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ABSTRACT 
This paper presents a new approach to cluster web images. Images 
are first processed to extract signal features such as color in HSV 
format and quantized orientation. Web pages referring to these 
images are processed to extract textual features (keywords) and 
feature reduction techniques such as stemming, stop word 
elimination, and Zipf’s law are applied. All visual and textual 
features are used to generate association rules. Hypergraphs are 
generated from these rules, with features used as vertices and 
discovered associations as hyperedges. Twenty-two objective 
“interestingness” measures are evaluated on their ability to prune 
non-interesting rules and to assign weights to hyperedges. Then a 
hypergraph partitioning algorithm is used to generate clusters of 
features, and a simple scoring function is used to assign images to 
clusters. A tree-distance-based evaluation measure is used to 
evaluate the quality of image clustering with respect to manually 
generated ground truth.   

Our experiments indicate that combining textual and content-
based features results in better clustering as compared to signal-
only or text-only approaches. Online steps are done in real-time, 
which makes this approach practical for web images. Furthermore, 
we demonstrate that statistical interestingness measures such as 
Correlation Coefficient, Laplace, Kappa and J-Measure result in 
better clustering compared to traditional association rule 
interestingness measures such as Support and Confidence. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
mining; H.3.3 [Information Storage and Retrieval]: Information 
Search and Retrieval – Clustering.  

General Terms 
Performance, Experimentation. 

Keywords: Web image clustering, feature selection, web 
mining, association rules, interestingness measures, hypergraphs. 

1. INTRODUCTION 
1.1 Visual and Textual Mining 
The last two decades have seen significant research in the field of 
data mining, resulting in a number of successful techniques such  

as finding associations between data items by mining association 
rules [1]. These techniques are proven to be very useful in 
symbolic and structured domains such as market basket analysis. 
Limited research, however, has been conducted to apply these 
techniques on non-structured, signal-based domains like images 
[12, 25, 27]. 

Unlike structured data where features such as keywords and 
alphanumeric values can be easily identified and extracted, images 
contain implicit features and patterns that are not straightforward 
to identify and extract [17]. The fundamental challenge in image 
mining is to determine how low-level pixel representations can be 
efficiently and effectively processed to identify these high-level 
patterns [17]. Once identified, these patterns could be used in a 
variety of applications. 

Clustering is one such application that uses features to organize 
data in a number of groups called clusters. Two major approaches 
exist to cluster images: content-based and text-based. Content-
based clustering is normally used by the image analysis and 
computer vision communities and focuses on exploiting low-level 
signal features like color, shape, and texture to cluster images, 
while text-based clustering is normally used by the web mining 
and information retrieval communities. A common perception 
exists in web and information retrieval communities [15] that 
content-based features are computationally expensive to extract 
and hence infeasible for the web domain. However, some features 
such as color and orientation can be extracted in linear time. 
Furthermore, applying simple techniques like image scaling can 
further reduce computational requirements.  

In contrast, the availability of reasonable textual information is 
not always guaranteed. A large number of images on the web 
either do not have any textual information associated to them, or 
the associated textual information does not provide much 
information about the image (i.e. insufficient to disambiguate 
from other images that belong to different semantic categories but 
share some keywords). Text-only clustering techniques are very 
likely to assign such images to wrong clusters, resulting in low-
quality clustering. Similarly, unless very sophisticated and 
computationally intensive techniques are used to capture 
semantics, signal-only clustering techniques are also likely to 
produce low quality clusters. We show that using a combination 
of textual and simple signal features results in better clustering as 
compared to clustering solely based on text or signal-only 
features. 
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1.2 A Novel Approach 
Hypergraphs are proven useful in data mining and high-
dimensional document clustering problems [13, 14]. In a typical 
hypergraph, each vertex represents a dimension and each 
hyperedge represents affinity (or relationship) between two or 
more vertices. Weights assigned to vertices indicate importance of 
these vertices and weights assigned to hyperedges indicate the 
strength of the relationship between vertices connected by a 
hyperedge. In this paper, we first extract signal and text features 
from images, calculate their frequencies, and apply well-known 
dimensionality reduction techniques such as stemming, stop word 
elimination, and Zipf’s law to prune non-interesting features. The 
remaining features are used to generate association rules.  

