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Abstract 
 

High dimensionality remains a significant challenge 

for document clustering. Recent approaches used 

frequent itemsets and closed frequent itemsets to 

reduce dimensionality, and to improve the efficiency of 

hierarchical document clustering. In this paper, we 

introduce the notion of “closed interesting” itemsets 

(i.e. closed itemsets with high interestingness). We 

provide heuristics such as “super item” to efficiently 

mine these itemsets and show that they provide 

significant dimensionality reduction over closed 

frequent itemsets.  

Using “closed interesting” itemsets, we propose a 

new hierarchical document clustering method that 

outperforms state of the art agglomerative, 

partitioning and frequent-itemset based methods both 

in terms of FScore and Entropy, without requiring 

dataset specific parameter tuning. We evaluate twenty 

interestingness measures on nine standard datasets 

and show that when used to generate “closed 

interesting” itemsets, and to select parent nodes, 

Mutual Information, Added Value, Yule’s Q and Chi-

Square offers best clustering performance, regardless 

of the characteristics of underlying dataset. We also 

show that our method is more scalable, and results in 

better run-time performance as compare to leading 

approaches. On a dual processor machine, our method 

scaled sub-linearly and was able to cluster 200K 

documents in about 40 seconds. 

 

1. Introduction and Related Work 
 

Organizing data into a tree-like hierarchy has many 

applications. A hierarchy provides a view of the data at 

different levels of abstraction, helping users deal with 

the common problem of information overload. As the 

user expands nodes at different levels in the hierarchy, 

the structure within the broad topic becomes more 

apparent as parent and child nodes are organized in a 

general to specific fashion. These benefits make 

hierarchies a logical choice to organize large 

collections of documents and during last few decades, 

various approaches were proposed to produce cluster 

hierarchies from document collections. 

Agglomerative and partitioning-based approaches 

represent two most popular categories of hierarchical 

document clustering techniques. Agglomerative 

approaches start with a singleton cluster for each 

document and build the hierarchy bottom-up by 

applying various pair-wise similarity measures on 

clusters, and merging the cluster pair with highest 

similarity at each step, until only one cluster remains. 

Agglomerative methods generally suffer from their 

inability to perform adjustments once a merge is 

performed, resulting in lower clustering accuracy. They 

also have a very high computational cost [5], making 

them infeasible for large document datasets. On the 

other hand, partitioning approaches obtain hierarchical 

clustering solutions via a sequence of repeated 

bisections [5] and are generally scalable and efficient. 

Steinbach et al. [1] showed that Unweighted Pair 

Group Method with Arithmetic Mean (UPGMA) [2] 

and bisecting k-means, a variant of standard k-means 

are the most accurate agglomerative and partitioning 

methods, respectively [4]. Furthermore, Zhao and 

Karypis [5] recently showed that the I2 criterion 

function outperforms other criterion functions when 

used with bisecting k-means. 

A recent trend in hierarchical document clustering is 

to use frequent itemsets to produce cluster hierarchies. 

HFTC [6] was the first algorithm in this class and 

achieves accuracy comparable to 9-secting k-means, 

and worst than bisecting k-means. Fung et al. [3] 

showed that HFTC is not scalable for large document 

collections and proposed FIHC; a frequent itemset 

based clustering approach that claims to outperform 



HFTC and the best-known agglomerative and 

partitional methods (i.e. UPGMA and bisecting k-

means) both in terms of accuracy and scalability. More 

recently, Yu et al. [7] proposed TDC that uses only 

closed frequent itemsets and further reduces 

dimensionality, while improving the clustering quality 

and scalability over FIHC. To our surprise, a more fair 

comparison (section 5.6) revealed that both FIHC and 

TDC actually perform worse than UPGMA and 

bisecting k-means. 

Based on the observation that higher frequency does 

not necessarily mean higher quality, and combining 

ideas from research in selecting the most interesting 

association rules, and closed frequent itemset mining, 

we introduce the notion of “closed interesting” itemsets 

in this paper. We provide a simple, parallelizable 

algorithm, and necessary heuristics to efficiently mine 

these itemsets. We present results from extensive 

experiments performed on standard datasets of varying 

characteristics and sizes, and show that using the same 

support threshold for first level (single word) itemsets 

results in significantly smaller number of “closed 

interesting” itemsets as compare to the number of 

closed frequent itemsets generated. Even so, when used 

for hierarchical document clustering, we show that 

“closed interesting” itemsets outperform state of the art 

clustering algorithms, indicating their superior quality. 

We present a hierarchy assembling approach that 

supports soft clustering and prunes unwanted itemsets 

on the way. In order to make the hierarchy more 

compact, existing approaches [3, 7] use agglomerative 

clustering to merge the first-level nodes. Although 

significantly less expensive than applying 

agglomerative clustering on the whole dataset, this step 

is still very expensive. We used bisecting k-means to 

reduce computational complexity of this step. Finally, 

we propose various implementation-level optimizations 

throughout the paper. Figure 1 provides an overview of 

our hierarchical document clustering process. 

 

 
Figure 1. Our hierarchical document clustering 

process; numbers refer to sections in this paper 

 

The rest of this paper is organized as follows. 

Section 2 introduces “closed interesting” itemsets and 

provides a simple mining algorithm. Section 3 covers 

various pruning steps and details on hierarchy 

generation. Section 4 provides details on our approach 

of merging first level nodes. In section 5, we present 

experimental results on several popular datasets. 

Finally, we conclude and present our ideas for future 

work in section 6. 

 

2. Mining Closed Interesting Itemsets 
 

2.1. Motivation 
 

Frequent itemset mining often results in too many 

itemsets. Using a faster mining algorithm does not 

always help as it is fundamentally a combinatorial 

problem and the mining time exponentially increases as 

support threshold linearly decreases [7, 8], regardless 

of the mining algorithm used.  Researchers found that a 

large percentage of frequent itemsets shares support 

with one or more of their parent (subset) itemsets. 

