
ONC+ Developer’s Guide

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303
U.S.A.

Part No: 805–4034–10
, 1998

Copyright 1998 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunDocs, Java, the Java Coffee Cup logo, tags does not print or display in your document. Do not
modify any text except the attributions you type.–> and Solaris are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 1998 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, SunDocs, Java, le logo Java Coffee Cup, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface xv

Part I Introduction

1. Introduction to ONC+ Technologies 3

Brief Description of ONC+Technologies 4

TI-RPC 4

XDR 4

NFS 4

NIS+ 5

Part II Remote Procedure Call

2. Introduction to TI-RPC 9

What Is TI-RPC 9

TI-RPC Issues 10

Parameter Passing 11

Binding 11

Transport Protocol 11

Call Semantics 11

Data Representation 12

Program, Version, and Procedure Numbers 12

Overview of Interface Routines 12

Contents iii

Simplified Interface Routines 13

Standard Interface Routines 13

Network Selection 16

Transport Selection 17

Name-to-Address Translation 18

Address Lookup Services 18

Registering Addresses 19

Reporting RPC Information 20

3. rpcgen Programming Guide 21

What is rpcgen 21

SunOS 5.x Features 22

Template Generation 22

C-style Mode 22

Multithread-Safe Code 22

Multithread Auto Mode 22

Library Selection 23

ANSI C -compliant Code 23

An rpcgen Tutorial 23

Converting Local Procedures to Remote Procedures 23

Passing Complex Data Structures 30

Preprocessing Directives 34

cpp Directive 36

Compile-Time Flags 36

Client and Server Templates 37

C-style Mode 38

MT-Safe Code 40

MT Auto Mode 46

TI-RPC or TS-RPC Library Selection 47

iv ONC+ Developer’s Guide ♦ , 1998

ANSI C-compliant Code 47

xdr_inline() Count 48

rpcgen Programming Techniques 48

Network Types/Transport Selection 49

Command Line Define Statements 50

Server Response to Broadcast Calls 50

Port Monitor Support 50

Time-out Changes 51

Client Authentication 52

Dispatch Tables 52

64–bit Considerations for rpcgen 54

Debugging Applications 55

4. The Programmer’s Interface to RPC 57

RPC Is Multithread Safe 57

Simplified Interface 58

Client 59

Server 60

Hand-Coded Registration Routine 61

Passing Arbitrary Data Types 62

Standard Interfaces 66

Top Level Interface 66

Intermediate Level Interface 70

Expert Level Interface 73

Bottom Level Interface 77

Server Caching 79

Low-Level Data Structures 79

Testing Programs Using Low-level Raw RPC 81

Advanced RPC Programming Techniques 84

Contents v

poll() on the Server Side 84

Broadcast RPC 86

Batching 88

Authentication 91

Authentication Using RPCSEC_GSS 98

Using Port Monitors 109

Multiple Server Versions 111

Multiple Client Versions 112

Using Transient RPC Program Numbers 114

Multithreaded RPC Programming 115

MT Client Overview 115

MT Server Overview 120

MT Auto Mode 121

MT User Mode 125

Connection-Oriented Transports 132

Memory Allocation With XDR 135

Porting From TS-RPC to TI-RPC 136

Porting an Application 137

Benefits of Porting 137

Porting Issues 137

Differences Between TI-RPC and TS-RPC 138

Function Compatibility Lists 139

Comparison Examples 142

Part III NIS+

5. NIS+ Programming Guide 147

NIS+ Overview 147

Domains 147

Servers 148

vi ONC+ Developer’s Guide ♦ , 1998

Tables 148

NIS+ Security 149

Name Service Switch 149

NIS+ Administration Commands 149

NIS+ API 151

NIS+ Sample Program 156

Unsupported Macros 157

Functions Used in the Example 157

Program Compilation 157

A. XDR Technical Note 171

What is XDR 171

A Canonical Standard 174

The XDR Library 175

XDR Library Primitives 177

Memory Requirements for XDR Routines 178

Number Filters 180

Floating Point Filters 181

Enumeration Filters 181

No-Data Routine 181

Constructed Data Type Filters 182

Strings 182

Byte Arrays 183

Arrays 183

Opaque Data 186

Fixed-Length Arrays 187

Discriminated Unions 187

Pointers 189

Nonfilter Primitives 190

Contents vii

Operation Directions 191

Stream Access 191

Standard I/O Streams 191

Memory Streams 192

Record (TCP/IP) Streams 192

XDR Stream Implementation 193

The XDR Object 194

Advanced Topics 195

Linked Lists 195

B. RPC Protocol and Language Specification 199

Protocol Overview 199

The RPC Model 200

Transports and Semantics 200

Binding and Rendezvous Independence 201

Program and Procedure Numbers 202

Program Number Assignment 203

Program Number Registration 204

Other Uses of the RPC Protocol 204

The RPC Message Protocol 205

Record-Marking Standard 208

Authentication Protocols 208

AUTH_NONE 209

AUTH_SYS 209

AUTH_DES Authentication 210

AUTH_DES Authentication Verifiers 211

Nicknames and Clock Synchronization 212

DES Authentication Protocol (in XDR language) 212

AUTH_KERB Authentication 215

viii ONC+ Developer’s Guide ♦ , 1998

The RPC Language Specification 219

An Example Service Described in the RPC Language 219

RPCL Syntax 220

Enumerations 221

Constants 222

Type Definitions 222

Declarations 222

Simple Declarations 222

Fixed-Length Array Declarations 223

Variable-Length Array Declarations 223

Pointer Declarations 224

Structures 224

Unions 225

Programs 225

Special Cases 226

rpcbind Protocol 227

rpcbind Operation 232

Version 4 rpcbind 235

Bibliography 236

C. XDR Protocol Specification 237

XDR Protocol Introduction 237

Graphic Box Notation 238

Basic Block Size 238

XDR Data Type Declarations 238

Signed Integer 239

Unsigned Integer 239

Enumerations 240

Booleans 240

Contents ix

Hyper Integer and Unsigned Hyper Integer 241

Floating Point 242

Quadruple-Precision Floating Point 243

Fixed-Length Opaque Data 244

