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Abstract 
 

In this paper, we propose the "Democratic 
Classifier", a simple, democracy-inspired pattern-
based classification algorithm that uses very short 
patterns for classification, and does not rely on the 
minimum support threshold. Borrowing ideas from 
democracy, our training phase allows each training 
instance to vote for an equal number of candidate size-
2 patterns. Similar to the usual democratic election 
process, where voters select candidates by considering 
their qualifications, prior contributions at the 
constituency and territory levels, as well as their own 
perception about candidates, the training instances 
select patterns by effectively balancing between local, 
class, and global significance of patterns. In addition, 
we respect "each voter's opinion" by simultaneously 
adding shared patterns to all applicable classes, and 
then apply a novel power law based weighing scheme, 
instead of making binary decisions on these patterns. 

Results of experiments performed on 121 common 
text and web datasets show that our algorithm almost 
always outperforms state of the art classification 
algorithms, without requiring any dataset-specific 
parameter tuning. On 100 real-life, noisy, web 
datasets, the average absolute classification accuracy 
improvement was as great as 9.4% over SVM, 
Harmony, C4.5 and KNN. Also, our algorithm ran 
about 3.5 times faster than the fastest existing pattern-
based classification algorithm.  

 
1. Introduction and Motivation 
 

Machine learning algorithms like SVM, C4.5 and 
kNN are among the most successful and widely used 
classification algorithms. Additionally, a number of 
rule-based (i.e., rule-induction-based, association-
based, or frequent-pattern-based) algorithms have 
achieved initial success on a variety of classification 
problems. We identified two major problems with 

existing rule-based classification algorithms. These 
problems are discussed in the next two sections. 

 
1.1. Minimum support and long patterns 
 

The classification model in a typical rule-based 
classification algorithm consists of frequent patterns 
that form classification rules. The patterns are obtained 
by applying various pruning heuristics to reduce a very 
large search space. Minimum support threshold is the 
most common of these heuristics, and is widely used 
[5, 7, 9, 10] as the primary means to filter a significant 
percentage of candidate patterns (i.e., with a second 
measure such as confidence, Information Gain, or Chi-
Square used for further filtration). Setting a good value 
for this threshold is non-trivial. A high minimum 
support may miss important patterns, and may also risk 
having some training instances unrepresented 
altogether (i.e., with no rules in the resulting 
classification model to cover such training instances), 
especially on unbalanced datasets. On the other hand, a 
small value may result in discovering a large number 
of noisy patterns. Considering these issues, one must 
question the usefulness of minimum support as the 
primary means to identify patterns for classification.  

Additionally, on high-dimensional datasets, the 
number of candidates considered, as well as the 
number of frequent patterns found may significantly 
increase with the pattern size, especially when a low 
minimum support is used. Consequently, mining long 
patterns might take significantly more computational 
time as compared to mining short patterns. Since long 
patterns are always derived from short patterns, we are 
motivated to explore if high-dimensional datasets can 
be effectively classified using only the short patterns. 

 
1.2. Three levels of pattern significance 
 

A number of existing rule-based classification 
algorithms [2, 3, 4] follow a greedy rule-induction 
process to discover classification rules. In these 



algorithms, rules are discovered one rule at a time, and 
instances covered by the newly discovered rule are 
eliminated from the training set, which may degrade 
the quality of discovered rules as the training process 
advances [9], because of incomplete information. 
Furthermore, this process may need to be repeated for 
each class, negatively impacting the runtime of these 
algorithms. On the other hand, association-rule-based 
classification algorithms like [5, 7] first mine globally 
significant patterns, and then follow a sequential 
covering paradigm to select the final set of rules. 
Because of their inherent dependencies on minimum 
support and confidence thresholds, these algorithms 
may find too many or too few rules, and may still not 
cover some of the training instances. Therefore, we 
consider these algorithms "non-democratic". 

With Harmony, Wang and Karypis [9] proposed a 
more effective, instance-centric approach to mine 
classification rules. Harmony builds the classification 
model by directly mining some user-defined number of 
highest-confidence rules for each training instance that 
satisfy minimum support. Furthermore, rules for all 
classes are mined simultaneously, and one of the user-
configurable, local item ranking schemes (i.e., 
correlation coefficient ascending order) takes both the 
class and global item supports in to account. 
Experimental results in [9] show that Harmony, when 
further tuned with a suitable minimum support value 
for each dataset, outperformed existing rule based 
classification algorithms, and achieved classification 
accuracies that are comparable to SVM. These findings 
are consistent with our own classification experiments.  

We observe that a labeled collection of training 
instances provides three important pieces of 
information about each pattern in a categorical dataset: 
first, the global frequency of the pattern; second, the 
frequency of the pattern in each applicable class; and 
third, the frequencies of atomic sub-patterns in 
individual training instances that contain the whole 
pattern. These three pieces of information can be used 
to evaluate the pattern significance at various levels. 
Unfortunately, none of the existing rule-induction-
based, association-based, and frequent-pattern-based 
classification algorithms fully utilize all of these three 
levels of information. As discussed above, most of the 
existing algorithms only consider global significance 
(i.e., global support, confidence, entropy, or 
Information Gain), while others may estimate the 
global significance using incomplete information. Note 
that even though some of the widely used measures 
like entropy select patterns that are significant across 
all classes, they might not help in selecting a pattern 
with respect to a specific class (i.e., Section V(A) of 
[9] provides an example). Harmony fully utilizes the 

global significance, and partially utilizes the class 
significance of each pattern, but does not utilize the 
local significance. Since Harmony ensures that each 
training instance is covered by the selected patterns, 
but does not consider pattern significance with respect 
to individual training instances while selecting 
patterns, we consider Harmony "semi-democratic".  

