
High Quality, Efficient Hierarchical Document Clustering using Closed

Interesting Itemsets

Hassan H. Malik and John R. Kender

Department of Computer Science

Columbia University

New York, NY 10027

{hhm2104, jrk}@cs.columbia.edu

Abstract

High dimensionality remains a significant challenge

for document clustering. Recent approaches used

frequent itemsets and closed frequent itemsets to

reduce dimensionality, and to improve the efficiency of

hierarchical document clustering. In this paper, we

introduce the notion of “closed interesting” itemsets

(i.e. closed itemsets with high interestingness). We

provide heuristics such as “super item” to efficiently

mine these itemsets and show that they provide

significant dimensionality reduction over closed

frequent itemsets.

Using “closed interesting” itemsets, we propose a

new hierarchical document clustering method that

outperforms state of the art agglomerative,

partitioning and frequent-itemset based methods both

in terms of FScore and Entropy, without requiring

dataset specific parameter tuning. We evaluate twenty

interestingness measures on nine standard datasets

and show that when used to generate “closed

interesting” itemsets, and to select parent nodes,

Mutual Information, Added Value, Yule’s Q and Chi-

Square offers best clustering performance, regardless

of the characteristics of underlying dataset. We also

show that our method is more scalable, and results in

better run-time performance as compare to leading

approaches. On a dual processor machine, our method

scaled sub-linearly and was able to cluster 200K

documents in about 40 seconds.

1. Introduction and Related Work

Organizing data into a tree-like hierarchy has many

applications. A hierarchy provides a view of the data at

different levels of abstraction, helping users deal with

the common problem of information overload. As the

user expands nodes at different levels in the hierarchy,

the structure within the broad topic becomes more

apparent as parent and child nodes are organized in a

general to specific fashion. These benefits make

hierarchies a logical choice to organize large

collections of documents and during last few decades,

various approaches were proposed to produce cluster

hierarchies from document collections.

Agglomerative and partitioning-based approaches

represent two most popular categories of hierarchical

document clustering techniques. Agglomerative

approaches start with a singleton cluster for each

document and build the hierarchy bottom-up by

applying various pair-wise similarity measures on

clusters, and merging the cluster pair with highest

similarity at each step, until only one cluster remains.

Agglomerative methods generally suffer from their

inability to perform adjustments once a merge is

performed, resulting in lower clustering accuracy. They

also have a very high computational cost [5], making

them infeasible for large document datasets. On the

other hand, partitioning approaches obtain hierarchical

clustering solutions via a sequence of repeated

bisections [5] and are generally scalable and efficient.

Steinbach et al. [1] showed that Unweighted Pair

Group Method with Arithmetic Mean (UPGMA) [2]

and bisecting k-means, a variant of standard k-means

are the most accurate agglomerative and partitioning

methods, respectively [4]. Furthermore, Zhao and

Karypis [5] recently showed that the I2 criterion

function outperforms other criterion functions when

used with bisecting k-means.

A recent trend in hierarchical document clustering is

to use frequent itemsets to produce cluster hierarchies.

HFTC [6] was the first algorithm in this class and

achieves accuracy comparable to 9-secting k-means,

and worst than bisecting k-means. Fung et al. [3]

showed that HFTC is not scalable for large document

collections and proposed FIHC; a frequent itemset

based clustering approach that claims to outperform

HFTC and the best-known agglomerative and

partitional methods (i.e. UPGMA and bisecting k-

means) both in terms of accuracy and scalability. More

recently, Yu et al. [7] proposed TDC that uses only

closed frequent itemsets and further reduces

dimensionality, while improving the clustering quality

and scalability over FIHC. To our surprise, a more fair

comparison (section 5.6) revealed that both FIHC and

TDC actually perform worse than UPGMA and

bisecting k-means.

Based on the observation that higher frequency does

not necessarily mean higher quality, and combining

ideas from research in selecting the most interesting

association rules, and closed frequent itemset mining,

we introduce the notion of “closed interesting” itemsets

in this paper. We provide a simple, parallelizable

algorithm, and necessary heuristics to efficiently mine

these itemsets. We present results from extensive

experiments performed on standard datasets of varying

characteristics and sizes, and show that using the same

support threshold for first level (single word) itemsets

results in significantly smaller number of “closed

interesting” itemsets as compare to the number of

closed frequent itemsets generated. Even so, when used

for hierarchical document clustering, we show that

“closed interesting” itemsets outperform state of the art

clustering algorithms, indicating their superior quality.

We present a hierarchy assembling approach that

supports soft clustering and prunes unwanted itemsets

on the way. In order to make the hierarchy more

compact, existing approaches [3, 7] use agglomerative

clustering to merge the first-level nodes. Although

significantly less expensive than applying

agglomerative clustering on the whole dataset, this step

is still very expensive. We used bisecting k-means to

reduce computational complexity of this step. Finally,

we propose various implementation-level optimizations

throughout the paper. Figure 1 provides an overview of

our hierarchical document clustering process.

Figure 1. Our hierarchical document clustering

process; numbers refer to sections in this paper

The rest of this paper is organized as follows.

Section 2 introduces “closed interesting” itemsets and

provides a simple mining algorithm. Section 3 covers

various pruning steps and details on hierarchy

generation. Section 4 provides details on our approach

of merging first level nodes. In section 5, we present

experimental results on several popular datasets.

Finally, we conclude and present our ideas for future

work in section 6.

2. Mining Closed Interesting Itemsets

2.1. Motivation

Frequent itemset mining often results in too many

itemsets. Using a faster mining algorithm does not

always help as it is fundamentally a combinatorial

problem and the mining time exponentially increases as

support threshold linearly decreases [7, 8], regardless

of the mining algorithm used. Researchers found that a

large percentage of frequent itemsets shares support

with one or more of their parent (subset) itemsets.

These itemsets are considered insignificant as they

represent “specialization” of the more general concept

represented by the parent itemset. “Closed” frequent

itemset mining utilizes this finding and imposes the

additional requirement of “closeness” for large itemset

generation. Specifically, in addition of meeting the

minimum support threshold, closed frequent itemsets

must also have support that is different from

(practically less than) any of their subset itemsets.