Variable-Length Opaque Data 244

Counted Byte Strings 245

Fixed-Length Array 246

Variable-Length Array 247

Structure 247

Discriminated Union 248

Void 249

Constant 249

Typedef 249

Optional-Data 250

The XDR Language Specification 251

Notational Conventions 251

Lexical Notes 251

Syntax Notes 253

XDR Data Description 254

RPC Language Reference 255

Enumerations 256

Constants 256

Type Definitions 256

Declarations 257

Simple Declarations 257

Fixed-Length Array Declarations 257

Variable-Length Array Declarations 258

Pointer Declarations 258

x ONC+ Developer’s Guide ♦ , 1998

Structures 258

Unions 259

Programs 260

Special Cases 261

D. Live RPC Code Examples 263

Directory Listing Program and Support Routines (rpcgen) 263

Time Server Program (rpcgen) 267

Add Two Numbers Program (rpcgen) 268

Spray Packets Program (rpcgen) 268

Print Message Program With Remote Version 270

Batched Code Example 273

Non-Batched Example 275

E. The portmap Utility 277

System Registration Overview 277

portmap Protocol 278

portmap Operation 280

PMAPPROC_NULL280

PMAPPROC_SET280

PMAPPROC_UNSET281

PMAPPROC_GETPORT281

PMAPPROC_DUMP281

PMAPPROC_CALLIT 281

Bibliography 282

F. Writing a Port Monitor With the Service Access Facility (SAF) 283

What Is the SAF 283

What Is the SAC 284

Basic Port Monitor Functions 285

Port Management 285

Contents xi

Activity Monitoring 285

Other Port Monitor Functions 286

Terminating a Port Monitor 287

SAF Files 287

The Port Monitor Administrative File 287

Per-Service Configuration Files 288

Private Port Monitor Files 288

The SAC/Port Monitor Interface 288

Message Formats 288

Message Classes 290

The Port Monitor Administrative Interface 290

The SACAdministrative File _sactab 291

The Port Monitor Administrative File _pmtab 291

The SACAdministrative Command sacadm 293

The Port Monitor Administrative Command pmadm 294

Monitor-Specific Administrative Command 294

The Port Monitor/Service Interface 294

Port Monitor Requirements 295

Important Files 295

Port Monitor Responsibilities 296

Configuration Files and Scripts 297

Interpreting Configuration Scripts With doconfig() 297

The Per-System Configuration File 297

Per-Port Monitor Configuration Files 298

Per-Service Configuration Files 298

The Configuration Language 298

Printing, Installing, and Replacing Configuration Scripts 299

Sample Port Monitor Code 301

xii ONC+ Developer’s Guide ♦ , 1998

Logic Diagram and Directory Structure 307

/etc/saf/_sysconfig 309

/etc/saf/_sactab 309

/etc/saf/pmtag 309

/etc/saf/pmtag/_config 309

/etc/saf/pmtag/_pmtab 309

/etc/saf/pmtag/svctag 309

/etc/saf/pmtag/_pid 309

/etc/saf/pmtag/_pmpipe 309

/var/saf/_log 310

/var/saf/pmtag 310

Glossary 311

Index 315

Contents xiii

xiv ONC+ Developer’s Guide ♦ , 1998

Preface

The ONC+ Developer’s Guide describes the programming interfaces to remote
procedure call (RPC) and NIS+, a network name service, which belong to the
ONC+TM distributed services developed at SunSoftTM , Inc.

In this guide, the terms SunOSTM and SolarisTM are used interchangeably because the
interfaces described in this manual are common to both. Solaris 2.5 is SunSoft’s
distributed computing operating environment. It is comprised of SunOS release 5.5
with the ONC+ technologies, OpenWindowsTM , ToolTalkTM , DeskSetTM , and OPEN
LOOK® as well as other utilities.

All utilities, their options, and library functions in this manual reflect the current
Solaris system software developed by SunSoft Inc. If you are using a previous
version of Solaris system software, some utilities and library functions may function
differently.

Who Should Use This Book
The guide assists you in converting an existing single-computer application to a
networked, distributed application, or devloping and implementing distributed
applications.

Use of this guide assumes basic competence in programming, a working familiarity
with the C programming language, and a working familiarity with theUNIX®

operating system. Previous experience in network programming is helpful, but is not
required to use this manual.

Preface xv

How This Book Is Organized
Part One—Introduction
Chapter 1, gives a high-level introduction to the ONC+ distributed computing
platform and services.

Part Two—Remote Procedure Call (RPC)
Chapter 2, introduces TI-RPC.

Chapter 3, describes how the rpcgen tool generates client and server stubs.

Chapter 4, describes the use of RPC in the programming environment.

Part Three—NIS+ Applications Programming
Interface
Chapter 5, describes the NIS + applications programming interface.

Appedixes
Appendix A, describes XDR and how it is used in data formatting and type
conversion.

Appendix B, describes the protocol of RPC usage, both syntax and limitations.

Appendix C, describes the XDR protocol and language.

Appendix D, contains complete functional listings of some of the code included in
the document as examples.

Appendix E, describes the portmap utility and its function. This appendix is
included in this document to aid migrating applications written to run on earlier
releases of SunOS.

Appendix F, describes the process of writing a port monitor application under the
SAF and is included as a reference for applications development.

xvi ONC+ Developer’s Guide ♦ , 1998

Related Books
The following on-line System AnswerBook® products cover related network
programming topics:

� Solaris 2.5 Reference Manual AnswerBook

� Solaris 2.6 Software Developer AnswerBook Vol 1

For information on SunSoft’s NFS® distributed computing file system, see the
following sources:

� “NFS: Network File System Protocol Specification,” RFC 1094, 27 pages (Mar), Sun
Microsystems, 1988b.