 
1.3. The "Democratic Classifier" 
 

We observe that the problem of finding patterns for 
classification shares some similarities with the problem 
of electing public representatives in a human society. 
The typical election process in a human society 
involves dividing the territory (i.e., a country) into 
smaller constituencies (i.e., states or provinces). Each 
"voter" is allowed to cast their vote(s) in the 
constituency (or constituencies, in some cases) of its 
residence. The voter is presented with a list of 
candidates, and the voter selects a candidate (or 
candidates) from the list. Through a formal election 
campaign, the candidates communicate their 
qualifications and prior achievements at both the 
constituency and the territory level, hoping to 
influence their voters' decision. Still, an individual 
voter may be biased by its own perception about each 
candidate. 

In terms of finding patterns for classification, the 
training phase may be considered analogous to the 
election process, where the training set is the territory, 
divided in to smaller constituencies (i.e., classes). Each 
training instance represents a voter, and the set of 
candidates in a constituency consists of all patterns that 
exist in any instance that belongs to the constituency. 
Each candidate's prior contributions and qualifications 
at the territory and constituency levels are represented 
by a pattern's global and class significance values, 
respectively. Finally, a pattern's local significance 
represents the voter's perception about the candidate. A 
local significance value of zero means that the voter 
does not have any opinion about the candidate (i.e., the 
instance does not contain the pattern). 

Considering that in spite of its problems (the details 
of which are out of scope of this paper), democracy 
[18] is the most widely adopted method of electing 
public representatives, we adopt a democratic pattern 
selection scheme in this paper. More specifically, we 
adopt the "open list" method in the "proportional 
representation" scheme [20], which allows each voter 
to select up to k candidates from the candidate list.  

After pre-processing training instances (Section 2.1) 
to eliminate less-significant features, the "Democratic 
Classifier" builds a classification model (Section 2.2) 
that contains a list of very short (i.e., size-1 and 2) 



patterns for each class, and allows patterns to appear in 
multiple classes. On an instance by instance basis, each 
training instance contributes to the classification model 
by first adding all of its size-1 patterns to the pattern-
lists of its classes (i.e., the voter’s constituencies of 
residence), and then, by "voting" for k (where k is a 
user-defined value) size-2 patterns, each of which is 
also added to the pattern-lists of applicable classes. 
The "voting" process selects top k patterns for each 
training instance in a way that provide an effective 
balance between local (i.e., voter's perception of the 
candidate), class (i.e., candidate’s qualifications and 
prior contributions at the constituency level), and 
global (i.e., candidate’s qualifications and prior 
contributions at the territory level) significance. We 
use the local pattern frequencies to determine local 
significance, and a contingency table-based 
interestingness measure to calculate class and global 
significance values. 

All patterns in the classification model (i.e., pattern 
lists for each class) are then assigned an initial "pattern 
weight". For this purpose, we use the global support 
values for atomic (i.e., size-1) patterns, and the global 
interestingness values of size-2 patterns. These weights 
are first normalized using z-score standardization (with 
more "importance" given to size-2 patterns), and then 
adjusted with respect to pattern significance within the 
class, using a novel, power law based weight 
adjustment scheme. These weights are later used to 
calculate class scores in the classification phase.  

Test instances are classified (Section 3) by first 
identifying all patterns in the test instance that also 
exist in the classification model, and then applying a 
scoring function to calculate class scores. Our scoring 
function considers both the pattern weights in the 
classification model, and the local pattern significance 
in the test instance. For single-label problems, the class 
with the highest score is selected, and for multi-label 
problems a weighted dominant factor-based scheme 
similar to [9] is used to select multiple classes. 

In ten-fold cross-validated results of experiments 
performed on 121 common benchmark datasets, we 
show in Section 4.1 that our algorithm resulted in 
classification accuracies that are better than, or 
comparable to state of the art classifiers. On 100 real-
life web datasets, our algorithm significantly 
outperformed all existing classification algorithms, and 
achieved classification accuracies that rival human 
experts (i.e., 95% as an average). Furthermore, unlike 
existing classification algorithms, where dataset-
specific parameter tuning is necessary to achieve high 
classification accuracies, we show that our fixed 
parameters are robust across datasets. As an example, 
results reported in Section 4.1 use the same parameter 

values across all 121 datasets. Still, we achieve overall 
classification accuracies that are comparable to, or 
better than fully tuned existing classification 
algorithms. Finally, we show in Section 4.2 that our 
algorithm ran about 3.5 times faster than the state of 
the art pattern-based classification algorithm. 

For completeness, we note in passing that with this 
research, we always intended to find a pattern-based 
classification algorithm that yields superior 
classification results on text and web data. Much like 
the evolution of human history itself, our research 
converged to a simple democratic solution after many 
iterations and optimizations, allowing us to connect 
our final solution to the powerful analogy of 
democracy. 

