Secret Key Cryptography

- fixed-size block, fixed-size key → block
- DES, IDEA
- message into blocks?

© 1999-2000, Henning Schulzrinne
Last modified September 28, 2000
Generic Block Encryption

- convert block into another, *one-to-one*
- long enough to avoid known-plaintext attack
- 64 bit typical (nice for RISC!) \(\Rightarrow 18 \cdot 10^{18}\) (peta)
- naive: \(2^{64}\) input values, 64 bits each \(\rightarrow 2^{70}\) bits
- output should look random
- plain, ciphertext: no correlation (half the same, half different)
- \(\Rightarrow\) bit spreading

substitution: \(2^k, k \ll 64\) values mapped \(\Rightarrow k \cdot 2^k\) bits

permutation: change bit position of each bit \(\Rightarrow k \log_2 k\) bits to specify

round: combination of substitution of chunks and permutation
 - do often enough so that a bit can affect every output bit – but no more

Block Encryption

![Diagram of block encryption process](image)

Slide 3

Slide 4
Data Encryption Standard (DES)

- published in 1977 by National Bureau of Standards
- developed at IBM ("Lucifer")
- 56-bit key, with parity bits
- 64-bit blocks
- easy in hardware, slow in software
- 50 MIPS: 300 kB/s
- 10.7 Mb/s on a 90 MHz Pentium in 32-bit protected mode
- grow 1 bit every 2 years

Slide 5

Breaking DES

- brute force: check all keys ⇒ 500,000 MIPS years
- easy if you have known plaintext
- have to know something about plaintext (ASCII, GIF, ...)
- commercial DES chips not helpful: key loading time > decryption time
- easy to do with FPGA, without arousing suspicion
- easily defeated with repeated encryption

Slide 6
DES Overview

- initial permutation
- 56-bit key → 16 48-bit per-round keys (different subset)
- 16 rounds: 64 bit input + 48-bit key → 64-bit output
- final permutation (inverse of initial)
- decryption: run backwards ⇄ reverse key order

Permutation

- just slow down software
- ith byte → $(9 - i)$th bits
- even-numbered bits into byte 1-4
- odd-numbered bits into byte 5-8
- no security value: if we can decrypt innards, we could decrypt DES
DES: Generating Per-Round Keys

56-bit key \rightarrow 16 48-bit keys K_1, \ldots, K_{16}:

- bits 8, 16, ..., 64 are parity
- permutation
- split into 28-bit pieces C_0, D_0: 57, 49, ...
- again, no security value
- rounds 1, 2, 9, 16: single-bit rotate left
- otherwise: two-bit rotate left
- permutation for left/right half of K_i
- discard a few bits \Rightarrow 48-bit key in each round

Slide 9

XOR Arithmetic

- $x \oplus x = 0$
- $x \oplus 0 = x$
- $x \oplus 1 = \overline{x}$

Slide 10
DES Round

- mangler function can be non-reversible
 - \(L_{n+1} = R_n \)
 - \(R_{n+1} = m(R_n, K_n) \oplus L_n \)
- decryption
 - \(R_n = L_{n+1} \)
 - \(L_n = m(R_n, K_n) \oplus R_{n+1} \)

because \((\oplus L_n, R_{n+1})\): \(R_{n+1} \oplus R_{n+1} \oplus L_n = m() \oplus L_n \oplus L_n \oplus R_{n+1} \)

Slide 11

DES Mangler Function

- \(R(32), K(48) \oplus L_n \rightarrow R_{n+1} \)
- expand from 32 to 48 bits: 4-bit chunks, borrow bits from neighbors
- 6-bit chunks: expanded \(R \oplus K \)
- 8 different S-boxes for each 6 bits of data
- \textbf{S box}: 6 bit (64 entries) into 4 bit (16) table: 4 each
- four separate 4x4 S-boxes, selected by outer 2 bits of 6-bit chunk
- afterwards, random permutation: P-box

Slide 12
DES: Weak Keys

- 16 keys to avoid: $C_0, D_0 \ 0\ldots0, 1\ldots1, 0101\ldots, 1010\ldots$
- sequential key search \implies avoid low-numbered keys
- 4 weak keys $= C_0, D_0 = 0\ldots0$ or $1\ldots1 \implies$ own inverses: $E_k(m) = D_k(m)$
- semi-weak keys: $E_{k_1}(m) = D_{k_2}(m)$

