
Optimizing Frequency Queries for Data Mining Applications

Hassan H. Malik and John R. Kender
Department of Computer Science

Columbia University
New York, NY 10027

{hhm2104, jrk}@cs.columbia.edu

Abstract

Data mining algorithms use various Trie and
bitmap-based representations to optimize the support
(i.e., frequency) counting performance. In this paper,
we compare the memory requirements and support
counting performance of FP Tree, and Compressed
Patricia Trie against several novel variants of vertical
bit vectors. First, borrowing ideas from the VLDB
domain, we compress vertical bit vectors using WAH
encoding. Second, we evaluate the Gray code rank-
based transaction reordering scheme, and show that in
practice, simple lexicographic ordering, obtained by
applying LSB Radix sort, outperforms this scheme.

Led by these results, we propose HDO, a novel
Hamming-distance-based greedy transaction
reordering scheme, and aHDO, a linear-time
approximation to HDO. We present results of
experiments performed on 15 common datasets with
varying degrees of sparseness, and show that HDO-
reordered, WAH encoded bit vectors can take as little
as 5% of the uncompressed space, while aHDO
achieves similar compression on sparse datasets.
Finally, with results from over a billion database and
data mining style frequency query executions, we show
that bitmap-based approaches result in up to hundreds
of times faster support counting, and HDO-WAH
encoded bitmaps offer the best space-time tradeoff.

1. Introduction and Related Work

Calculating itemset support (or frequency counting)
is a fundamental operation that directly impacts space
and time requirements of many widely used data
mining algorithms. Some data mining algorithms (i.e.,
frequent itemset mining [1]) are only concerned with
identifying the support of a given query itemset, while
others (i.e., pattern-based clustering algorithms
[13,14,15]) must in addition identify the transactions
that contain the query itemset.

1.1. Trie-based representations

First generation data mining algorithms used the
Trie data structure to improve the itemset support
counting performance. In the following years, a
number of improvements like [16,17] were proposed to
further optimize support counting using Trie. These
approaches, however, did not address the major
drawback of overwhelming (possibly exponential in
depth [10]) space requirements.

Table 1. A transaction database as running
example, assuming minimum support = 2

TID Items Frequent items
ordered w.r.t.

decreasing supports

Bitmaps
representing each

transaction
T1 {1, 2} {2, 1} 11000
T2 {1, 3, 4, 5} {3, 4, 5, 1} 10111
T3 {2, 3, 4} {3, 2, 4} 01110
T4 {2, 3, 4, 5} {3, 2, 4, 5} 01111
T5 {2, 3, 4} {3, 2, 4} 01110
T6 {1, 2, 3, 5} {3, 2, 5, 1} 11101
T7 {2, 3} {3, 2} 01100
T8 {3, 4} {3, 4} 00110
T9 {5} {5} 00001
T10 {3} {3} 00100

Han et. al. [2] addressed this issue by introducing
FP Tree, a Trie-inspired data structure that reduces the
space requirements of the original Trie data structure
by eliminating the need to insert each transaction into
all paths corresponding to the subsets of the
transaction. The FP Tree is generated by identifying
frequent 1-items in one pass over the dataset, These
items are sorted in descending order of their supports,
and inserted into the FList. A second pass is made to
construct the FP Tree in which items are considered in
the order of the FList. The first node corresponding to
each item is pointed from a header table and each FP
Tree node contains a link to the next node
corresponding to the same item.

Figure 1. The FP Tree of dataset in Table 1, each
node contains an item:frequency pair, and dotted

arrows represent node links
Example 1: Considering the transaction database in

Table 1, the FList contains items in the order (3, 2, 4,
5, 1). Column 3 of Table 1 presents items in each
transaction ordered according to the FList, and Figure
1 presents the corresponding FP Tree.

Figure 2. A Binary Trie, nodes contain the count of
transactions with the same prefix, and dotted

arrows represent pointers from the horizontal lists
In another approach, Yang et. al. [10] reduced the

space requirements of the Trie data structure by
limiting the branching factor to 2. This is achieved by
generating a Binary Trie which considers presence or
absence of all items in the transaction, rather than only
considering items that exist in the transaction. For each
item, a global list of horizontal pointers containing
pointers to all nodes that represent the item is
maintained. This list enables efficient support
counting. Note that the Binary Trie may contain a large
number of single-child nodes, especially on sparse
datasets. This observation is used to merge these
degree-1 nodes with their children, while maintaining
the corresponding horizontal pointer lists. The
resulting data structure is called a Compressed Patricia
Trie.

Example 2: Column 4 of Table 1 contains a binary
representation (i.e., presence or absence of all features)
for each transaction. The corresponding Binary Trie is
presented in Figure 2, and the Patricia Trie obtained by
compressing the Binary Trie is presented in Figure 3.

Note that the Binary Trie presented in [10] contains
additional horizontal pointers to represent absence of
items. We eliminate these pointers as they are not
relevant for support counting purposes.

Figure 3. A Compressed Patricia Trie
.

1.2. Bitmap-based representations

Trie-based representations are suitable for
algorithms that are not concerned with the actual
transactions that contain the query itemset, but they fell
short when these transactions must also be identified.
One solution, used by Hu et. al. in a hierarchical
clustering algorithm [14] is to store a list containing
the applicable transaction IDs at each node of the Trie.
This approach may work for small datasets but is
impractical for large datasets because of its significant
space requirements. In the worst case (i.e., where each
transaction contains each item), IDs of all transactions
are replicated at each node. Another possible, but very
inefficient solution is to first find the support count
using the Trie-based data structure and then scan the
dataset once to find the applicable transactions.