 
2. Training the Classifier 

 
In this section, we provide details on training the 

“Democratic Classifier”. We first discuss our simple-
yet-effective dimensionality reduction scheme, and 
then describe various steps involved in building the 
classification model.  

 
2.1. Dimensionality reduction 
 

Studies [16, 17] show that reducing the 
dimensionality of the feature space may significantly 
improve the effectiveness and scalability of traditional 
classification algorithms, especially on high-
dimensional datasets. Furthermore, dimensionality 
reduction tends to reduce overfitting [17]. Pattern-
based classification algorithms equally benefit from 
dimensionality reduction, as both the quality and the 
number of non-atomic patterns discovered directly 
depends on the initial, atomic patterns (i.e., 1-
itemsets). 

Typically, features are selected by first sorting all 
available features in terms of their significance, and 
then selecting top-n, or top-n-percent features (with a 
caveat that selecting a suitable value for n is not 
straightforward). A recent study [16] evaluated various 
measures to calculate feature significance and 
concluded that Information Gain, Chi-Square and Bi-
normal Separation worked equally well on a number 
of datasets, with no statistically significant difference.  

Unfortunately, selecting top-n features alone may 
leave some training instances with no features, which 
also eliminates all aize-2 pattern candidates available 
to these instances for later selection, as in Section 2.2. 
Furthermore, the optimal number (or percentage) of 
features (i.e., the value of n) needed to achieve good 
classification results remains unclear. The literature 



[17] is inconclusive on n: some studies suggest that the 
number of selected features should be same as the 
number of training examples, while others suggest that 
feature selection may make matters worse, especially 
when the number of available features is small. 

Considering these issues, in a way similar to [32], 
we adopt a three-step heuristic feature selection 
method that uses the number of training instances, and 
the number of available features to automatically 
estimate n, and also ensures that the final set of 
selected features covers all training instances. 

Step 1 (calculate n): 

⎟
⎠
⎞

⎜
⎝
⎛ ×+=

i
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Where i = number of training instances, and f = 
total number of available features. This empirically 
derived formula ensures a reasonable base amount for 
low dimensional datasets, while moderately growing 
this number for high dimensional datasets. 

Step 2 (select globally significant features): Sort 
all features in decreasing order of their Information 
Gain values, and then add the resulting top-n features 
to set S (i.e., the set of "selected" features).  

Step 3 (ensure local coverage): First find all 
training instances with less than t features in S (i.e., 
instances not properly covered by the selected 
features), and then process these instances, on an 
instance by instance basis. Sort all features in the 
current instance in the decreasing order of their (TF * 
Information Gain), where TF = Term Frequency, 
calculated in the usual way. This "balances" the local 
significance (i.e., TF) and the global significance (i.e., 
Information Gain). Finally, add the resulting top-t 
features to set S. The experiments in this paper used an 
empirically selected fixed value of t = 10. 

 
2.2. Building the classification model 

 
Typical rule-based classification algorithms 

associate each selected rule (or pattern) to a single 
class. In reality, a large percentage of patterns may 
appear in many training instances that might not be 
associated with the same class. Table 1 contains a 
training dataset used as a running example throughout 
this section. Pattern {b, d} appears in six training 
instances in this example. Two of these training 
instances (i.e., T1 and T10) are associated with class 0 
whereas the other four are associated with class 1. 
Associating this pattern to only one of these classes 
might not fully capture its significance in the training 
set. Instead of making such a binary decision, or 
eliminating these "shared" patterns as "confusing" or 
"insignificant", we borrow ideas from some of the 
world’s democracies that allow candidates to be 

elected from multiple constituencies, and allow 
patterns to appear in multiple classes, with weights 
(i.e., described below) representing their significance 
in each applicable class. 

Table 1. An example training set, feature selected 
Instance ID Feature-frequency pairs Class ID 

T1 (a:2), (b:4), (d:1) 0 
T2 (a:3), (c:1), (d:6), (e:1) 0 
T3 (b:2), (c:3), (d:1) 1 
T4 (b:3), (c:1), (d:2), (e:4) 1 
T5 (b:7), (c:2), (d:1) 1 
T6 (a:1), (b:1), (c:1), (e:1) 0 
T7 (b:9), (c:3), (f:4) 1 
T8 (c:6), (d:2) 0 
T9 (b:3), (d:2), (e:6) 1 

T10 (a:4), (b:2), (d:7), (f:3) 0 
T11 (c:1), (e:1), (f:1) 1 

Additionally, training instances in real-life text and 
web datasets may contain a feature (i.e., atomic 
pattern) more than once. These local feature frequency 
counts are largely ignored by existing algorithms (such 
as Harmony [9]) that only considers binary presence or 
absence of features in training instances to select 
patterns used for classification. Similar to the 
democratic election process where a voter’s perception 
about each candidate may significantly impact their 
selection, these local feature frequencies may provide 
useful insights about a pattern's significance with 
respect to a training instance. As an example, we 
consider a recent news article at cnn.com about certain 
types of dinosaurs that are believed to be good 
swimmers. The word "dinosaurs" occurs 19 times in 
the entire article whereas the word "marine" occurs 
only once. Clearly, considering both of these words 
with equal importance can be problematic. Therefore, 
by accommodating local frequencies, our training 
algorithm achieves a balance between global, class, 
and local significance. Note that considering features 
with high local frequencies is not the same as 
considering features with high support.  