Generally, it results in significantly smaller number of

closed frequent itemsets, when compared with the

number of frequent itemsets found on the same dataset,

using the same support threshold. In addition, closed

frequent itemsets performed better than frequent

itemsets in a number of applications, such as

hierarchical document clustering [7].

Finding the most interesting association rules is

another significant thread in data mining research. A

number of association rules can be generated from each

large itemset at each level, which often results in a very

large association rule base [12], especially when

attributes in the data set are highly correlated [11]. A

low support threshold results in too many discovered

associations. Increasing the support threshold

significantly reduces the number of rules discovered,

but risks losing useful associations, especially on

uneven datasets. On the other hand, Confidence is

criticized because of its asymmetric property and its

failure to incorporate the baseline frequency of the

consequent [9]. In addition, it is non-trivial to set good

values for support and confidence thresholds; it

depends on the size of dataset, sparseness of data, and

the particular problem under study [10]. Considering

these issues, a number of researchers [10, 11, 13, 14]

proposed alternate interestingness measures to evaluate

and rank discovered associations. Inspired from various

statistical and mathematical principles, these measures

are considered less sensitive to the properties of

specific datasets.

2.2. Overview of “closed interesting” itemsets

We argue that while the “closeness” requirement of

closed frequent itemsets is useful and based on solid

principals, the other requirement of meeting a

minimum support threshold is problematic and difficult

to generalize. Combining the stronger aspects of closed

frequent itemset mining with research in finding the

most interesting association rules, we propose a new

kind of itemsets called “closed interesting” itemsets.

Table 1. List of interestingness measures used,

section 5.4 provides details on threshold values
Symbol Interestingness Measure Threshold

1 AV Added Value 0.4

2 c Symmetric Confidence 0.6

3 F Certainty Factor 0.4

4 χ
 2 Chi-Square unit = 50,

p = 3000

5 S Collective Strength 1.45

6 V Conviction 1.7

7 Φ Correlation Coefficient 0.35

8 IS Cosine 0.33

9 G Gini Index 0.017

10 I Interest 12

11 Ζ Jaccard 0.23

12 J J-Measure 0.02

13 к Kappa 0.35

14 K Klosgen’s 0.068

15 L Laplace 0.6

16 M Mutual Information 0.1

17 α Odds Ratio 25

18 RI Piatetsky Shapiros Interest 0.02

19 Q Yule's Q 0.85

20 Y Yule's Y 0.65

These itemsets retain the “closeness” property of

closed frequent itemsets, but replace the minimum

support requirement with meeting minimum threshold

of a symmetric, statistically inspired objective

interestingness measure. Table 1 lists the measures

used in our experiments. Computational details of these

measures can be found in [9, 10, 12, 13, 15, 16, 17,

18]. Note that some of these measures are not

inherently symmetric and are converted to a symmetric

version by calculating the interestingness values for

both directions and selecting the maximum value, as

proposed by Tan et al. [13]. We compare their relative

performance and recommend a small number of

measures that we experimentally found least sensitive

to the properties of specific datasets in section 5.

Furthermore, most of these measures are meant to

calculate correlation or interdependence between two-

way contingency tables (i.e. two variables), which

makes them unusable for generating “closed

interesting” itemsets with more than two items. While

measures like log-linear analysis [10] exist to calculate

interdependence between multi-way contingency

tables, they are computationally expensive. We define a

simple greedy heuristic to deal with this problem:

Super item: If an itemset p at level k is used to

generate a candidate itemset q at level k + 1 (i.e.

itemset q contains all k-items from itemset p, and

exactly one additional item u), all items in itemset p are

used to form a super item S, with support (S) = support

(p). Items v and u are used to form a two-way

contingency table and to calculate interestingness

values.

Example: Considering a dataset of 200 transactions,

support (A) = 98, support (B) = 120, support (C) = 65,

support (A, B) = 80 and support (A, B, C) = 45. If

itemset “A, B” at level 2 is used to generate a candidate

itemset “A, B, C” for level 3, a super item S is formed

with support (S) = support (A, B) = 80. Since “C” is the

additional item in the candidate itemset, a contingency

table is formed between S and C, as shown in table 2.

Table 2. A 2 x 2 contingency table between super

item “S” and item “C”
 C ¬C Total

S 45 35 80

¬S 20 100 120

Total 65 135 200

Using the contingency table shown in Table 2 and

“Correlation Coefficient” as interestingness measure,

we get an interestingness value of 0.414, which shows

that the super item S and item C are positively

correlated [13].

Similar to frequent itemset mining, we prune

candidate itemsets for level k if any of their k subsets

of size k-1 do not exist in the previous level, with a

caveat that frequent itemset mining uses support that

has a downward closure property, providing theoretical

foundation for this step. We empirically found this step

to be useful in increasing the quality and reducing the

number of “closed interesting” itemsets generated. We

leave the theoretical analysis for future work.

1) result = Φ

2) I1 = U1 = {large 1-itemsets}

3) for (k = 2; Ik-1 != 0; k ++) do begin

4) Ik = find-interesting-itemsets(Ik-1, Uk-1)

5) append(result, Ik)

6) Uk = get-unique-items(Ik)

7) end

8) answer = result

(a) Algorithm CII-MINE

1) find-interesting-itemsets(super_items, unique_items)

2) interesting_itemsets = Φ

3) for (i = 0; i < size(super_items); i ++) do begin

4) for (j = index-of(get-last-item(super_items[i]), unique_items) + 1; j < size(unique_items); j ++) do begin

5) candidate_itemset = super_items[i] U unique_items[j]

6) subset_itemsets = find-subset-itemsets(candidate_itemset)

8) if (contains(Ik-1, subset_itemsets)) then

9) if (closed(candidate_itemset, subset_itemsets, Ik-1)) then

10) val = apply-measure(super_items[i], unique_items[j])