These itemsets are considered insignificant as they 

represent “specialization” of the more general concept 

represented by the parent itemset. “Closed” frequent 

itemset mining utilizes this finding and imposes the 

additional requirement of “closeness” for large itemset 

generation. Specifically, in addition of meeting the 

minimum support threshold, closed frequent itemsets 

must also have support that is different from 

(practically less than) any of their subset itemsets. 

Generally, it results in significantly smaller number of 

closed frequent itemsets, when compared with the 

number of frequent itemsets found on the same dataset, 

using the same support threshold. In addition, closed 

frequent itemsets performed better than frequent 

itemsets in a number of applications, such as 

hierarchical document clustering [7]. 

Finding the most interesting association rules is 

another significant thread in data mining research. A 

number of association rules can be generated from each 

large itemset at each level, which often results in a very 

large association rule base [12], especially when 

attributes in the data set are highly correlated [11]. A 

low support threshold results in too many discovered 

associations. Increasing the support threshold 

significantly reduces the number of rules discovered, 

but risks losing useful associations, especially on 

uneven datasets. On the other hand, Confidence is 

criticized because of its asymmetric property and its 

failure to incorporate the baseline frequency of the 

consequent [9]. In addition, it is non-trivial to set good 

values for support and confidence thresholds; it 



depends on the size of dataset, sparseness of data, and 

the particular problem under study [10]. Considering 

these issues, a number of researchers [10, 11, 13, 14] 

proposed alternate interestingness measures to evaluate 

and rank discovered associations. Inspired from various 

statistical and mathematical principles, these measures 

are considered less sensitive to the properties of 

specific datasets. 

 

2.2. Overview of “closed interesting” itemsets 
 

We argue that while the “closeness” requirement of 

closed frequent itemsets is useful and based on solid 

principals, the other requirement of meeting a 

minimum support threshold is problematic and difficult 

to generalize. Combining the stronger aspects of closed 

frequent itemset mining with research in finding the 

most interesting association rules, we propose a new 

kind of itemsets called “closed interesting” itemsets.  

 

Table 1. List of interestingness measures used, 

section 5.4 provides details on threshold values 
# Symbol Interestingness Measure Threshold 

1 AV Added Value 0.4 

2 c Symmetric Confidence 0.6 

3 F Certainty Factor 0.4 

4 χ
 2 Chi-Square unit = 50, 

p = 3000 

5 S Collective Strength 1.45 

6 V Conviction 1.7 

7 Φ Correlation Coefficient 0.35 

8 IS Cosine 0.33 

9 G Gini Index 0.017 

10 I Interest 12 

11 Ζ Jaccard 0.23 

12 J J-Measure 0.02 

13 к Kappa 0.35 

14 K Klosgen’s 0.068 

15 L Laplace 0.6 

16 M Mutual Information 0.1 

17 α Odds Ratio 25 

18 RI Piatetsky Shapiros Interest 0.02 

19 Q Yule's Q 0.85 

20 Y Yule's Y 0.65 

 

These itemsets retain the “closeness” property of 

closed frequent itemsets, but replace the minimum 

support requirement with meeting minimum threshold 

of a symmetric, statistically inspired objective 

interestingness measure. Table 1 lists the measures 

used in our experiments. Computational details of these 

measures can be found in [9, 10, 12, 13, 15, 16, 17, 

18]. Note that some of these measures are not 

inherently symmetric and are converted to a symmetric 

version by calculating the interestingness values for 

both directions and selecting the maximum value, as 

proposed by Tan et al. [13]. We compare their relative 

performance and recommend a small number of 

measures that we experimentally found least sensitive 

to the properties of specific datasets in section 5. 

Furthermore, most of these measures are meant to 

calculate correlation or interdependence between two-

way contingency tables (i.e. two variables), which 

makes them unusable for generating “closed 

interesting” itemsets with more than two items. While 

measures like log-linear analysis [10] exist to calculate 

interdependence between multi-way contingency 

tables, they are computationally expensive. We define a 

simple greedy heuristic to deal with this problem: 

Super item: If an itemset p at level k is used to 

generate a candidate itemset q at level k + 1 (i.e. 

itemset q contains all k-items from itemset p, and 

exactly one additional item u), all items in itemset p are 

used to form a super item S, with support (S) = support 

(p). Items v and u are used to form a two-way 

contingency table and to calculate interestingness 

values. 

Example: Considering a dataset of 200 transactions, 

support (A) = 98, support (B) = 120, support (C) = 65, 

support (A, B) = 80 and support (A, B, C) = 45. If 

itemset “A, B” at level 2 is used to generate a candidate 

itemset “A, B, C” for level 3, a super item S is formed 

with support (S) = support (A, B) = 80. Since “C” is the 

additional item in the candidate itemset, a contingency 

table is formed between S and C, as shown in table 2. 

 

Table 2. A 2 x 2 contingency table between super 

item “S” and item “C” 
 C ¬C Total 

S 45 35 80 

¬S 20 100 120 

Total 65 135 200 

 

Using the contingency table shown in Table 2 and 

“Correlation Coefficient” as interestingness measure, 

we get an interestingness value of 0.414, which shows 

that the super item S and item C are positively 

correlated [13]. 

Similar to frequent itemset mining, we prune 

candidate itemsets for level k if any of their k subsets 

of size k-1 do not exist in the previous level, with a 

caveat that frequent itemset mining uses support that 

has a downward closure property, providing theoretical 

foundation for this step. We empirically found this step 

to be useful in increasing the quality and reducing the 

number of “closed interesting” itemsets generated. We 

leave the theoretical analysis for future work. 