Figure 1 presents our training algorithm. After 
selecting features and initializing the classification 
model, training instances are processed, one instance at 
a time. Each training instance first adds all of its size-1 
patterns (i.e., patterns remaining after feature selection) 
to the pattern-lists of all of its applicable classes (i.e., 
the voter’s constituencies of residence), with global 
support used as the initial pattern weight (line 6). 

Next, each size-2 pattern is processed (lines 10-23) 
to compute the "overall" pattern significance with 
respect to the current training instance, considering the 
pattern significance at all three (i.e., local, class, and 



global) levels. We determine the local pattern 
significance (line 11) by averaging the TF values of 
both the atomic patterns (i.e., p1 and p2) in the size-2 
pattern (i.e., p).  
01) build-model(training_set, k, measure) 
02)  {select features as explained in Section 2.1} 
03)  model = Φ 
04)  forall training instances t ∈ training_set do begin 
05)       forall atomic patterns p ∈ t do begin 
06)           weight(p) = support(p, training_set) 
07)           append (p, each applicable class in model) 
08)       end 
09)       list = Φ 
10)      forall size-2 patterns p ∈ t do begin 
11)           significancelocal = average(TF(p1), TF(p2)) 
12)           class_significance_list = Φ 
13)           forall class c ∈ p do begin 
14)               append(class_significance_list,  
15)                         interestingness(p, measure, training_set, c)
16)           end 
17)           significanceclass = average(class_significance_list) 
18)           significanceglobal = 
19)                         interestingness(p, measure, training_set) 
20)           significance(p) = significancelocal* 
21)                         significanceclass * significanceglobal 
22)           append (list, p) 
23)       end 
24)       {sort list in decreasing order of significance(p)}  
25)       for (i = 1; i <= k; i ++) do begin 
26)           weight(listi) =  
27)                interestingness(listi, measure, training_set)
28)           append (listi, each applicable class in model) 
29)       end 
30)  end 
31)  {apply z-score standardization on all weights in model} 
32)  forall classes c ∈ model do begin 
33)      forall patterns p ∈ c do begin 
34)           weight(p) = weight(p) * mono(support(p, c)/size(c))
35)       end 
36)  end 
37)  return model 
38) end 

Figure 1. Method build-model 
Next, in order to determine the pattern significance 

at class and global levels, we use a common 2 x 2 
contingency-table-based interestingness measure. A 
recent study [19] evaluated most of the interestingness 
measures found in [12, 13], in the context of 
hierarchical document clustering, and reported that 
only a small number of interestingness measures 
generalize well to datasets with varying characteristics. 
Coincidently, we found that the same measures (in a 
slightly different order) are useful to determine class 
and global significance values for pattern-based 
classification. Since training instances may belong to 
more than one class in multi-label classification 
problems, we determine the class significance (lines 

13-17) by averaging the pattern interestingness values 
of all classes applicable to the current training instance.  

All size-2 patterns are then sorted  according to 
their significance values (line 24), and top-k patterns 
are selected (lines 25-29) to represent the training 
instance in the classification model, with global pattern 
significance used as initial pattern weight (line 26). 

Example: Considering the training instance T1 in 
Table 1, and pattern {a, b}, we calculate the local 
pattern significance by averaging the TFs of atomic 
patterns 'a' (i.e., 2/7 = 0.285) and 'b' (i.e., 4/7 = 0.571), 
i.e., 0.428. The class significance of pattern {a, b} is 
obtained by calculating the value of the selected 
interestingness measure using a contingency table, 
formed using the frequencies of atomic patterns 'a' 
(i.e., 4) and 'b' (i.e., 3) in class 0, where N = 5 (i.e., 
number of instances in class 0), in the usual way [12]. 
Similarly, the global significance of pattern {a, b} is 
obtained by calculating the value of the selected 
interestingness measure using a contingency table, that 
considers the frequencies of atomic patterns 'a' (i.e., 4) 
and 'b' (i.e., 8) in the whole training set, where N = 11 
(i.e., the total number of instances in the training set). 

It is important to note that weights assigned to size-
1 and size-2 patterns do not lie on the same scale. This 
is an artifact of their methods of calculation, rather 
than their relative importance. We investigated ways of 
normalizing these weights, and found that the simplest 
way is to use z-score standardization. Realizing that z-
score standardization assumes a normal distribution, 
which might not be true in some cases, we leave 
investigating a more robust technique for future work. 

Furthermore, based on our empirical observation 
that size-2 patterns are more important than size-1 
patterns, we scale down the weights of size-1 patterns 
(i.e., by a factor of 4, which again performs robustly). 

Finally, we adjust normalized weights of patterns 
assigned to each class (lines 32-36) with respect to the 
class size and pattern support in the class, using a 
monotonically increasing weight adjustment scheme. 
We evaluated various monotonically increasing 
functions for this purpose, and empirically found that 
the best classification results are achieved when 
mono(x) = xp, with 0.05 <= p <= 0.10. We fix this 
value to 0.07 (line 34) for all experiments in this paper.  

