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Abstract 
 

Data mining algorithms use various Trie and 
bitmap-based representations to optimize the support 
(i.e., frequency) counting performance. In this paper, 
we compare the memory requirements and support 
counting performance of FP Tree, and Compressed 
Patricia Trie against several novel variants of vertical 
bit vectors. First, borrowing ideas from the VLDB 
domain, we compress vertical bit vectors using WAH 
encoding. Second, we evaluate the Gray code rank-
based transaction reordering scheme, and show that in 
practice, simple lexicographic ordering, obtained by 
applying LSB Radix sort, outperforms this scheme.   

Led by these results, we propose HDO, a novel 
Hamming-distance-based greedy transaction 
reordering scheme, and aHDO, a linear-time 
approximation to HDO. We present results of 
experiments performed on 15 common datasets with 
varying degrees of sparseness, and show that HDO- 
reordered, WAH encoded bit vectors can take as little 
as 5% of the uncompressed space, while aHDO 
achieves similar compression on sparse datasets. 
Finally, with results from over a billion database and 
data mining style frequency query executions, we show 
that bitmap-based approaches result in up to hundreds 
of times faster support counting, and HDO-WAH 
encoded bitmaps offer the best space-time tradeoff. 

 
1. Introduction and Related Work 
 

Calculating itemset support (or frequency counting) 
is a fundamental operation that directly impacts space 
and time requirements of many widely used data 
mining algorithms. Some data mining algorithms (i.e., 
frequent itemset mining [1]) are only concerned with 
identifying the support of a given query itemset, while 
others (i.e., pattern-based clustering algorithms 
[13,14,15]) must in addition identify the transactions 
that contain the query itemset. 

 

1.1. Trie-based representations 
 

First generation data mining algorithms used the 
Trie data structure to improve the itemset support 
counting performance. In the following years, a 
number of improvements like [16,17] were proposed to 
further optimize support counting using Trie. These 
approaches, however, did not address the major 
drawback of overwhelming (possibly exponential in 
depth [10]) space requirements.  

Table 1. A transaction database as running 
example, assuming minimum support = 2 

TID Items Frequent items 
ordered w.r.t. 

decreasing supports 

Bitmaps 
representing each 

transaction 
T1 {1, 2} {2, 1} 11000 
T2 {1, 3, 4, 5} {3, 4, 5, 1} 10111 
T3 {2, 3, 4} {3, 2, 4} 01110 
T4 {2, 3, 4, 5} {3, 2, 4, 5} 01111 
T5 {2, 3, 4} {3, 2, 4} 01110 
T6 {1, 2, 3, 5} {3, 2, 5, 1} 11101 
T7 {2, 3} {3, 2} 01100 
T8 {3, 4} {3, 4} 00110 
T9 {5} {5} 00001 
T10 {3} {3} 00100 

Han et. al. [2] addressed this issue by introducing 
FP Tree, a Trie-inspired data structure that reduces the 
space requirements of the original Trie data structure 
by eliminating the need to insert each transaction into 
all paths corresponding to the subsets of the 
transaction. The FP Tree is generated by identifying 
frequent 1-items in one pass over the dataset, These 
items are sorted in descending order of their supports, 
and inserted into the FList. A second pass is made to 
construct the FP Tree in which items are considered in 
the order of the FList. The first node corresponding to 
each item is pointed from a header table and each FP 
Tree node contains a link to the next node 
corresponding to the same item.  



 
Figure 1. The FP Tree of dataset in Table 1, each 
node contains an item:frequency pair, and dotted 

arrows represent node links 
Example 1: Considering the transaction database in 

Table 1, the FList contains items in the order (3, 2, 4, 
5, 1). Column 3 of Table 1 presents items in each 
transaction ordered according to the FList, and Figure 
1 presents the corresponding FP Tree. 

Figure 2. A Binary Trie, nodes contain the count of 
transactions with the same prefix, and dotted 

arrows represent pointers from the horizontal lists 
In another approach, Yang et. al. [10] reduced the 

space requirements of the Trie data structure by 
limiting the branching factor to 2. This is achieved by 
generating a Binary Trie which considers presence or 
absence of all items in the transaction, rather than only 
considering items that exist in the transaction. For each 
item, a global list of horizontal pointers containing 
pointers to all nodes that represent the item is 
maintained. This list enables efficient support 
counting. Note that the Binary Trie may contain a large 
number of single-child nodes, especially on sparse 
datasets. This observation is used to merge these 
degree-1 nodes with their children, while maintaining 
the corresponding horizontal pointer lists. The 
resulting data structure is called a Compressed Patricia 
Trie.  

Example 2: Column 4 of Table 1 contains a binary 
representation (i.e., presence or absence of all features) 
for each transaction. The corresponding Binary Trie is 
presented in Figure 2, and the Patricia Trie obtained by 
compressing the Binary Trie is presented in Figure 3. 

Note that the Binary Trie presented in [10] contains 
additional horizontal pointers to represent absence of 
items. We eliminate these pointers as they are not 
relevant for support counting purposes. 

Figure 3. A Compressed Patricia Trie 
.  

1.2. Bitmap-based representations 
 

Trie-based representations are suitable for 
algorithms that are not concerned with the actual 
transactions that contain the query itemset, but they fell 
short when these transactions must also be identified. 
One solution, used by Hu et. al. in a hierarchical 
clustering algorithm [14] is to store a list containing 
the applicable transaction IDs at each node of the Trie. 
This approach may work for small datasets but is 
impractical for large datasets because of its significant 
space requirements. In the worst case (i.e., where each 
transaction contains each item), IDs of all transactions 
are replicated at each node. Another possible, but very 
inefficient solution is to first find the support count 
using the Trie-based data structure and then scan the 
dataset once to find the applicable transactions.  