Considering these issues, a number of recent
approaches [11,12,15,18,19,20] adapted uncompressed
bitmap-based representations (i.e., vertical bit vectors).
In these approaches, a bitmap is generated for each
item in the dataset, where each bit represents presence
or absence of the item in a transaction. Some of these
approaches [15] also reduce the number of bitmaps by
eliminating non-frequent 1-itemsets as a preprocessing
step. Support is calculated by ANDing (i.e.,
intersecting) bitmaps of all items in the itemset, and
counting the number of one-bits in the resulting
bitmap. Note that in typical data mining algorithms
(i.e., itemset mining), the number of bitmaps ANDed
to find support of an itemset of size k (where k >= 2) is
exactly 2, as the previous step would have already
generated and preserved bitmaps of all large k-1 sized
subsets of the query itemset (i.e., guaranteed by the
downward closure property). Unlike Trie-based
approaches, no additional processing is needed to find
the transactions containing the query itemset, as these

transactions are readily available in the resulting
bitmap.

Table 2. Vertical bit vectors and corresponding
WAH compressed bitmaps for the dataset in Table

1, assuming 4-bit words for WAH encoding
Item Vertical bit vector WAH compressed bitmap

1 1100010000 0110 0001 1001 0000
2 1011111000 0101 1101 0100 0000
3 0111111101 0011 1101 0110 0100
4 0111100100 0011 0110 0010 0000
5 0101010010 0010 0101 0001 0000
Example 3: Table 2 presents vertical bit vectors for

the dataset in Table 1 (section 2.1 provide details on
the third column). Considering a query itemset {2, 5},
we obtain support of the query itemset by ANDing
1011111000 with 0101010010. This results in a new
vertical bit vector 0001010000. Counting the number
of 1-bits, we obtain the itemset support count of 2. The
resulting bit vector also identifies the transactions (i.e.,
4, 6) that contain the query itemset.

The most significant disadvantage of this approach
is that for a dataset containing n transactions and m
frequent 1-items, the amount of space needed for these
bitmaps is always m x n bits, regardless of the
characteristics of the underlying dataset. In reality,
many data mining datasets are sparse, which would
result in bitmaps with a lot more zero-bits than one-
bits. Moonesinghe et. al. [12] addressed this problem
by first generating a prefix graph that contains a node
for each item, and then storing a separate set of
variable-sized horizontal bitmaps along with each
node. This approach facilitates fast support counting,
and frequent itemset mining but does not automatically
identify corresponding transactions.

1.3. Contributions

In an attempt to find a space and time efficient
dataset representation for fast support counting, that
also identifies corresponding transactions, we first
identified similarities between the support counting
problem and the problem of performing logical
operations on equality coded index bitmaps in the very
large databases (VLDB) domain. We then considered
various compressed bitmap representations of database
indices, and limit ourselves to schemes that allow
efficient logical operations directly on two compressed
bitmaps, resulting in a compressed bitmap, without
decompressing any of the operand bitmaps. We
evaluated the best of these representations (i.e., WAH
compressed bitmaps [5,6,7], with two different word
sizes) against FP Tree, Patricia Trie, and uncompressed
vertical bit vectors, both in terms of space
requirements, and the query processing performance on

more than a billion database and data mining style
frequency queries. We then evaluated the effectiveness
of recently proposed [8] pre-compression step of
applying Gray code sorting to re-order transactions, on
bitmaps representing 15 widely used datasets and
found that this reordering scheme does not result in an
optimal solution on real-life datasets, because of the
large number of empty cells (section 3.2). We observe
that in practice, even simple lexicographic ordering,
obtained by applying Least Significant Bit Radix sort
on transaction bitmaps, may outperform this scheme.

As a replacement, we propose two novel,
Hamming-distance-based transaction reordering
schemes (sections 3.3 and 3.4) with different space and
time characteristics, and show (section 4.1) that these
schemes increase the compressibility of bitmaps.

2. Compressing Vertical Bit Vectors

We observe that when vertical bit vectors are used,
the itemset support counting problem is a
specialization (i.e., subset) of the problem of
processing bitmap indices to find all rows from a
database table, that satisfy the given criteria. Column
values in a database table can be both equality and
range coded, and the criteria can contain a variety of
logical operations (i.e., the 'where' clause in SQL,
ignoring joins and other cross-table operations).
Whereas in case of support counting, the values are
equality coded (i.e., presence or absence of an item in a
transaction) and the problem is to find all rows that
contain all items in the given criteria (i.e., the query
itemset). Considering this observation, existing
techniques to optimize the performance of bitwise
logical operations on equality coded index bitmaps
from the very large databases (VLDB) domain can be
directly applied on the vertical bit vectors used for
itemset support calculation.

There exists a tradeoff between the degree of
compression, and the amount of time needed to
perform logical operations on compressed bitmaps.
Studies [5,9] show that many well known lossless
compression schemes such as LZ coding, B-W text
compression and Huffman coding are very effective in
compressing bit sequences, but require decompressing
operand bitmaps to perform logical operations. Even
though these schemes may achieve a higher
compression ratio, the computational cost of
performing logical operations makes them impractical
for query intensive and real-time applications.
Considering these issues, a number of schemes that
mix run-length encoding and direct storage were
proposed. These schemes allow logical operations
directly on two compressed bitmaps, resulting in a

compressed bitmap. Some of these schemes like BBC,
PackBits and PBM are byte-based, while other
schemes like HRL, WAH, PWC and WBC are word-
based. Studies show that word-based schemes like
WAH offer the best space-time tradeoff for performing
logical operations. For the reason of space, we do not
compare these schemes here, and refer the reader to
[5,6,7].