Note that the final form of our pattern weighing 
scheme was obtained by evaluating many alternatives, 
including one that used class interestingness instead of 
global interestingness. We found that these class-
specific values are highly unstable, especially on 
datasets with a high-degree of class imbalance, and are 
not suitable to be used globally (i.e., to compare 
significance across classes). Therefore, these values 
are only used in the more meaningful context of 



selecting top-k patterns for training instances (lines 10-
30).  

 
3. Classifying Test Instances 
 

Once the classification model is available, it can be 
used to classify previously unseen, unlabeled (test) 
instances by the following three-step process: 

Step 1: Given a test instance t, and model, identify 
the set of common patterns CP (i.e., patterns that exist 
in both t and model). 

Step 2: Use patterns in CP and a scoring function 
(below) to obtain scores for all classes in model. 

Step 3: For single-label problems, select the label of 
the class with the highest score. For multi-label 
problems, select multiple classes using the "weighted 
dominant factor-based" scheme in Section V(C-3) of 
[9], except replacing all uses of confidence with the 
selected interestingness measure. 

The scoring function: Given the set of common 
patterns S (i.e., step-1 above), and a class c, our 
scoring function uses all (i.e., size-1 and size-2) 
patterns in S that also exist in the pattern list of class c 
in model, to calculate the score of class c with respect 
to the test instance: 
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where TF is the term frequency of pattern Si in the test 
instance for size-1 patterns, and the average of the TF 
values of both atomic patterns in Si for size-2 patterns. 
The idea of using local pattern frequencies here is 
similar to the idea of using local pattern significance in 
our training phase, which aims to capture the notion of 
a voter’s bias towards each candidate.  

 
4. Experimental Results 

 
We conduced an extensive experimental study, and 

evaluated the performance of our algorithm on 121 text 
and web datasets, with varying characteristics. For 
each dataset, we compared the classification results 
obtained by our algorithm against various state of the 
art classification algorithms. In order to ensure a fair 
comparison we obtained data from the same sources 
and used the same evaluation metrics as used by the 
existing classifiers. We do not report the details of 
datasets used in our experiments here and refer the 
reader to [9, 15, 21, 27].  

 
4.1. Classification performance 
 

We first evaluated the effectiveness of various 
interestingness measures [12, 13], to determine global 

and class significance values (i.e., Section 2.2) on a 
number of datasets, and found that the top measures 
reported in [19], in the context of hierarchical 
document clustering, also consistently performed well 
in our context (in a slightly different order). We 
observe that Added Value generally outperformed 
other measures, while Mutual Information, Chi-
Square, and Yule's Q achieved very close (i.e., within a 
few-percent range) classification performance. For the 
reason of space, we do not compare the relative 
performance of these measures here and note that all 
results reported in this section used Added Value as the 
interestingness measure, with k fixed to 25.  

Additionally, all results reported here used the 10-
fold cross validation scheme (with averages of all 10 
experiments reported, as usual), except on Reuters-
21578 dataset, where we used the ModApte split [21] 
to ensure an apples-to-apples comparison with results 
reported by existing studies.  
 
4.1.1. Reuters-21578 (ModApte) text dataset. 
Reuters-21578 is the most-commonly used benchmark 
dataset to evaluate the performance of multi-class, 
multi-label classification algorithms. Existing studies 
like [9, 22] used the micro-averaged, precision-recall 
breakeven points on 10-largest categories, as the main 
performance criteria. We calculated these breakeven 
points in a way similar to [9], i.e., by changing the 
dominant factor, and keeping a fixed "score differentia 
factor" (i.e., 0.8). Note that we already fixed the 
interestingness measure to Added Value and k to 25. 
Table 2. Breakeven performance on Reuters-21578 

Category Harm
ony

Find 
Sim

Naïve 
Bayes

Bayes
Nets 

Trees SVM 
(linear)

ARC-
BC 

Demo
cratic

acq 95.3 64.7 87.8 88.3 89.7 93.6 90.9 95.1
corn 78.2 48.2 65.3 76.4 91.8 90.3 69.6 72.5
crude 85.7 70.1 79.5 79.6 85.0 88.9 77.9 91.6
earn 98.1 92.9 95.9 95.8 97.8 98.0 92.8 96.4
grain 91.8 67.5 78.8 81.4 85.0 94.6 68.8 91.9

interest 77.3 63.4 64.9 71.3 67.1 77.7 70.5 84.2
money-fx 80.5 46.7 56.6 58.8 66.2 74.5 70.5 89.0

ship 86.9 49.2 85.4 84.4 74.2 85.6 73.6 85.4
trade 88.4 65.1 63.9 69.0 72.5 75.9 68.0 87.2
wheat 62.8 68.9 69.7 82.7 92.5 91.8 84.8 73.3

micro-avg 92.0 64.6 81.5 85.0 88.4 92.0 82.1 92.6
Table 2 presents the results of this experiment. The 

results for Find-Sim, Naïve Bayes, Bayes-Nets, Trees 
(i.e., Decision-Trees), and linear-SVM are obtained 
from [22], while the results for ARC-BC are obtained 
from [23]. Note that [9] also used the same results. 
Finally, the results for Harmony are obtained from 
Table VIII of [9]. Among the ten-categories, our 
algorithm achieved the best break-even performance 
on 3 categories (i.e., crude, interest and trade), and 



ranked second on another 3 categories (i.e., acq, ship 
and trade) with ranks 3-5 achieved on the remaining 4 
categories. Most importantly, our algorithm 
outperformed all existing classification algorithms in 
terms of micro-average performance. 