11) if (val >= min_interestingness_threshold) then

12) append(interesting_itemsets, candidate_itemset);

13) end

14) end

15) end

16) end

17) end

18) answer = interesting_itemsets

19) end

(b) Method find-interesting-itemsets

Figure 2. A simple “closed interesting” itemset mining algorithm

2.3. Itemset Mining

Figure 2 (a) presents CII-MINE, a simple algorithm

to mine “closed interesting” itemsets. The algorithm

starts with mining large 1-itemsets (individual words)

in a way similar to frequent itemset mining. We

experimentally found that using a very low support

threshold for this step results in best quality itemsets

(section 5.7), adding credence to the claim that using a

high support threshold results in pruning useful

associations [13]. Each of the k
th

 steps (where k >= 2)

form candidate itemsets by considering all “closed

interesting” itemsets found in k-1
th

 step as super items,

and adding the unique individual items that follow the

last item in the super item. Each candidate is checked

for downward closure and closeness, and candidates

that satisfy both requirements are checked for meeting

the interestingness threshold. Candidates that satisfy all

three requirements are added to the list of “closed

interesting” itemsets for step k. Mining stops when all

“closed interesting” itemsets are found.

Example: If mining “closed interesting“ itemsets

with k = 2 and large 1-itemsets resulted in “closed

interesting” 2-itemsets (I2) in Table 3, U2 = {a, b, c, d,

e, f}. Mining “closed interesting” itemsets for k = 3

would be done as represented in Table 4. Note that

super items {b, f}, {d, f} and {e, f} are not considered

because there are no items following ‘f’ in U2.

Table 3. Interesting 2-itemsets and their support
2-itemset Support

count

2-itemset Support

count

2-itemset Support

count

{a, b} 150 {b, d} 140 {c, e} 200

{a, d} 280 {b, e} 320 {d, f} 94

{b, c} 120 {b, f} 85 {e, f} 10

Since k = 3, size of each super item = k – 1 = 2. The

algorithm first explores all candidate items for super

item {a, b}. Since ‘b’ is the second item in U2, four

candidates {a, b, c}, {a, b, d}, {a, b, e} and {a, b, f}

are formed, using items that follow ‘b’ in U2. Each

candidate is checked for the meeting downward closure

requirement, and candidates that do not meet this

requirement are pruned (i.e. {a, b, c} is pruned as {a,

c} does not exist in I2). Similarly, candidate itemsets

that do not meet the closeness requirement (i.e. {b, c,

e}) are pruned. Interestingness values of the remaining

candidates are calculated by calling “apply-measure”,

and passing super and unique items, (i.e. {{a, b}, d}

and {{b, d}, f}). Candidates that satisfy the minimum

interestingness threshold are added to the result. Note

that support for candidate itemsets is only calculated if

they meet the downward closure requirement. In

addition, we optimized the support calculation

performance by using bitmaps that indicate presence /

absence of individual, large 1-items in all documents

(i.e. where each bit represents a document) and

ANDing the bitmaps of all items in an itemset.

Table 4. Mining “closed interesting” 3-itemsets,

using 2-itemsets from Table 3, (NC = not calculated)
super_item Candidate

itemset

Supp.

Count

Comments

a b {a, b, c} NC {a, c} not in I2

a b {a, b, d} 52 Calcul. interest. ({a,b}, d)

a b {a, b, e} NC {a, e} not in I2

a b {a, b, f} NC {a, f} not in I2

a d {a, d, e} NC {a, e} not in I2

a d {a, d, f} NC {a, f} not in I2

b c {b, c, d} NC {c, d} not in I2

b c {b, c, e} 120 Not closed: same as (b, c)

b c {b, c, f} NC {c, f} not in I2

b d {b, d, e} NC {d, e} not in I2

b d {b, d, f} 72 Calcul. interest. ({b,d}, f)

b e {b, e, f} 10 Not closed: same as (e, f)

c e {c, e, f} NC {c, f} not in I2

3. Hierarchical Document Clustering and

Itemset Pruning

Our hierarchy construction approach is similar to

FIHC [3] and TDC [7], with various important

differences, most significant of which relates to how

parent nodes are selected. An initial cluster is formed

for each “closed interesting“ itemset, containing all

documents that contain the itemset, with items in the

itemset used as the cluster label. In fact, these clusters

are readily available as a byproduct of calculating

support using the bitmap-based representation

discussed in the previous section. These initial clusters

are not disjoint, as a document can contain multiple

“closed interesting” itemsets of varying sizes. Sections

3.1 and 3.2 discuss our approach to limit document

duplication. Section 3.3 presents our hierarchy

construction algorithm. This step significantly differs

from existing approaches as it allows selecting multiple

parents, using the interestingness between parent and

child nodes without inspecting cluster contents.

3.1. Inner termset removal

If a document is contained in multiple clusters that

are based on itemsets of varying sizes, we reduce

document duplication by pruning the document from

all but the clusters based on the largest sized itemsets.

Later, when these itemsets are used to build the

hierarchy, this step results in each document assigned

to all applicable nodes at the highest possible (i.e. most

specific) level in the hierarchy. Figure 3 presents an

algorithm that performs this step in a single pass on

discovered “closed interesting” itemsets, without

processing individual documents.

1) {allocate array global_map}

2) {allocate array lev_maps with size = k}

3) for (i = k; i >= 1; i--) do begin

4) forall itemsets t ∈ Ii do begin

5) bitmapt = bitmapt AND (NOT global_map)

6) lev_maps [i] = lev_maps [i] OR bitmapt

7) end

8) global_map = global_map OR lev_maps [i]

9) end

Figure 3. Inner-termset removal algorithm,

where k = size of the largest discovered itemset

The algorithm starts by allocating a global, and

individual coverage maps for each level, where number

of levels = size of largest discovered itemset. A level

coverage map is similar to an itemset bitmap with a

difference that an itemset bitmap indicate documents

that contain the itemset where as a level coverage (bit)

map indicate documents that contain any itemset at that

level. Similarly, the global coverage map indicates

documents that contain any discovered itemset. Levels

are iterated in largest to smallest order and at each

level; bitmaps of all itemsets that exist at that level are

ANDed with inverse of bits in global coverage map,

which results in eliminating documents that already

existed at a higher level. The updated bitmap is used to

update the current level’s coverage map. Finally, after

each level, current level’s documents are added to the

global coverage map. This results in pruning

documents from all but their largest-sized itemsets.