2.1. WAH compressed bitmaps

Word-Aligned Hybrid code (WAH) [5] is a simple
linear-time compression scheme that reads a bit
sequence one bit at a time, and produces a word
aligned compressed bitmap, where the word size W is
configurable. Each word in the resulting compressed
bitmap represents either a literal run or a fill run.
Literal runs contain uncompressed data while the fill
runs contain a word-aligned sequence (i.e., fill) of
consecutive zero or one bits. The first bit in each word
identifies the run type (i.e., 0 = literal run, and 1 = fill
run). In case of a literal run, the rest of the W - 1 bits in
the word contain a direct sequence of bits, whereas in
the case of a fill run, the second bit in the word
identifies the fill bit b, and the remaining W - 2 bits
contain a count c which represents a sequence of c *
(W - 1), b-bits. Note that for an input bitmap with n
bits, the size of WAH compressed bitmap is upper
bounded by bits, or O(n). The worst case occurs
when there are no fill runs in the resulting WAH
compressed bitmap. Furthermore, the absolute value
for the worst case (and the overhead) decreases as W
increases.

Example 4: Column 3 of Table 2 presents WAH
compressed bitmaps for vertical bit vectors in column
2. Bold bits are run identifiers, and the highlighted bits
are fill bits. Note that many of the resulting WAH
compressed bitmaps demonstrate the worst case space
scenario, because we used an artificially small value
for W, and a very small transaction database for
simplicity sake. We show in section 4.1 that WAH
encoded bitmaps do not use more space than the
corresponding uncompressed bitmaps on real-life
datasets.

2.2. Counting Support using WAH compressed
bitmaps

Similar to vertical bit vectors, support of a query
itemset is obtained by ANDing the corresponding
WAH compressed bitmaps, and counting one-bits in
the resulting bitmap. Two WAH compressed bitmaps
are ANDed by iteratively decoding words from each
of the operand bitmaps, and applying the AND

operation on the decoded words [5]. The outcome is
then added to the output bitmap. If both operand words
represent literal runs, the outcome is determined by
simply ANDing the two words. If one of the operand
words represent a zero-fill, the same number of zeros is
added to the output, and an equal number of bits are
skipped from the other operand bitmap. Finally, if one
of the operand bitmaps represent a one-fill, number of
bits equal to the fill size is added from the other
bitmap. Since processing fill runs can result in left over
bits from either operand word, some bookkeeping is
needed to track these leftover bits. Also, when adding a
fill run to the output bitmap, the previous word in the
output bitmap is checked for the presence of a
matching fill, and the existing fill count is incremented
by the new fill count, in case of a match. For more
details, see [5].

Example 5: Considering WAH compressed bitmaps
in the third column of Table 2, and a query itemset {2,
5}, we first decode the first word in the first operand
bitmap (i.e., 0101) and identify it as a literal run. We
then decode the first word in the second bitmap (i.e.,
0010), and identify that it is a literal run as well.
Therefore, we AND 101 and 010 to obtain 000, which
results in adding a zero-fill-run with count = 1 (i.e.,
1001) to the output bitmap. Similarly, processing the
next words (i.e., 1101 and 0101), we add a literal fill
0101 to the output bitmap (since the first operand is a
1-fill of size 1). Processing the next words (i.e., 0100
and 0001), we add a new zero-fill 1001 to the output
bitmap. Finally, we process the last two words (i.e.,
0000 and 0000), and add a new zero fill with count = 1.
Since the previous word in the output bitmap was a
zero-fill, we just increment it and the final output
bitmap becomes 1001 0101 1010. Next, we count one-
bits in the output bitmap to determine itemset support.
Decoding the first word (i.e., 1001), we find a zero-fill
and continue to the next word. Decoding the second
word (i.e., 0101), which is a literal fill, we add 2 (i.e.,
the number of 1-bits) to the support count. Finally, the
last word is decoded and ignored as it is a zero-fill and
we obtain the itemset support count of 2.

Note that Support has an interesting property that
the support of an itemset of size k is less than or equal
to the support of all of its k-1 size subset-itemsets. In
practice, a large number of itemsets have supports that
are less than their subset-itemsets. This results in an
important side effect of smaller and smaller WAH
compressed bitmaps as the itemset size increases. As
an example, to calculate support of the itemset {1, 3,
4}, we AND the compressed bitmap for item {1} with
the compressed bitmap for itemset {3, 4} (above), and
obtain the output bitmap 0010 1011, with only two
words. Consequently, this side effect makes WAH
compressed vertical bit vectors even more feasible

W
W

n ×





−1

(i.e., space efficient) for algorithms that store interim
results.

3. Increasing Bitmap Compressibility by
Reordering Transactions

The amount of compression achieved by run-length-
based compression schemes such as WAH encoding
depends heavily on the availability of long sequences
of 0 or 1 bits in the input bitmap. The best compression
is achieved when the transactions are organized in a
way that minimizes the total number of bit shifts across
all columns. As an example, the first column of Table
3 presents a small transaction dataset. The original
order of the rows causes three bit shifts in the first
column, three bit shifts in the second column and four
bit shifts in the third column, adding to a total of 10 bit
shifts. In contrast, the transaction ordering in the
second column requires only two bit shifts in each
column, adding to a total of six bit shifts for the
transaction dataset, which represents a 40% reduction.
Table 3. A transaction dataset in original order, an
optimal ordering, and reordered using two schemes
 Original

order
Optimal

order
Gray code

sorted
Radix
sorted

 T1: 101
T2: 110
T3: 001
T4: 100

T3: 001
T1: 101
T4: 100
T2: 110

T3: 001
T2: 110
T1: 101
T4: 100

T3: 001
T4: 100
T1: 101
T2: 110

Bit changes in
each column

3, 3, 4 2, 2, 2 2, 3, 4 2, 2, 4

Total bit changes 10 6 9 8
Unfortunately, reorganizing transactions to achieve

such an optimal ordering in general is same as the
consecutive block minimization problem (or CBMP)
which was proven NP-complete in 70’s by Kou [3].
More recently, even a fairly restricted version of this
problem which limits the number of 1’s in each row to
2, called 2CBMP [4], was also proven NP-hard.