1) result = Φ 

2) I1 = U1 = {large 1-itemsets} 

3) for (k = 2; Ik-1 != 0; k ++) do begin 

4)   Ik = find-interesting-itemsets(Ik-1, Uk-1) 

5)   append(result, Ik) 

6)   Uk = get-unique-items(Ik) 

7) end 

8) answer = result 

(a) Algorithm CII-MINE 

1) find-interesting-itemsets(super_items, unique_items) 

2) interesting_itemsets = Φ 

3) for (i = 0; i < size(super_items); i ++) do begin 

4)  for (j = index-of(get-last-item(super_items[i]), unique_items) + 1; j < size(unique_items); j ++) do begin 

5)   candidate_itemset = super_items[i] U unique_items[j] 

6)   subset_itemsets = find-subset-itemsets(candidate_itemset) 

8)     if (contains(Ik-1, subset_itemsets)) then 

9)     if (closed(candidate_itemset, subset_itemsets, Ik-1)) then 

10)     val = apply-measure(super_items[i], unique_items[j]) 

11)     if (val >= min_interestingness_threshold) then 

12)      append(interesting_itemsets, candidate_itemset); 

13)     end 

14)     end 

15)   end 

16)    end 

17) end 

18) answer = interesting_itemsets 

19) end 

(b) Method find-interesting-itemsets 

Figure 2. A simple “closed interesting” itemset mining algorithm 

2.3. Itemset Mining 
 

Figure 2 (a) presents CII-MINE, a simple algorithm 

to mine “closed interesting” itemsets. The algorithm 

starts with mining large 1-itemsets (individual words) 

in a way similar to frequent itemset mining. We 

experimentally found that using a very low support 

threshold for this step results in best quality itemsets 

(section 5.7), adding credence to the claim that using a 

high support threshold results in pruning useful 

associations [13]. Each of the k
th

 steps (where k >= 2) 

form candidate itemsets by considering all “closed 

interesting” itemsets found in k-1
th

 step as super items, 

and adding the unique individual items that follow the 

last item in the super item. Each candidate is checked 

for downward closure and closeness, and candidates 

that satisfy both requirements are checked for meeting 

the interestingness threshold. Candidates that satisfy all 

three requirements are added to the list of “closed 

interesting” itemsets for step k. Mining stops when all 

“closed interesting” itemsets are found. 

Example: If mining “closed interesting“ itemsets 

with k = 2 and large 1-itemsets resulted in “closed 

interesting” 2-itemsets (I2) in Table 3, U2 = {a, b, c, d, 

e, f}. Mining “closed interesting” itemsets for k = 3 

would be done as represented in Table 4. Note that 

super items {b, f}, {d, f} and {e, f} are not considered 

because there are no items following ‘f’ in U2. 

 

Table 3. Interesting 2-itemsets and their support 
2-itemset Support 

count 

2-itemset Support 

count 

2-itemset Support 

count 

{a, b} 150 {b, d} 140 {c, e} 200 

{a, d} 280 {b, e} 320 {d, f} 94 

{b, c} 120 {b, f} 85 {e, f} 10 

 

Since k = 3, size of each super item = k – 1 = 2. The 

algorithm first explores all candidate items for super 

item {a, b}. Since ‘b’ is the second item in U2, four 

candidates {a, b, c}, {a, b, d}, {a, b, e} and {a, b, f} 

are formed, using items that follow ‘b’ in U2. Each 

candidate is checked for the meeting downward closure 

requirement, and candidates that do not meet this 

requirement are pruned (i.e. {a, b, c} is pruned as {a, 

c} does not exist in I2). Similarly, candidate itemsets 

that do not meet the closeness requirement (i.e. {b, c, 

e}) are pruned. Interestingness values of the remaining 

candidates are calculated by calling “apply-measure”, 

and passing super and unique items, (i.e. {{a, b}, d} 

and {{b, d}, f}). Candidates that satisfy the minimum 

interestingness threshold are added to the result. Note 

that support for candidate itemsets is only calculated if 



they meet the downward closure requirement. In 

addition, we optimized the support calculation 

performance by using bitmaps that indicate presence / 

absence of individual, large 1-items in all documents 

(i.e. where each bit represents a document) and 

ANDing the bitmaps of all items in an itemset. 

 

Table 4. Mining “closed interesting” 3-itemsets, 

using 2-itemsets from Table 3, (NC = not calculated) 
super_item Candidate 

itemset 

Supp. 

Count 

Comments 

a b {a, b, c} NC {a, c} not in I2 

a b {a, b, d} 52 Calcul. interest. ({a,b}, d) 

a b {a, b, e} NC {a, e} not in I2 

a b {a, b, f} NC {a, f} not in I2 

a d {a, d, e} NC {a, e} not in I2 

a d {a, d, f} NC {a, f} not in I2 

b c {b, c, d} NC {c, d} not in I2 

b c {b, c, e} 120 Not closed: same as (b, c) 

b c {b, c, f} NC {c, f} not in I2 

b d {b, d, e} NC {d, e} not in I2 

b d {b, d, f} 72 Calcul. interest. ({b,d}, f)  

b e {b, e, f} 10 Not closed: same as (e, f) 

c e {c, e, f} NC {c, f} not in I2 

 

3. Hierarchical Document Clustering and 

Itemset Pruning 
 

Our hierarchy construction approach is similar to 

FIHC [3] and TDC [7], with various important 

differences, most significant of which relates to how 

parent nodes are selected. An initial cluster is formed 

for each “closed interesting“ itemset, containing all 

documents that contain the itemset, with items in the 

itemset used as the cluster label. In fact, these clusters 

are readily available as a byproduct of calculating 

support using the bitmap-based representation 

discussed in the previous section. These initial clusters 

are not disjoint, as a document can contain multiple 

“closed interesting” itemsets of varying sizes. Sections 

3.1 and 3.2 discuss our approach to limit document 

duplication. Section 3.3 presents our hierarchy 

construction algorithm. This step significantly differs 

from existing approaches as it allows selecting multiple 

parents, using the interestingness between parent and 

child nodes without inspecting cluster contents. 