� “NFS: Network File System Version 3 Protocol Specification,” Sun Microsystems,
1993. Postscript copies available via anonymous ftp:

ftp.uu.net:/networking/ip/nfs/NFS3.spec.ps.Z bcm.tmc.edu:/nfs/nfsv3.ps.Z
gatekeeper.dec.com:/pub/standards/nfs/nfsv3.ps.Z

The following third-party books and articles are excellent sources on network
programming topics:

� UNIX Network Programming, W. Richard Stevens (Prentice Hall Software Series,
1990)

� Power Programming with RPC, John Bloomer (O’Reilly & Associates, Inc, 1992)

� Networking Applications on UNIX System V Release 4, Michael Padovano (Prentice
Hall, Inc., 1993)

� Distributed Computing: Implementation and Managment Strategies (Edited by Raman
Khanna. Prentice Hall, 1993)

� Using Encryption for Authentication in Large Networks of Computers, R.M. Needham
and M.D. Schroeder in Communications of the ACM (Vol. 21, No. 12, pages 993-999,
1978)

� Section E.2.1: Kerberos Authentication and Authorization System, S.P. Miller, B.C
Neuman, J.I. Schiller and J.H. Saltzer (Project Athena Technical Plan, MIT Project
Athena, December 1987)

� Kerberos: An Authentication Service for Open Network Systems, J.G. Steiner, B.C.
Neuman, and J.I.Schiller (Usenix Conference Proceedings, Dallas, TX, pages
191-202, February, 1988)

xvii

What Typographic Changes and
Symbols Mean
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or
Symbol

Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail .

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:

replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide. These
are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

xviii ONC+ Developer’s Guide ♦ , 1998

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

xix

xx ONC+ Developer’s Guide ♦ , 1998

PART I Introduction

Part 1 is an introduction to the ONC+ services.

� Chapter 1

CHAPTER 1

Introduction to ONC+ Technologies

This chapter is a short introduction to ONC+ technologies, Sun’s open systems
distributed computing environment. The ONC+ technologies are the core services
available to developers who implement distributed applications in a heterogeneous
distributed computing environment. ONC+ technologies also includes tools to
administer client/server networks.

Figure 1–1 shows an integrated view of how client-server applications are built on
top of ONC+ technologies, and how they sit on top of the low-level networking
protocols:

Application
Programs

NFS NIS+

TI-RPC XDR

TLI Sockets

Low-level network protocols
i.e. TCP/IP and IPX/SPX

Figure 1–1 ONC+ Distributed Computing Platform

3

Brief Description of ONC+Technologies
ONC+ technologies are comprised of a family of technologies, services, and tools. It
is backward compatible and interoperates with the installed base of ONC services.
The main components are described. This guide covers the technologies that require
the use of programming facilities.

TI-RPC
Transport-independent remote procedure call (TI-RPC) was developed by Sun and
AT&T as part of the UNIX System V Release 4 (SVR4). It makes RPC applications
transport-independent by allowing a single binary version of a distributed program
to run on multiple transports. Previously, with transport-specific RPC, the transport
was bound at compile time so that applications could not use other transports unless
the program was rebuilt. With TI-RPC, applications can use new transports if the
system administrator updates the network configuration file and restarts the
program. Thus, no changes are required to the binary application.

XDR
External data representation (XDR) is an architecture-independent specification for
representing data. It resolves the differences in data byte ordering, data type size,
representation, and alignment between different architectures. Applications that use
XDR may exchange data across heterogeneous hardware systems.

NFS
NFS is Sun’s distributed computing file system that provides transparent access to
remote filesystems on heterogenous networks. In this way, users can share files
among PCs, workstations, mainframes, and supercomputers. As long as they are
connected to the same network, the files appear as though they are on the user’s
desktop. The NFS environment features Kerberos authentication, multithreading, the
network lock manager, and the automounter.

NFS does not have programming facilities, so it is not covered in this guide.
However, the specification for NFS V.3 is available through anonymous ftp. See
“Related Books ” on page xvii for more information.

4 ONC+ Developer’s Guide ♦ , 1998

NIS+
NIS+ is the enterprise naming service in Solaris. It provides a scalable and secure
information base for host names, network addresses, and user names. It is designed
to make administration of large, multivendor client/server networks easier by being
the central point for adding, removing, and relocating network resources. Changes
made to the NIS+ information base are automatically and immediately propagated to
replica servers across the network; this ensures that system uptime and performance
is preserved. Seurity is integral to NIS+. Unauthorized users and programs are
prevented from reading, changing, or destroying naming service information.

Introduction to ONC+ Technologies 5

6 ONC+ Developer’s Guide ♦ , 1998

PART II Remote Procedure Call

Part 2 covers RPC topics

� Chapter 2

� Chapter 3

� Chapter 4

CHAPTER 2

Introduction to TI-RPC

This chapter provides an overview of TI-RPC, also known as Sun RPC. The
information presented is most useful to someone new to RPC. (See also Glossary for
the definition of the terms used in this guide.)

� “What Is TI-RPC” on page 9

� “TI-RPC Issues” on page 10

� “Overview of Interface Routines” on page 12

� “Network Selection” on page 16

� “Transport Selection” on page 17

� “ Address Lookup Services” on page 18

What Is TI-RPC
TI-RPC is a powerful technique for constructing distributed, client-server based
applications. It is based on extending the notion of conventional, or local procedure
calling, so that the called procedure need not exist in the same address space as the
calling procedure. The two processes my be on the same system, or they may be on
different systems with a network connecting them.

By using RPC, programmers of distributed applications avoid the details of the
interface with the network. The transport independence of RPC isolates the
application from the physical and logical elements of the data communications
mechanism and allows the application to use a variety of transports.

9

Time

Client
program

Client
program

continues

RPC call

Call service

HOST BHOST A

Service
daemon

Service
executes

Return answer

Return reply

Request
completed

Invoke
service

Figure 2–1 How RPC Works

An RPC is analogous to a function call. Like a function call, when an RPC is made,
the calling arguments are passed to the remote procedure and the caller waits for a
response to be returned from the remote procedure.