Considering these issues, a number of recent 
approaches [11,12,15,18,19,20] adapted uncompressed 
bitmap-based representations (i.e., vertical bit vectors). 
In these approaches, a bitmap is generated for each 
item in the dataset, where each bit represents presence 
or absence of the item in a transaction. Some of these 
approaches [15] also reduce the number of bitmaps by 
eliminating non-frequent 1-itemsets as a preprocessing 
step. Support is calculated by ANDing (i.e., 
intersecting) bitmaps of all items in the itemset, and 
counting the number of one-bits in the resulting 
bitmap. Note that in typical data mining algorithms 
(i.e., itemset mining), the number of bitmaps ANDed 
to find support of an itemset of size k (where k >= 2) is 
exactly 2, as the previous step would have already 
generated and preserved bitmaps of all large k-1 sized 
subsets of the query itemset (i.e., guaranteed by the 
downward closure property). Unlike Trie-based 
approaches, no additional processing is needed to find 
the transactions containing the query itemset, as these 



transactions are readily available in the resulting 
bitmap.  

Table 2. Vertical bit vectors and corresponding 
WAH compressed bitmaps for the dataset in Table 

1, assuming 4-bit words for WAH encoding 
Item Vertical bit  vector WAH compressed bitmap 

1 1100010000 0110 0001 1001 0000 
2 1011111000 0101 1101 0100 0000 
3 0111111101 0011 1101 0110 0100 
4 0111100100 0011 0110 0010 0000 
5 0101010010 0010 0101 0001 0000 
Example 3: Table 2 presents vertical bit vectors for 

the dataset in Table 1 (section 2.1 provide details on 
the third column). Considering a query itemset {2, 5}, 
we obtain support of the query itemset by ANDing 
1011111000 with 0101010010. This results in a new 
vertical bit vector 0001010000. Counting the number 
of 1-bits, we obtain the itemset support count of 2. The 
resulting bit vector also identifies the transactions (i.e., 
4, 6) that contain the query itemset. 

The most significant disadvantage of this approach 
is that for a dataset containing n transactions and m 
frequent 1-items, the amount of space needed for these 
bitmaps is always m x n bits, regardless of the 
characteristics of the underlying dataset. In reality, 
many data mining datasets are sparse, which would 
result in bitmaps with a lot more zero-bits than one-
bits. Moonesinghe et. al. [12] addressed this problem 
by first generating a prefix graph that contains a node 
for each item, and then storing a separate set of 
variable-sized horizontal bitmaps along with each 
node. This approach facilitates fast support counting, 
and frequent itemset mining but does not automatically 
identify corresponding transactions.  
 
1.3. Contributions 
 

In an attempt to find a space and time efficient 
dataset representation for fast support counting, that 
also identifies corresponding transactions, we first 
identified similarities between the support counting 
problem and the problem of performing logical 
operations on equality coded index bitmaps in the very 
large databases (VLDB) domain. We then considered 
various compressed bitmap representations of database 
indices, and limit ourselves to schemes that allow 
efficient logical operations directly on two compressed 
bitmaps, resulting in a compressed bitmap, without 
decompressing any of the operand bitmaps. We 
evaluated the best of these representations (i.e., WAH 
compressed bitmaps [5,6,7], with two different word 
sizes) against FP Tree, Patricia Trie, and uncompressed 
vertical bit vectors, both in terms of space 
requirements, and the query processing performance on 

more than a billion database and data mining style 
frequency queries. We then evaluated the effectiveness 
of recently proposed [8] pre-compression step of 
applying Gray code sorting to re-order transactions, on 
bitmaps representing 15 widely used datasets and 
found that this reordering scheme does not result in an 
optimal solution on real-life datasets, because of  the 
large number of empty cells (section 3.2). We observe 
that in practice, even simple lexicographic ordering, 
obtained by applying Least Significant Bit Radix sort 
on transaction bitmaps, may outperform this scheme.   

As a replacement, we propose two novel, 
Hamming-distance-based transaction reordering 
schemes (sections 3.3 and 3.4) with different space and 
time characteristics, and show (section 4.1) that these 
schemes increase the compressibility of bitmaps.  
 
2. Compressing Vertical Bit Vectors 
 

We observe that when vertical bit vectors are used, 
the itemset support counting problem is a 
specialization (i.e., subset) of the problem of 
processing bitmap indices to find all rows from a 
database table, that satisfy the given criteria. Column 
values in a database table can be both equality and 
range coded, and the criteria can contain a variety of 
logical operations (i.e., the 'where' clause in SQL, 
ignoring joins and other cross-table operations). 
Whereas in case of support counting, the values are 
equality coded (i.e., presence or absence of an item in a 
transaction) and the problem is to find all rows that 
contain all items in the given criteria (i.e., the query 
itemset). Considering this observation, existing 
techniques to optimize the performance of bitwise 
logical operations on equality coded index bitmaps 
from the very large databases (VLDB) domain can be 
directly applied on the vertical bit vectors used for 
itemset support calculation. 