 

3.1. Inner termset removal 
 

If a document is contained in multiple clusters that 

are based on itemsets of varying sizes, we reduce 

document duplication by pruning the document from 

all but the clusters based on the largest sized itemsets. 

Later, when these itemsets are used to build the 

hierarchy, this step results in each document assigned 

to all applicable nodes at the highest possible (i.e. most 

specific) level in the hierarchy. Figure 3 presents an 

algorithm that performs this step in a single pass on 

discovered “closed interesting” itemsets, without 

processing individual documents.  

1)  {allocate array global_map} 

2)  {allocate array lev_maps with size = k} 

3)  for (i = k; i >= 1; i--) do begin 

4)   forall itemsets t ∈ Ii do begin 

5)  bitmapt = bitmapt AND (NOT global_map)

6)    lev_maps [i] = lev_maps [i] OR bitmapt 

7)   end 

8)   global_map = global_map OR lev_maps [i] 

9)  end 

Figure 3. Inner-termset removal algorithm, 

where k = size of the largest discovered itemset 

 

The algorithm starts by allocating a global, and 

individual coverage maps for each level, where number 

of levels = size of largest discovered itemset. A level 

coverage map is similar to an itemset bitmap with a 

difference that an itemset bitmap indicate documents 

that contain the itemset where as a level coverage (bit) 

map indicate documents that contain any itemset at that 

level. Similarly, the global coverage map indicates 

documents that contain any discovered itemset. Levels 

are iterated in largest to smallest order and at each 

level; bitmaps of all itemsets that exist at that level are 

ANDed with inverse of bits in global coverage map, 

which results in eliminating documents that already 

existed at a higher level. The updated bitmap is used to 

update the current level’s coverage map. Finally, after 

each level, current level’s documents are added to the 

global coverage map. This results in pruning 

documents from all but their largest-sized itemsets.  

Example: Considering a dataset of 10 documents, 

and itemset x at level i, with bitmapx = {0100100001}, 

and global map updated with all documents that exist 

on levels i + 1 to k, such as global_map = 

{0010100101}, we have: 
bitmapx     = {0100100001} 

NOT global_map  = {1101011010} AND 

bitmapx          = {0100000000} 

Note that two documents were pruned from bitmapx, 

as they existed in itemset(s) at a higher level. 

 

3.2. Constraining document duplication 
 

The inner-termset removal algorithm (Figure 3) also 

prepares coverage maps for individual levels. These 

coverage maps are used to limit document duplication 

at the same (their largest) level, as inner-termset 

removal eliminates documents from all but their largest 



applicable itemsets, and documents may still exist in 

multiple itemsets at their largest level. Using level 

coverage maps, documents that exist at each level are 

checked for existence in itemsets (clusters) at that level. 

If a document exists in more than MAX_DOC_DUP 

(user defined parameter) itemsets, a score is calculated 

against each matching itemset and the document is 

assigned to MAX_DOC_DUP itemsets with highest 

scores. We used a score calculation method similar to 

TDC [7], which uses the document’s TFIDF vector 

(includes large 1-itemsets only) and adds the term 

frequencies of items that existed in the itemset. 

 

3.3. Bottom-up hierarchy assembling, 

constraining node duplication and pruning of 

itemsets 
 

TDC [7] builds the hierarchy by linking each 

itemset of size k with all of its (up to k) subsets at level 

k-1. This approach may result in boosting FScore, but 

would impact the overall clustering quality because of 

too much node duplication. On the other hand, FIHC 

[3] applies an expensive similarity calculation method, 

which first prepares a conceptual document for each 

node (i.e. by merging the TFIDF vectors of all 

documents that exist in the node or any of its children) 

and calculating a score against each of its (up to k) 

parents. The node is linked to the parent with the 

highest similarity. This method is expensive because it 

requires preparing conceptual documents for nodes at 

all levels in the hierarchy (conceptual documents for 

first level are not needed by this step, but at the time of 

merging first level nodes later), and also because the 

similarity calculation method uses the notion of 

“cluster frequent items” which requires an additional 

step to find these items for each node, using the 

documents that exist in that node and any of its child 

nodes. It also adds another parameter to the system (i.e. 

“minimum cluster support”) and as discussed earlier, 

support thresholds are not easy to generalize. Finally, 

assigning each node to exactly one parent does not 

support soft clustering, which is an essential element of 

real-life hierarchies. As an example, a large number of 

nodes in the “Yahoo Directory” are cross-linked 

between various categories. 

We avoid both extremes (i.e. TDC, which assigns 

each node to all available parents and FIHC which 

assigns each node to exactly one parent) and propose a 

more balanced approach that assigns each node to up to 

a user-defined number of best matching parents. Our 

method is also computationally efficient, as it does not 

prepare conceptual documents for nodes at various 

levels in the hierarchy and also does not calculate 

cluster support, and hence, avoids the additional 

mining step. Instead, we used the same 

“interestingness” measure that was used to mine 

“closed interesting” itemsets in the previous step, and 

our “super item” heuristic to calculate the 

interestingness between the itemset at level k and its 

(upto k) parent itemsets at level k-1 (i.e. by considering 

the parent itemset as super item). A node is linked to up 

to MAX_NODE_DUP (user defined parameter) 

parents with the highest interestingness values. This 

method does not look into the documents contained in 

the cluster and selects parents solely using the itemsets 

(i.e. cluster labels). 

Figure 4 presents our bottom-up hierarchy 

construction algorithm. Because of inner termset 

removal and constraining maximum document 

duplication, a number of itemsets may no longer have 

any documents associated to them (i.e. empty clusters). 

They are pruned on the way unless they were used as 

parent by a node at level k + 1. 