Example: Considering a dataset of 10 documents,

and itemset x at level i, with bitmapx = {0100100001},

and global map updated with all documents that exist

on levels i + 1 to k, such as global_map =

{0010100101}, we have:
bitmapx = {0100100001}

NOT global_map = {1101011010} AND

bitmapx = {0100000000}

Note that two documents were pruned from bitmapx,

as they existed in itemset(s) at a higher level.

3.2. Constraining document duplication

The inner-termset removal algorithm (Figure 3) also

prepares coverage maps for individual levels. These

coverage maps are used to limit document duplication

at the same (their largest) level, as inner-termset

removal eliminates documents from all but their largest

applicable itemsets, and documents may still exist in

multiple itemsets at their largest level. Using level

coverage maps, documents that exist at each level are

checked for existence in itemsets (clusters) at that level.

If a document exists in more than MAX_DOC_DUP

(user defined parameter) itemsets, a score is calculated

against each matching itemset and the document is

assigned to MAX_DOC_DUP itemsets with highest

scores. We used a score calculation method similar to

TDC [7], which uses the document’s TFIDF vector

(includes large 1-itemsets only) and adds the term

frequencies of items that existed in the itemset.

3.3. Bottom-up hierarchy assembling,

constraining node duplication and pruning of

itemsets

TDC [7] builds the hierarchy by linking each

itemset of size k with all of its (up to k) subsets at level

k-1. This approach may result in boosting FScore, but

would impact the overall clustering quality because of

too much node duplication. On the other hand, FIHC

[3] applies an expensive similarity calculation method,

which first prepares a conceptual document for each

node (i.e. by merging the TFIDF vectors of all

documents that exist in the node or any of its children)

and calculating a score against each of its (up to k)

parents. The node is linked to the parent with the

highest similarity. This method is expensive because it

requires preparing conceptual documents for nodes at

all levels in the hierarchy (conceptual documents for

first level are not needed by this step, but at the time of

merging first level nodes later), and also because the

similarity calculation method uses the notion of

“cluster frequent items” which requires an additional

step to find these items for each node, using the

documents that exist in that node and any of its child

nodes. It also adds another parameter to the system (i.e.

“minimum cluster support”) and as discussed earlier,

support thresholds are not easy to generalize. Finally,

assigning each node to exactly one parent does not

support soft clustering, which is an essential element of

real-life hierarchies. As an example, a large number of

nodes in the “Yahoo Directory” are cross-linked

between various categories.

We avoid both extremes (i.e. TDC, which assigns

each node to all available parents and FIHC which

assigns each node to exactly one parent) and propose a

more balanced approach that assigns each node to up to

a user-defined number of best matching parents. Our

method is also computationally efficient, as it does not

prepare conceptual documents for nodes at various

levels in the hierarchy and also does not calculate

cluster support, and hence, avoids the additional

mining step. Instead, we used the same

“interestingness” measure that was used to mine

“closed interesting” itemsets in the previous step, and

our “super item” heuristic to calculate the

interestingness between the itemset at level k and its

(upto k) parent itemsets at level k-1 (i.e. by considering

the parent itemset as super item). A node is linked to up

to MAX_NODE_DUP (user defined parameter)

parents with the highest interestingness values. This

method does not look into the documents contained in

the cluster and selects parents solely using the itemsets

(i.e. cluster labels).

Figure 4 presents our bottom-up hierarchy

construction algorithm. Because of inner termset

removal and constraining maximum document

duplication, a number of itemsets may no longer have

any documents associated to them (i.e. empty clusters).

They are pruned on the way unless they were used as

parent by a node at level k + 1.

4. Merging First Level Nodes

Generally, itemset mining results in a large number

of large 1-itemsets (frequent single words), making the

first-level nodes very sparse. Removing inner termsets

and constraining document duplication results in a

number of empty clusters, which are pruned during the

hierarchy construction. Still, there may be a large

number of nodes at level 1. Similar to FIHC and TDC,

we merge the first level nodes to reduce sparseness of

this level.

TDC uses a heuristic to compute pair-wise

similarities, and at each step, the pair with highest

similarity is merged in a way similar to agglomerative

clustering. This heuristic uses the number of common

documents between nodes as the primary goodness

criteria. We found this heuristic problematic, as it does

not support hard clustering (i.e. MAX_DOC_DUP = 1

results in no common docs between nodes), and does

not consider the actual similarities between clusters.

FIHC, on the other hand, applies agglomerative

clustering on first level nodes and uses a similarity

function similar to the one it uses for selecting parents

during hierarchy construction. This function uses the

notion of “cluster frequent items” and inspects the

documents assigned to each node, and all of its children

to find these items, making it very expensive.

We first prepare conceptual documents for first-

level nodes by merging term frequencies of large 1-

itemsets from all applicable documents in the cluster.