There exists a tradeoff between the degree of 
compression, and the amount of time needed to 
perform logical operations on compressed bitmaps. 
Studies [5,9] show that many well known lossless 
compression schemes such as LZ coding, B-W text 
compression and Huffman coding are very effective in 
compressing bit sequences, but require decompressing 
operand bitmaps to perform logical operations. Even 
though these schemes may achieve a higher 
compression ratio, the computational cost of 
performing logical operations makes them impractical 
for query intensive and real-time applications. 
Considering these issues, a number of schemes that 
mix run-length encoding and direct storage were 
proposed. These schemes allow logical operations 
directly on two compressed bitmaps, resulting in a 



compressed bitmap. Some of these schemes like BBC, 
PackBits and PBM are byte-based, while other 
schemes like HRL, WAH, PWC and WBC are word-
based. Studies show that word-based schemes like 
WAH offer the best space-time tradeoff for performing 
logical operations. For the reason of space, we do not 
compare these schemes here, and refer the reader to 
[5,6,7]. 
 
2.1. WAH compressed bitmaps 
 

Word-Aligned Hybrid code (WAH) [5] is a simple 
linear-time compression scheme that reads a bit 
sequence one bit at a time, and produces a word 
aligned compressed bitmap, where the word size W is 
configurable. Each word in the resulting compressed 
bitmap represents either a literal run or a fill run. 
Literal runs contain uncompressed data while the fill 
runs contain a word-aligned sequence (i.e., fill) of 
consecutive zero or one bits. The first bit in each word 
identifies the run type (i.e., 0 = literal run, and 1 = fill 
run). In case of a literal run, the rest of the W - 1 bits in 
the word contain a direct sequence of bits, whereas in 
the case of a fill run, the second bit in the word 
identifies the fill bit b, and the remaining W - 2 bits 
contain a count c which represents a sequence of c * 
(W - 1), b-bits. Note that for an input bitmap with n 
bits, the size of WAH compressed bitmap is upper 
bounded by          bits, or O(n). The worst case occurs 
when there are no fill runs in the resulting WAH 
compressed bitmap. Furthermore, the absolute value 
for the worst case (and the overhead) decreases as W 
increases. 

Example 4: Column 3 of Table 2 presents WAH 
compressed bitmaps for vertical bit vectors in column 
2. Bold bits are run identifiers, and the highlighted bits 
are fill bits. Note that many of the resulting WAH 
compressed bitmaps demonstrate the worst case space 
scenario, because we used an artificially small value 
for W, and a very small transaction database for 
simplicity sake. We show in section 4.1 that WAH 
encoded bitmaps do not use more space than the 
corresponding uncompressed bitmaps on real-life 
datasets.  

 
2.2. Counting Support using WAH compressed 
bitmaps 
 

Similar to vertical bit vectors, support of a query 
itemset is obtained by ANDing the corresponding 
WAH compressed bitmaps, and counting one-bits in 
the resulting bitmap. Two WAH compressed bitmaps 
are ANDed by iteratively decoding words from  each 
of the operand bitmaps, and applying the AND 

operation on the decoded words [5]. The outcome is 
then added to the output bitmap. If both operand words 
represent literal runs, the outcome is determined by 
simply ANDing the two words. If one of the operand 
words represent a zero-fill, the same number of zeros is 
added to the output, and an equal number of bits are 
skipped from the other operand bitmap. Finally, if one 
of the operand bitmaps represent a one-fill, number of 
bits equal to the fill size is added from the other 
bitmap. Since processing fill runs can result in left over 
bits from either operand word, some bookkeeping is 
needed to track these leftover bits. Also, when adding a 
fill run to the output bitmap, the previous word in the 
output bitmap is checked for the presence of a 
matching fill, and the existing fill count is incremented 
by the new fill count, in case of a match. For more 
details, see [5].  

Example 5: Considering WAH compressed bitmaps 
in the third column of Table 2, and a query itemset {2, 
5}, we first decode the first word in the first operand 
bitmap (i.e., 0101) and identify it as a literal run. We 
then decode the first word in the second bitmap (i.e., 
0010), and identify that it is a literal run as well. 
Therefore, we AND 101 and 010 to obtain 000, which 
results in adding a zero-fill-run with count = 1 (i.e., 
1001) to the output bitmap. Similarly, processing the 
next words (i.e., 1101 and 0101), we add a literal fill 
0101 to the output bitmap (since the first operand is a 
1-fill of size 1). Processing the next words (i.e., 0100 
and 0001), we add a new zero-fill 1001 to the output 
bitmap. Finally, we process the last two words (i.e., 
0000 and 0000), and add a new zero fill with count = 1. 
Since the previous word in the output bitmap was a 
zero-fill, we just increment it and the final output 
bitmap becomes 1001 0101 1010. Next, we count one-
bits in the output bitmap to determine itemset support. 
Decoding the first word (i.e., 1001), we find a zero-fill 
and continue to the next word. Decoding the second 
word (i.e., 0101), which is a literal fill, we add 2 (i.e., 
the number of 1-bits) to the support count. Finally, the 
last word is decoded and ignored as it is a zero-fill and 
we obtain the itemset support count of 2.  

Note that Support has an interesting property that 
the support of an itemset of size k is less than or equal 
to the support of all of its k-1 size subset-itemsets. In 
practice, a large number of itemsets have supports that 
are less than their subset-itemsets. This results in an 
important side effect of smaller and smaller WAH 
compressed bitmaps as the itemset size increases. As 
an example, to calculate support of the itemset {1, 3, 
4}, we AND the compressed bitmap for item {1} with 
the compressed bitmap for itemset {3, 4} (above), and 
obtain the output bitmap 0010 1011, with only two 
words. Consequently, this side effect makes WAH 
compressed vertical bit vectors even more feasible 
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(i.e., space efficient) for algorithms that store interim 
results. 

