Electronic Mail Security

Characteristics

File transfer, except...

- sender, receiver may not be present at the same time
- diversity (character sets, headers, ...)
- not a transparent channel (8 bit data, CRLF)
- often not within a common realm
Distribution Lists

1. send to list site, which distributes:
 - unknown membership (except for bounces…)
 - geographical locality
 - size of list
 - avoid need for tree expansion

2. get list from maintainer and send
 - “list of lists” – at list server or at receiver (warning!)
 - can’t distinguish individuals from lists

Mail Forwarding

MUA: user agent – may disappear temporarily

MTA: message transfer agent – retries, route

- corporate MTA (security gateway)
- protocol translation (X.400, SMTP, Lotus Notes, …)

location: MX, manual

routing: DNS
Internet Email

- protocol: SMTP (RFC 821) ➤ ASCII commands, responses
- addresses: RFC 822
- separate: headers (message), envelope (commands: from, to)
- TCP, port 25
- DNS MX (mail exchange) records: domain → MTA(s)
- binary content, structure ➤ MIME (Multipurpose Internet Mail Extensions)

Security Services

- privacy
- authentication
- integrity
- non-repudiation
- proof of submission
- proof of delivery
- message flow confidentiality (did Alice sent Bob a message?)
- anonymity
- containment (leakage)
- audit

Slide 5

Slide 6

December 7, 2000
• accounting
• self destruct
• message sequence integrity

Establishing Public Keys

• email: often no prior meeting of principals
• use (chain of) certificates: x’s public key is y, signed “Verisign”
• selection of certificates – not complete trust or felon!
• easily delivered with mail (but: size)
Privacy

- multiple recipients ➞ repeated encryption of long message
- ➞ only encrypt session key for each recipient
- list exploder: get session key, re-encrypt for each recipient
- local list: need key for each recipient

Email Faking

host -t mx whitehouse.gov
whitehouse.gov mail is handled (pri=100) by storm.eop.gov
telnet storm.eop.gov 25
Trying 198.137.241.51...
Connected to storm.eop.gov.
Escape character is '^]'.
220 Storm.EOP.GOV -- Server ESMTP (PMDF V5.1-7 #6879)
 helo erlang.cs.umass.edu
250 Storm.EOP.GOV OK, [128.59.27.35].
mail from: hgs@somewhere.org
 250 2.5.0 Address Ok.
rcpt to: hgs@cs.columbia.edu
 250 2.1.5 hgs@cs.columbia.edu OK.
data
 354 Enter mail, end with a single ".".
a test
.
email

250 2.5.0 Ok.
quit

Slide 11

Email Tracing

Received: from cs.columbia.edu (cs.columbia.edu [128.59.10.13]) by opus.cs.columbia.edu (8.8.5/8.6.6) with ESMTP id PAA07654 for <hgs@opus.cs.columbia.edu>; Thu, 10 Apr 1997 15:30:03 -0400 (EDT)
Received: from Storm.EOP.GOV (SYSTEM@storm.eop.gov [198.137.241.51]) by cs.columbia.edu (8.8.5/8.6.6) with ESMTP id PAA16005 for <hgs@cs.columbia.edu>; Thu, 10 Apr 1997 15:29:58 -0400 (EDT)
Received: from erlang.cs.umass.edu ([128.59.27.35]) by STORM.EOP.GOV (PMDF V5.1-7 #6879) with SMTP id <01IHJN1HAVHE000TEO@STORM.EOP.GOV> for hgs@cs.columbia.edu; Thu, 10 Apr 1997 15:29:42 EDT
From: hgs@somewhere.org
Date: Thu, 10 Apr 1997 15:29:42 -0400 (EDT)
Date-warning: Date header was inserted by STORM.EOP.GOV
To: hgs@opus.cs.columbia.edu
Message-ID: <01IHJN3GB08Q000TEO@STORM.EOP.GOV>
MIME-version: 1.0
Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
Content-Length: 8

Slide 12
Source Authentication

Address spoofing:

- telnet to almost any SMTP server
- some don’t insert appropriate Received From: header
- one receiver or list: sign with public key
- but: private key needs to authenticate/sign with exploder
Message Integrity

- authentication always with message integrity
- integrity without authentication: ransom note → no system exists

Non-Repudiation

- Alice cannot deny having sent message to Bob
- may want plausible deniability

public key: non-repudiable source authentication easy

secret key: repudiable source authentication easy
Plausible Deniability with Public Keys

- Bob knows message m from Alice
- Bob can’t prove it to anyone else

1. Alice: picks secret S just for m
2. $\{S\}_{Bob}$
3. $\{[S]_{Bob}\}_{Alice}$
4. use S to compute MIC of m: DES CBC residue
5. Alice \rightarrow Bob: MIC(S), $\{[S]_{Bob}\}_{Alice}$, m (separately ...)

