
COMS 3995: Networks, Operating
Systems and Security
Memory Management

Guest lecture by Junfeng Yang

Outline

� Dynamic memory allocation
� Stack

� Heap
• Heap allocation strategies

Intro to memory management� Intro to memory management

� Paging

1

Dynamic memory allocation

� Static (compile time) allocation is not possible
for all data

� Two ways of dynamic allocation
� Stack allocation� Stack allocation

• Restricted, but simple and efficient

� Heap allocation
• More general, but less efficient

• More difficult to implement

2

Stack organization

� Memory is freed in opposite order from
allocation. Last in First out (LIFO)

� When useful?
� Memory usage pattern follows LIFO

• E.g., function call frames• E.g., function call frames

� Implementation
� Pointer separating allocated and free space

� Allocate: increment pointer

� Free: decrement pointer

3

Pros and cons of stack organization

� Pros
� Simple and efficient

� Keeps all free space continuous

� Cons� Cons
� Not for general data structures

4

Heap organization

� Allocate from random locations
� Memory consists of allocated area and free area (or
holes)

� When useful?
Allocate and free are unpredictable� Allocate and free are unpredictable

� Complex data structures
• new in C++, malloc in C, kmalloc in Linux kernel

5

Pros and cons of heap organization

� Pros
� General, works on arbitrary allocation and free
patterns

� Cons
� End up with small chunks of free space

6

Dynamic allocation issue: fragmentation

� Small trunks of free memory, too small for
future allocations
� External fragment: visible to system

� Internal fragment: visible to process (e.g. if allocate
at some granularity)

� Goal
� Reduce number of holes

� Keep holes large

� Stack fragmentation v.s. heap fragmentation

7

Heap implementation

� Data structure: linked list of free blocks
� free list: chains free blocks together

� Allocation
� Choose block large enough for request

Update free list� Update free list

� Free
� Add block back to list

� Merge adjacent free blocks

8

Heap allocation strategies

� Best fit
� Search the whole list on each allocation

� Choose the smallest block that can satisfy request

� Can stop search if exact match found

First fit� First fit
� Choose first block that can satisfy request

� Worst fit
� Choose largest block (most leftover space)

Which is better?

9

Example

� Free space: 2 blocks of size 20 and 15

� Workload 1: allocation requests: 10 then 20

Best fit

First fit Request of 20: fail!

� Workload 2: allocation requests: 8, 12, then 12

10

Worse fit

Best fit

First fit

Worse fit

Request of 12: fail!

Request of 20: fail!

Request of 12: fail!

Comparison of allocation strategies

� Best fit
� Tends to leave very large holes and very small holes

� Disadvantage: very small holes may be useless

� First fit:
Tends to leave “average” size holes� Tends to leave “average” size holes

� Advantage: faster than best fit

� Worst fit:
� Simulation shows that worst fit is worst in terms of
storage utilization

11

Outline

� Dynamic memory allocation
� Stack

� Heap
• Heap allocation strategies

Intro to memory management� Intro to memory management

� Paging

12

Motivation for memory anagement

� Simple uniprogramming with a single segment
per process

� Uniprogramming disadvantages
� Only one process can run a time

OS

� Only one process can run a time

� Process can destroy OS

� Want multiprogramming!

13

User
Process

Multiple address spaces co-exist

AS1

max

max

0

AS2

AS3

14

Logical view Physical view

max

0

0

Multiprogramming wish-list

� Sharing
� multiple processes coexist in main memory

� Transparency
� Processes not aware that memory is shared
� Run regardless of number and/or locations of processes

� Protection
� Cannot corrupt OS or other processes
� Privacy: cannot read data of other processes

� Efficiency: should have reasonable performance
� Purpose of sharing is to increase efficiency
� Do not waste CPU or memory resources

15

Memory translation and protection

CPU MMU MEMORY

Virtual Addresses

Physical Addresses

� Map program-generated address (virtual
address) to hardware address (physical
address) dynamically at every reference
� MMU: Memory Management Unit

� Controlled by OS

16

Physical Addresses

Simple implementation of memory
translation and protection

� Compare logical address to limit register
� If greater, generate exception

� Add base register to logical address to
generate physical address

17

baselimit

<= limit? +Virtual
Address

Physical
Address

Exception

no

yes

Managing processes with base and limit

� Does base contain logical or physical address?

� How to relocate process?

� Base and limit registers are per-process or
global?global?

� What to do on a context switch?

� Can user processes modify base and limit
registers?