 
3. Increasing Bitmap Compressibility by 
Reordering Transactions 
 

The amount of compression achieved by run-length-
based compression schemes such as WAH encoding 
depends heavily on the availability of long sequences 
of 0 or 1 bits in the input bitmap. The best compression 
is achieved when the transactions are organized in a 
way that minimizes the total number of bit shifts across 
all columns. As an example, the first column of Table 
3 presents a small transaction dataset. The original 
order of the rows causes three bit shifts in the first 
column, three bit shifts in the second column and four 
bit shifts in the third column, adding to a total of 10 bit 
shifts. In contrast, the transaction ordering in the 
second column requires only two bit shifts in each 
column, adding to a total of six bit shifts for the 
transaction dataset, which represents a 40% reduction. 
Table 3. A transaction dataset in original order, an 
optimal ordering, and reordered using two schemes 
 Original 

order 
Optimal 

order 
Gray code 

sorted 
Radix 
sorted 

 T1: 101 
T2: 110 
T3: 001 
T4: 100 

T3:  001 
T1:  101 
T4:  100 
T2:  110 

T3:  001 
T2:  110 
T1:  101 
T4:  100 

T3:   001 
T4:   100 
T1:   101 
T2:   110

Bit changes in 
each column 

3, 3, 4 2, 2, 2 2, 3, 4 2, 2, 4 

Total bit changes 10 6 9 8 
Unfortunately, reorganizing transactions to achieve 

such an optimal ordering in general is same as the 
consecutive block minimization problem (or CBMP) 
which was proven NP-complete in 70’s by Kou [3]. 
More recently, even a fairly restricted version of this 
problem which limits the number of 1’s in each row to 
2, called 2CBMP [4], was also proven NP-hard. 

 
3.1. Reordering rows using Gray code sorting 
 

Pinar et. al. [8] named this problem as the “Tuple 
Reordering Problem”, and proven it NP-Complete by 
providing a reduction from the Traveling Salesman 
Problem. They proposed a linear in time and space 
transaction reordering scheme that is based on Gray 
code ranks, and showed that the reordered bitmaps 
achieve better WAH compression. As an example, the 
Gray code rank-based reordering reduces the total 
number of bit shifts from 10 to 9, on dataset in Table 3. 

 
3.2. Reordering rows using LSB Radix Sort 
 

It is important to note that Gray code rank-based 
transaction reordering results in an optimal solution 
only if all cells are "full" [8]. This means that for a 
transaction dataset with c columns, an optimal solution 
is obtained when there is at-least one transaction 
covering each of the 2c possible combinations, which is 
not realistic. Therefore, even on our toy dataset (Table 
3), applying Gray code rank-based reordering resulted 
in a small improvement.  

As an alternate, simple linear-time Least Significant 
Bit (LSB) Radix sort [21], with one bin for zero-bits 
and one bin for one-bits, can be used which results in a 
lexicographic ordering of transactions. We show in 
section 4.1 that lexicographic ordering outperforms the 
Gray code scheme on many real-life datasets. Column 
4 of Table 3 presents such an example, where 
lexicographic ordering results in 8 bit shifts, which is 
better than the Gray code rank-based solution.  

 
3.3. HDO, a Greedy, Hamming-distance-based 
transaction reordering scheme 
 

From Table 3, we observe that both Gray code rank-
based, as well as lexicographic reordering may not 
result in close to optimal solutions on transaction 
datasets.  We propose HDO, a greedy algorithm that 
reorders transactions in a way that ensures a high 
degree of similarity between neighboring transactions 
(i.e., minimizes Hamming-distance), hoping that this 
greedy choice results in a near-optimal solution. In 
other words, for each position i, HDO finds a 
transaction t that is closest to the transaction at position 
i-1. If there is more than one such candidate, it selects 
the transaction that results in least impact on the 
number of existing fill runs. 

Definition 1 (inter-transaction distance): Let ti be a 
transaction at position i and tj be a transaction at 
position j, distance between ti and tj is defined as 

)(),(
ji ttji bitmapXORbitmaptscountOneBitttDist =  

The function countOneBits(bitmap) returns the 
number of 1-bits in bitmap. Furthermore, the smaller is 
the value of tDist between ti and tj, the closer are ti and 
tj to each other. If tDist = 0, bitmaps for ti and tj are 
exactly the same. 

Example 6: Considering transactions T1 and T2 in 
Table 3, tDist(T1, T2) = countOneBits(101 XOR 110) 
=  countOneBits(011) = 2. 

Definition 2 (set of least-distant transactions): Let 
S be a set of transactions and t be a transaction in S. Let 
S’ is a subset of S that does not include t and some 
other transactions. The set CLt of transactions that are 
closest (i.e., least-distant) to t is obtained by: 



Step 1: For each transaction x in S’, calculate 
tDist(t, x) and store the outcome in list L. Additionally, 
track the minimum Distance value MIN. 

Step 2: For each transaction x in S, add x to CLt  iff 
tDist(t, x) = MIN. 

Definition 3 (HDO): Let S be a set of transactions, 
assume that transactions S1 to Si – 1 are already in HDO. 
Let S’ = {S} – {S1..i-1}, the next transaction Si is 
HDOrdered by: 

Step 1: Using t = Si-1, and S’, obtain the set of least-
distant transactions CLt using the method above. 

Step 2: If |CLt| = 1, swap the unique transaction with 
the transaction at Si. Otherwise, call break-ties(S, i, 
CLt) in Figure 5, and swap the resulting transaction 
with the transaction at Si. We explain this heuristic 
peephole (i.e., window) optimization below. 