 
4.1.2. Text datasets. From Table 2, we observe that 
linear SVM and Harmony outperformed other 
classification algorithms on the Reuters-21578 dataset. 
We performed additional experiments on 20 standard 
text datasets, and evaluated the 10-fold cross validated 
classification accuracies achieved by our “Democratic 
Classifier” against these two classification algorithms. 
Data sets tr11, tr12, tr23, tr31, tr41, tr45, fbis, hitech, 
la1, la2, la12, and sports are derived from TREC-5, 
TREC-6, and TREC-7 collections [28]. Data sets re0 
and re1 are from Reuters-21578, obtained by removing 
the relatively easy to classify dominant classes such as 
learn and acq, and by splitting the remaining classes 
into two sets. The Classic4 dataset is obtained by 
combining CACM, CISI, CRAN, and MED abstracts. 
Datasets k1a, k1b and wap are from the WebACE 
project, and dataset ohscal was derived from the 
Ohsumed collection. All of these datasets are available 
as part of the Cluto clustering toolkit [27]. 

Table 3. Classification accuracies on text datasets 

 
Linear SVM 
(tuned for C) 

Harmony  
(tuned for support) 

Democratic 
(untuned) 

classic4 76.45 94.17 91.73 
fbis 76.70 77.96 78.52 

hitech 70.28 67.08 72.27 
k1a 76.50 76.54 78.03 
k1b 75.30 97.79 94.10 
la1 78.15 83.46 85.39 
la2 80.16 83.53 87.84 
la12 78.93 85.37 86.41 
mm 97.30 95.58 98.93 

ohscal 76.66 76.91 73.43 
re0 76.20 78.33 80.92 
re1 75.01 78.02 82.02 

sports 95.79 94.90 97.12 
tr11 81.91 84.55 86.22 
tr12 84.95 81.16 89.81 
tr23 84.31 87.74 94.10 
tr31 95.25 96.12 97.20 
tr41 91.46 92.14 94.31 
tr45 90.15 91.04 90.58 
wap 74.55 72.62 75.51 

average 81.80 84.75 86.72 
We used the SVM light [29] implementation of 

linear SVM, and used various values of C (i.e., 0.1, 
0.5, 1.0, 1.5, 2.0, 2.5) to tune linear SVM on each 
dataset. We report the best 10-fold cross validated 
classification accuracy achieved on each dataset in 

Table 3. As the authors of Harmony [9] have also 
noted, we found other SVM kernels (such as RBF) 
impractical for large text datasets, because of their 
extensive computational time requirements. 

Similarly, we obtained Harmony executables from 
the first author of [9], and tuned Harmony with various 
values of minimum support (i.e., 25, 50, 75, and 100) 
on each dataset. We report the best 10-fold cross 
validated classification accuracy achieved on each 
dataset in Table 3. Note that it was not always possible 
to execute harmony on each dataset for all of these 
minimum support values (see Section 4.2 for details).      

In contrast, our Democratic Classifier used the same 
fixed parameter values (i.e., Added Value as 
interestingness measure, and k = 25) on all 20 datasets. 
In addition, we only used the top-scoring class for each 
test instance to calculate the classification accuracies 
on these single-label datasets. 

From Table 3, we observe that the Democratic 
Classifier, without any parameter tuning, resulted in 
the highest classification accuracies on 16 out of 20 
datasets, and was very competitive on the remaining 4 
datasets. Most importantly, the Democratic Classifier 
achieved the highest average classification accuracy 
across all 20 datasets. Note that tuning our classifier on 
each dataset with various values for k and 
interestingness measure improved the classification 
accuracies even further (we noticed up to 5% 
improvement on some datasets). However, we consider 
extensive parameter tuning to be less meaningful for 
practical purposes and omit those results. 

 
4.1.3. TechTC-100 web datasets. In recent years, 
many researchers questioned the usefulness of standard 
news datasets, such as Reuters-21578 as realistic 
benchmarks for classification research. Dumais and 
Chen [24] state that “the Reuters collection is small 
and very well organized compared with many realistic 
applications”. Scott [25] noted that the Reuters corpus 
has a very restricted vocabulary, since Reuters in-
house style prescribes using uniform unambiguous 
terminology to facilitate quick comprehension. 
Considering these issues, a recent study [14] followed 
a systematic process to produce a new, more realistic 
collection of 100 benchmark datasets, called TechTC-
100 [15]. These datasets are generated using real web-
sites, classified by human editors as part of the open 
directory project [26]. Furthermore, TechTC-100 
datasets are very noisy, and high-dimensional (i.e., an 
average of 18,073 features in each dataset, where the 
average number of instances is only 149), with 
categorization difficulties uniformly distributed 
between 0.6 and 0.92 [15]. 



