Network Security: Secret Key Cryptography

Henning Schulzrinne
Columbia University, New York
schulzrinne@cs.columbia.edu

Columbia University, Fall 2000

(©1999-2000, Henning Schulzrinne
Last modified September 28, 2000

Secret Key Cryptography

e fixed-size block, fixed-size key block
e DES, IDEA

e message into blocks?

Generic Block Encryption

e convert block into anothegne-to-one
e long enough to avoid known-plaintext attack
e 64 bit typical (nice for RISC!}J 18 - 108 (peta)
e naive: 2%t input values, 64 bits each 27 bits
e output should look random
e plain, ciphertext: no correlation (half the same, half different)
e [bit spreading
substitution: 2%, k < 64 values mapped & - 2* bits
permutation: change bit position of each hit £ log, k bits to specify

round: combination of substitution of chunks and permutation
do often enough so that a bit can affect every output bit — but no more

Block Encryption

64-bit input
| 8hits | | 8b|ts 8b|ts 8b|ts 8b|ts | | 8hits |
key-based
substitution
functions
| 8hits | | 8hits | | 8b|ts 8b|ts 8b|ts 8b|ts | | 8hits | | 8hits |

e\ o

64—bit intermediate

permute the bits,
possibly based on the key

64-bit output

loop for n rounds

Data Encryption Standard (DES)

e published in 1977 by National Bureau of Standards

e developed at IBM (“Lucifer”)

e 56-bit key, with parity bits

e 64-bit blocks

e easy in hardware, slow in software

e 50 MIPS: 300 kB/s

e 10.7 Mb/s on a 90 MHz Pentium in 32-bit protected mode

e grow 1 bit every 2 years

Breaking DES

e brute force: check all keyils 500,000 MIPS years

e easy if you have known plaintext

e have to know something about plaintext (ASCII, GIF,)

e commercial DES chips not helpful: key loading tinxedecryption time
e easy to do with FPGA, without arousing suspicion

e casily defeated with repeated encryption

DES Overview

e Initial permutation

e 56-bit key— 16 48-bit per-round keys (different subset)
e 16 rounds: 64 bit input + 48-bit key» 64-bit output

e final permutation (inverse of initial)

e decryption: run backwards reverse key order

Permutation

e just slow down software

e ith byte— (9 — 7)th bits

e even-numbered bits into byte 1-4
e odd-numbered bits into byte 5-8

e NO security value: if we can decrypt innards, we could decrypt DES

DES: Generating Per-Round Keys

56-bit key— 16 48-bit keysk, ... Ki:

e hits 8, 16, ..., 64 are parity

e permutation

e split into 28-bit piece€’y, Dy: 57,49, ...
e again, no security value

e rounds 1, 2, 9, 16: single-bit rotate left
e otherwise: two-bit rotate left

e permutation for left/right half of<;

e discard a few bit§] 48-bit key in each round

10

XOR Arithmetic

o r Pxr=20
o r 0 =2

o rvl==x

11

DES Round

e mangler function can be non-reversible

- Ln—l—l = R,
- Rn—l—l — m<Rn7Kn> ® Ly,

e decryption

- R, = Ln—l—l
— L, = m<Rn7Kn> D Rn—i—l

becaused® L., R,11): Rpi1 O Ry 1 L, =m() DL, DL, D R,11

12

DES Mangler Function

e R(32),K(48) & L,, & R,+1

e expand from 32 to 48 bits: 4-bit chunks, borrow bits from neighbors
e 6-bit chunks: expandefl © K

e 8 different S-boxes for each 6 bits of data

e S box 6 bit (64 entries) into 4 bit (16) table: 4 each

e four separate 4x4 S-boxes, selected by outer 2 bits of 6-bit chunk

e afterwards, random permutation: P-box

13

DES: Weak Keys
|

e 16 keys to avoidCy, Dy 0...0,1...10101..,1010...
e sequential key seardh avoid low-numbered keys
e 4weak keys Cy, Dy =0...00r1...10 owninversesEy(m) = Dy(m)

e semi-weak keyst., (m) = Dy, (m)

14

IDEA

e International Data Encryption Algorithm
e ETH Zurich, 1991

e similar to DES: 64 bit blocks

e but 128-bit keys

15

Primitive Operations
|

2 16-bit— 1 16-bit:

o D

e + mod 26

e ® mod 216 + 1:
— reversibled Jinversey of z,Vr € [1,2¥ e @ r @y =a
—ore®y=1
— example:xr = 2,y = 32769 U Euclid’s algorithm

— reason2'% + 1 is prime
— treat O as encoding fa@'®

IDEA Key Expansion

16

e 128-hit key—> 52 16-bit keyﬁ(l, e ,K52
e encryption, decryption: different keys
e key generation:

— first chop off 16 bit chunks from 128 bit key eight 16-bit keys
— start at bit 25, chop agaid eight 16-bit keys
— shift 25 bits and repeat

17

IDEA: One Round

e 17 rounds, even and odd

e 64 bit input— 4 16-bit inputs:X,, X;, X., Xy
e operations— outputX, K X; X! X!

e 0dd rounds usékK; : K,, Ky, K., K4

e even rounds usek; : K., K¢

18

IDEA: Odd Round

e X! =X,® K,
e X=X, K,
o X=X, + K,
e X/ =X+ K,

reverse with inverses df;:

19

IDEA: Even Round

mangler:Yous, Zouwt = f(Yin, Zin, Ke, K¥)

1.
Yin = Xo® X
Zin = X.® Xy

2.

