Report", In Proceedings of the European
Conference on Machine Learning, 1993.

[67] Reuters. http://kdd.ics.uci.edu/databases/reuters21578.

157

[68] B. Raskutti, H. Ferr, and A. Kowalczyk, "Using unlabeled data for text classification through
addition of cluster parameters", In Proceedings of the 9th International Conference on Machine
Learning, 2002.

[69] C. J. van Rijsbergen, "Information Retrieval", Butterworths, London, 1979.

[70] SMART Project (eds.) Stopword List for English Information Retrieval,
http://www.unine.ch/info/clef/englishST.txt.

[71] J. A. Rushing, H. S. Ranganath, and T. H. Hinke, “Using Association Rules as Texture Features”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 23, No. 8, 2001.

[72] F. Sebastiani, "Machine learning in automated text categorization", ACM Computing Surveys,
Volume 34, No. 1, 2002.

[73] B. Shekar and R. Natarajan, "A Transaction-based Neighborhood-driven Approach to Quantifying
Interestingness of Association Rules", In Proceedings of the Fourth IEEE International Conference on
Data Mining, 2004.

[74] N. Slonim, and N. Tishby, "The power of word clustering for text classification", In Proceedings
of the European Colloquium on IR Research, 2001.

[75] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of document clustering techniques”, In
Proceedings of the Workshop on Text Mining, 6th ACM SIGKDD International Conference on Data
Mining, 2000.

[76] P. Tan, V. Kumar, and J. Srivastava, “Selecting the right interestingness measure for association
patterns”, In Proceedings of the 8th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 32–41, 2002.

[77] P. Tan, and V. Kumar, “Interestingness measures for association patterns: A perspective”, In
Proceedings of the KDD Workshop on Postprocessing in Machine Learning & Data Mining, 2000.

[78] V. N. Vapnik, “Statistical Learning Theory”, Wiley, ISBN: 0-47-103003-1, 1998.

[79] F. Verhein, and S. Chawla, "Geometrically Inspired Itemset Mining", In Proceedings of the Sixth
IEEE International Conference on Data Mining, pp. 655-666, 2006.

[80] J. Wang, and G. Karypis, "SUMMARY: Efficient Summarizing Transactions for Clustering", In
Proceedings of the Fourth IEEE International Conference on Data Mining, 2004.

[81] J. Wang and G. Karypis, "On Mining Instance-Centric Classification Rules", IEEE Transactions
on Knowledge and Data Engineering, Volume 18, No. 11, 2006.

[82] K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg, "Notes on design and implementation of
compressed bit vectors", Technical Report LBNL/PUB-3161, Berkeley, CA.

[83] K. Wu, E. J. Otoo, and A. Shoshani, "Optimizing bitmap indices with efficient compression",
ACM Transactions on Database Systems, Volume 31, No. 1, pp. 1-38, 2006.

[84] K. Wu, E. J. Otoo, and A. Shoshani, "On the Performance of Bitmap Indices for High Cardinality
Attributes", In Proceedings of the Thirtieth international conference on Very large data bases, pp. 24-
35, 2004.

158

[85] H. Xiong, M. Steinbach, P.-N. Tan, and V. Kumar, "HICAP: Hierarchical Clustering with Pattern
Preservation", In Proceedings of the SIAM International Conference on Data Mining, 2004.

[86] D.-Y. Yang, A. Johar, A. Grama, and W. Szpankowski, "Summary structures for frequency
queries on large transaction sets", In Proceedings of the Data Compression Conference, pp. 420-429,
2000.

[87] X. Yin and J. Han, "CPAR: Classification based on Predictive Association Rules", In Proceedings
of the SIAM International Conference on Data Mining, 2003.

[88] H. Yu, D. Searsmith, X. Li and J. Han, "Scalable Construction of Topic Directory with
Nonparametric Closed Termset Mining", In Proceedings of the Fourth IEEE International Conference
on Data Mining, pp. 563-566, 2004.

[89] H. J. Zeng, X. H. Wang, Z. Chen, H. Lu, and W. Y. Ma, "CBC: Clustering based text
classification requiring minimal labeled data", In Proceedings of the Third IEEE International
Conference on Data Mining, 2003.

[90] Y. Zhao, and G. Karypis, “Evaluation of hierarchical clustering algorithms for document
datasets”, In Proceedings of the International Conference on Information and Knowledge
Management, pp. 515-524, November 2002.

[91] Y. Zhao, and G. Karypis, “Hierarchical Clustering Algorithms for Document Datasets”, Data
Mining and Knowledge Discovery, Volume 10, pp. 141-168, No. 2, 2005.