Table 4 compares the average classification 
accuracies achieved by our classifier against SVM, 
C4.5, K-Nearest-Neighbor (i.e., KNN), and Harmony, 
on all of the TechTC-100 datasets. We obtained results 
of SVM, C4.5 and KNN from [16] (and reported at 
[15]). These results represent the performance of each 
of the three classifiers at their respective optimal 
feature selection levels. Note that the un-tuned 
accuracies of all three classifiers reported at [15] are 
much lower (i.e., an average of 77% for SVM). 

Table 4. Average classification accuracies on all 
TechTC-100 datasets 

SVM  
(tuned) 

C4.5  
(tuned) 

KNN 
 (tuned) 

Harmony 
(tuned) 

Democratic 
(untuned) 

85.3 84.3 82.7 85.8 95.2 
We tuned Harmony on each dataset, using various 

kRules (i.e., 1, 3, 5, 10), and minimum support (i.e., 
10, 13, 15, 20, 25, 30) values. We recorded the best 
tuned 10-fold cross-validated accuracies for each 
dataset, and report the average in Table 4. Note that the 
classification accuracies using the same set of 
parameters for all datasets peaked at about 83.4%, with 
kRules = 5, and min support = 25.  

Figure 2. Classification accuracies on TechTC-100 
In contrast, our algorithm used the same fixed 

parameter values on all datasets, and we report the 
overall average accuracy in Table 4. In addition, we 
report classification accuracies of our classifier, and 
the best competitor on each of the TechTC-100 
datasets in Figure 2. For the sake of clarity, these 
accuracies are sorted in the decreasing order of our 
accuracies across all datasets. 

From Figure 2, we observe that our algorithm, 
without any parameter tuning, outperformed existing 
classification algorithms with a very significant margin 
(i.e., an average of 9.4%). Our algorithm was better 
than all other algorithms on 97 out of 100 datasets, and 
was ranked second on the remaining 3 datasets. We 
believe that this happens because of four main reasons. 
First, the noise-level on these real-life datasets is quite 

high, and our novel, voting-based pattern selection 
method is less sensitive to noise, because we select 
patterns that provide an effective balance between 
local, class, and global significance. Second, as we 
noted in Section 2.2, the local pattern significance 
values can be very important for web datasets, 
something that is ignored by most of the existing 
algorithms. Third, a large number of TechTC-100 
datasets contain patterns that are shared across classes 
(especially on datasets with closely-related categories); 
our unique democracy-inspired pattern assignment 
scheme allows these patterns to appear in multiple 
classes, with weights adjusted according to their class 
significance, whereas most of the existing algorithms 
make binary decisions on these patterns that may be 
sub-optimal. Finally, most datasets in this collection 
are relatively balanced, and democracy is known to 
work well with balanced constituencies.  

 
4.2. Runtime performance 
 

Since our classifier is most similar to Harmony [9] 
in that Harmony also builds a classification model 
directly from patterns mined from the training set, we 
compare the runtime performance of our classifier 
against Harmony in this section. For fairness, we note 
that even though Harmony is shown to run orders of 
magnitude faster than existing classifiers including 
linear SVM as implemented in SVM Light [29] (which 
we also used for experiments reported in this paper), 
we expect newer linear-time linear SVM 
implementations such as [33] to run faster than both 
Harmony and our classifier. Nevertheless, the accuracy 
gains realized by our classifier may provide a 
reasonable justification for considering it over SVMs. 

To compare our classifier against Harmony, we 
executed both Harmony (as implemented by the 
original authors), and our Democratic Classifier on all 
of the TechTC-100 cross-validation datasets (i.e., a 
total of 1000 datasets), and summed the total training 
and testing times. The same dedicated machine (a 64-
bit Intel Xeon based server, with Windows XP 64 
professional, and 8 GB of memory) was used to 
execute both algorithms. Furthermore, we repeated this 
test using various parameter values. For Harmony, we 
used kRules = 3, 5, and 10, and for each kRules value, 
we set minimum support to 10, 15, 20, 25 and 30, 
yielding to a total of 15,000 (i.e., 5 x 3 x 1000) 
executions. On the other hand, we used k = 20, 25, and 
30 for our algorithm. Figure 3 presents the results of 
this experiment.  

For fairness, we note in passing that when minimum 
support was set as low as 10, many of the executions 
on dataset 82 caused Harmony to execute for 5+ hours, 



after which it had to be terminated. Upon manual 
investigation, we found that some training instances in 
this dataset are very large (i.e., large number of atomic 
patterns), and they cause long-pattern-based algorithms 
to take a very long time. As a result, we do not report 
the performance of Harmony at this support level. 

From Figure 3, we observe that the performance of 
Harmony significantly depends on the parameter 
values used, varying by a factor of 10. Setting a low 
minimum-support causes Harmony to take a long time, 
whereas it finishes quickly on a high minimum-support 
value. Unfortunately, high-minimum support values 
may not always result in good accuracies. Furthermore, 
higher kRules values also causes Harmony to take 
more time. Note that these issues are not unique to 
Harmony and other minimum support based 
algorithms are likely to exhibit the same behavior. 