 

4. Merging First Level Nodes 
 

Generally, itemset mining results in a large number 

of large 1-itemsets (frequent single words), making the 

first-level nodes very sparse. Removing inner termsets 

and constraining document duplication results in a 

number of empty clusters, which are pruned during the 

hierarchy construction. Still, there may be a large 

number of nodes at level 1. Similar to FIHC and TDC, 

we merge the first level nodes to reduce sparseness of 

this level.  

TDC uses a heuristic to compute pair-wise 

similarities, and at each step, the pair with highest 

similarity is merged in a way similar to agglomerative 

clustering. This heuristic uses the number of common 

documents between nodes as the primary goodness 

criteria. We found this heuristic problematic, as it does 

not support hard clustering (i.e. MAX_DOC_DUP = 1 

results in no common docs between nodes), and does 

not consider the actual similarities between clusters. 

FIHC, on the other hand, applies agglomerative 

clustering on first level nodes and uses a similarity 

function similar to the one it uses for selecting parents 

during hierarchy construction. This function uses the 

notion of “cluster frequent items” and inspects the 

documents assigned to each node, and all of its children 

to find these items, making it very expensive. 

We first prepare conceptual documents for first-

level nodes by merging term frequencies of large 1-

itemsets from all applicable documents in the cluster. 

Unlike FIHC, which prepares conceptual documents 

for nodes at all levels, we do it only for first-level 



 

1)  for (i = k; i >= 1; i--) do begin 

2)   forall itemsets t ∈ Ii do begin 

3)    if (document-count(bitmapt) > 0 .OR. contains(parentsi+1, t) then 

4)   if (i = 1) then 

5)    add(childrenroot, t); 

6)    else 

7)    S = get-k-subsets(t) 

8)    sorted_list = Φ 

9)    forall itemsets super_item ∈ S do begin 

10)     if (contains(Ii-1, super_item)) then 

11)      interestingness_val = apply-measure(super_item, t - super_item) 

12)      add(sorted_list, super_item, interestingness_val) 

13)     end 

14)    end 

15)    for (j = 0; j < MAX_NODE_DUP .AND. size(sorted_list) >= j; j++) do begin 

16)     itemset = get-itemset(Ii-1, sorted_listj) 

17)     add(childrenitemset, t) 

18)     if (.NOT. contains(parentsi, itemset)) then 

19)      add(parentsi, itemset) 

20)     end 

21)    end 

22)   end 

23)   else 

24)     prune(t) 

25)    end 

26)   end 

27) end 

Figure 4. Hierarchy construction 

nodes, which is significantly less expensive. We 

applied bisecting k-means, using the I2 criterion 

function on these conceptual document vectors, 

reducing the computational complexity of this step 

from O(n
2
* log(n)) to O(e * log(k)), where n is the 

number of first-level nodes, and e is the number of non-

zero entries in the feature vectors of all conceptual 

documents. Note that applying bisecting k-means on 

the conceptual document vectors of first-level nodes is 

significantly less expensive than applying bisecting k-

means on all document vectors in the data set, making 

this approach more scalable than state of the art 

approaches including bisecting k-means (Section 5.9).  

 

5. Experimental Evaluation 
 

We performed extensive experiments on nine 

standard datasets of varying characteristics (Table 5) 

and compared our approach against state of the art 

agglomerative (UPGMA), partitional (bisecting k-

means with I2 criterion function), frequent itemset 

based (FIHC) and closed frequent itemset based (TDC) 

approaches using multiple hierarchical clustering 

evaluation matrices. With an exception of Reuters [19], 

all datasets can be found as part of the Cluto clustering 

toolkit [21], which was also used to generate clustering 

solutions for UPGMA and bisecting k-means, and to 

merge our top-level conceptual document vectors. For 

Reuters, we did not remove documents assigned to 

multiple categories but removed documents without 

category assignment. 

Table 5. Datasets used in our experiments 
Dataset Source #docs #classes #attrs 

Hitech San Jose 

Mercury News 

2301 6 13170 

Re0 Reuters-21578 1504 13 2886 

Wap  WebACE 1560 20 8460 

Classic4 SMART 

Project  

7094 4 41681 

Reuters Reuters-21578 10787 90 19127 

LA12 TREC 6279 6 31472 

Ohscal Ohsumed-

233445 

11162 10 11465 

K1a WebACE 2340 20 13879 

K1b WebACE 2340 6 13879 

 

5.1. Parallelization 
 

A large percentage of modern computer systems 

contain multiple processors, processors with multiple 

cores, or processors that offer hyper-threading 

capabilities. We utilized SIMD parallelism to take 

advantage of these features, and to increase run-time 



performance of various steps used in the clustering 

process. The “closed interesting” itemset mining 

algorithm was extended by creating N threads with IDs 

0 to N-1, with each thread using its ID to independently 

explore a subset of possible candidate itemsets, without 

requiring any intra-step synchronization. This was 

achieved by simply replacing line 3 of find-interesting-

itemsets method with: 

 
for (i = thread ID; i < size(super_items); i = i + N) do begin 

 

A barrier was added between lines 4 and 5 of CSII-

MINE to wait for all threads to finish, and append() on 

the next line was called on all threads. 

Similarly, each thread handled a subset of itemsets 

at each level of inner termset removal, with updates to 

the current level’s bitmap synchronized. For 

constraining maximum document duplication, each 

thread independently handled a level as there are no 

inter or intra-step dependencies in this step. We 

parallelized the hierarchy generation step by having 

each thread handle a subset of itemsets at each level, 

with updates to parent nodes synchronized. Finally, 

feature vectors for individual first-level nodes were 

generated in parallel by a number of threads. 