3.1. Reordering rows using Gray code sorting

Pinar et. al. [8] named this problem as the “Tuple
Reordering Problem”, and proven it NP-Complete by
providing a reduction from the Traveling Salesman
Problem. They proposed a linear in time and space
transaction reordering scheme that is based on Gray
code ranks, and showed that the reordered bitmaps
achieve better WAH compression. As an example, the
Gray code rank-based reordering reduces the total
number of bit shifts from 10 to 9, on dataset in Table 3.

3.2. Reordering rows using LSB Radix Sort

It is important to note that Gray code rank-based
transaction reordering results in an optimal solution
only if all cells are "full" [8]. This means that for a
transaction dataset with c columns, an optimal solution
is obtained when there is at-least one transaction
covering each of the 2c possible combinations, which is
not realistic. Therefore, even on our toy dataset (Table
3), applying Gray code rank-based reordering resulted
in a small improvement.

As an alternate, simple linear-time Least Significant
Bit (LSB) Radix sort [21], with one bin for zero-bits
and one bin for one-bits, can be used which results in a
lexicographic ordering of transactions. We show in
section 4.1 that lexicographic ordering outperforms the
Gray code scheme on many real-life datasets. Column
4 of Table 3 presents such an example, where
lexicographic ordering results in 8 bit shifts, which is
better than the Gray code rank-based solution.

3.3. HDO, a Greedy, Hamming-distance-based
transaction reordering scheme

From Table 3, we observe that both Gray code rank-
based, as well as lexicographic reordering may not
result in close to optimal solutions on transaction
datasets. We propose HDO, a greedy algorithm that
reorders transactions in a way that ensures a high
degree of similarity between neighboring transactions
(i.e., minimizes Hamming-distance), hoping that this
greedy choice results in a near-optimal solution. In
other words, for each position i, HDO finds a
transaction t that is closest to the transaction at position
i-1. If there is more than one such candidate, it selects
the transaction that results in least impact on the
number of existing fill runs.

Definition 1 (inter-transaction distance): Let ti be a
transaction at position i and tj be a transaction at
position j, distance between ti and tj is defined as

)(),(
ji ttji bitmapXORbitmaptscountOneBitttDist =

The function countOneBits(bitmap) returns the
number of 1-bits in bitmap. Furthermore, the smaller is
the value of tDist between ti and tj, the closer are ti and
tj to each other. If tDist = 0, bitmaps for ti and tj are
exactly the same.

Example 6: Considering transactions T1 and T2 in
Table 3, tDist(T1, T2) = countOneBits(101 XOR 110)
= countOneBits(011) = 2.

Definition 2 (set of least-distant transactions): Let
S be a set of transactions and t be a transaction in S. Let
S’ is a subset of S that does not include t and some
other transactions. The set CLt of transactions that are
closest (i.e., least-distant) to t is obtained by:

Step 1: For each transaction x in S’, calculate
tDist(t, x) and store the outcome in list L. Additionally,
track the minimum Distance value MIN.

Step 2: For each transaction x in S, add x to CLt iff
tDist(t, x) = MIN.

Definition 3 (HDO): Let S be a set of transactions,
assume that transactions S1 to Si – 1 are already in HDO.
Let S’ = {S} – {S1..i-1}, the next transaction Si is
HDOrdered by:

Step 1: Using t = Si-1, and S’, obtain the set of least-
distant transactions CLt using the method above.

Step 2: If |CLt| = 1, swap the unique transaction with
the transaction at Si. Otherwise, call break-ties(S, i,
CLt) in Figure 5, and swap the resulting transaction
with the transaction at Si. We explain this heuristic
peephole (i.e., window) optimization below.

To apply HDO on a transaction dataset with n
transactions, we first swap the first transaction in the
dataset with a transaction with minimum number of
columns, and then iteratively call HDO on transactions
2 to n-1, using the method above. As an example,
Figure 4 demonstrates applying HDO on the dataset in
Table 3. We can see that the final reordered bitmap
achieves a total bit count of 6, which is same as the
optimal ordering in this case. Note that our HDO
algorithm is an in-place algorithm and works linear in
terms of space. However, it has a time complexity of O
(|rows|2 x |cols|), which is worst than both Gray code
rank-based and Radix sort-based reordering schemes,
since these schemes has a time complexity linear to the
number of bits in the dataset (i.e., O (|rows| x |cols|)).
We address this issues in section 3.4.
Step 1: Find a
transaction t with
minimum number
of 1-bits

1: T1: 101
2: T2: 110
3: T3: 001
4: T4: 100

Step 2: Swap row
1 with t (i.e., row
3)

1: T3: 001
2: T2: 110
3: T1: 101
4: T4: 100

Step 3: Calculate
difference bitmaps
and counts for
rows 2 to 4,
against row 1
 1: 001
 2: 110 = 111 = 3
 3: 101 = 100 = 1
 4: 100 = 101 = 2

Step 4: Swap rows
2 and 3

1: T3: 001
2: T1: 101
3: T2: 110
4: T4: 100

Step 5: Calculate
difference bitmaps
and counts for
rows 3 & 4
 1: 001
 2: 101
 3: 110 = 011 = 2
 4: 100 = 001 = 1