To apply HDO on a transaction dataset with n 
transactions, we first swap the first transaction in the 
dataset with a transaction with minimum number of 
columns, and then iteratively  call HDO on transactions 
2 to n-1, using the method above. As an example, 
Figure 4 demonstrates applying HDO on the dataset in 
Table 3. We can see that the final reordered bitmap 
achieves a total bit count of 6, which is same as the 
optimal ordering in this case. Note that our HDO 
algorithm is an in-place algorithm and works linear in 
terms of space. However, it has a time complexity of O 
(|rows|2 x |cols|), which is worst than both Gray code 
rank-based and Radix sort-based reordering schemes, 
since these schemes has a time complexity linear to the 
number of bits in the dataset (i.e., O (|rows| x |cols|)). 
We address this issues in section 3.4. 
Step 1: Find a 
transaction t with 
minimum number 
of 1-bits 

 
1: T1:   101 
2: T2:   110 
3: T3:   001 
4: T4:   100 

Step 2: Swap row 
1 with t (i.e., row 
3) 

 
 

1: T3:   001 
2: T2:   110 
3: T1:   101 
4: T4:   100 

Step 3: Calculate 
difference bitmaps 
and counts for 
rows 2 to 4, 
against row 1 
 1: 001 
 2: 110 = 111 = 3 
 3: 101 = 100 = 1 
 4: 100 = 101 = 2 

Step 4: Swap rows 
2 and 3 
 
 

1: T3:   001 
2: T1:  101 
3: T2:   110 
4: T4:   100 

Step 5: Calculate 
difference bitmaps 
and counts for 
rows 3 & 4  
 1: 001 
 2: 101 
 3: 110 = 011 = 2 
 4: 100 = 001 = 1 

Step 6: Swap rows 
3 and 4 
 
 

1: T3:   001 
2: T1:   101 
3: T4:  100 
4: T2:   110 

Figure 4. Applying HDO 
Breaking the ties: If |CLt| > 1 (i.e., there is more 

than one least-distant transaction to t), we break the 
ties by selecting the candidate that minimizes the bit 
changes among the three transactions (i.e., the 
transaction t, the transaction prior to t, and the 
candidate itself). In other words, we select the 

candidate with maximum overlap in difference bits 
against transaction t and its prior transaction, as these 
bits are part of literal runs started in t. Selecting other 
bits may break existing fill runs and impact the overall 
compressibility of the transaction dataset.  
1)  break-ties(S, i, candidates) 
2)   d = bitmap of Si-1 XOR bitmap of Si-2 
3)   L = Φ 
4)   for i = 1 to |candidates| do begin 
5)  temp = bitmap of candidates[i] XOR  
6)                bitmap of Si-1 
7)    L[i] = countOneBits(temp XOR d) 
8)   end 
9)   M = {minimum value in L} 
10)   C = {index of first candidate with M in L} 
11)  return candidates[C] 
12)  end 

Figure 5. Method break-ties 
Example 7: Consider t = 1001 and the transaction 

prior to t = 1101. Let us assume that there are two 
candidate transactions in set CLt, i.e., c1 = 1100 and c2 
= 1010, such that tDist(t, c1) = tDist(t, c2) = 2. We first 
compute the difference bitmap between t and its prior 
transaction, i.e., d = 1001 XOR 1101 = 0100. 
Considering c1, we calculate the difference bitmap dc1 
between c1 and t (i.e., dc1 = 1100 XOR 1001 = 0101), 
and find the number of different bits ndc1 between d 
and dc1, i.e., 0100 XOR 0101 = 0001 = 1. Candidate 
c2 is processed in a similar fashion, i.e., dc2 = 1010 
XOR 1001 = 0011, and ndc2 = 0100 XOR 0011 = 
0111 = 3. Since ndc1 < ndc2, we select c1. 

 
3.4. A linear-time approximation to HDO 
 

Because of its high worst-case computational cost, 
HDO might not be suitable for very large, frequently-
updated transaction datasets. We propose aHDO, an 
approximation to HDO that has a time complexity 
linear to the number of bits in the dataset. Even so, it 
achieves close results, especially on sparse datasets. 

Figure 6 presents the aHDO algorithm. The 
algorithm accepts the transaction dataset S, and a 
constant k, which is used to select k positions in S at 
uniform intervals, for the inter-loop processing. 
Hamming-distances of transactions at positions i + 1 to 
|S| are calculated against each of the selected 
transaction ti, and Counting Sort [21] is then applied to 
reorder these transactions, according to their 
Hamming-distances against ti. Note that the linear-time 
Counting Sort is applicable in this case because the 
worst case range of Hamming-distances, for a dataset 
with c columns is already known (i.e., 0..c). Next, we 
calculate distances between all consecutive rows (lines 
14-16), and make another (up to) k passes over S. In 
each pass, pairs of consecutive transactions are 
evaluated, and transactions in the pair are swapped if it 