Figure 2–1 shows the flow of activity that takes place during an RPC call between
two networked systems. The client makes a procedure call that sends a request to the
server and waits. The thread is blocked from processing until either a reply is
received, or it times out. When the request arrives, the server calls a dispatch routine
that performs the requested service, and sends the reply to the client. After the RPC
call is completed, the client program continues.

RPC specifically supports network applications. TI- RPC runs on available
networking mechanisms such as TCP/IP. Other RPC standards are OSF DCE (based
on Apollo’s NCS system), Xerox Courier, and Netwise.

TI-RPC Issues
There are a number of issues that help to characterize a particular RPC
implementation.

10 ONC+ Developer’s Guide ♦ , 1998

� How are parameters and results passed?

� How is binding carried out?

� How are transport protocols dealt with?

� What are the call semantics?

� What data representation is used?

Parameter Passing
TI-RPC allows a single parameter to be passed from client to server. If more than one
parameter is required, the components can be combined into a structure which is
counted as a single element. Information passed from server to client is passed as the
function’s return value. It is not possible to pass information back from server to
client through the parameter list.

Binding
The client must know how to contact the service it is interested in. The two aspects
are finding out which host the server is on, and then connecting to the actual server
process. On each host, a service called rpcbind manages RPC services. TI-RPC uses
the available host-naming services, such as the hosts file, NIS+, and DNS, to locate
a host.

Transport Protocol
The transport protocol specifies how the call message and the reply message are
transmitted between client and server. TS-RPC used TCP and UDP as transport
protocols, but the current version of TI-RPC is transport independent; that is, it
works with any transport protocol supported by Solaris 2.x.

Call Semantics
Call semantics has to do with what the client can assume about the execution of the
remote procedure, in particular, how many times the procedure was executed. This is
important in dealing with error conditions. The three alternatives are exactly once, at
most once, and at least once. ONC+ provides at least once semantics. Procedures called
remotely are idempotent: they should return the same result each time they are called,
even if it is several times.

Introduction to TI-RPC 11

Data Representation
Data representation describes the format used for parameters and results as they are
passed between processes. For RPC to function on a variety of system architectures
requires a standard data representation. TI-RPC uses external data representation
(XDR). XDR is a machine-independent data description and encoding protocol. Using
XDR, RPC can handle arbitrary data structures, regardless of different hosts’ byte
orders or structure layout conventions. For a detailed discussion of XDR, see
Appendix C, and Appendix A.”

Program, Version, and Procedure
Numbers
A remote procedure is uniquely identified by the triple:

(program number, version number, procedure number)

The program number identifies a group of related remote procedures, each of which
has a unique procedure number.

A program may consist of one or more versions. Each version consists of a collection
of procedures which are available to be called remotely. Version numbers enable
multiple versions of an RPC protocol to be available simultaneously.

Each version contains a a number of procedures that can be called remotely. Each
procedure has a procedure number.

“Program and Procedure Numbers” on page 202, lists the range of values and their
significance and tells you how to have a program number assigned to your RPC
program. A list of mappings of RPC service name to program number is available in
the rpc network database, /etc/rpc .

Overview of Interface Routines
RPC has multiple levels of application interface to its services. These levels provide
different degrees of control balanced with different amounts of interface code to
implement. In order of increasing control and complexity. This section gives a
summary of the routines available at each level.

12 ONC+ Developer’s Guide ♦ , 1998

Simplified Interface Routines
The simplified interfaces are used to make remote procedure calls to routines on
other machines, and specify only the type of transport to use. The routines at this
level are used for most applications. Descriptions and code samples can be found in
the section, “ Simplified Interface ” on page 58.

TABLE 2–1 RPC Routines—Simplified Level

Routine Function

rpc_reg() Registers a procedure as an RPC program on all transports of
the specified type.

rpc_call() Remote calls the specified procedure on the specified remote
host.

rpc_broadcast() Broadcasts a call message across all transports of the specified
type.

Standard Interface Routines
The standard interfaces are divided into top level, intermediate level, expert level, and
bottom level. These interfaces give a developer much greater control over
communication parameters such as the transport being used, how long to wait
beforeresponding to errors and retransmitting requests, and so on.

Top Level Routines
At the top level, the interface is still simple, but the program has to create a client
handle before making a call or create a server handle before receiving calls. If you
want the application to run on all transports, use this interface. Use of these routines
and code samples can be found in “Top Level Interface” on page 66.

Introduction to TI-RPC 13

TABLE 2–2 RPC Routines—Top Level

Routine Description

clnt_create() Generic client creation. The program tells clnt_create()
where the server is located and the type of transport to use.

clnt_create_timed() Similar to clnt_create() but lets the programmer specify
the maximum time allowed for each type of transport tried
during the creation attempt.

svc_create() Creates server handles for all transports of the specified
type. The program tells svc_create() which dispatch
function to use.

clnt_call() Client calls a procedure to send a request to the server.

Intermediate Level Routines
The intermediate level interface of RPC lets you control details. Programs written at
these lower levels are more complicated but run more efficiently. The intermediate
level enables you to specify the transport to use. Use of these routines and code
samples can be found in “Intermediate Level Interface” on page 70.

TABLE 2–3 RPC Routines—Intermediate Level

Routine Description

clnt_tp_create() Creates a client handle for the specified transport.

clnt_tp_create_timed() Similar to clnt_tp_create() but lets the programmer
specify the maximum time allowed.

svc_tp_create() Creates a server handle for the specified transport.

clnt_call() Client calls a procedure to send a request to the server.

Expert Level Routines
The expert level contains a larger set of routines with which to specify
transport-related parameters. Use of these routines and code samples can be found
in“Expert Level Interface” on page 73.