Similar to [14], we use features as hypergraph vertices and all 
association rules between a set of vertices to generate hyperedges. 
In the last decade or so, various researches [6, 22] questioned the 
usefulness of Support and Confidence as association rule 
interestingness measures and have proposed various alternates. 
Unfortunately, researchers comparing interestingness measures 
[16, 32] do not agree on any single domain-independent objective 
measure. Considering this, we compared twenty-two objective 
interestingness measures to assign weights to hyperedges, rather 
then using Confidence [14].  

Once the association rule hypergraph is available, we apply a 
widely used hypergraph partitioning algorithm hMETIS [18] to 
obtain partitions (or clusters) of features. Images are assigned to 
these clusters using a simple scoring function. This clustering 
method eliminates the need of calculating image distances or 
similarities against other images. Finally, we use a tree-distance-
based evaluation measure to evaluate the quality of the resulting 
image clusters with respect to manually generated ground truth.  

Most of the steps in this approach, including feature extraction, 
reduction, rule generation, feature hypergraph generation, and 
hypergraph partitioning can be performed offline. Assignment of 
images to clusters is the only real-time step, which is 
computationally inexpensive. 

2. RELATED WORK 
2.1 Web Image Clustering 
There have been several web image clustering and categorization 
approaches proposed in recent years. We discuss only a few 
representative approaches here. Lienhart and Hartmann [21] use 
signal-only features to categorize web images. Images are divided 
into photo-like images, and graphical images. Photo-like images 
are further divided into photos and artificial photo-like images; 
graphical images are further divided into slides, cartoons, and 
other images. This approach produces coarse categories 
containing too many images. Although syntactically meaningful, 
the resulting clusters are likely to contain images that are not 
semantically related. In contrast, ImageSeer [15] uses the VIPS 
algorithm [7] to segment web pages into several semantic blocks. 
These blocks are further used to extract surrounding text of web 
images. Page-to-block, block-to-image, and block-to-page 
relationships are obtained using the link structure and page layout 
analysis, and an image graph is constructed. Techniques from 
spectral graph theory and Markov chain theory are applied for 
image ranking, clustering, and embedding. Like any other text-
only approach, this approach is likely to assign images with 
insufficient textual information to wrong clusters. 

2.2 Association Rules and Association Rule 
“Interestingness” Measures 
The problem of mining association rules was first introduced in 
[1]. If I = {i1, i2, …, im} is a set of literals, called items and D is a 
set of transactions, an association rule is an implication of the 
form X → Y, where X ⊂ I, Y ⊂ I and X ∩Y = 0. The rule X → Y 
holds in the transaction set D with Confidence c if 100c% of 
transactions in D that contain X also contains Y. The rule X → Y 
has Support s in the transaction set D if 100s% of transactions in 
D contain X ∪ Y. Although a number of algorithms are proposed 
improving various aspects of association rule mining [5, 9, 10], 
Apriori [2] remains the most commonly used algorithm.  

One of the most significant problems with association rules 
mining is that it often results in too many rules [33], especially 
when attributes in a data set are highly correlated [22]. On one of 
our small datasets containing 295 images, several of which had 
both signal and textual features associated, we extracted over 1.5 
million rules when minsup and minconf were set to 0.02 (or 2%) 
each and rules were limited to at most two features on the left 
hand side and one feature on the right hand side. Increasing the 
Support threshold significantly reduces the number of rules 
discovered, but risks losing useful associations. In addition, it is 
non-trivial to set a good value for Support and Confidence 
thresholds; it depends on the size of data, sparseness of data, and 
the particular problem under study [6]. Considering these issues, a 
number of researchers proposed alternate interestingness measures 
to evaluate and rank discovered associations. These measures are 
generally divided into subjective and objective interestingness 
measures. Brijs et al. [6] provides an overview of a number of 
symmetric objective interestingness measures, five of which are 
Lift (or Interest), Chi-Square, Correlation Coefficient, Log linear 
analysis and Empirical Bayes correction. Shekar et al. [28] 
proposed three measures for capturing relatedness between item 
pairs. Based on the Chi-Square test, Liu et al. [22] introduces the 
concept of direction-setting and non-direction-setting rules for 
summarizing association rules. In a follow up paper [23], they 
propose a subjective approach that assists the user in finding 
interesting rules. Hilderman and Hamilton [16] survey various 
objective and subjective interestingness measures for 
classification rules, association rules, and generalized relations. 
Tan et al. [32] discuss the properties of twenty-one objective 
interestingness measures and analyze the impacts of Support 
based pruning and contingency table standardization. 