 

5.2. Evaluation matrices 
 

We used two standard hierarchical clustering 

evaluation matrices to compare the quality of clustering 

results produced by our approach with other, state of 

the art approaches. The first measure, FScore, 

evaluates the overall quality of hierarchical tree using a 

small number of its nodes [5]. On the other hand, 

Entropy takes into account the distribution of 

documents in all nodes of the tree. We used FScore and 

Entropy as defined by Zhao and Karypis [5]. Note that 

FIHC and TDC also used FScore in the same way. 

 

5.3. Setting the initial support threshold for 

first-level itemsets 
 

A major issue with any support-based approach, like 

FIHC [3], is to find the optimal support threshold. Yu 

et al. [7] proposed to dynamically probe the support 

threshold by starting with a high value and decreasing 

the threshold until full coverage of the dataset is 

achieved. We believe that this approach is problematic, 

as even a single noisy document would cause this 

approach to determine ‘zero’ as support threshold. We 

addressed this issue by applying a very low support 

threshold (i.e. 0.2% for the three largest, and 1% for all 

the other datasets used in this paper) to generate first 

level itemsets and generating a “miscellaneous” top-

level node containing documents not represented by 

any itemset for visualization purposes. Typically, the 

number of such documents is very small (i.e. less then 

0.1% of the dataset). Note that the support threshold is 

not used beyond the first level (i.e. to find individual 

frequent words), and second level and higher itemsets 

use more principled statistical interestingness 

measures.  

 

5.4. Using cross validation to determine 

thresholds for interestingness measures 
 

As explained in sections 2 and 3.3, our approach 

uses an “interestingness threshold” to prune itemsets 

and to select parent nodes while assembling the 

hierarchy. This threshold heavily impacts both the 

efficiency, and the quality of clustering, which makes it 

the most important parameter in our system. While it is 

often possible to tune parameters and achieve good 

results on individual datasets, it causes the problem of 

over-fitting, and has little practical value. One of our 

most important goals was to find measures, and 

corresponding threshold values that could generalize 

well and work on datasets with varying characteristics.  

We achieved this goal by applying global cross-

validation, i.e. by randomly selecting a dataset, and 

trying a number of threshold values for each 

interestingness measure. The value that resulted in best 

results on the randomly selected dataset was blindly 

used across all datasets. In addition, since the Chi-

Square test is known to depend on the number of 

transactions in the dataset, and to overestimate the 

interestingness of itemsets in large datasets [10], we 

used a simple heuristic to calculate the Chi-Square 

threshold values for each of the datasets used in our 

experiments: 
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This heuristic results in a minimum threshold value 

of (2 * unit) which linearly increases in unit increments 

for each p documents. In order to maintain consistency, 

a number of values for unit and p were applied on our 

randomly selected dataset and the values that resulted 

in a threshold that produced best results on the selected 

dataset were used to produce Chi-Square thresholds for 

all other datasets. Table 1 presents the threshold values 

obtained using this procedure, for all measures. We 

used these values throughout our experiments. 

 

5.5. Setting values for MAX_DOC_DUP and 

MAX_NODE_DUP



Table 7. FScore comparison of state of the art hierarchical document clustering approaches with “closed 

interesting” itemset based hierarchical document clustering, using top 6 interestingness measures 

 

UPGMA 

bi k-means 

with I2 FIHC TDC 

Mutual 

Information Conviction 

Certainty 

Factor 

Added 

Value 

Chi-

Square Yule’sQ 

Hitech 0.499 0.561 0.458 0.57 0.540 0.559 0.541 0.531 0.533 0.498 

Re0 0.584 0.590 0.529 0.57 0.672 0.641 0.701 0.621 0.593 0.614 

Wap 0.640 0.638 0.391 0.47 0.663 0.619 0.626 0.628 0.634 0.618 

Classic 0.848 0.764 0.623 0.61 0.880 0.817 0.786 0.793 0.802 0.781 

Reuters 0.729 0.793 0.506 0.46 0.851 0.771 0.783 0.815 0.775 0.836 

LA12 0.700 0.741 0.432 N/A 0.661 0.616 0.626 0.709 0.617 0.669 

Ohscal 0.399 0.493 0.325 N/A 0.530 0.515 0.507 0.509 0.547 0.485 

K1a 0.646 0.634 0.398 N/A 0.654 0.610 0.626 0.639 0.638 0.622 

K1b 0.892 0.890 0.768 N/A 0.903 0.869 0.876 0.879 0.881 0.890 

 

Table 8. Entropy comparison of state of the art hierarchical document clustering approaches with “closed 

interesting” itemset based hierarchical document clustering, using top 6 interestingness measures  

 

UPGMA 

bi k-means 

with I2 FIHC TDC 

Mutual 

Information Conviction 

Certainty 

Factor 

Added 

Value 

Chi-

Square Yule’sQ 

Hitech 0.262 0.236 1.258 N/A 0.172 0.210 0.200 0.236 0.153 0.142 

Re0 0.136 0.136 1.239 N/A 0.077 0.098 0.095 0.117 0.133 0.064 

Wap 0.131 0.131 1.561 N/A 0.047 0.052 0.048 0.067 0.056 0.054 

Classic 0.074 0.069 0.886 N/A 0.025 0.069 0.063 0.073 0.029 0.014 

Reuters 0.101 0.086 1.853 N/A 0.155 0.158 0.149 0.165 0.116 0.084 

LA12 0.151 0.134 1.076 N/A 0.062 0.109 0.102 0.091 0.076 0.072 

Ohscal 0.279 0.232 1.775 N/A 0.237 0.300 0.288 0.322 0.230 0.106 

K1a 0.129 0.126 1.645 N/A 0.045 0.058 0.056 0.077 0.044 0.063 

K1b 0.043 0.042 0.544 N/A 0.042 0.033 0.036 0.056 0.042 0.049 

MAX_DOC_DUP controls the maximum document 

duplication at their most specific level, as explained in 

section 3.2. Note that the documents are already 

removed from all, but their most specific level because 

of inner termset removal (section 3.1). Similarly, 

MAX_NODE_DUP controls the maximum number of 

parent nodes allowed. TDC [7] uses a parameter 

similar to MAX_DOC_DUP, with a value of 10, and 

does not impose any restrictions on the number of 

parent nodes. We experimentally found that this 

approach helps boosting the FScore, but degrades the 

overall clustering quality (i.e. Entropy) because of too 

much duplication. Therefore, we used a value of 2 for 

both of these parameters, allowing soft clustering, and 

avoiding unnecessary duplication. 