14 ONC+ Developer’s Guide ♦ , 1998

TABLE 2–4 RPC Routines—Expert Level

Routine Description

clnt_tli_create() Creates a client handle for the specified transport.

svc_tli_create() Creates a server handle for the specified transport.

rpcb_set() Calls rpcbind to set a map between an RPC service and a
network address.

rpcb_unset() Deletes a mapping set by rpcb_set() .

rpcb_getaddr() Calls rpcbind to get the transport addresses of specified RPC
services.

svc_reg() Associates the specified program and version number pair
with the specified dispatch routine.

svc_unreg() Deletes an association set by svc_reg() .

clnt_call() Client calls a procedure to send a request to the server.

Bottom Level Routines
The bottom level contains routines used for full control of transport options. “Bottom
Level Interface” on page 77, describes these routines.

TABLE 2–5 RPC Routines—Bottom Level

Routine Description

clnt_dg_create() Creates an RPC client handle for the specified remote
program, using a connectionless transport.

svc_dg_create() Creates an RPC server handle, using a connectionless
transport.

clnt_vc_create() Creates an RPC client handle for the specified remote
program, using a connection-oriented transport.

Introduction to TI-RPC 15

TABLE 2–5 RPC Routines—Bottom Level (continued)

Routine Description

svc_vc_create() Creates an RPC server handle, using a connection-oriented
transport.

clnt_call() Client calls a procedure to send a request to the server.

Network Selection
You can write programs to run on a specific transport or transport type, or to operate
on a system- or user-chosen transport. There are two mechanisms for network
selection, the /etc/netconfig database and the environmental variable NETPATH.
These mechanisms allow a fine degree of control over network selection: a user can
specify a preferred transport, and if it can, an application uses it. If the specified
transport is inappropriate, the application automatically tries others with the right
characteristics.

/etc/netconfig lists the transports available to the host and identifies them by
type. NETPATHis optional and allows a user to specify a transport or selection of
transports from the list in /etc/netconfig . By setting the NETPATH, the user
specifies the order in which the application tries the available transports. If NETPATH
is not set, the system defaults to all visible transports specified in /etc/netconfig ,
in the order they appear in that file.

For more details on network selection, refer to the Transport Interfaces Programming
Guide or see the getnetconfig (3N) and netconfig (4) manpages.

RPC divides selectable transports into the following types:

TABLE 2–6 nettype Parameters

Value Meaning

NULL Same as selecting netpath .

visible Uses the transports chosen with the visible flag (‘v’) set in their /etc/
netconfig entries.

circuit_v Same as visible , but restricted to connection-oriented transports.
Transports are selected in the order listed in /etc/netconfig.

16 ONC+ Developer’s Guide ♦ , 1998

TABLE 2–6 nettype Parameters (continued)

Value Meaning

datagram_v Same as visible , but restricted to connectionless transports.

circuit_n Uses the connection-oriented transports chosen in the order defined in
NETPATH.

datagram_n Uses the connectionless transports chosen in the order defined in
NETPATH.

udp Specifies Internet user datagram protocol (UDP).

tcp Specifies Internet transport control protocol (TCP).

Transport Selection
RPC services are supported on both circuit-oriented and datagram transports. The
selection of the transport depends on the requirements of the application.

A datagram transport is the transport of choice if the application has all of the
following characteristics:

� Calls to the procedures do not change the state of the procedure or of associated
data.

� The size of both the arguments and results is smaller than the transport packet
size.

� The server is required to handle hundreds of clients. A datagram server does not
keep any state data on clients, so it can potentially handle many clients. A
circuit-oriented server keeps state data on each open client connection, so the
number of clients is limited by the host resources.

A circuit-oriented transport is the transport of choice if the application has any of the
following characteristics:

� The application can tolerate or amortize the higher cost of connection setup
compared to datagram transports.

� Calls to the procedures can change the state of the procedure or of associated data.

� The size of either the arguments or the results exceed the maximum size of a
datagram packet.

Introduction to TI-RPC 17

Name-to-Address Translation
Each transport has an associated set of routines that translate between universal
network addresses (string representations of transport addresses) and the local
address representation. These universal addresses are passed around within the RPC
system (for example, between rpcbind and a client). A run-time linkable library
that contains the name-to-address translation routines is associated with each
transport. Table 2–7 shows the main translation routines.

For more details on these routines, see the netdir (3N) manpage and the Transport
Interfaces Programming Guide. Note that the netconfig structure in each case
provides the context for name-to-address translations.

TABLE 2–7 Name-to-Address Translation Routines

netdir_getbyname() Translates from host/service pairs (e.g. server1 , rpcbind)
and a netconfig structure to a set of netbuf addresses.
netbuf s are Transport Level Interface (TLI) structures that
contain transport-specific addresses at run-time.

Translates from netbuf addresses and a netconfig
structure to host/service pairs.

uaddr2taddr Translates from universal addresses and a netconfig structure
to netbuf addresses.

taddr2uaddr () Translates from netbuf addresses and a netconfig
structure to universal addresses.

Address Lookup Services
Transport services do not provide address-lookup services. They provide only
message transfer across a network. A client program needs a way to obtain the
address of its server program. In earlier system releases this service was performed
by portmap . rpcbind replaces the portmap utility.

RPC makes no assumption about the structure of a network address. It deals with
universal addresses specified only as null-terminated strings of ASCII characters.
RPC translates universal addresses into local transport addresses by using routines
specific to the transport. For more details on these routines, see the netdir (3N) and
rpcbind (3N)manpages.

rpcbind provides the operations:

18 ONC+ Developer’s Guide ♦ , 1998

� Add a registration

� Delete a registration

� Get address of a specified program number, version number, and transport

� Get the complete registration list

� Perform a remote call for a client

� Return the time

Registering Addresses
rpcbind maps RPC services to their addresses, so its address must be known. The
name-to-address translation routines must reserve a known address for each type of
transport used. For example, in the Internet domain, rpcbind has port number 111
on both TCP and UDP. When rpcbind is started, it registers its location on each of
the transports supported by the host. rpcbind is the only RPC service that must
have a known address.