18

Pros and Cons of Base and Limit

� Advantages
� Supports dynamic relocation of address space

� Supports protection across multiple spaces

� Cheap: few registers and little logic

� Fast: add and compare can be done in parallel

� Disadvantages
� Process must be allocated contiguously

� May allocate memory not used

� Cannot share limited parts of address space

19

Outline

� Dynamic memory allocation
� Stack
� Heap

• Heap allocation strategies

� Intro to memory management

Paging� Paging
� Overview
� Page translation
� Page allocation
� Page protection
� Translation Look-aside Buffers (TLB)
� Page sharing
� Page table structure

20

Paging overview

� Goal
� Eliminate external fragmentation
� Don’t allocate memory that will not be used
� Enable sharing

� Paging: divide memory into fixed-sized pages� Paging: divide memory into fixed-sized pages
� Both virtual and physical memory are composed of
pages

� Another terminology
� A virtual page: page
� A physical page: frame

Page translation

� Address bits = page number + page offset

� Translate virtual page number (vpn) to physical
page number (ppn) using page table

pa = page_table[va/pg_sz] + va%pg_sz

22

CPU vpn off ppn off

Page table

ppnvpn

Memory

ppn

Page translation example

Page 0

Page 1

Page 2

Page 3

Page 0

Page 2

0

1

2

1

4

3

23

Page 3 Page 2

Page 1

Page 3

Page table

Physical
Memory

Virtual
Memory

2

3

3

7

Page translation exercise

� 8-bit virtual address, 10-bit physical address,
and each page is 64 bytes
� How many virtual pages?

� How many physical pages?

� How many entries in page table?

Given page table = [2, 5, 1, 8], what’s the physical � Given page table = [2, 5, 1, 8], what’s the physical
address for virtual address 241?

� m-bit virtual address, n-bit physical address,
k-bit page size
� What are the answers to the above questions?

24

Page protection

� Implemented by associating protection bits
with each virtual page in page table

� Protection bits
� valid bit: map to a valid physical page?

read/write/execute bits: can read/write/execute?� read/write/execute bits: can read/write/execute?

� Checked by MMU on each memory access

25

Page protection example

Page 0

Page 1

Page 3

Page 00

1

2

1

4

3

1110

0000

vrwe

1100

26

Page 3

Page 1

Page 3

Page table

Physical
Memory

Virtual
Memory

2

3

3

7 1111

Page allocation

� Free page management
� E.g., can put page on a free list

� Allocation policy
� E.g., one page at a time, from
head of free list

free_page_list

Page 0

head of free list

27

Page 1

Page 3

2, 3, 6, 5, 0

Implementation of page table

� Page table is stored in memory
� Page table base register (PTBR) points to the base
of page table

� OS stores the value of this register in process
control block (PCB)

� OS switches PTBR on each context switch� OS switches PTBR on each context switch

� Problem: each data/instruction access requires
two memory accesses
� Extra memory access for page table

28

Avoiding extra memory access

� Fast-lookup hardware cache called
associative memory or translation look-
aside buffers (TLBs)

� Fast parallel search (CPU speed)� Fast parallel search (CPU speed)

� Small

29

VPN PPN

Paging hardware with TLB

Effective access time

� Associative Lookup = ε time unit
� Assume memory cycle time is 1 ms
� Hit ratio – α

� percentage of times that a page number is
found in the associative registers; ratio
related to number of associative registersrelated to number of associative registers

� Effective Access Time (EAT)
EAT = (1 + ε) α + (2 + ε)(1 – α)

= α + εα + 2 + ε - εα - 2α
= 2 + ε – α

Motivation for page sharing

� Memory efficiency. E.g., one copy of read-only
code/data shared among processes

� Efficient communication. Processes
communicate by write to shared pagescommunicate by write to shared pages

32

Page sharing example

Page table size issues

� Given:
� A 32 bit address space (4 GB)

� 4 KB pages

� A page table entry of 4 bytes

Implication: page table is 4 MB per process!� Implication: page table is 4 MB per process!

� Observation: address space are often sparse
� Few programs use all of 2^32 bits

� Change page table structures to save memory

34

Page table structures

� Hierarchical paging

� Hashed page tables

� Inverted page tables� Inverted page tables

35

Hierarchical page table

� Break up virtual address space into multiple
page tables at different levels

36

Two-level paging example

� 32-bit address space, 4 KB page
� 4KB page � 12 bit page offset

� How many bits for 2nd-level page table?
� Desirable to fit a 2nd-level page table in one page

4KB/4B = 1024 10 bit address for 2nd-level page � 4KB/4B = 1024 � 10 bit address for 2nd-level page
table

� Address bits for top-level page table: 32 – 12
– 12 = 10

37

page number page offset

pi p2 d

121010

Address-translation scheme

Hashed page table

� Common in address spaces > 32 bits

� Page table contains a chain of elements
hashing to the same location

� On page translation� On page translation
� Hash virtual page number into page table

� Search chain for a match on virtual page number

Hashed page table example

Inverted page table

� One entry for each real page of memory
� Entry consists of the virtual address of the page
stored in that real memory location, with
information about the process that owns that page

� Trade translation time for page table space� Trade translation time for page table space

� Can use hash table to limit the search to one
or at most a few page-table entries

Inverted page table example