reduces the overall number of bit shifts in the solution. 
Considering four rows at positions j - 1, j, j + 1 and j + 
2, distances between consecutive row pairs (j - 1, j), (j, 
j + 1) and (j + 1, j + 2) are already available. Rows at 
positions j and j + 1 are swapped only if tDist(j - 1, j) is 
greater than (j - 1, j + 1) or tDist(j + 1, j + 2) is greater 
than tDist(j, j + 2), and neither of them results in a 
difference greater than the current order of the four 
transactions. This guarantees that swapping a row pair 
results in reducing the total number of bit changes by 
at-least 1. Note that reducing the total number of bit 
changes does not guarantee that the overall size of the 
compressed transaction dataset will also reduce (i.e., it 
may replace a long, existing fill run with two small fill 
runs), as providing such a guarantee would require 
checking a number of additional conditions, against all 
other bits and transactions in worst case, resulting in an 
exponential-time algorithm. For the reason of space, 
we do not demonstrate applying aHDO here, and note 
that setting k in the range of 50 to 1,000, i.e., a small 
proportion to the number of transactions, worked well 
on datasets used in our experiments. 
1)  aHDO (S, k) 
2)   {find a row M with minimum number of columns} 
3)   {swap rows 1 and M} 
4)   interval =  |S| / k  
5)   for i = 0 to k - 1 do begin 
6)    L = Φ 
7)    for j = (i * interval) + 2 to |S| do begin 
8)    L[j] =  tDist(S(i*interval)+1, Sj) 
9)    end 
10)    {Using values in L, apply counting sort  
11)   to order transactions S(i * interval)+2 to S|S|} 
12)   end 
13)   L = Φ 
14)   for i = 2 to |S| do begin 
15)    L[i] = tDist(Si, Si-1) 
16)  end 
17)   for i = 2 to k do begin 
18)    numberOfSwaps = 0 
19)    for j = 2 to |S| - 1 
20)     distj-1Andj+1 = tDist(Sj-1, Sj+1) 
21)     distjAndj+2 = tDist(Sj, Sj+2) 
22)     d1 = L[j] - distj-1Andj+1 
23)     d2 = L[j+2] - distjAndj+2 
24)     if (d1 > 0 OR d2 > 0) AND 
25)           (d1>=0 AND d2>=0) then 
26)     numberOfSwaps++ 
27)     {swap rows at j, j+1} 
28)     L[j] = distj-1Andj+1 
29)     L[j+1] = distjAndj+2 
30)    end 
31)   end 
32)   if numberOfSwaps = 0 then break 
33)  end 
34)  end 

Figure 6. Algorithm aHDO 

4. Experimental Results 
 
We evaluated the data structures and transaction 

reordering schemes discussed in this paper in terms of 
memory requirements, and run-time performance of 
the support counting operation on fifteen widely used 
datasets (Table 4), with varying degrees of sparseness.  

Table 4. Datasets used in our experiments, #entries 
correspond to the total number of 1-bits (i.e., columns 
with non-zero values), Sp = sparseness as the average 
number of 0’s for each 1, rounded to nearest integer 
Dataset Source #rows #cols #entries Sp 

Flare UCI ML 1,389 30 13,890 2 
Mushroom UCI ML 8,124 88 176,248 3 

Pima  UCI ML 768 36 6,144 4 
Anneal UCI ML 898 66 11,949 4 
Adult UCI ML 48,842 95 677,323 6 
FBIS TREC 2,463 2,000 393,386 12 
TR 23 TREC 204 5,832 78,609 14 
Hitech SJMN (TREC) 2,301 22,498 346,881 148

Reviews SJMN (TREC) 4,069 36,746 781,635 190
LA12 LA Times 6,279 30,125 939,407 200
Sports SJMN (TREC) 8,580 27,673 1,107,980 213

Reuters Reuters-21578 10,787 19,127 465,959 442
Ohsumed Ohsumed-233445 34,389 36,250 2,018,254 617

20NG 20 Newsgroups 9,840 57,675 871,808 650
Classic4 SMART  7,094 41,681 223,839 1320
 
4.1. Space comparison of various structures 
 

Table 5 compares the memory used by the Trie-
based structures on our datasets. On our test (64-bit) 
system, each FP Tree node used 24 bytes of memory 
(i.e., 32-bits for frequency, 32-bits for the item ID, 64-
bits for the parent pointer, and 64-bits for the node 
link), and the header table used 64-bits for each item. 
On the other hand, each node in the Patricia Trie used 
12 bytes (i.e., 32-bits for frequency, and 64-bits for the 
parent pointer), and each pointer in the horizontal list 
used 64-bits. Interestingly enough, if the features in 
each transaction are ordered with respect to FP Tree's 
FList, the corresponding Patricia Trie contains exactly 
the same number of horizontal pointers as the number 
of nodes in the FP Tree (trivial proof omitted). 

On our test datasets, Compressed Patricia Tries 
resulted in space savings between 36% and 67%, with 
greater savings realized on sparser datasets (i.e., higher 
percentage of degree-one nodes). It is important to note 
that in order to generate a Compressed Patricia Trie, 
Binary Trie generation appears to be a necessary 
interim step [10], which can be very expensive. Unlike 
FP Tree, where we only generate nodes for items that 
are present in a transaction, Binary Tries consider both 
the presence and absence of items, resulting in a 
significantly higher number of nodes. On our test 



datasets, Patricia Trie generation needed between two 
and twenty times more computational time as compare 
to FP Tree, with higher times observed on sparse 
datasets. Furthermore, it was not always possible to 
generate the Binary Trie in memory. As an example, 
Binary Trie generation exhausted the available 
memory on our test system (i.e., about 4GB) on LA12, 
Sports, Ohsumed, and 20NG datasets when the total 
number of nodes in the Binary Trie reached around 175 
million. 
Table 5. Space comparison of Trie-based structures 
Dataset FP Tree Compressed Patricie Trie 

 #nodes Size (KB) #nodes #ptrs Size (KB)
Flare 1,361 32.13 599 1,361 17.65 

Mushroom 20,799 488.16 10,073 20,799 280.54 
Pima  389 9.40 228 389 5.71 

Anneal 1,399 33.30 730 1,399 19.48 
Adult 21,877 513.48 13,464 21,877 328.70 
FBIS 367,553 8,630.15 3,911 367,553 2,917.34
TR 23 75,797 1,822.05 329 75,797 596.02 
Hitech 337,474 8,085.31 3,316 337,474 2,675.38

Reviews 760,265 18,105.79 5,949 760,265 6,009.29
LA12 873,862 20,716.49 N/A N/A N/A 
Sports 1,050,754 24,843.24 N/A N/A N/A 