IDEA

- International Data Encryption Algorithm
- ETH Zurich, 1991
- similar to DES: 64 bit blocks
- but 128-bit keys
Primitive Operations

2 16-bit \rightarrow 1 16-bit:

- \oplus
- $+ \mod 2^{16}$
- $\otimes \mod 2^{16} + 1$:
 - reversible $\Leftrightarrow \exists$ inverse y of x, $\forall x \in [1, 2^{16}] a \otimes x \otimes y = a$
 - or $x \otimes y = 1$
 - example: $x = 2, y = 32769 \Rightarrow$ Euclid’s algorithm
 - reason: $2^{16} + 1$ is prime
 - treat 0 as encoding for 2^{16}

IDEA Key Expansion

- 128-bit key \rightarrow 52 16-bit keys K_1, \ldots, K_{52}
- encryption, decryption: different keys
- key generation:
 - first chop off 16 bit chunks from 128 bit key \Rightarrow eight 16-bit keys
 - start at bit 25, chop again \Rightarrow eight 16-bit keys
 - shift 25 bits and repeat
IDEA: One Round

- 17 rounds, even and odd
- 64 bit input → 4 16-bit inputs: X_a, X_b, X_c, X_d
- operations → output X'_a, X'_b, X'_c, X'_d
- odd rounds use $4K_i : K_a, K_b, K_c, K_d$
- even rounds use $2K_i : K_c, K_f$

Slide 17

IDEA: Odd Round

- $X'_a = X_a \otimes K_a$
- $X'_d = X_a \otimes K_d$
- $X'_c = X_b + K_b$
- $X'_b = X_c + K_c$

reverse with inverses of K_i

$X'_a \otimes K'_a = X_a \otimes K_a \otimes K'_a$

Slide 18
IDEA: Even Round

mangler: \(Y_{out}, Z_{out} = f(Y_{in}, Z_{in}, K_e, K_f) \)

1. \[
\begin{align*}
Y_{in} &= X_a \oplus X_b \\
Z_{in} &= X_c \oplus X_d \\
\end{align*}
\]

2. \[
\begin{align*}
Y_{out} &= (K_e \otimes Y_{in} + Z_{in}) \otimes K_f \\
Z_{out} &= K_e \otimes Y_{in} + Y_{out} \\
\end{align*}
\]

3. \[
\begin{align*}
X_a' &= X_a \oplus Y_{out} \\
X_b' &= X_b \oplus Y_{out} \\
X_c' &= X_c \oplus Z_{out} \\
X_d' &= X_d \oplus Z_{out} \\
\end{align*}
\]

IDEA Even Round: Inverse

\[
X_a' = X_a \oplus Y_{out}
\]

Feed \(X_a' \) to input:

\[
= X_a' \oplus Y_{out} \\
= (X_a \oplus Y_{out}) \oplus Y_{out} \\
= X_a
\]

\(\Rightarrow \) round is its own inverse! \(\Rightarrow \) same keys
Encrypting a Large Message

- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- k-bit Cipher Feedback Mode (CFB)
- k-bit Output Feedback Mode (OFB)

Slide 21

Electronic Code Book (ECB)

- break into 64-bit blocks
- encrypt each block independently
- some plaintext \Rightarrow same ciphertext
- easy to change message by copying blocks
- bit errors do not propagate

\Rightarrow rarely used

Slide 22
Cipher Block Chaining (CBC)

simple fix: \(\oplus \) blocks with 64-bit random number

- must keep random number secret
- repeats in plaintext \(\neq \) ciphertext
- can still remove selected blocks

Slide 23

Cipher Block Chaining (CBC)

- random number \(r_{i+1} = c_i \): previous block of ciphertext
- random (but public) initialization vector (IV): avoid equal initial text
- Trudy can’t detect changes in plaintext
- can’t feed chosen plaintext to encryption
- but: can twiddle some bits (while modifying others):
 modify \(c_n \) to change desired \(m_{n+1} \) (and \(m_n \))
- \(\Rightarrow \) combine with MICs