Your = (Ke®Yin+ Zin)® Ky

Zouwt = Ke®Yin+ Your

3.
X, = Xo®You
Xy = Xp®You
X, = X.® Zow

Xcll — Xd D Zout

20

IDEA Even Round: Inverse

X/ — Xa ¥ Yout

FeedX/ to input:

— Xclt D Yout
— <Xa D Yout) D Yout
— Xa

[1 round is its own inversell same keys

21

Encrypting a Large Message
|

e Electronic Code Book(ECB)

e Cipher Block Chaining(CBC)

e k-bit Cipher Feedback Mode (CFB)
e k-bit Output Feedback Mode (OFB)

22

Electronic Code Book (ECB)

e break into 64-bit blocks

e encrypt each block independently

e some plaintext] same ciphertext

e easy to change message by copying blocks

e Dit errors do not propagate

1 rarely used

Cipher Block Chaining (CBC)

23

simple fix: & blocks with 64-bit random number

e must keep random number secret
e repeats in plaintext> = ciphertext

e can still remove selected blocks

24

Cipher Block Chaining (CBC)

e random number; 1 = ¢;: previous block of ciphertext

e random (but public)nitialization vector(lV): avoid equal initial text
e Trudy can’t detect changes in plaintext

e can't feed chosen plaintext to encryption

e but: can twiddle some bits (while modifying others):
modify ¢,, to change desireth,,. 1 (andm,,)

e [1 combine with MICs

Output Feedback Mode (OFB)

25

64-bit OFB:

t
o IV: by SEYPY, YRy

e c; = m; P b;, transmit with IV

e ciphertext damagel limited plaintext damage

e can be transmitted byte-by-byte

e but: known plaintextl modify plaintext into anything

e extra/missing characters garble whole rest

variation: k-bit OFB

26

Cipher Feedback Mode (CFB)

e similar to OFB: generatg bits, & with plaintext

e usek bits of ciphertextinstead of IV-generated

e [1 can’'t generate ahead of time

e 8-bit C'F' B will resynchronize after byte loss/insertion

e requires encryption for eacdhbits

27

Generating MICs

e only send last block of CBCI CBC residue
e any modification in plaintext modifies CBC residue
e replicating last CBC block doesn’t work

e P+l: use separate (but maybe related) secret keys for encryption andl MMO
encryption passes

e CBC(messaggéhash)

28

Multiple Encryption DES

e applicable to any encryption, important for DES
e encrypt-decrypt-encrypt (EDE): just reversilflmctions
e two keysKk, K5

K, Ko K,
¥ ¥ ¥

m — FEF —- D = FE —e¢

e decryptionl] just reverse:

e Standard CBC

29

Triple DES: Why 37

e security« efficiency

e K| = K5: twice the work for encryption, cryptanalyst

o plaintextm; 25 . FEER) - cinhertext)

e notquite equivalent to 112 bit key:

— assume givelimy, ¢y), (mo, c2), (m3, c3)

— Table A:2°° (10* TB) entries:r = K{m;}VK, sort byr

— Table B:2°% entries:r = ¢; decrypted withX, sorted

— find matchingr U K4, Kp

— If multiple K 4, K g pairs, test againsh., cs, etc.

— 2% values2°° entriesd] 1/256 chance to appear in talile2*® matches

30

Triple DES: Why 37

Table A:
r = E(m1, K) (64 bits) K (56 bits)

1234567890abcd00 ab485095845922
1234567890abcd03 12834893573257
1234567890abcd04 43892ab8348a85
1234567890abcd08 185ab80184092c

Table B:

r = D(c1, K) (64 bits) K (56 bits)

1234567890abcd00 38acd043858ac0
1234567890abcd03 91870ab8a8d8al
1234567890abcd07 058a0fa858abcd
1234567890abcd09 d884a90407821

computationz2 - 2°6 4 248

31

32

Triple DES

e EDE: can run as single DES witki; = K5

e can be used with any chaining method

e CBC on the outsidé]l no change in properties

e CBC onthe insidél avoid plaintext manipulation

e but wantself-synchronizingwrong bitx in blockn — 1 1 n — 1 garbledn
changed, others unaffected

e CBC inside: parallelization