2.3 Mining Association Rules from Images 
Utilizing object generation capabilities of UC Berkeley’s 
BlobWorld content-based image retrieval system [3, 8], Ordonez 
and Omiecinski [25] proposed an algorithm to extract association 
rules from images. The BlobWorld system represents an image as 
a collection of Blobs. In order to generate association rules, 
objects extracted by BlobWorld are considered analogous to items 
and images are considered analogous to transactions. Candidate 
itemsets are generated from the set of objects, and the Support is 
calculated by checking individual images for presence or absence 
of objects. This information is further used to calculate 
Confidence. This approach works well on a small set of images 
containing simple geometric objects, but is not suitable for images 
containing complex objects. Haddad and Mulhem [12] proposed a 
more realistic approach that considers both manual textual 
annotations and signal features like dominant colors, directions, 



and texture indicators to generate association rules from images. 
Images are first segmented into regions based on their spatial 
connectivity and visual similarity. Principal color, secondary 
color, principal direction, and texture features are computed for 
regions, and annotations are added manually using a list of 
predefined terms. Finally, association rules are generated using 
regions as transactions and region features as items. This approach 
is less scalable and hence not directly applicable to web images.  

2.4 Clustering Based on Hypergraph 
Partitioning 
Based on the observation that using association rules directly for 
clustering would result in clusters that are too granular, Han et al. 
[14] proposed an approach to cluster transactions using 
association rule hypergraphs. Hypergraphs are similar to graphs 
except that each edge, called a hyperedge, could connect two or 
more vertices. In order to generate a hypergraph from a set of 
association rules, each unique item that exists in the set is 
assigned to a unique vertex in the graph. All rules containing a set 
of items would generate a hyperedge, with average Confidence of 
such rules used as the weight. For example, if {A} → {B, C} and 
{C} → {A, B} are all possible rules between items A, B, and C 
with Confidences 0.6 and 0.4 respectively, there would be a 
hyperedge between A, B, and C with a weight of 0.5. hMETIS 
[18], a hypergraph-partitioning algorithm that is widely used in 
the VLSI domain is used to partition this hypergraph. 
Transactions are assigned to these partitions using a simple 
scoring function resulting in clusters of transactions.  

hMETIS [18] is a multi-level hyper graph-partitioning algorithm 
that is based on the multilevel paradigm. In the multilevel 
paradigm, a sequence of successively coarser hypergraphs is 
constructed. A bisection of the coarsest hypergraph is computed 
and it is used to obtain a bisection of the original hypergraph by 
successively projecting and refining the bisection to the next level 
finer hypergraph. hMETIS achieves this in three phases. During 
the coarsening phase, the size of the graph is successively 
decreased; during the initial partitioning phase, a bisection of the 
smaller graph is computed; and during the uncoarsening and 
refinement phase, the bisection is successively refined as it is 
projected to the larger graphs. 

3. MINING ASSOCIATION RULES 
3.1 Data Gathering and Preprocessing 
Over 3000 images were crawled from the Internet and saved to 
local disk, along with referring web pages, preserving the links. 
These images were divided into two separate datasets and the 
same set of steps was performed on each dataset. 

A hashtable was generated using references to images as keys and 
the lists of their referring web pages as values. All the HTML tags 
and formatting commands (i.e., “&nbsp;”) were stripped out from 
the web pages, and stopwords were eliminated using the standard 
list of 571 stopwords initially designed for the SMART system 
[30]. The remaining terms were stemmed using the Paice stemmer 
[26]. Since word frequencies within individual documents are 
believed to be insignificant in the context of web pages [35], they 
were ignored, and the unique terms from all referring web pages 
were added as textual features for each image, i.e., the image-
word vector was binary valued. Images were scaled to a fixed size 

of 168 x 168 maintaining their aspect ratios, enabling faster 
processing times for the signal feature extraction phase. 