 

5.6. Clustering quality comparison 
 

Tables 7 and 8 compares the clustering quality of 

our “closed interesting” itemset based hierarchical 

document clustering approach against state of the art 

approaches in terms of FScore and Entropy. To ensure 

a fair comparison, we executed our approach with each 

of the interestingness measures exactly once and 

recorded the results. The same approach was followed 

to obtain results for UPGMA and bisecting k-means.  

For FIHC, we executed the software several times 

on each dataset with a number of support thresholds 

and recorded the best results. We noticed that support 

thresholds that worked best on one dataset resulted in 

low-quality clustering on other datasets. In several 

cases, applying the same threshold results in itemset 

mining to take an indefinite amount of time. As an 

example, support threshold of 3% resulted in best 

FScore on Classic. When the same support threshold 

was applied on LA12, it resulted in 100,000+ frequent 

1, 2, and 3-itemsets, after which the itemset mining did 

not return for 10+ minutes and the application had to 

be manually terminated. Since TDC implementation 

was not available, we used results from [7]. 

Furthermore, Cluto generates both hierarchical and 

flat clustering solutions for UPGMA and bisecting k-

means.  The hierarchical clustering solution does not 

change with the number of desired clusters, which only 

impacts the flat clustering solution in a way that the 

desired number of flat clusters are obtained from the 

hierarchical tree using cluster analysis techniques. 

Existing frequent itemset based approaches [3, 7] seem 

to have compared their hierarchical solutions with flat 

clustering solutions obtained for UPGMA and bisecting 

k-means, using 3, 15, 30 and 60 as desired number of 

clusters. For itemset-based approaches, the number of 

desired clusters is less significant as it only represents 



the number of top-level nodes in the hierarchy, and not 

the total number of clusters in the solution. We used 

the hierarchical clustering solutions for UPGMA and 

bisecting k-means instead, and observed that they 

perform better than both of the existing frequent 

itemset based approaches. The FScores we obtained 

are also closer to the FScores reported by Zhao and 

Karypis [4] on the same datasets. 

For the reason of space, we only report results of the 

top six measures, as determined by averaging the 

FScores and Entropies of each measure on all nine 

datasets. Note that some measures that are not included 

in Tables 7 and 8 performed very well on few datasets, 

but failed to generalize when the same interestingness 

threshold was applied on other datasets. As an 

example, jMeasure with threshold from Table 1 

resulted in FScore of 0.584 on Hitech, and Entropy of 

0.061 on LA12. Even though these results are better 

than all approaches we experimented with, the same 

threshold did not perform as well on other datasets. 

Our results (Table 7) indicate that Mutual Information 

results in best overall FScore, followed by Added 

Value and Chi-Square. On the other hand, Yule’s Q 

results in best overall Entropy (Table 8) followed by 

Mutual Information and Chi-Square. We conclude that 

Mutual Information offers the best balance as it 

outperforms all existing approaches (and 

interestingness measures using our approach) in terms 

of FScore on five out of nine datasets, and performs 

better than existing approaches on seven out of nine 

datasets in terms of Entropy. 

 

5.7. Comparison of “closed interesting” 

itemsets with closed frequent itemsets 
 

We compared “closed interesting“ itemsets against 

closed frequent itemsets, by mining closed frequent 

itemsets at various support levels on Reuters dataset, 

and applying our clustering process on the mined 

itemsets. When an interestingness measure is used to 

mine itemsets, the hierarchy generation process uses 

the same measure for parent selection, as explained in 

section 3.3. For closed frequent itemsets, we used 

support for this purpose in a way that up to 

MAX_NODE_DUP parents that share the most 

documents with the child node (i.e. parent nodes with 

lowest support) were selected. We found that this 

approach achieves better FScores as compare to TDC 

[7], which also uses closed frequent itemsets. 

Using the support thresholds that were used to 

generate closed frequent itemsets, we generated large 

1-itemsets and used them to mine “closed interesting” 

itemsets using few of our top measures. Note that the 

interestingness thresholds remained constant (i.e. as 

defined in table 1). The resulting itemsets were used to 

cluster the Reuters dataset. We report the number of 

level 2 and higher itemsets generated, along with the 

corresponding FScores, for closed frequent itemsets 

and each of the measure used to generate “closed 

interesting” itemsets. We omitted the number of 1-

itemsets because it remains same for both closed 

frequent itemsets and “closed interesting” itemsets, 

when the same minimum support threshold is used. 

Table 9. The smaller number, but improved 

performance of “closed interesting” itemsets over 

closed frequent itemsets, at various support levels 
Closed 

Frequent 

Mutual 

Information Yule’s Q 

Added 

Value Min 

Supp #  F # F #  F #   F 

1% 92880 0.71 1613 0.83 2445 0.80 836 0.78 

2% 12246 0.67 842 0.80 548 0.78 397 0.78 

3% 4015 0.67 435 0.76 209 0.75 235 0.75 

4% 1792 0.64 308 0.70 146 0.68 170 0.71 

5% 933 0.62 231 0.68 109 0.68 135 0.69 

Table 9 presents the results of this experiment. 

Clearly, the number of “closed interesting” itemsets 

found at all support levels is significantly smaller than 

the number of closed frequent itemsets. Even so, they 

achieved better FScores. Also, the quality of clustering 

decreases for all itemset types, as the minimum support 

threshold increases, adding credence to the claim that 

higher support thresholds result in pruning useful 

associations [13]. 