Bob knows that message was from Alice (MIC)
Bob can construct any message he likes

Slide 17

Non-Repudiation with Secret Keys

- Bob prove to judge that Alice sent message
- need notary N with secret S_N, trusted by Bob, judge
- N authenticates Alice
- N: MIC with S_N \Rightarrow seal MD(“Alice”, m or MD, S_N)
- sent m, seal to Bob
- Bob verify message: share key with N or ask N
- judge asks N if seal is valid

Slide 18
Proof of Submission

- *certified* mail (proof of delivery) or *certificate of mailing* (evidence of mailing)
- *registered*: + insurance
- sign message digest, time-of-day

Slide 19

Proof of Delivery

- *certified, return receipt requested*
- requires cooperation of last MTA or receiver
- can’t do receipt if and only if recipient got message (drop or refuse)

Slide 20
Message Flow Confidentiality and Anonymity

- eavesdropper can’t tell
- intermediary: anonymous remailer (anon penet fi ↓, mary indigo ie)
- random delay
- chop into pieces, hide size
- remailer chains, with layers of encryption
- if replies allows store mappings
- mappings interoperate badly with mailing lists

Containment

- limit distribution of email
- security classes
Mail Transport Issues

- Mail is *almost 8-bit clean* ⇒ ESMTP
- if you thought the USPS was mutilating mail...
 - end-of-line: CR, LF, CRLF
 - 8th bit: choke, clear
 - EBCDIC (rare)
 - X.400
 - white space removal
 - long lines
- data transfer
- signatures break
- SMTP: assume text; MIME: arbitrary data

Slide 23

Disguising Data as Text

- canonicalization
- encoding: binary into smaller character set
 - uuencode: 3 octets (24 bits) → 4 characters (32 bits) from 6-bit set (0x20 [space] to 0x5f []), 60 characters per line
 - base64: 3 octets (24 bits) → 4 characters: A, B, ..., Z, a, ..., z, 0, ..., 9, +, /
 - quoted-printable (if mostly ASCII): =A0 (hex digits)

Slide 24
Names and Addresses

receiving mailbox: for SMTP (foo@bar.com) “RFC 822”

users: X.500 DN (/C=US/O=CIA/OU=drugs/PN='Manuel Noriega'/)

- PEM: translate RFC 822 based on messages received to X.500
- PGP: familiar names or name <email address>

Old Messages

- is old message still valid (given key revocation, changes, …)?
- problem: renege on old commitments by strategic key loss
- ➤ notary signs
- prove that message was generated after some date (why?)
- include lottery number
S/MIME

- RFC 2633: *S/MIME Version 3 Message Specification*
- also: PGP (various versions), OpenPGP
- uses CMS (cryptographic message syntax), RFC 2630, derived from PKCS#7
- SHA-1 (and MD5) for digests, DH for key encryption

Content-Type: multipart/signed;
 protocol="application/pkcs7-signature";
micalg=sha1; boundary=boundary42

--boundary42
Content-Type: text/plain

This is a clear-signed message.

--boundary42
Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT64VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTf

Slide 28
SignedData ::= SEQUENCE {
 version CMSVersion,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapsContentInfo EncapsulatedContentInfo,
 certificates [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,
 signerInfos SignerInfos }

DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

SignerInfos ::= SET OF SignerInfo
S/MIME

SignerInfo ::= SEQUENCE {
 version CMSVersion,
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

SignerIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier }

SignedAttributes ::= SET SIZE (1..MAX) OF Attribute
UnsignedAttributes ::= SET SIZE (1..MAX) OF Attribute

Attribute ::= SEQUENCE {
 attrType OBJECT IDENTIFIER,
 attrValues SET OF AttributeValue }

AttributeValue ::= ANY
SignatureValue ::= OCTET STRING