A web image: 
 

 
 
Textual features extracted from the referring web page(s): 
tiger panthera tigris tiger panthera tigris there are five subspecies 
of tigers and three more have become extinct in recent decades 
tigers are the largest cats and the only ones besides the jaguar that 
like water they are distributed over east asia tigers usually make a 
kill every three days and if they don't eat within ten days chances 
are they will be too weak to hunt and they will die 
 
Textual features extracted from the image file name: 
tiger 
 
Signal features: 
@SIGNAL_ORIENTATION=1 
@SIGNAL_COLOR=Black 
@SIGNAL_COLOR=Brown 
@SIGNAL_ORIENTATION=3 
 
Final set of features with textual features stemmed, and 
duplicates and stopwords eliminated: 
@SIGNAL_ORIENTATION=1 hunt die subspecy as 
@SIGNAL_COLOR=Black distribut kil tig chant extinct wat 
weak @SIGNAL_COLOR=Brown eat jagu ten east day mak 
panther tigr cat rec decad largest @SIGNAL_ORIENTATION=3 
 

Figure 1: Features extracted from one of the 3364 
images crawled from the web, found at 
http://cogsci.indiana.edu/farg/harry/bio/zoo/tiger.htm 



3.2 Feature Extraction 
In addition to the terms extracted from referring web pages, image 
file names were processed to extract keywords. Terms separated 
using standard delimiters like space, underscore, and hyphen were 
isolated and further parsed for potential words, taking case 
changes and appearance of numbers into account. The resulting 
keywords were stemmed, checked against the stopwords list, and 
added to the list of textual features associated with the image. 

HSV color histograms were computed and used to identify the 
two most dominant colors. In order to calculate significant 
orientations, horizontal and vertical Sobel filters were applied to 
the image. The resulting values were used to generate a 2D 
histogram of gradients. Small image gradients were eliminated 
and the remaining ones were quantized to acquire a coarse 
representation of the four most significant orientations. The image 
was then checked for the presence of two major orientations, by 
comparing the magnitude of the two most significant orientations 
against the third orientation. If the first two orientations were 
found to be close to each other but significantly apart from the 
third orientation, the image usually contained grid like objects; an 
extra feature indicating this finding was added for such images. 
The resulting color and orientation features were added as image 
signal features in a textual form (i.e., Color = BLUE) prefixed as 
“@SIGNAL_” to avoid potential conflicts with textual features. 
Color names were assigned to HSV ranges in a way similar to 
[24], except that we have dealt with relatively fewer colors. Figure 
1 shows an image and the set of extracted signal and textual 
features. 

3.3 Rule Generation 
In terms of classical association rule terminology, images were 
considered as transactions, and textual and signal features were 
considered as items. An algorithm similar to Apriori-TID [2] was 
used to generate association rules. Large itemsets were computed 
by checking for the presence or absence of features in images.  

Rule Support 
{@SIGNAL_COLOR=Brown}→{suv} 0.027118 

{@SIGNAL_COLOR=Brown}→{wild} 0.030508 

{model}→{car} 0.183050 

{jagu}→{turbo} 0.030508 

{import}→{hors} 0.027118 

{anim}→{@SIGNAL_ORIENTATION=1} 0.054237 

{livestock}→ 
{@SIGNAL_ORIENTATION=1} 

0.040677 

{@SIGNAL_ORIENTATION=1}→ 
{@SIGNAL_COLOR=Pink} 

0.020338 

 
Figure 2. A few association rules generated from images 
of cars and animals along with their Support. Note the 
stemming of “Jaguar”, “Horse” and “Animal”.  
Zipf’s law states that items that occur too frequently or very 
infrequently are not significant, and this has been proven as a 
useful feature reduction technique in the context of generating 
associations from web pages [11]. Checking for the Support 

threshold essentially eliminates infrequent items. We applied an 
additional feature reduction step on large 1-itemset (i.e., an 
itemset containing single terms and their frequencies) and 
eliminated items with very high Support (greater than 0.9). Once 
generated, rules were written to a file along with their Support, 
Confidence, and additional information required to calculate the 
values of various interestingness measures discussed in the next 
section. Figure 2 shows a few rules extracted from one of our 
experimental datasets. 