Step 6: Swap rows
3 and 4

1: T3: 001
2: T1: 101
3: T4: 100
4: T2: 110

Figure 4. Applying HDO
Breaking the ties: If |CLt| > 1 (i.e., there is more

than one least-distant transaction to t), we break the
ties by selecting the candidate that minimizes the bit
changes among the three transactions (i.e., the
transaction t, the transaction prior to t, and the
candidate itself). In other words, we select the

candidate with maximum overlap in difference bits
against transaction t and its prior transaction, as these
bits are part of literal runs started in t. Selecting other
bits may break existing fill runs and impact the overall
compressibility of the transaction dataset.
1) break-ties(S, i, candidates)
2) d = bitmap of Si-1 XOR bitmap of Si-2
3) L = Φ
4) for i = 1 to |candidates| do begin
5) temp = bitmap of candidates[i] XOR
6) bitmap of Si-1
7) L[i] = countOneBits(temp XOR d)
8) end
9) M = {minimum value in L}
10) C = {index of first candidate with M in L}
11) return candidates[C]
12) end

Figure 5. Method break-ties
Example 7: Consider t = 1001 and the transaction

prior to t = 1101. Let us assume that there are two
candidate transactions in set CLt, i.e., c1 = 1100 and c2
= 1010, such that tDist(t, c1) = tDist(t, c2) = 2. We first
compute the difference bitmap between t and its prior
transaction, i.e., d = 1001 XOR 1101 = 0100.
Considering c1, we calculate the difference bitmap dc1
between c1 and t (i.e., dc1 = 1100 XOR 1001 = 0101),
and find the number of different bits ndc1 between d
and dc1, i.e., 0100 XOR 0101 = 0001 = 1. Candidate
c2 is processed in a similar fashion, i.e., dc2 = 1010
XOR 1001 = 0011, and ndc2 = 0100 XOR 0011 =
0111 = 3. Since ndc1 < ndc2, we select c1.

3.4. A linear-time approximation to HDO

Because of its high worst-case computational cost,
HDO might not be suitable for very large, frequently-
updated transaction datasets. We propose aHDO, an
approximation to HDO that has a time complexity
linear to the number of bits in the dataset. Even so, it
achieves close results, especially on sparse datasets.

Figure 6 presents the aHDO algorithm. The
algorithm accepts the transaction dataset S, and a
constant k, which is used to select k positions in S at
uniform intervals, for the inter-loop processing.
Hamming-distances of transactions at positions i + 1 to
|S| are calculated against each of the selected
transaction ti, and Counting Sort [21] is then applied to
reorder these transactions, according to their
Hamming-distances against ti. Note that the linear-time
Counting Sort is applicable in this case because the
worst case range of Hamming-distances, for a dataset
with c columns is already known (i.e., 0..c). Next, we
calculate distances between all consecutive rows (lines
14-16), and make another (up to) k passes over S. In
each pass, pairs of consecutive transactions are
evaluated, and transactions in the pair are swapped if it

reduces the overall number of bit shifts in the solution.
Considering four rows at positions j - 1, j, j + 1 and j +
2, distances between consecutive row pairs (j - 1, j), (j,
j + 1) and (j + 1, j + 2) are already available. Rows at
positions j and j + 1 are swapped only if tDist(j - 1, j) is
greater than (j - 1, j + 1) or tDist(j + 1, j + 2) is greater
than tDist(j, j + 2), and neither of them results in a
difference greater than the current order of the four
transactions. This guarantees that swapping a row pair
results in reducing the total number of bit changes by
at-least 1. Note that reducing the total number of bit
changes does not guarantee that the overall size of the
compressed transaction dataset will also reduce (i.e., it
may replace a long, existing fill run with two small fill
runs), as providing such a guarantee would require
checking a number of additional conditions, against all
other bits and transactions in worst case, resulting in an
exponential-time algorithm. For the reason of space,
we do not demonstrate applying aHDO here, and note
that setting k in the range of 50 to 1,000, i.e., a small
proportion to the number of transactions, worked well
on datasets used in our experiments.
1) aHDO (S, k)
2) {find a row M with minimum number of columns}
3) {swap rows 1 and M}
4) interval =  |S| / k 
5) for i = 0 to k - 1 do begin
6) L = Φ
7) for j = (i * interval) + 2 to |S| do begin
8) L[j] = tDist(S(i*interval)+1, Sj)
9) end
10) {Using values in L, apply counting sort
11) to order transactions S(i * interval)+2 to S|S|}
12) end
13) L = Φ
14) for i = 2 to |S| do begin
15) L[i] = tDist(Si, Si-1)
16) end
17) for i = 2 to k do begin
18) numberOfSwaps = 0
19) for j = 2 to |S| - 1
20) distj-1Andj+1 = tDist(Sj-1, Sj+1)
21) distjAndj+2 = tDist(Sj, Sj+2)
22) d1 = L[j] - distj-1Andj+1
23) d2 = L[j+2] - distjAndj+2
24) if (d1 > 0 OR d2 > 0) AND
25) (d1>=0 AND d2>=0) then
26) numberOfSwaps++
27) {swap rows at j, j+1}
28) L[j] = distj-1Andj+1
29) L[j+1] = distjAndj+2
30) end
31) end
32) if numberOfSwaps = 0 then break
33) end
34) end

Figure 6. Algorithm aHDO

4. Experimental Results

We evaluated the data structures and transaction

reordering schemes discussed in this paper in terms of
memory requirements, and run-time performance of
the support counting operation on fifteen widely used
datasets (Table 4), with varying degrees of sparseness.