Reuters 399,439 9,511.28 15,359 399,439 3,300.61
Ohsumed 1,860,347 43,885.09 N/A N/A N/A 

20NG 792,123 19,015.97 N/A N/A N/A 
Classic4 208,414 5,210.34 8,454 208,414 1,727.30

Table 6 compares the space used by uncompressed 
bit vectors, WAH encoded bitmaps in the original 
order, and after applying various reordering schemes. 
Our experiments included both 32 and 64-bit words for 
WAH encoding, but we only report the 32-bit results 
here for the reason of space, and note that 64-bit WAH 
encoded bitmaps used between 4 and 71 percent more 
space as compare to the corresponding 32-bit bitmaps, 
because with 64-bit words, uniform bit sequences 
smaller than 126 bits result in no space savings (i.e., 
fill count = 2), while 32-bit words realize space savings 
on shorter (i.e., >=62-bit) uniform bit sequences.  

We observe that the uncompressed vertical bit 
vectors used less space as compare to both Trie-based 
representations on dense datasets (i.e., Mushroom) but 
used significantly more space on highly sparse datasets 
(i.e., Classic). WAH encoding resulted in significant 
space savings, especially on sparse datasets. Also, 
lexicographic ordering outperformed Gray code rank-
based reordering scheme on 12/15 datasets. 
Furthermore, HDO-WAH encoded bitmaps 
outperformed all other reordering schemes on 14/15 
datasets and resulted in the most significant overall 
space savings. HDO even worked well on Hitech, 
Reviews, and Sports datasets, where both Gray code 
and lexicographic schemes negatively impacted the 

compression achieved on the original-ordered bitmap. 
Finally, aHDO resulted in compression very close to 
HDO, especially on sparse datasets. The Classic 
dataset exhibits an interesting behavior, where all 
reordering schemes negatively impacted the WAH 
compression achieved on the original-ordered bitmap, 
while HDO still outperformed other reordering 
schemes. 

For the reason of space, we do not report the times 
needed to apply various reordering schemes here, and 
note that Gray code sorting, LSB Radix sort and aHDO  
takes comparable amount of time while HDO takes the 
most amount of time. Counter-intuitively, for small 
values of k (i.e., 50), we observe that aHDO may take 
less time than the other linear-time schemes because it 
calculates the inter-transaction distances by XORing 
whole words (i.e., 64 bits), while other schemes needs 
to decode and evaluate each bit, requiring more 
operations. Furthermore, we trivially optimized the 
second most frequent operation in aHDO (i.e., 
counting 1-bits in a word) by caching bit-patterns.  

 
4.2. Performance of frequency queries 
 

Database style frequency queries: We first 
compared the performance of various structures by 
generating 25 million random frequency queries for 
each dataset, with 5 million queries for each of the max 
query sizes 1-5 (i.e., for max query size = 2, there 
would be about 2.5 million size-1 queries, and an equal 
number of size-2 queries). This adds to a total of 375 
million queries on all datasets, with each query 
executed on all available structures, adding to many 
billion query executions. We assumed no prior 
knowledge about the query itemsets, which means that 
for a query itemset of size k, all k-bitmaps were used 
for frequency calculation. This setting is close to real-
life database usage where variable-size, random query 
are common, with a higher percentage of short queries. 
For the reason of space, we only report the query 
execution results on eight datasets in Figure 7. 

We observe that bitmap structures resulted in an 
orders of magnitude faster frequency counting as 
compare to Trie structures on short queries. The 
performance difference minimized as the query size 
increased, because the number of bitmaps ANDed 
linearly increase with the number of items in the query, 
whereas the number of upward paths considered in a 
Trie remains constant, and more paths can be quickly 
pruned for longer, randomly generated queries (i.e., 
decreasing number of co-occurring items). Note that 
regardless of (potentially) better frequency counting  
performance on long queries, Trie structures are 



Table 6. Compression achieved by various reordering schemes. Best results highlighted, WAH compression 
uses a word size of 32-bit, IF = Improvement Factor as in [8], and all values rounded to 2 decimal places 

WAH, original 
order 

WAH, Gray code 
reordered 

WAH, LSB 
Radix sorted 

WAH, HDO WAH, aHDO   Size of  the 
uncompressed 

bit vectors 
(Kbytes) 

Size 
(KBytes) 

% of 
original

Size 
(KBytes) 

IF Size 
(KBytes) 

IF Size 
(KBytes) 

IF Size 
(KBytes) 

IF 

Flare 5.16 5.04 97.73 3 1.68 2.91 1.73 2.6 1.94 2.67 1.89
Mushroom 87.31 70.26 80.47 22.74 3.09 20.4 3.44 20.24 3.47 21.55 3.26

Pima  3.38 2.61 77.31 1.22 2.13 1.23 2.13 0.96 2.70 1.02 2.55
Anneal 7.73 5.02 64.85 3.82 1.31 3.51 1.43 3.33 1.51 3.58 1.40
Adult 567.03 292.53 51.59 70.24 4.16 68.3 4.28 71.21 4.11 82.08 3.56
FBIS 609.38 551.57 90.51 456.15 1.21 455.74 1.21 433.8 1.27 434.64 1.27
TR 23 182.25 173.58 95.24 154.08 1.13 153.67 1.13 144.11 1.20 144.66 1.20
Hitech 6,327.56 1,222.46 19.32 1,244.64 0.98 1,244.68 0.98 1,155.45 1.06 1,174.3 1.04