4. GENERATING HYPERGRAPHS 
A unique vertex was generated from each unique feature that 
existed in the final set of extracted association rules. A hyperedge 
was generated between a set of vertices if there was at least one 
association rule containing exactly the features that existed in the 
set. As an example, three hyperedges were generated for the 
following set of four rules: 

{Color = YELLOW}→{bart} supp = 0.2, conf = 0.4 
{bart}→{Color = YELLOW} supp = 0.2, conf = 0.8 
{Color = YELLOW}→{lisa} supp = 0.25, conf = 0.3 
{bart} → {lisa}                       supp = 0.1, conf = 0.5 

The first hyperedge was generated between vertices labeled as 
‘Color = YELLOW’ and ‘bart’, the second hyperedge was 
generated between vertices labeled as ‘Color = YELLOW’ and 
‘lisa’, and the third hyperedge was generated between vertices 
labeled as ‘bart’ and ‘lisa’. 

In order to assign weights to these hyperedges, we used one of our 
set of 22 interestingness measures, taking averages if more than 
one rule participated in the hyperedge. For example, as in [14], 
using average “Confidence” of all rules covered by the first 
hyperedge results in a weight of 0.6 (i.e., the average of 0.4 and 
0.8). Similarly, the second and third hyperedges will have 0.3 and 
0.5 assigned as weights, respectively. 

5. INTERESTINGNESS MEASURES 
As discussed above, Support and Confidence are widely criticized 
as interestingness measures for association rules. For uneven 
datasets, a high Support threshold results in pruning useful 
associations between items [32] that are not present in a large 
number of transactions, and a low Support threshold results in too 
many rules. Figure 3 shows the number of rules we have obtained 

Number of rules at various support levels
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# of rules 4 200 372 1392 19866 19932 20184 20648 2286436318

0.3 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04

 
Figure 3. Number of rules generated at various Support 
levels. 



on our smallest dataset of 295 images for various Support levels. 
Note the non-linearity of the x-axis. 

However, [32, 33] show that if the Support threshold is set to a 
very low value, rules that are pruned contain items that are either 
uncorrelated or negatively correlated. We use this property to 
reduce the initial number of rules obtained from our datasets.  

On the other hand, Confidence is criticized because of its 
asymmetric property and its failure to incorporate the baseline 
frequency of the consequent [4]. 

Therefore, we experimented using various statistically-inspired 
interestingness measures as functions to assign weights to 
hyperedges. Table 1 lists all such measures. Computational details 
of these measures can be found in [4, 6, 20, 29, 31, 32, 33, 34].  

Table 1. List of interestingness measures used 

# Symbol Interestingness Measure 
1 AV Added Value 

2 F Certainty Factor 

3 χ 2 Chi Square 

4 S Collective Strength 

5 c Confidence 

6 V Conviction 

7 Φ Correlation Coefficient 

8 IS Cosine 

9 G Gini Index 

10 I Interest 

11 ζ Jaccard 

12 J J-Measure 

13 к Kappa 

14 K Klosgen’s 

15 L Laplace 

16 mc Max Confidence 

17 M Mutual Information 

18 α Odds Ratio 

19 RI Piatetsky Shapiros Interest 

20 s Support 

21 Q Yule's Q 

22 Y Yule's Y 

 
Some of these measures offer properties that can be used to 
distinguish significant rules from non-significant rules. We used 
these properties to identify and prune non-significant rules. As an 
example, Correlation Coefficient and Certainty Factor ranges 
between –1 and +1 with a value of 0 indicating independence and 
negative and positive values indicating negative and positive 
correlation (or in case of certainty factor, dependence) 
respectively. We used this property to prune all rules having 
negative or no correlation and kept only the rules containing 
positively correlated features. 

6. CLUSTERING VIA PARTITIONING 
In our preliminary experiments, we used a widely used 
hypergraph partitioning algorithm hMETIS [18] to partition the 
feature hypergraph. hMETIS is a multi-level partitioning 
algorithm that has been shown to quickly produce high quality 
partitions, particularly in its original domain of VLSI design. 
hMETIS produces balanced k-way partitions where k, the number 
of partitions, is specified in advance. For this paper, we set the 
number of partitions based on ground truth. 

Once features were partitioned, images were clustered by 
calculating a score of each image against each partition, based on 
the features in the partition and the features in the image. All 
images were assigned to partitions with their highest score. A 
simple function was used to calculate this score: 

i

i

P
PIS ∩=  

Where I is the set of image features and Pi is the set of features in 
cluster i. 