For each supported transport, rpcbind registers the addresses of RPC services and
makes the addresses available to clients. A service makes its address available to
clients by registering the address with the rpcbind daemon. The address of the
service is then available to rpcinfo (1M) and to programs using library routines
named in the rpcbind (3N) manpage. No client or server can assume the network
address of an RPC service.

Client and server programs and client and server hosts are usually distinct but they
need not be. A server program can also be a client program. When one server calls
another rpcbind server it makes the call as a client.

To find a remote program’s address, a client sends an RPC message to a host’s
rpcbind daemon. If the service is on the host, the daemon returns the address in an
RPC reply message. The client program can then send RPC messages to the server’s
address. (A client program can minimize its calls to rpcbind by storing the network
addresses of recently called remote programs.)

The RPCBPROC_CALLITprocedure of rpcbind lets a client make a remote
procedure call without knowing the address of the server. The client passes the target
procedure’s program number, version number, procedure number, and calling
arguments in an RPC call message. rpcbind looks up the target procedure’s address
in the address map and sends an RPC call message, including the arguments
received from the client, to the target procedure.

When the target procedure returns results, RPCBPROC_CALLITpasses them to the
client program. It also returns the target procedure’s universal address so that the
client can later call it directly.

The RPC library provides an interface to all rpcbind procedures. Some of the RPC
library procedures also call rpcbind automatically for client and server programs.
For details, see Appendix B.

Introduction to TI-RPC 19

Reporting RPC Information
rpcinfo is a utility that reports current RPC information registered with rpcbind .
rpcinfo (with either rpcbind or the portmap utility) reports the universal
addresses and the transports for all registered RPC services on a specified host. It can
call a specific version of a specific program on a specific host and report whether a
response is received. It can also delete registrations. For details, see the
rpcinfo (1M) manpage.

20 ONC+ Developer’s Guide ♦ , 1998

CHAPTER 3

rpcgen Programming Guide

This chapter introduces the rpcgen tool and provides a tutorial with code examples
and usage of the available compile-time flags. See Glossary for the definition of the
terms used in this chapter.

� “SunOS 5.x Features” on page 22

� “An rpcgen Tutorial” on page 23

� “Compile-Time Flags” on page 36

� “rpcgen Programming Techniques” on page 48

What is rpcgen
The rpcgen tool generates remote program interface modules. It compiles source
code written in the RPC Language. RPC Language is similar in syntax and structure
to C. rpcgen produces one or more C language source modules, which are then
compiled by a C compiler.

The default output of rpcgen is:

� A header file of definitions common to the server and the client

� A set of XDRroutines that translate each data type defined in the header file

� A stub program for the server

� A stub program for the client

rpcgen can optionally generate:

� Various transports

� A time-out for servers

21

� Server stubs that are MT safe

� Server stubs that are not main programs

� C-style arguments passing ANSI C-compliant code

� An RPC dispatch table that checks authorizations and invokes service routines

rpcgen significantly reduces the development time that would otherwise be spent
developing low-level routines. Handwritten routines link easily with the rpcgen
output. (For a discussion of RPC programming without rpcgen , see Chapter 4.)

SunOS 5.x Features
This section lists the features found in the SunOS 5.x rpcgen code generator that are
not found in the SunOS 4.x version.

Template Generation
rpcgen generates client-side, server-side, and makefile templates. See “Client and
Server Templates” on page 37 for the list of options.

C-style Mode
rpcgen has two compilation modes, C-style and default. C-style mode lets
arguments be passed by value, instead of as pointers to a structure. It also supports
passing multiple arguments. The default mode is the same as in previous releases.
See “C-style Mode” on page 38 for the example code for both modes.

Multithread-Safe Code
rpcgen can now generate MT-safe code for use in a threaded environment. By
default, the code generated by rpcgen is not MT-safe. See “MT-Safe Code” on page
40 for the description and example code.

Multithread Auto Mode
rpcgen can generate MT-safe server stubs that operate in the MT Auto mode. See
“MT Auto Mode” on page 46 for the definition and example code.

22 ONC+ Developer’s Guide ♦ , 1998

Library Selection
rpcgen can use library calls for either TS-RPC or TI-RPC. See “TI-RPC or TS-RPC
Library Selection” on page 47.

ANSI C -compliant Code
The output generated by rpcgen conforms to ANSI C standards. The code can also
be used in the SPARCompilerTM C++ 3.0 environment. See “ ANSI C-compliant
Code” on page 47.

An rpcgen Tutorial
rpcgen provides programmers a simple and direct way to write distributed
applications. Server procedures may be written in any language that observes
procedure-calling conventions. They are linked with the server stub produced by
rpcgen to form an executable server program. Client procedures are written and
linked in the same way.

This section presents some basic rpcgen programming examples. Refer also to the
rpcgen (1)manpage.

Converting Local Procedures to Remote
Procedures
Assume that an application runs on a single computer and you want to convert it to
run in a “distributed” manner on a network. This example shows the stepwise
conversion of this program that writes a message to the system console. Code
Example 3–1shows the original program.

CODE EXAMPLE 3–1 Single Process Version of printmesg.c

/* printmsg.c: print a message on the console */
#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];

{
char *message;

(continued)

rpcgen Programming Guide 23

(Continuation)

if (argc != 2) {
fprintf(stderr, "usage: %s <message>\n",

argv[0]);
exit(1);

}
message = argv[1];
if (!printmessage(message)) {

fprintf(stderr,"%s: couldn’t print your
message\n",argv[0]);

exit(1);
}
printf("Message Delivered!\n");
exit(0);

}

/* Print a message to the console.
* Return a boolean indicating whether
* the message was actually printed. */

printmessage(msg)
char *msg;

{
FILE *f;

f = fopen("/dev/console", "w");
if (f == (FILE *)NULL) {

return (0);
}
fprintf(f, "%s\n", msg);
fclose(f);
return(1);

}

For local use on a single machine, this program could be compiled and executed as
follows:

$ cc printmsg.c -o printmsg
$ printmsg "Hello, there."
Message delivered!
$

If the printmessage() function is turned into a remote procedure, it can be called
from anywhere in the network. rpcgen makes it easy to do this.