Table 4. Datasets used in our experiments, #entries
correspond to the total number of 1-bits (i.e., columns
with non-zero values), Sp = sparseness as the average
number of 0’s for each 1, rounded to nearest integer
Dataset Source #rows #cols #entries Sp

Flare UCI ML 1,389 30 13,890 2
Mushroom UCI ML 8,124 88 176,248 3

Pima UCI ML 768 36 6,144 4
Anneal UCI ML 898 66 11,949 4
Adult UCI ML 48,842 95 677,323 6
FBIS TREC 2,463 2,000 393,386 12
TR 23 TREC 204 5,832 78,609 14
Hitech SJMN (TREC) 2,301 22,498 346,881 148

Reviews SJMN (TREC) 4,069 36,746 781,635 190
LA12 LA Times 6,279 30,125 939,407 200
Sports SJMN (TREC) 8,580 27,673 1,107,980 213

Reuters Reuters-21578 10,787 19,127 465,959 442
Ohsumed Ohsumed-233445 34,389 36,250 2,018,254 617

20NG 20 Newsgroups 9,840 57,675 871,808 650
Classic4 SMART 7,094 41,681 223,839 1320

4.1. Space comparison of various structures

Table 5 compares the memory used by the Trie-
based structures on our datasets. On our test (64-bit)
system, each FP Tree node used 24 bytes of memory
(i.e., 32-bits for frequency, 32-bits for the item ID, 64-
bits for the parent pointer, and 64-bits for the node
link), and the header table used 64-bits for each item.
On the other hand, each node in the Patricia Trie used
12 bytes (i.e., 32-bits for frequency, and 64-bits for the
parent pointer), and each pointer in the horizontal list
used 64-bits. Interestingly enough, if the features in
each transaction are ordered with respect to FP Tree's
FList, the corresponding Patricia Trie contains exactly
the same number of horizontal pointers as the number
of nodes in the FP Tree (trivial proof omitted).

On our test datasets, Compressed Patricia Tries
resulted in space savings between 36% and 67%, with
greater savings realized on sparser datasets (i.e., higher
percentage of degree-one nodes). It is important to note
that in order to generate a Compressed Patricia Trie,
Binary Trie generation appears to be a necessary
interim step [10], which can be very expensive. Unlike
FP Tree, where we only generate nodes for items that
are present in a transaction, Binary Tries consider both
the presence and absence of items, resulting in a
significantly higher number of nodes. On our test

datasets, Patricia Trie generation needed between two
and twenty times more computational time as compare
to FP Tree, with higher times observed on sparse
datasets. Furthermore, it was not always possible to
generate the Binary Trie in memory. As an example,
Binary Trie generation exhausted the available
memory on our test system (i.e., about 4GB) on LA12,
Sports, Ohsumed, and 20NG datasets when the total
number of nodes in the Binary Trie reached around 175
million.
Table 5. Space comparison of Trie-based structures
Dataset FP Tree Compressed Patricie Trie

 #nodes Size (KB) #nodes #ptrs Size (KB)
Flare 1,361 32.13 599 1,361 17.65

Mushroom 20,799 488.16 10,073 20,799 280.54
Pima 389 9.40 228 389 5.71

Anneal 1,399 33.30 730 1,399 19.48
Adult 21,877 513.48 13,464 21,877 328.70
FBIS 367,553 8,630.15 3,911 367,553 2,917.34
TR 23 75,797 1,822.05 329 75,797 596.02
Hitech 337,474 8,085.31 3,316 337,474 2,675.38

Reviews 760,265 18,105.79 5,949 760,265 6,009.29
LA12 873,862 20,716.49 N/A N/A N/A
Sports 1,050,754 24,843.24 N/A N/A N/A

Reuters 399,439 9,511.28 15,359 399,439 3,300.61
Ohsumed 1,860,347 43,885.09 N/A N/A N/A

20NG 792,123 19,015.97 N/A N/A N/A
Classic4 208,414 5,210.34 8,454 208,414 1,727.30

Table 6 compares the space used by uncompressed
bit vectors, WAH encoded bitmaps in the original
order, and after applying various reordering schemes.
Our experiments included both 32 and 64-bit words for
WAH encoding, but we only report the 32-bit results
here for the reason of space, and note that 64-bit WAH
encoded bitmaps used between 4 and 71 percent more
space as compare to the corresponding 32-bit bitmaps,
because with 64-bit words, uniform bit sequences
smaller than 126 bits result in no space savings (i.e.,
fill count = 2), while 32-bit words realize space savings
on shorter (i.e., >=62-bit) uniform bit sequences.

We observe that the uncompressed vertical bit
vectors used less space as compare to both Trie-based
representations on dense datasets (i.e., Mushroom) but
used significantly more space on highly sparse datasets
(i.e., Classic). WAH encoding resulted in significant
space savings, especially on sparse datasets. Also,
lexicographic ordering outperformed Gray code rank-
based reordering scheme on 12/15 datasets.
Furthermore, HDO-WAH encoded bitmaps
outperformed all other reordering schemes on 14/15
datasets and resulted in the most significant overall
space savings. HDO even worked well on Hitech,
Reviews, and Sports datasets, where both Gray code
and lexicographic schemes negatively impacted the

compression achieved on the original-ordered bitmap.
Finally, aHDO resulted in compression very close to
HDO, especially on sparse datasets. The Classic
dataset exhibits an interesting behavior, where all
reordering schemes negatively impacted the WAH
compression achieved on the original-ordered bitmap,
while HDO still outperformed other reordering
schemes.

For the reason of space, we do not report the times
needed to apply various reordering schemes here, and
note that Gray code sorting, LSB Radix sort and aHDO
takes comparable amount of time while HDO takes the
most amount of time. Counter-intuitively, for small
values of k (i.e., 50), we observe that aHDO may take
less time than the other linear-time schemes because it
calculates the inter-transaction distances by XORing
whole words (i.e., 64 bits), while other schemes needs
to decode and evaluate each bit, requiring more
operations. Furthermore, we trivially optimized the
second most frequent operation in aHDO (i.e.,
counting 1-bits in a word) by caching bit-patterns.