Reviews 18,373 2,689.43 14.64 2,807.85 0.96 2,806.11 0.96 2,571.97 1.05 2,592.99 1.04
LA12 23,299.80 3,410.82 14.64 3,143.75 1.08 3,144.02 1.08 2,807.72 1.21 2,875.78 1.19
Sports 29,186.37 3,103.27 10.63 3,445.02 0.90 3,441.88 0.90 2,949.74 1.05 3,010.04 1.03
Reuters 25,253.62 1,826.09 7.23 1,552.38 1.18 1,549.45 1.18 1,277.50 1.43 1,359.62 1.34

Ohsumed 152,363.28 7,594.60 4.98 7,119.27 1.07 7,118.09 1.07 6,502.91 1.17 6,657.52 1.14
20NG 69,390.23 4,121.75 5.94 3,705.17 1.11 3,701.30 1.11 2,955.54 1.39 3,364.05 1.23

Classic4 36,145.24 1,280.65 3.54 1,387.30 0.92 1,386.88 0.92 1,317.56 0.97 1,336.81 0.96
 

 
Figure 7. Performance comparison of various structures on 200 million random, variable-sized frequency queries

practically unusable for database style queries because 
most database style queries (except COUNT) must also 
identify the corresponding transactions. We also 
observe that Compressed Patricia Tries outperformed 
FP Trees, (i.e., a smaller number of nodes traversed). 
Furthermore, uncompressed vertical bit vectors 
resulted in shortest query execution times on dense 
datasets, and HDO-WAH encoded vertical bit vectors 
outperformed uncompressed vertical bit vectors as the 
sparseness increased. Finally, we observe that Tries 
performed poorly on datasets that do not have many 
transactions that share common prefixes (i.e., more 
upward paths to consider), while the performance of 
bitmap structures remained un-impacted. For example, 
on FBIS dataset with 393,386 non-zero entries, the 
corresponding FP Tree contained 367,553 nodes. 
Consequently, it took 3,854 seconds to execute 25 
million queries using the FP Tree, as compare to only 

63 seconds using the HDO-WAH encoded bitmaps, a 
significant difference! 

Data mining style frequency queries: To evaluate 
the performance of data mining style frequency 
queries, we applied APRIORI [1] to mine frequent 
itemsets of sizes 1-5, on datasets in Figure 7. Unlike 
the previous test (i.e., no prior knowledge), we stored 
the bitmaps of large itemsets found at each step. 
Consequently, support calculation was performed by 
ANDing only two bitmaps (section 1.2). An advanced 
nanosecond timer was used to record individual query 
execution times, and the total times are reported in 
Table 7. 

We observe that bitmap structures significantly 
outperformed both Tries. Furthermore, unlike the 
previous test, the performance gap did not minimize 
with increasing query sizes for at-least two reasons 
(graphs omitted for the reason of space). First, the 



number of bitmaps ANDed remained constant (i.e., 2), 
and second, the percentage of upward paths pruned in 
Tries may actually decrease because unlike the random 
test, where up to k-1 items in a query of size k can be 
non-existent in an upward path, all k-1 sized subsets of 
each query are guaranteed to meet minimum support. 

Table 7. Itemset mining performance  
Time (seconds) Dataset min 

supp
#itemsets 
(size 1-5) Patricia 

Trie  
FP Tree Unco

mp 
WAH 

32 
WAH 

64 
Flare 2 21,063 0.36 0.13 0.06 0.07 0.08 
Pima  2 3,860 0.05 0.02 0.03 0.03 0.03 
FBIS 250 654,525 172.87 361.65 1.07 2.29 1.43 

Hitech 50 2,859,310 211.33 478.55 4.00 8.02 5.55 
Sports 300 1,297,271 N/A 1543.58 5.04 10.50 7.03 
Reuters 100 996,097 269.19 375.08 4.80 6.74 4.72 
20NG 200 643,537 N/A 249.44 3.10 5.24 3.37 

Classic4 10 5,800,199 212.23 278.21 20.22 15.25 12.77
Finally, we note that the runtime performance of 

bitmap-based schemes depend on the program 
structure, and the underlying system architecture, in 
addition to the total number of operations involved. As 
an example, in spite of their significantly higher space 
usage (which translates to more instructions needed to 
AND bitmaps), uncompressed bitmaps may 
outperform compressed bitmaps in time. This happens 
because two uncompressed bitmaps can be ANDed in a 
simple loop, with no inter-iteration dependencies. This 
simple structure allows exploiting maximum 
instruction level parallelism, and enables compilers to 
apply techniques like loop unrolling. On the other 
hand, the decoding logic of compressed bitmaps do not 
allow exploiting the same level of ILP. Similarly 64-bit 
WAH compressed bitmaps used more space, but 
outperformed 32-bit bitmaps on our 64-bit test system, 
because the system processed twice as much data in 
each cycle. We conclude that HDO-WAH encoded 
bitmaps offer the best space-time tradeoff for data 
mining style queries. For example, performance was 
comparable to uncompressed bit vectors on Reuters 
and 20NG, while consuming 20 times less space.  

 
5. Conclusions 
 

We compared Trie and bitmap-based structures in 
this paper, and  conclude that Trie structures are viable 
for applications that mostly execute long, random 
queries, as long as we are not concerned with 
identifying the actual transactions. We proposed HDO, 
a Hamming-distance-based greedy transaction 
reordering scheme, and showed that it results in better 
compression, and outperforms other structures on short 
database style frequency queries. We also showed that 
aHDO can serve as a practical alternate to HDO on 
sparse datasets. Finally, we showed that uncompressed 
bitmaps can be a good choice for data mining 

applications that are not concerned with high space 
requirements, while HDO-WAH encoded bitmaps 
provide the best space-time tradeoff. 
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