Figure 3. Total runtime and average classification 
accuracies of Harmony at various support levels, 
with kRules = {3, 5, 10}, and our classifier, with k = 
{20, 25, 30} on TechTC-100 datasets 

In contrast, the performance of our algorithm did 
not notably vary with k values. This happens because 
in our algorithm, each training instance first calculates 
significance scores of all of its size-2 patterns, and then 
selects top-k patterns. As a result, a slightly higher 
value for k only adds a negligible amount of work.  

Table 5. Total runtime of Harmony with optimal 
supports, and our classifier with k = 25 on TechTC-100  

Harmony (optimal support) Democratic Classifier (k=25)
3846 seconds 1096 seconds 

Table 5 reports the total Harmony execution times 
using the parameters that resulted in the best 
classification accuracy values on each dataset (i.e., 
parameters used for the results reported in Table 4). 
Table 5 also reports the total execution times of our 
algorithm using our fixed parameter values. We 
observe that our algorithm ran about 3.5 times faster. 
Harmony took an average of 3.9 seconds to train and 
test a dataset (which is still very fast) whereas our 
algorithm took an average of 1.1 seconds only. The 

primary contributor towards this significant difference 
is the fact that we use very short patterns. 

 
5. Related Work 
 

Our work relates to existing rule and pattern-based 
classification algorithms, with several important 
differences. Rule-induction-based classifiers like FOIL 
[2], RIPPER [3], CPAR [4] and C4.5 [1] use heuristics 
such as Gini Index and Information Gain (or 
Information Gain variants), to identify the best literal 
by which to grow the current rule [9], and many of 
them follow the sequential covering paradigm. In 
contrast, association rule-based classifiers such as 
CBA [5], CAEP [6], CMAR [7], ARC-BC [8], and 
DeEPs [11] first mine a large set of association rules 
that satisfy user-defined support and confidence 
thresholds, and then extract the final set of 
classification rules by following a database covering 
technique.  

Our algorithm is similar to these algorithms in that 
we also use patterns. But unlike rule-induction based 
algorithms, we do not discover one rule at a time, and 
unlike association-based algorithms, we do not have a 
global pattern mining step. Instead, we directly find 
"balanced" patterns from each training instance, for all 
applicable classes simultaneously.  

In these aspects, our approach resembles Harmony 
[9], which follows an instance-centric approach that 
mines at least one highest-confidence rule for each 
training instance. However, our approach differs from 
Harmony in many ways. First, Harmony uses a 
minimum support threshold, which is difficult to reuse 
across datasets (Section 4.1), and may also result in a 
classification model that do not cover some of the 
training instances. In contrast, by having each training 
instance "vote" for top-k "balanced" patterns, our 
approach guarantees that the resulting classification 
model covers each training instance. We show in 
Section 4.1 that our fixed parameter k performs 
robustly. Second, Harmony primarily uses global 
pattern significance, and partially uses the class 
significance in a local item ranking scheme whereas 
we balance local, class, and global pattern significance. 
Third, we replace confidence with a contingency table-
based interestingness measure. Fourth, Harmony does 
not impose any limits on pattern length, whereas we 
use very short patterns, resulting in significant 
performance improvements without sacrificing 
accuracy. Fifth, our score calculation method also 
considers local significance of patterns in test 
instances.  



We observe that our algorithm shares some 
similarities with RCBT [10], a pattern-based 
classification algorithm that achieved high accuracy on 
gene expression data. For each row in the training set 
of the gene expression profiles, RCBT finds top-k rule 
groups for the corresponding class, and does not use a 
minimum confidence threshold. Still, it uses a 
minimum support threshold, and relies on confidence 
as a significance measure. Additionally, RCBT 
imposes no limits on pattern lengths, and training and 
test phases in RCBT do not utilize local and class 
significance of patterns. 

We finally note that recent work in augmenting 
training data with discriminative frequent patterns [30, 
31], originally applied to low-dimensional numerical 
UCI datasets, is also related to our research, and we 
intended to compare our Democratic Classifier with 
this approach. Unfortunately, the executables that we 
obtained from the authors of [30, 31] did not work on 
high-dimensional text datasets used in this paper. 
Therefore, we leave this comparison for future work. 

 
6. Conclusions and Future Work 
 

We proposed a democracy-inspired, short-pattern-
based classification algorithm in this paper. In addition 
to size-1 patterns, our algorithm selects top-k size-2 
patterns to represent each training instance, that 
provide an effective balance between local, class and 
global significance. Our novel pattern assignment 
scheme allows patterns to appear in the classification 
model of multiple classes, with a unique, power law 
based scheme used to adjust pattern weights. 
Furthermore, our algorithm replaces hard-to-generalize 
minimum support and confidence thresholds with k 
and an interestingness measure, parameters that are 
robust across datasets. With ten-fold cross-validated 
results of experiments performed on 121 datasets, we 
show that our algorithm achieves overall classification 
results that are better than many well known 
classification algorithms, with most significant gains 
realized on real-life, noisy, web datasets. In addition, 
our algorithm ran about 3.5x faster than the fastest 
existing pattern-based classification algorithm. 

In the future, we plan to investigate a more robust 
scheme to replace z-score standardization, and to 
investigate better ways of assigning weights to size-1 
patterns. We also intend to apply our algorithm in 
other domains. 
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