4.2. Performance of frequency queries

Database style frequency queries: We first
compared the performance of various structures by
generating 25 million random frequency queries for
each dataset, with 5 million queries for each of the max
query sizes 1-5 (i.e., for max query size = 2, there
would be about 2.5 million size-1 queries, and an equal
number of size-2 queries). This adds to a total of 375
million queries on all datasets, with each query
executed on all available structures, adding to many
billion query executions. We assumed no prior
knowledge about the query itemsets, which means that
for a query itemset of size k, all k-bitmaps were used
for frequency calculation. This setting is close to real-
life database usage where variable-size, random query
are common, with a higher percentage of short queries.
For the reason of space, we only report the query
execution results on eight datasets in Figure 7.

We observe that bitmap structures resulted in an
orders of magnitude faster frequency counting as
compare to Trie structures on short queries. The
performance difference minimized as the query size
increased, because the number of bitmaps ANDed
linearly increase with the number of items in the query,
whereas the number of upward paths considered in a
Trie remains constant, and more paths can be quickly
pruned for longer, randomly generated queries (i.e.,
decreasing number of co-occurring items). Note that
regardless of (potentially) better frequency counting
performance on long queries, Trie structures are

Table 6. Compression achieved by various reordering schemes. Best results highlighted, WAH compression
uses a word size of 32-bit, IF = Improvement Factor as in [8], and all values rounded to 2 decimal places

WAH, original
order

WAH, Gray code
reordered

WAH, LSB
Radix sorted

WAH, HDO WAH, aHDO Size of the
uncompressed

bit vectors
(Kbytes)

Size
(KBytes)

% of
original

Size
(KBytes)

IF Size
(KBytes)

IF Size
(KBytes)

IF Size
(KBytes)

IF

Flare 5.16 5.04 97.73 3 1.68 2.91 1.73 2.6 1.94 2.67 1.89
Mushroom 87.31 70.26 80.47 22.74 3.09 20.4 3.44 20.24 3.47 21.55 3.26

Pima 3.38 2.61 77.31 1.22 2.13 1.23 2.13 0.96 2.70 1.02 2.55
Anneal 7.73 5.02 64.85 3.82 1.31 3.51 1.43 3.33 1.51 3.58 1.40
Adult 567.03 292.53 51.59 70.24 4.16 68.3 4.28 71.21 4.11 82.08 3.56
FBIS 609.38 551.57 90.51 456.15 1.21 455.74 1.21 433.8 1.27 434.64 1.27
TR 23 182.25 173.58 95.24 154.08 1.13 153.67 1.13 144.11 1.20 144.66 1.20
Hitech 6,327.56 1,222.46 19.32 1,244.64 0.98 1,244.68 0.98 1,155.45 1.06 1,174.3 1.04

Reviews 18,373 2,689.43 14.64 2,807.85 0.96 2,806.11 0.96 2,571.97 1.05 2,592.99 1.04
LA12 23,299.80 3,410.82 14.64 3,143.75 1.08 3,144.02 1.08 2,807.72 1.21 2,875.78 1.19
Sports 29,186.37 3,103.27 10.63 3,445.02 0.90 3,441.88 0.90 2,949.74 1.05 3,010.04 1.03
Reuters 25,253.62 1,826.09 7.23 1,552.38 1.18 1,549.45 1.18 1,277.50 1.43 1,359.62 1.34

Ohsumed 152,363.28 7,594.60 4.98 7,119.27 1.07 7,118.09 1.07 6,502.91 1.17 6,657.52 1.14
20NG 69,390.23 4,121.75 5.94 3,705.17 1.11 3,701.30 1.11 2,955.54 1.39 3,364.05 1.23

Classic4 36,145.24 1,280.65 3.54 1,387.30 0.92 1,386.88 0.92 1,317.56 0.97 1,336.81 0.96

Figure 7. Performance comparison of various structures on 200 million random, variable-sized frequency queries

practically unusable for database style queries because
most database style queries (except COUNT) must also
identify the corresponding transactions. We also
observe that Compressed Patricia Tries outperformed
FP Trees, (i.e., a smaller number of nodes traversed).
Furthermore, uncompressed vertical bit vectors
resulted in shortest query execution times on dense
datasets, and HDO-WAH encoded vertical bit vectors
outperformed uncompressed vertical bit vectors as the
sparseness increased. Finally, we observe that Tries
performed poorly on datasets that do not have many
transactions that share common prefixes (i.e., more
upward paths to consider), while the performance of
bitmap structures remained un-impacted. For example,
on FBIS dataset with 393,386 non-zero entries, the
corresponding FP Tree contained 367,553 nodes.
Consequently, it took 3,854 seconds to execute 25
million queries using the FP Tree, as compare to only

63 seconds using the HDO-WAH encoded bitmaps, a
significant difference!

Data mining style frequency queries: To evaluate
the performance of data mining style frequency
queries, we applied APRIORI [1] to mine frequent
itemsets of sizes 1-5, on datasets in Figure 7. Unlike
the previous test (i.e., no prior knowledge), we stored
the bitmaps of large itemsets found at each step.
Consequently, support calculation was performed by
ANDing only two bitmaps (section 1.2). An advanced
nanosecond timer was used to record individual query
execution times, and the total times are reported in
Table 7.

We observe that bitmap structures significantly
outperformed both Tries. Furthermore, unlike the
previous test, the performance gap did not minimize
with increasing query sizes for at-least two reasons
(graphs omitted for the reason of space). First, the

number of bitmaps ANDed remained constant (i.e., 2),
and second, the percentage of upward paths pruned in
Tries may actually decrease because unlike the random
test, where up to k-1 items in a query of size k can be
non-existent in an upward path, all k-1 sized subsets of
each query are guaranteed to meet minimum support.