Unlike FIHC, which prepares conceptual documents

for nodes at all levels, we do it only for first-level

1) for (i = k; i >= 1; i--) do begin

2) forall itemsets t ∈ Ii do begin

3) if (document-count(bitmapt) > 0 .OR. contains(parentsi+1, t) then

4) if (i = 1) then

5) add(childrenroot, t);

6) else

7) S = get-k-subsets(t)

8) sorted_list = Φ

9) forall itemsets super_item ∈ S do begin

10) if (contains(Ii-1, super_item)) then

11) interestingness_val = apply-measure(super_item, t - super_item)

12) add(sorted_list, super_item, interestingness_val)

13) end

14) end

15) for (j = 0; j < MAX_NODE_DUP .AND. size(sorted_list) >= j; j++) do begin

16) itemset = get-itemset(Ii-1, sorted_listj)

17) add(childrenitemset, t)

18) if (.NOT. contains(parentsi, itemset)) then

19) add(parentsi, itemset)

20) end

21) end

22) end

23) else

24) prune(t)

25) end

26) end

27) end

Figure 4. Hierarchy construction

nodes, which is significantly less expensive. We

applied bisecting k-means, using the I2 criterion

function on these conceptual document vectors,

reducing the computational complexity of this step

from O(n
2
* log(n)) to O(e * log(k)), where n is the

number of first-level nodes, and e is the number of non-

zero entries in the feature vectors of all conceptual

documents. Note that applying bisecting k-means on

the conceptual document vectors of first-level nodes is

significantly less expensive than applying bisecting k-

means on all document vectors in the data set, making

this approach more scalable than state of the art

approaches including bisecting k-means (Section 5.9).

5. Experimental Evaluation

We performed extensive experiments on nine

standard datasets of varying characteristics (Table 5)

and compared our approach against state of the art

agglomerative (UPGMA), partitional (bisecting k-

means with I2 criterion function), frequent itemset

based (FIHC) and closed frequent itemset based (TDC)

approaches using multiple hierarchical clustering

evaluation matrices. With an exception of Reuters [19],

all datasets can be found as part of the Cluto clustering

toolkit [21], which was also used to generate clustering

solutions for UPGMA and bisecting k-means, and to

merge our top-level conceptual document vectors. For

Reuters, we did not remove documents assigned to

multiple categories but removed documents without

category assignment.

Table 5. Datasets used in our experiments
Dataset Source #docs #classes #attrs

Hitech San Jose

Mercury News

2301 6 13170

Re0 Reuters-21578 1504 13 2886

Wap WebACE 1560 20 8460

Classic4 SMART

Project

7094 4 41681

Reuters Reuters-21578 10787 90 19127

LA12 TREC 6279 6 31472

Ohscal Ohsumed-

233445

11162 10 11465

K1a WebACE 2340 20 13879

K1b WebACE 2340 6 13879

5.1. Parallelization

A large percentage of modern computer systems

contain multiple processors, processors with multiple

cores, or processors that offer hyper-threading

capabilities. We utilized SIMD parallelism to take

advantage of these features, and to increase run-time

performance of various steps used in the clustering

process. The “closed interesting” itemset mining

algorithm was extended by creating N threads with IDs

0 to N-1, with each thread using its ID to independently

explore a subset of possible candidate itemsets, without

requiring any intra-step synchronization. This was

achieved by simply replacing line 3 of find-interesting-

itemsets method with:

for (i = thread ID; i < size(super_items); i = i + N) do begin

A barrier was added between lines 4 and 5 of CSII-

MINE to wait for all threads to finish, and append() on

the next line was called on all threads.

Similarly, each thread handled a subset of itemsets

at each level of inner termset removal, with updates to

the current level’s bitmap synchronized. For

constraining maximum document duplication, each

thread independently handled a level as there are no

inter or intra-step dependencies in this step. We

parallelized the hierarchy generation step by having

each thread handle a subset of itemsets at each level,

with updates to parent nodes synchronized. Finally,

feature vectors for individual first-level nodes were

generated in parallel by a number of threads.

5.2. Evaluation matrices

We used two standard hierarchical clustering

evaluation matrices to compare the quality of clustering

results produced by our approach with other, state of

the art approaches. The first measure, FScore,

evaluates the overall quality of hierarchical tree using a

small number of its nodes [5]. On the other hand,

Entropy takes into account the distribution of

documents in all nodes of the tree. We used FScore and

Entropy as defined by Zhao and Karypis [5]. Note that

FIHC and TDC also used FScore in the same way.

5.3. Setting the initial support threshold for

first-level itemsets

A major issue with any support-based approach, like

FIHC [3], is to find the optimal support threshold. Yu

et al. [7] proposed to dynamically probe the support

threshold by starting with a high value and decreasing

the threshold until full coverage of the dataset is

achieved. We believe that this approach is problematic,

as even a single noisy document would cause this

approach to determine ‘zero’ as support threshold. We

addressed this issue by applying a very low support

threshold (i.e. 0.2% for the three largest, and 1% for all

the other datasets used in this paper) to generate first

level itemsets and generating a “miscellaneous” top-

level node containing documents not represented by

any itemset for visualization purposes. Typically, the

number of such documents is very small (i.e. less then

0.1% of the dataset). Note that the support threshold is

not used beyond the first level (i.e. to find individual

frequent words), and second level and higher itemsets

use more principled statistical interestingness

measures.

5.4. Using cross validation to determine

thresholds for interestingness measures

As explained in sections 2 and 3.3, our approach

uses an “interestingness threshold” to prune itemsets

and to select parent nodes while assembling the

hierarchy. This threshold heavily impacts both the

efficiency, and the quality of clustering, which makes it

the most important parameter in our system. While it is

often possible to tune parameters and achieve good

results on individual datasets, it causes the problem of

over-fitting, and has little practical value. One of our

most important goals was to find measures, and

corresponding threshold values that could generalize

well and work on datasets with varying characteristics.

We achieved this goal by applying global cross-

validation, i.e. by randomly selecting a dataset, and

trying a number of threshold values for each

interestingness measure. The value that resulted in best

results on the randomly selected dataset was blindly

used across all datasets. In addition, since the Chi-

Square test is known to depend on the number of

transactions in the dataset, and to overestimate the

interestingness of itemsets in large datasets [10], we

used a simple heuristic to calculate the Chi-Square

threshold values for each of the datasets used in our

experiments:

))
_

(1(*
p

sizedataset
ceilunithresholdchiSquareT +=

This heuristic results in a minimum threshold value

of (2 * unit) which linearly increases in unit increments

for each p documents. In order to maintain consistency,

a number of values for unit and p were applied on our

randomly selected dataset and the values that resulted

in a threshold that produced best results on the selected

dataset were used to produce Chi-Square thresholds for

all other datasets. Table 1 presents the threshold values

obtained using this procedure, for all measures. We

used these values throughout our experiments.