Slide 24
Output Feedback Mode (OFB)

64-bit OFB:

- IV: $b_0 \xrightarrow{\text{encrypt}} b_1 \xrightarrow{\text{encrypt}} b_2 \ldots$
- $c_i = m_i \oplus b_i$, transmit with IV
- ciphertext damage \Rightarrow limited plaintext damage
- can be transmitted byte-by-byte
- but: known plaintext \Rightarrow modify plaintext into anything
- extra/missing characters garble whole rest

variation: k-bit OFB

Cipher Feedback Mode (CFB)

- similar to OFB: generate k bits, \oplus with plaintext
- use k bits of ciphertext instead of IV-generated
- \Rightarrow can’t generate ahead of time
- 8-bit CFB will resynchronize after byte loss/insertion
- requires encryption for each k bits
Generating MICs

- only send last block of CBC \(\Rightarrow\) **CBC residue**
- any modification in plaintext modifies CBC residue
- replicating last CBC block doesn’t work
- P+I: use separate (but maybe related) secret keys for encryption and MIC \(\Rightarrow\) two encryption passes
- CBC(message | hash)

Multiple Encryption DES

- applicable to any encryption, important for DES
- encrypt-decrypt-encrypt (EDE): just reversible *functions*
- two keys \(K_1, K_2\)
 \[
 \begin{array}{ccc}
 K_1 & K_2 & K_1 \\
 \downarrow & \downarrow & \downarrow \\
 m & \rightarrow & E & \rightarrow & D & \rightarrow & E & \rightarrow & c
 \end{array}
 \]
- decryption \(\Rightarrow\) just reverse:
 \[
 \begin{array}{ccc}
 K_1 & K_2 & K_1 \\
 \downarrow & \downarrow & \downarrow \\
 c & \rightarrow & D & \rightarrow & E & \rightarrow & D & \rightarrow & m
 \end{array}
 \]
- standard CBC
Triple DES: Why 3?

- security ↔ efficiency
- $K_1 = K_2$: twice the work for encryption, cryptanalyst
- plaintext $m_i \xrightarrow{A; E(K_1)} r \xrightarrow{B; E(K_2)} c_i$ (ciphertext)
- not quite equivalent to 112 bit key:
 - assume given $(m_1, c_1), (m_2, c_2), (m_3, c_3)$
 - Table A: 2^{56} (10^4 TB) entries: $r = K \{m_1\} \forall K$, sort by r
 - Table B: 2^{56} entries: $r = c_1$ decrypted with K, sorted
 - find matching $r \Rightarrow K_A, K_B$
 - if multiple K_A, K_B pairs, test against m_2, c_2, etc.
 - 2^{64} values, 2^{56} entries $\Rightarrow 1/256$ chance to appear in table $\Rightarrow 2^{48}$ matches

Slide 29

Table A:

<table>
<thead>
<tr>
<th>$r = E(m_1, K)$ (64 bits)</th>
<th>K (56 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234567890abcd00</td>
<td>ab485095845922</td>
</tr>
<tr>
<td>1234567890abcd03</td>
<td>12834893573257</td>
</tr>
<tr>
<td>1234567890abcd04</td>
<td>43892ab8348a85</td>
</tr>
<tr>
<td>1234567890abcd08</td>
<td>185ab80184092c</td>
</tr>
</tbody>
</table>

Table B:

Slide 30
\[r = D(c_1, K) \text{ (64 bits)} \quad K \text{ (56 bits)} \]

```
... 1234567890abcd00 38acd043858ac0
1234567890abcd03 91870ab8a8d8a0
1234567890abcd07 058a0fa858abcd
1234567890abcd09 fd884a90407821
...
```

computation: \(2 \cdot 2^{56} + 2^{18}\)

Slide 31

Triple DES

- EDE: can run as single DES with \(K_1 = K_2\)
- can be used with any chaining method
- CBC on the outside \(\Rightarrow\) no change in properties
- CBC on the inside \(\Rightarrow\) avoid plaintext manipulation
- but want *self-synchronizing*: wrong bit \(x\) in block \(n - 1\) \(\Rightarrow\) \(n - 1\) garbled, \(n_x\) changed, others unaffected
- CBC inside: parallelization

Slide 32