 

5.8. Parallel processing and hyper-threading 
 

In order to analyze the impact of parallel itemset 

mining and hierarchy generation, we performed 

experiments on a system that contains two hyper-

threaded, 2.8 GHz Intel Xeon based processors. Each 

hyper-threaded processor is seen as two logical 

processors by the OS, resulting in a total of four 

processors available for executing programs. We 

started with a single thread and executed the clustering 

process on two largest datasets (i.e. Reuters and 

Ohscal) used in our experiments, a number of times, 

and averaged the execution times. The same process 

was repeated with number of threads set to 2, 3 and 4. 

Note that our run-time environment (i.e. 64-bit Java) 

mapped individual threads to separate processors. 

Figure 5 presents results of this experiment. Using 

four threads resulted in an average total speedup 

(computed as the ratio of old and new execution times) 

of 60% on Reuters and 67% on Ohscal dataset, when 

compared with the corresponding single-threaded 

solutions. Itemset mining enjoyed the most significant 

performance improvement as threads were added, 



because of no intra-step synchronization requirements. 

On the other hand, hierarchy generation performance 

improved only when a new thread could map to a 

separate physical processor (i.e. from one thread to two 

threads) and decreased if more threads were added, 

requiring execution on a logical processor, because of 

intra-step synchronization on node modifications, and 

bitmap updates. This suggests that using a different 

number of threads for each of these steps could result 

in better overall performance.  Finally, comparing the 

performance of two-threaded solution with four-

threaded solution, we can see that hyper-threading 

resulted in an average itemset mining speedup of 15% 

and 13% on Reuters and Ohscal datasets, respectively. 

 
 

Figure 5. Impact of parallel processing on Reuters 

and Ohscal datasets with Mutual Information as 

interestingness measure, and threshold as in Table 1 

 

5.9. Runtime performance and scalability 
 

We used the full Ohsumed [20] collection (34,389 

unique documents, and 36,250 unique attributes) to 

evaluate the run-time performance and scalability of 

our clustering approach. The Ohsumed collection was 

used to generate ten datasets, containing 20K to 200K 

documents in 20K increments. Each of these datasets 

was generated by selecting N documents randomly 

(where N is the size of desired dataset) from existing 

documents, and replacing approximately 40% of words 

with other words from the corpus, retaining the 

frequencies of replaced words. Using Mutual 

Information as interestingness measure and the 

threshold value from Table 1, we executed both the 

parallel (using 4 threads), and single-threaded versions 

of our clustering process, and also executed bisecting 

k-means, and FIHC on these datasets. For FIHC, we 

used the support threshold that resulted in best FScore 

on the full Ohsumed collection. In order to ensure a fair 

comparison, we turned off all cluster analysis, and 

output options for bisecting k-means, and excluded I/O 

and reporting times. In addition, the reported times of 

our approach include execution times of all steps, 

except offline preprocessing to form document vectors 

and bitmaps. 

 
Figure 6. Runtime performance and scalability 

comparison of our clustering approach, with 

bisecting k-means, and FIHC 

Figure 6 presents results of this experiment. We 

found that bisecting k-means scaled up linearly, and 

FIHC scaled worse than linearly, possibly because of 

frequently accessing document vectors, and 

agglomerative merging of top-level nodes. The parallel 

version of our approach outperformed the single-

threaded version, as expected. Both versions of our 

approach scaled sub-linearly, because of significant 

dimensionality reduction achieved by using “closed 

interesting” itemsets for clustering, and because our 

approach reduces the need to refer to full document 

vectors. These vectors are referred only once: i.e. to 

generate large 1-itemsets. All interesting k (where k >= 

2) itemsets are generated using the bitmaps of large 1-

itemsets, and most documents are clustered without 

ever referring back to the document vectors. The 

number of such documents increases with the size of 

the dataset, as our clustering process primarily uses 

itemsets for forming clusters, and number of words in 

the corpus does not linearly increase with new 

documents. Partial vectors (i.e. applicable frequent 1-

itemsets) of a small percentage of documents are 

referred to remove document duplication from clusters 



at the same level, and to generate conceptual 

documents for first level nodes. Finally, we expect our 

approach to scale better than TDC, because the number 

of “closed interesting” itemsets is significantly smaller 

than closed frequent itemsets (section 5.7), and other 

optimizations made throughout the clustering process 

(i.e. using bisecting k-means to merge the first-level 

nodes). 

 

6. Conclusions and Future Work 
 

We introduced the notion of “closed interesting” 

itemsets in this paper. Utilizing the closeness property 

of closed frequent itemsets, and using ideas from 

selecting the most interesting association rules, these 

itemsets provide significant dimensionality reduction 

over closed frequent itemsets. Using these itemsets, we 

proposed a new hierarchical document clustering 

approach that outperforms state of the art approaches, 

both in terms of FScore and Entropy on a large number 

of standard datasets. In addition, our approach scales 

sub-linearly and was able to cluster 200K documents in 

less than a minute. A parallel version of our approach 

achieved the same task in around 40 seconds. We used 

a principled threshold identification technique and 

showed that a small number of statistically inspired 

interestingness measures generalize well to a large 

number of datasets, without requiring parameter tuning. 

We believe that “closed interesting“ itemsets can 

serve as a superior replacement for frequent and closed 

frequent itemsets, in a variety of application domains. 

We also believe that existing research in optimized 

frequent, and closed frequent itemset mining (i.e. FP-

Trees) can help improve the performance of mining 

“closed interesting” itemsets. 

In the future, we plan to apply “closed interesting” 

itemsets in more application domains and work on 

optimizing various steps used in our clustering process 

(i.e. parallel bisecting k-means for merging top-level 

nodes). We also plan to work on finding a more 

principled way of identifying the Chi-Square 

thresholds. 
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