5.5. Setting values for MAX_DOC_DUP and

MAX_NODE_DUP

Table 7. FScore comparison of state of the art hierarchical document clustering approaches with “closed

interesting” itemset based hierarchical document clustering, using top 6 interestingness measures

UPGMA

bi k-means

with I2 FIHC TDC

Mutual

Information Conviction

Certainty

Factor

Added

Value

Chi-

Square Yule’sQ

Hitech 0.499 0.561 0.458 0.57 0.540 0.559 0.541 0.531 0.533 0.498

Re0 0.584 0.590 0.529 0.57 0.672 0.641 0.701 0.621 0.593 0.614

Wap 0.640 0.638 0.391 0.47 0.663 0.619 0.626 0.628 0.634 0.618

Classic 0.848 0.764 0.623 0.61 0.880 0.817 0.786 0.793 0.802 0.781

Reuters 0.729 0.793 0.506 0.46 0.851 0.771 0.783 0.815 0.775 0.836

LA12 0.700 0.741 0.432 N/A 0.661 0.616 0.626 0.709 0.617 0.669

Ohscal 0.399 0.493 0.325 N/A 0.530 0.515 0.507 0.509 0.547 0.485

K1a 0.646 0.634 0.398 N/A 0.654 0.610 0.626 0.639 0.638 0.622

K1b 0.892 0.890 0.768 N/A 0.903 0.869 0.876 0.879 0.881 0.890

Table 8. Entropy comparison of state of the art hierarchical document clustering approaches with “closed

interesting” itemset based hierarchical document clustering, using top 6 interestingness measures

UPGMA

bi k-means

with I2 FIHC TDC

Mutual

Information Conviction

Certainty

Factor

Added

Value

Chi-

Square Yule’sQ

Hitech 0.262 0.236 1.258 N/A 0.172 0.210 0.200 0.236 0.153 0.142

Re0 0.136 0.136 1.239 N/A 0.077 0.098 0.095 0.117 0.133 0.064

Wap 0.131 0.131 1.561 N/A 0.047 0.052 0.048 0.067 0.056 0.054

Classic 0.074 0.069 0.886 N/A 0.025 0.069 0.063 0.073 0.029 0.014

Reuters 0.101 0.086 1.853 N/A 0.155 0.158 0.149 0.165 0.116 0.084

LA12 0.151 0.134 1.076 N/A 0.062 0.109 0.102 0.091 0.076 0.072

Ohscal 0.279 0.232 1.775 N/A 0.237 0.300 0.288 0.322 0.230 0.106

K1a 0.129 0.126 1.645 N/A 0.045 0.058 0.056 0.077 0.044 0.063

K1b 0.043 0.042 0.544 N/A 0.042 0.033 0.036 0.056 0.042 0.049

MAX_DOC_DUP controls the maximum document

duplication at their most specific level, as explained in

section 3.2. Note that the documents are already

removed from all, but their most specific level because

of inner termset removal (section 3.1). Similarly,

MAX_NODE_DUP controls the maximum number of

parent nodes allowed. TDC [7] uses a parameter

similar to MAX_DOC_DUP, with a value of 10, and

does not impose any restrictions on the number of

parent nodes. We experimentally found that this

approach helps boosting the FScore, but degrades the

overall clustering quality (i.e. Entropy) because of too

much duplication. Therefore, we used a value of 2 for

both of these parameters, allowing soft clustering, and

avoiding unnecessary duplication.

5.6. Clustering quality comparison

Tables 7 and 8 compares the clustering quality of

our “closed interesting” itemset based hierarchical

document clustering approach against state of the art

approaches in terms of FScore and Entropy. To ensure

a fair comparison, we executed our approach with each

of the interestingness measures exactly once and

recorded the results. The same approach was followed

to obtain results for UPGMA and bisecting k-means.

For FIHC, we executed the software several times

on each dataset with a number of support thresholds

and recorded the best results. We noticed that support

thresholds that worked best on one dataset resulted in

low-quality clustering on other datasets. In several

cases, applying the same threshold results in itemset

mining to take an indefinite amount of time. As an

example, support threshold of 3% resulted in best

FScore on Classic. When the same support threshold

was applied on LA12, it resulted in 100,000+ frequent

1, 2, and 3-itemsets, after which the itemset mining did

not return for 10+ minutes and the application had to

be manually terminated. Since TDC implementation

was not available, we used results from [7].

Furthermore, Cluto generates both hierarchical and

flat clustering solutions for UPGMA and bisecting k-

means. The hierarchical clustering solution does not

change with the number of desired clusters, which only

impacts the flat clustering solution in a way that the

desired number of flat clusters are obtained from the

hierarchical tree using cluster analysis techniques.

Existing frequent itemset based approaches [3, 7] seem

to have compared their hierarchical solutions with flat

clustering solutions obtained for UPGMA and bisecting

k-means, using 3, 15, 30 and 60 as desired number of

clusters. For itemset-based approaches, the number of

desired clusters is less significant as it only represents

the number of top-level nodes in the hierarchy, and not

the total number of clusters in the solution. We used

the hierarchical clustering solutions for UPGMA and

bisecting k-means instead, and observed that they

perform better than both of the existing frequent

itemset based approaches. The FScores we obtained

are also closer to the FScores reported by Zhao and

Karypis [4] on the same datasets.

For the reason of space, we only report results of the

top six measures, as determined by averaging the

FScores and Entropies of each measure on all nine

datasets. Note that some measures that are not included

in Tables 7 and 8 performed very well on few datasets,

but failed to generalize when the same interestingness

threshold was applied on other datasets. As an

example, jMeasure with threshold from Table 1

resulted in FScore of 0.584 on Hitech, and Entropy of

0.061 on LA12. Even though these results are better

than all approaches we experimented with, the same

threshold did not perform as well on other datasets.