 
Figure 4. 18 images assigned to ground truth hierarchy. 
The main goal of clustering is to organize data in clusters so that 
intra-cluster similarity is maximized and inter-cluster similarity is 
minimized [14]. We use a tree-distance-based evaluation measure 
to evaluate the overall clustering quality, comparing the clustered 
images with a ground truth hierarchy of image clusters. Each 
image is evaluated in three ways, and then these individual image 
scores are summed. The first way assigns a score of ‘p’ to the 
image for every other image in its cluster that appears in the same 
ground truth cluster that is the image’s ground truth cluster. The 
second way deducts a score of ‘n’ from the image for each image 
in its cluster that appears in a sibling ground truth cluster of the 
image’s ground truth cluster. The third way deducts a score of ‘z’ 
for any image in its cluster that does not meet the first two 
conditions (for example, the image appears in a cousin ground 
truth cluster rather than a sibling). 

As an example, Figure 4 presents a hierarchy with 18 images 
assigned to various root nodes based on ground truth. If a 
clustering algorithm generates the following six clusters, we 
compute the score of cluster 2 as follows: 
Cluster1: img5, img9 
Cluster2: img2, img10, img1, img8 
Cluster3: img3, img12 
Cluster4: img14, img18, img17 
Cluster5: img11, img16, img13 
Cluster6: img4, img6, img7, img15 
 



Using p = z = 1 and n = 0: 
img2: (-1 for img10) + (+1 for img1) + (-0 for img8) = 0 
img10: (-1 for img2) + (-1 for img1) + (-1 for img8) = -3 
img1: (+1 for img2) + (-1 for img10) + (-0 for img8) = 0 
img8: (-0 for img2) + (-1 for img10) + (-0 for img1) = -1 
Cluster2: 0 – 3 + 0 – 1 = -4. 
Scores for other clusters can be calculated in a similar fashion. 
The overall clustering score is then computed by adding total 
scores for all clusters. In order to compare clustering quality 
across datasets of different sizes, max and min bounds for the raw 
score can be trivially calculated using the ground truth hierarchy, 
and these extremes can be used to normalize the raw score. We 
used this technique in this paper; cluster fit therefore is in a range 
of [0, 1].  

Graph partitioning is an NP-hard problem. Efficient partitioning 
algorithms such as hMETIS [18] use various randomized 
heuristics to achieve the desired level of performance. A major 
drawback of this approach is that multiple executions of the 
algorithm on the same hypergraph using the same parameters 
often result in different partitions. As suggested in [19], we 
executed hMETIS a number of times on each feature hypergraph 
and picked the partition with highest overall clustering score.  

7. EXPERIMENTAL RESULTS 
A dataset containing 295 images of cars and animals with a 
ground truth hierarchy as in Figure 4 was used for initial 
experiments. In the ground truth, the smallest cluster had 7 images 
and the largest cluster had 80 images. A second dataset containing 
3069 images of animals and cartoons was used to validate our 
results. The smallest cluster in this dataset contained 100 images 
and the largest cluster contained 1970 images. Both datasets 
included some categories that could challenge any clustering 
algorithm because of inherent ambiguity, for example, Jaguar cars 
and Jaguar animals in the first dataset, and images of ducks and 
Donald Duck in the second dataset. 

 
Figure 5. Comparison of clustering quality of various 
measures across on both datasets.  
Additionally, for computational efficiency purposes, these 
first experiments were performed using rules 
that contain one item on the left and one 
item on the right. Figure 5 graphs the overall clustering 
quality of various interestingness measures on each of these 

datasets. Clearly, Support and Confidence are among the worst 10 
performers on both datasets. Max Confidence, a symmetric 
version of Confidence, outperformed Confidence on both 
datasets, which adds credence to the claim that the asymmetric 
property of Confidence is not as useful in web domain. 

Clustering Quality of Top 5 Measures 
Compared w.r.t. Types of Features Used

0

0.5

1

Text + Signal 0.92 0.79 0.78 0.78 0.75

Text Only 0.65 0.62 0.72 0.77 0.73

Signal Only 0.39 0.33 0.34 0.25 0.49

Correlation J-Measure Kappa Laplace Piatetsky 

 
Figure 6. Clustering quality comparison on Dataset1 
using text-only, signal-only, and both features.  
Correlation Coefficient, Kappa, J-Measure, and Gini Index 
perform consistently well. However Jaccard poses a surprising 
problem. We suspect that this is due to the imbalance of cluster 
sizes in the second dataset. It is important to note that the first 
dataset more clearly determines top 5 measures. Additional 
experiments were performed on a third, reasonably large, dataset 
and confirmed the results presented in Figure 5. Details of these 
additional experiments are omitted for space reasons. 