First, determine the data types of all procedure-calling arguments and the result
argument. The calling argument of printmessage() is a string, and the result is an
integer. We can write a protocol specification in RPC language that describes the

24 ONC+ Developer’s Guide ♦ , 1998

remote version of printmessage() . The RPC language source code for such a
specification is:

/* msg.x: Remote msg printing protocol */
program MESSAGEPROG {

version PRINTMESSAGEVERS {
int PRINTMESSAGE(string) = 1;

} = 1;
} = 0x20000001;

Remote procedures are always declared as part of remote programs. The code above
declares an entire remote program that contains the single procedure
PRINTMESSAGE. In this example, the PRINTMESSAGEprocedure is declared to be
procedure 1, in version 1 of the remote program MESSAGEPROG, with the program
number 0x20000001 . (See Appendix B for guidance on choosing program
numbers.) Version numbers are incremented when functionality is changed in the
remote program. Existing procedures can be changed or new ones can be added.
More than one version of a remote program can be defined and a version can have
more than one procedure defined.

Note that the program and procedure names are declared with all capital letters. This
is not required, but is a good convention to follow.

Note also that the argument type is string and not char * as it would be in C.
This is because a char * in C is ambiguous. char usually means an array of
characters, but it could also represent a pointer to a single character. In RPC
language, a null-terminated array of char is called a string .

There are just two more programs to write:

� The remote procedure itself

� The main client program that calls it

Code Example 3–2is a remote procedure that implements the PRINTMESSAGE
procedure in Code Example 3–1.

CODE EXAMPLE 3–2 RPC Version of printmsg.c

/*
* msg_proc.c: implementation of the
* remote procedure "printmessage"
*/

#include <stdio.h>
#include "msg.h" /* msg.h generated by rpcgen */

int *
printmessage_1(msg, req)

char **msg;
struct svc_req *req; /* details of call */

{
static int result; /* must be static! */
FILE *f;

(continued)

rpcgen Programming Guide 25

(Continuation)

f = fopen("/dev/console", "w");
if (f == (FILE *)NULL) {

result = 0;
return (&result);

}
fprintf(f, "%s\n", *msg);
fclose(f);
result = 1;
return (&result);

}

Note that the declaration of the remote procedure printmessage_1() differs from
that of the local procedure printmessage() in four ways:

1. It takes a pointer to the character array instead of the pointer itself. This is true of
all remote procedures when the −N option is not used: They always take pointers
to their arguments rather than the arguments themselves. Without the −N option,
remote procedures are always called with a single argument. If more than one
argument is required the arguments must be passed in a struct .

2. It is called with two arguments. The second argument contains information on the
context of an invocation: the program, version, and procedure numbers, raw and
canonical credentials, and an SVCXPRTstructure pointer (the SVCXPRTstructure
contains transport information). This information is made available in case the
invoked procedure requires it to perform the request.

3. It returns a pointer to an integer instead of the integer itself. This is also true of
remote procedures when the −N option is not used: They return pointers to the
result. The result should be declared static unless the −M(multithread) or −A
(Auto mode) options are used. Ordinarily, if the result is declared local to the
remote procedure, references to it by the server stub are invalid after the remote
procedure returns. In the case of −Mand −A options, a pointer to the result is
passed as a third argument to the procedure, so the result is not declared in the
procedure.

4. An _1 is appended to its name. In general, all remote procedures calls generated
by rpcgen are named as follows: the procedure name in the program definition
(here PRINTMESSAGE) is converted to all lowercase letters, an underbar (_) is
appended to it, and the version number (here 1) is appended. This naming
scheme allows multiple versions of the same procedure.

Code Example 3–3 shows the main client program that calls the remote procedure.

26 ONC+ Developer’s Guide ♦ , 1998

CODE EXAMPLE 3–3 Client Program to Call printmsg.c

/*
* rprintmsg.c: remote version
* of "printmsg.c"
*/

#include <stdio.h>
#include "msg.h" /* msg.h generated by rpcgen */

main(argc, argv)
int argc;
char *argv[];

{
CLIENT *clnt;
int *result;
char *server;
char *message;

if (argc != 3) {
fprintf(stderr, "usage: %s host

message\n", argv[0]);
exit(1);

}

server = argv[1];
message = argv[2];
/*

* Create client "handle" used for
* calling MESSAGEPROG on the server

* designated on the command line.
*/

clnt = clnt_create(server, MESSAGEPROG,
PRINTMESSAGEVERS,
"visible");

if (clnt == (CLIENT *)NULL) {
/*

* Couldn’t establish connection
* with server.

* Print error message and die.
*/

clnt_pcreateerror(server);
exit(1);

}

/*
* Call the remote procedure

* "printmessage" on the server
*/

result = printmessage_1(&message, clnt);
if (result == (int *)NULL) {

/*
* An error occurred while calling

* the server.
* Print error message and die.
*/

clnt_perror(clnt, server);
exit(1);

(continued)

rpcgen Programming Guide 27

(Continuation)

}
/* Okay, we successfully called
* the remote procedure.
*/
if (*result == 0) {

/*
* Server was unable to print

* our message.
* Print error message and die.
*/

fprintf(stderr,
"%s: could not print your message\n",argv[0]);
exit(1);

}

/* The message got printed on the
* server’s console
*/
printf("Message delivered to %s\n",

server);
clnt_destroy(clnt);
exit(0);

}

Note the following about Code Example 3–3:

1. First, a client handle is created by the RPC library routine clnt_create() . This
client handle is passed to the stub routine that calls the remote procedure. (The
client handle can be created in other ways as well. See Chapter 4“ for details.) If
no more calls are to be made using the client handle, destroy it with a call to
clnt_destroy() to conserve system resources.

2. The last parameter to clnt_create() is visible , which specifies that any
transport noted as visible in /etc/netconfig can be used. For further
information on this, see the /etc/netconfig file and its description in Transport
Interfaces Programming Guide.