Our results (Table 7) indicate that Mutual Information

results in best overall FScore, followed by Added

Value and Chi-Square. On the other hand, Yule’s Q

results in best overall Entropy (Table 8) followed by

Mutual Information and Chi-Square. We conclude that

Mutual Information offers the best balance as it

outperforms all existing approaches (and

interestingness measures using our approach) in terms

of FScore on five out of nine datasets, and performs

better than existing approaches on seven out of nine

datasets in terms of Entropy.

5.7. Comparison of “closed interesting”

itemsets with closed frequent itemsets

We compared “closed interesting“ itemsets against

closed frequent itemsets, by mining closed frequent

itemsets at various support levels on Reuters dataset,

and applying our clustering process on the mined

itemsets. When an interestingness measure is used to

mine itemsets, the hierarchy generation process uses

the same measure for parent selection, as explained in

section 3.3. For closed frequent itemsets, we used

support for this purpose in a way that up to

MAX_NODE_DUP parents that share the most

documents with the child node (i.e. parent nodes with

lowest support) were selected. We found that this

approach achieves better FScores as compare to TDC

[7], which also uses closed frequent itemsets.

Using the support thresholds that were used to

generate closed frequent itemsets, we generated large

1-itemsets and used them to mine “closed interesting”

itemsets using few of our top measures. Note that the

interestingness thresholds remained constant (i.e. as

defined in table 1). The resulting itemsets were used to

cluster the Reuters dataset. We report the number of

level 2 and higher itemsets generated, along with the

corresponding FScores, for closed frequent itemsets

and each of the measure used to generate “closed

interesting” itemsets. We omitted the number of 1-

itemsets because it remains same for both closed

frequent itemsets and “closed interesting” itemsets,

when the same minimum support threshold is used.

Table 9. The smaller number, but improved

performance of “closed interesting” itemsets over

closed frequent itemsets, at various support levels
Closed

Frequent

Mutual

Information Yule’s Q

Added

Value Min

Supp # F # F # F # F

1% 92880 0.71 1613 0.83 2445 0.80 836 0.78

2% 12246 0.67 842 0.80 548 0.78 397 0.78

3% 4015 0.67 435 0.76 209 0.75 235 0.75

4% 1792 0.64 308 0.70 146 0.68 170 0.71

5% 933 0.62 231 0.68 109 0.68 135 0.69

Table 9 presents the results of this experiment.

Clearly, the number of “closed interesting” itemsets

found at all support levels is significantly smaller than

the number of closed frequent itemsets. Even so, they

achieved better FScores. Also, the quality of clustering

decreases for all itemset types, as the minimum support

threshold increases, adding credence to the claim that

higher support thresholds result in pruning useful

associations [13].

5.8. Parallel processing and hyper-threading

In order to analyze the impact of parallel itemset

mining and hierarchy generation, we performed

experiments on a system that contains two hyper-

threaded, 2.8 GHz Intel Xeon based processors. Each

hyper-threaded processor is seen as two logical

processors by the OS, resulting in a total of four

processors available for executing programs. We

started with a single thread and executed the clustering

process on two largest datasets (i.e. Reuters and

Ohscal) used in our experiments, a number of times,

and averaged the execution times. The same process

was repeated with number of threads set to 2, 3 and 4.

Note that our run-time environment (i.e. 64-bit Java)

mapped individual threads to separate processors.

Figure 5 presents results of this experiment. Using

four threads resulted in an average total speedup

(computed as the ratio of old and new execution times)

of 60% on Reuters and 67% on Ohscal dataset, when

compared with the corresponding single-threaded

solutions. Itemset mining enjoyed the most significant

performance improvement as threads were added,

because of no intra-step synchronization requirements.

On the other hand, hierarchy generation performance

improved only when a new thread could map to a

separate physical processor (i.e. from one thread to two

threads) and decreased if more threads were added,

requiring execution on a logical processor, because of

intra-step synchronization on node modifications, and

bitmap updates. This suggests that using a different

number of threads for each of these steps could result

in better overall performance. Finally, comparing the

performance of two-threaded solution with four-

threaded solution, we can see that hyper-threading

resulted in an average itemset mining speedup of 15%

and 13% on Reuters and Ohscal datasets, respectively.

Figure 5. Impact of parallel processing on Reuters

and Ohscal datasets with Mutual Information as

interestingness measure, and threshold as in Table 1

5.9. Runtime performance and scalability

We used the full Ohsumed [20] collection (34,389

unique documents, and 36,250 unique attributes) to

evaluate the run-time performance and scalability of

our clustering approach. The Ohsumed collection was

used to generate ten datasets, containing 20K to 200K

documents in 20K increments. Each of these datasets

was generated by selecting N documents randomly

(where N is the size of desired dataset) from existing

documents, and replacing approximately 40% of words

with other words from the corpus, retaining the

frequencies of replaced words. Using Mutual

Information as interestingness measure and the

threshold value from Table 1, we executed both the

parallel (using 4 threads), and single-threaded versions

of our clustering process, and also executed bisecting

k-means, and FIHC on these datasets. For FIHC, we

used the support threshold that resulted in best FScore

on the full Ohsumed collection. In order to ensure a fair

comparison, we turned off all cluster analysis, and

output options for bisecting k-means, and excluded I/O

and reporting times. In addition, the reported times of

our approach include execution times of all steps,

except offline preprocessing to form document vectors

and bitmaps.