Table 7. Itemset mining performance
Time (seconds) Dataset min

supp
#itemsets
(size 1-5) Patricia

Trie
FP Tree Unco

mp
WAH

32
WAH

64
Flare 2 21,063 0.36 0.13 0.06 0.07 0.08
Pima 2 3,860 0.05 0.02 0.03 0.03 0.03
FBIS 250 654,525 172.87 361.65 1.07 2.29 1.43

Hitech 50 2,859,310 211.33 478.55 4.00 8.02 5.55
Sports 300 1,297,271 N/A 1543.58 5.04 10.50 7.03
Reuters 100 996,097 269.19 375.08 4.80 6.74 4.72
20NG 200 643,537 N/A 249.44 3.10 5.24 3.37

Classic4 10 5,800,199 212.23 278.21 20.22 15.25 12.77
Finally, we note that the runtime performance of

bitmap-based schemes depend on the program
structure, and the underlying system architecture, in
addition to the total number of operations involved. As
an example, in spite of their significantly higher space
usage (which translates to more instructions needed to
AND bitmaps), uncompressed bitmaps may
outperform compressed bitmaps in time. This happens
because two uncompressed bitmaps can be ANDed in a
simple loop, with no inter-iteration dependencies. This
simple structure allows exploiting maximum
instruction level parallelism, and enables compilers to
apply techniques like loop unrolling. On the other
hand, the decoding logic of compressed bitmaps do not
allow exploiting the same level of ILP. Similarly 64-bit
WAH compressed bitmaps used more space, but
outperformed 32-bit bitmaps on our 64-bit test system,
because the system processed twice as much data in
each cycle. We conclude that HDO-WAH encoded
bitmaps offer the best space-time tradeoff for data
mining style queries. For example, performance was
comparable to uncompressed bit vectors on Reuters
and 20NG, while consuming 20 times less space.

5. Conclusions

We compared Trie and bitmap-based structures in
this paper, and conclude that Trie structures are viable
for applications that mostly execute long, random
queries, as long as we are not concerned with
identifying the actual transactions. We proposed HDO,
a Hamming-distance-based greedy transaction
reordering scheme, and showed that it results in better
compression, and outperforms other structures on short
database style frequency queries. We also showed that
aHDO can serve as a practical alternate to HDO on
sparse datasets. Finally, we showed that uncompressed
bitmaps can be a good choice for data mining

applications that are not concerned with high space
requirements, while HDO-WAH encoded bitmaps
provide the best space-time tradeoff.

6. References

[1] R. Agrawal, and R. Srikant, "Fast Algorithms for Mining
Association Rules", In Proc. VLDB 1994.
[2] J. Han, J. Pei, Y. Yin and R. Mao, “Mining Frequent
Patterns without Candidate Generation: A Frequent-Pattern
Tree Approach”, Data Mining & Knowledge Disc., 2004.
[3] L.T. Kou, “Polynomial complete consecutive information
retrieval problems”, SIAM Jnl. on Computing, Vol. 6, 1977.
[4] S. Haddadi, “A note on the NP-hardness of the
consecutive block minimization problem”, International
Transactions in Operational Research, Vol. 9, No. 6, 2002.
[5] K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg, "Notes
on design and implementation of compressed bit vectors",
Tech. rep. LBNL/PUB-3161, Berkeley, CA.
[6] K. Wu, E. J. Otoo, and A. Shoshani, "Optimizing bitmap
indices with efficient compression", ACM TODS, 2006.
[7] K. Wu, E. J. Otoo, and A. Shoshani, "On the Performance
of Bitmap Indices for High Cardinality Attributes", In Proc.
VLDB 2004, pp. 24-35.
[8] A. Pinar, T. Tao and H. Ferhatosmanoglu, “Compressing
Bitmap Indices by Data Reorganization”, In Proc. ICDE ’05.
[9] T. Johnson, "Performance Measurements of Compressed
Bitmap Indices", In Proc. VLDB 1999.
[10] D.-Y. Yang, A. Johar, A. Grama, and W. Szpankowski,
"Summary structures for frequency queries on large
transaction sets", In Proc. DCC 2000, pp. 420-429.
[11] X. Hu, T.Y. Lin, and E. Louie, "Bitmap techniques for
optimizing decision support queries and association rule
algorithms", In Proc. DB Engg. & Aps Symposium, 2003.
[12] H. D. K. Moonesinghe, et. al., "Frequent Closed Itemset
Mining Using Prefix Graphs with an Efficient Flow-Based
Pruning Strategy", In Proc. ICDM 2006, pp. 75-86.
[13] F. Beil, M. Ester, and X. Xu, “Frequent term-based text
clustering”, In Proc. ACM SIGKDD 2002, pp. 436-442.
[14] H. Yu, D. Searsmith, X. Li and J. Han, "Scalable
Construction of Topic Directory with Nonparametric Closed
Termset Mining", In Proc. ICDM'04, pp. 563-566.
[15] H. H. Malik, and J. R. Kender, "High Quality, Efficient
Hierarchical Document Clustering Using Closed Interesting
Itemsets", In Proc. ICDM 2006, pp. 991-996.
[16] F. Bodon, “A fast apriori implementation.” In Proc.
IEEE ICDM Workshop FIM Implementations, 2003.
[17] A. Amir, R. Feldman and R. Kashi.
"A New and Versatile Method for Association Generation",
Information Systems, 1997, Vo. 22, No. 6, pp. 333-347
[18] F. Verhein, and S. Chawla, "Geometrically Inspired
Itemset Mining", In Proc. ICDM 2006, pp. 655-666.
[19] D. Burdick, M. Calimlim, and J. Gehrke, "MAFIA: A
Maximal Frequent Itemset Algorithm for Transactional
Databases", In Proc. of ICDE, 2001.
[20] C. Lucchese, et. al., "Fast and Memory Efficient Mining
of Frequent Closed Itemsets", TKDE, 2006.
[21] T. Cormen et. al., “Introduction to Algorithms, 2nd
Edition”, McGraw Hill / MIT Press, ISBN: 0-07-013151-1.