 
Figure 7. A small cluster generated from the first 
dataset using signal-only features and Correlation 
Coefficient as interestingness measure.  
Figure 6 compares the clustering quality of the top 5 measures on 
the first dataset when signal-only, text- only, or both kinds of 
features are used. Signal-only techniques performed worst in 
terms of clustering quality. For example, Figure 7 presents a small 
signal-only cluster generated using Correlation Coefficient on 
Dataset1. Although all seven images in this cluster look visually 
similar, they belong to four different semantic categories. 

Figure 6 also shows that combining textual and signal features 
provide improvement over clustering using text-only features. If 
enough textual features are available, the quality of clustering 
using text-only features is often comparable to clustering using a 
combination of textual and signal features. Unfortunately, this is 
often not the case with web images. Figure 8 presents portion of a 
cluster generated using text-only features and correlation 
coefficient on the first dataset. While most of the images may 
have the keyword ‘Jaguar’ associated with them, they lacked 
further information that could have helped separate animals from 



cars. When signal features were added, the same clustering 
technique using the same interestingness measure was able to 
isolate animals and cars in two separate clusters, achieving a much 
higher level of clustering quality as shown in Figure 9. 

7.1 Cross Validation 
To validate our findings, leave-n-out cross validation was applied 
on the first dataset, using two of the top 5 measures as shown in 
Figure 6 and both signal and textual features used to generate 
rules. ‘n’ was set to 10, which resulted in 29 unique sets of 
randomly selected images. 29 experiments were performed for 
each of the two measures and one of the image sets was left out in 
each experiment. The remaining images were used to generate 
rules, and all images from the original dataset (images used to 
generate rules, as well as images that were left out) were clustered 
using the hypergraph partitions obtained. Experiments performed 
using Kappa resulted in an average clustering quality of 0.75, with 
max = 0.85 and min = 0.70 and experiments performed using J-
Measure resulted in an average clustering quality of 0.73 with 
max = 0.79 and min = 0.69, validating our initial results. 

7.2 Rules with More Than Two Features 
We performed preliminary experiments to find if hypergraph 
partitions generated using higher order rules would result in better 
clustering, as compared to rules that contain only one item on the 
left and one item on the right. Using a relatively higher support 
threshold on the first dataset, we generated two sets of rules. The 
first set contained rules with one item on the left and one item on 
the right and the second set contained rules with two items on the 
left and one item on the right. All of the top 5 measures were used 
to generate hypergraphs that were further used to cluster all 
images in the dataset. We observed that hypergraphs based on 
rules containing two items on the left results in an average 
clustering quality improvement of 19% across all measures, as 
compared to clustering obtained using hypergraphs containing 
one item on the left and one item on the right. Specifically, 
Laplace gained the most and Piatetsky Shapiros Rule Interest 
gained the least improvement. 

8. CONCLUSIONS AND FUTURE WORK 
We presented a novel approach of clustering web images using 
association rules, objective interestingness measures, and 
hypergraph partitions. We also presented a tree-distance-based 
clustering evaluation measure that considers the importance of 
objects ‘occurring together’ based on ground-truth. We showed 
that statistically-inspired objective interestingness measures, such 
as Correlation Coefficient and Kappa, result in better clustering as 
compared to Support and Confidence. Furthermore, we 
demonstrated that combining textual and signal based features 
results in better clustering as compared to clustering using signal-
only or text-only features. The difference becomes even more 
prominent when the dataset contains images that belong to 
different semantic categories but share some textual features.  

In the future, we would like to do more detailed experiments 
using image association rules with more than two features. We 
also plan to experiment using other hypergraph partitioning 
algorithms, and to fine-tune our tree-distance-based clustering 
quality measure. 

 
Figure8. Portion of a cluster from the first dataset using 
text-only features and Correlation Coefficient. 
 

 
 

 
Figure 9. Portions of two clusters from the first dataset 
using combined textual and signal features and 
Correlation Coefficient. 
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