Figure 6. Runtime performance and scalability

comparison of our clustering approach, with

bisecting k-means, and FIHC

Figure 6 presents results of this experiment. We

found that bisecting k-means scaled up linearly, and

FIHC scaled worse than linearly, possibly because of

frequently accessing document vectors, and

agglomerative merging of top-level nodes. The parallel

version of our approach outperformed the single-

threaded version, as expected. Both versions of our

approach scaled sub-linearly, because of significant

dimensionality reduction achieved by using “closed

interesting” itemsets for clustering, and because our

approach reduces the need to refer to full document

vectors. These vectors are referred only once: i.e. to

generate large 1-itemsets. All interesting k (where k >=

2) itemsets are generated using the bitmaps of large 1-

itemsets, and most documents are clustered without

ever referring back to the document vectors. The

number of such documents increases with the size of

the dataset, as our clustering process primarily uses

itemsets for forming clusters, and number of words in

the corpus does not linearly increase with new

documents. Partial vectors (i.e. applicable frequent 1-

itemsets) of a small percentage of documents are

referred to remove document duplication from clusters

at the same level, and to generate conceptual

documents for first level nodes. Finally, we expect our

approach to scale better than TDC, because the number

of “closed interesting” itemsets is significantly smaller

than closed frequent itemsets (section 5.7), and other

optimizations made throughout the clustering process

(i.e. using bisecting k-means to merge the first-level

nodes).

6. Conclusions and Future Work

We introduced the notion of “closed interesting”

itemsets in this paper. Utilizing the closeness property

of closed frequent itemsets, and using ideas from

selecting the most interesting association rules, these

itemsets provide significant dimensionality reduction

over closed frequent itemsets. Using these itemsets, we

proposed a new hierarchical document clustering

approach that outperforms state of the art approaches,

both in terms of FScore and Entropy on a large number

of standard datasets. In addition, our approach scales

sub-linearly and was able to cluster 200K documents in

less than a minute. A parallel version of our approach

achieved the same task in around 40 seconds. We used

a principled threshold identification technique and

showed that a small number of statistically inspired

interestingness measures generalize well to a large

number of datasets, without requiring parameter tuning.

We believe that “closed interesting“ itemsets can

serve as a superior replacement for frequent and closed

frequent itemsets, in a variety of application domains.

We also believe that existing research in optimized

frequent, and closed frequent itemset mining (i.e. FP-

Trees) can help improve the performance of mining

“closed interesting” itemsets.

In the future, we plan to apply “closed interesting”

itemsets in more application domains and work on

optimizing various steps used in our clustering process

(i.e. parallel bisecting k-means for merging top-level

nodes). We also plan to work on finding a more

principled way of identifying the Chi-Square

thresholds.

7. Acknowledgements

The authors would like to thank Apostol (Paul)

Natsev of IBM Research for his valuable suggestions to

improve this work. We would also like to thank Prof.

Karypis, and Benjamin Fung, for making Cluto and

FIHC available, and patiently answering our queries.

8. References

[1] M. Steinbach, G. Karypis, and V. Kumar, “A comparison

of document clustering techniques”, In KDD Workshop on

Text Mining, SIGKDD’00, 2000.

[2] L. Kaufman, and P. J. Rousseeuw, “Finding Groups in

Data: An Introduction to Cluster Analysis”, New York: John

Wiley & Sons, Inc, March 1990.

[3] B. Fung, K. Wang, and M. Ester, “Hierarchical document

clustering using frequent itemsets”, In Proc. SIAM

International Conference on Data Mining, 2003, pp. 59-70.

[4] Y. Zhao, and G. Karypis, “Evaluation of hierarchical

clustering algorithms for document datasets”, In Proc.

International Conference on Information and Knowledge

Management, November 2002, pp. 515-524.

[5] Y. Zhao, and G. Karypis, “Hierarchical Clustering

Algorithms for Document Datasets”, Data Mining and

Knowledge Discovery, Vol. 10, No. 2, 2005, pp. 141-168.

[6] F. Beil, M. Ester, and X. Xu, “Frequent term-based text

clustering”, In Proc. International Conference on Knowledge

Discovery and Data Mining, 2002, pp. 436-442.

[7] H. Yu, D. Searsmith, X. Li and J. Han, "Scalable

Construction of Topic Directory with Nonparametric Closed

Termset Mining", In Proc. Fourth IEEE International

Conference on Data Mining (ICDM'04), 2004, pp. 563-566.

[8] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns

without candidate generations”, In Proc. ACM SIGMOD Int.

Conf. Management of Data (SIGMOD’00), 2000.

[9] F. Berzal, I. Blanco, D. Sánchez and M.A. Vila,

"Measuring the Accuracy and Importance of Association

Rules: A New Framework", Intelligent Data Analysis, 2002.

[10] T. Brijs, K. Vanhoof, and G. Wets, “Defining

interestingness for association rules”, In Int. journal of

information theories and applications, 10:4, 2003.

[11] B. Liu, W. Hsu, and Y. Ma, “Pruning and Summarizing

the Discovered Associations”, Proceedings of the SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 1999.

[12] P. Tan, and V. Kumar, “Interestingness measures for

association patterns: A perspective”, KDD Workshop on

Postprocessing in Machine Learning & Data Mining, 2000.

[13] P. Tan, V. Kumar, and J. Srivastava, “Selecting the right

interestingness measure for association patterns”, In Proc. of

SIGKDD. 32–41, 2002.

[14] Robert J. Hilderman, and Howard J. Hamilton,

"Knowledge Discovery and Interestingness Measures: A

Survey", University of Regina Technical Report, TR 99-04,

ISBN 0-7731-0391-0, 1999.

[15] J. Li, and Y. Zhang, "Direct Interesting Rule

Generation", In Proc. Third IEEE International Conference

on Data Mining (ICDM’03), 2003, p. 155.

[16] E. Shortliffe, and B. Buchanan, "A model of inexact

reasoning in medicine", Mathematical Biosciences 23, 1975.

[17] P. Smyth, and R. M. Goodman, “An information

theoretic approach to rule induction from databases”, IEEE

Transactions on Knowledge and Data Engineering, 1992.

[18] A. J. Viera, and J. M. Garrett, “Understanding

Interobserver Agreement: The Kappa Statistic”, Family

Medicine 37(5), 2005, p. 360.

[19] Reuters. http://kdd.ics.uci.edu/databases/reuters21578.

[20] Ohsumed. ftp://medir.ohsu.edu/pub/ohsumed.

[21] Cluto. http://glaros.dtc.umn.edu/gkhome/views/cluto.