3. The remote procedure printmessage_1() is called exactly the same way as it is
declared in msg_proc.c , except for the inserted client handle as the second
argument. It also returns a pointer to the result instead of the result.

4. The remote procedure call can fail in two ways. The RPC mechanism can fail or
there can be an error in the execution of the remote procedure. In the former case,
the remote procedure printmessage_1() returns a NULL. In the latter case, the
error reporting is application dependent. Here, the error is returned through
*result.

Here are the compile commands for the printmsg example:

28 ONC+ Developer’s Guide ♦ , 1998

$ rpcgen msg.x
$ cc rprintmsg.c msg_clnt.c -o rprintmsg -lnsl
$ cc msg_proc.c msg_svc.c -o msg_server -lnsl

First, rpcgen was used to generate the header files (msg.h), client stub
(msg_clnt.c), and server stub (msg_svc.c). Then, two programs are compiled: the
client program rprintmsg and the server program msg_server . The C object files
must be linked with the library libnsl, which contains all of the networking
functions, including those for RPC and XDR.

In this example, no XDR routines were generated because the application uses only
the basic types that are included in libnsl.

Here is what rpcgen did with the input file msg.x :

1. It created a header file called msg.h that contained #define statements for
MESSAGEPROG, MESSAGEVERS, and PRINTMESSAGEfor use in the other modules.
This file must be included by both the client and server modules.

2. It created the client stub routines in the msg_clnt.c file. Here there is only one,
the printmessage_1() routine, that was called from the rprintmsg client
program. If the name of an rpcgen input file is FOO.x, the client stub’s output
file is called FOO_clnt.c .

3. It created the server program in msg_svc.c that calls printmessage_1() from
msg_proc.c . The rule for naming the server output file is similar to that of the
client: for an input file called FOO.x, the output server file is named FOO_svc.c .

Once created, the server program is installed on a remote machine and run. (If the
machines are homogeneous, the server binary can just be copied. If they are not, the
server source files must be copied to and compiled on the remote machine.) For this
example, the remote machine is called remote and the local machine is called
local . The server is started from the shell on the remote system:

remote$ msg_server

Server processes generated with rpcgen always run in the background. It is not
necessary to follow the server’s invocation with an ampersand (&). Servers generated
by rpcgen can also be invoked by port monitors like listen() and inetd() ,
instead of from the command line.

Thereafter, a user on local can print a message on the console of machine remote
as follows:

local$ rprintmsg remote "Hello, there."

Using rprintmsg , a user can print a message on any system console (including the
local console) when the server msg_server is running on the target system.

rpcgen Programming Guide 29

Passing Complex Data Structures
“Converting Local Procedures to Remote Procedures ” on page 23 shows how to
generate client and server RPC code. rpcgen can also be used to generate XDR
routines (the routines that convert local data structures into XDR format and vice
versa).

Code Example 3–4 presents a complete RPC service: a remote directory listing service,
built using rpcgen both to generate stub routines and to generate the XDR routines.

CODE EXAMPLE 3–4 RPC Protocol Description File: dir.x

/*
* dir.x: Remote directory listing protocol
*
* This example demonstrates the functions of rpcgen.
*/

const MAXNAMELEN = 255; /* max length of directory
entry */
typedef string nametype<MAXNAMELEN>; /* director entry */
typedef struct namenode *namelist; /* link in the listing */

/* A node in the directory listing */
struct namenode {

nametype name; /* name of directory entry */
namelist next; /* next entry */

};

/*
* The result of a READDIR operation
*
* a truly portable application would use
* an agreed upon list of error codes
* rather than (as this sample program
* does) rely upon passing UNIX errno’s
* back.
*
* In this example: The union is used
* here to discriminate between successful
* and unsuccessful remote calls.
*/

union readdir_res switch (int errno) {
case 0:

namelist list; /* no error: return directory listing */
default:

void; /* error occurred: nothing else to return */
};

/* The directory program definition */
program DIRPROG {

version DIRVERS {
readdir_res
READDIR(nametype) = 1;

(continued)

30 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

} = 1;
} = 0x20000076;

You can redefine types (like readdir_res in the example above) using the struct ,
union , and enum RPC language keywords. These keywords are not used in later
declarations of variables of those types. For example, if you define a union, foo , you
declare using only foo , and not union foo .

rpcgen compiles RPC unions into C structures. Do not declare C unions using the
union keyword.

Running rpcgen on dir.x generates four output files: (1) the header file, (2) the
client stub, (3) the server skeleton, and (4) the XDR routines in the file dir_xdr.c .
This last file contains the XDR routines to convert declared data types from the host
platform representation into XDR format, and vice versa.

For each RPCL data type used in the.x file, rpcgen assumes that libnsl contains a
routine whose name is the name of the data type, prepended by the XDR routine
header xdr_ (for example, xdr_int). If a data type is defined in the.x file, rpcgen
generates the required xdr_ routine. If there is no data type definition in the.x
source file (for example, msg.x), then no _xdr.c file is generated.

You can write a.x source file that uses a data type not supported by libnsl, and
deliberately omit defining the type (in the.x file). In doing so, you must provide the
xdr_ routine. This is a way to provide your own customized xdr_ routines. See
Chapter 4,“ for more details on passing arbitrary data types. The server-side of the
READDIRprocedure is shown in Code Example 3–5.

CODE EXAMPLE 3–5 Server dir_proc.c Example

/*
* dir_proc.c: remote readdir
* implementation
*/

#include <dirent.h>
#include "dir.h" /* Created by rpcgen */

extern int errno;
extern char *malloc();
extern char *strdup();

readdir_res *
readdir_1(dirname, req)

nametype *dirname;
struct svc_req *req;

(continued)

rpcgen Programming Guide 31

(Continuation)

{
DIR *dirp;
struct dirent *d;
namelist nl;
namelist *nlp;
static readdir_res res; /* must be static! */

/* Open directory */
dirp = opendir(*dirname);
if (dirp == (DIR *)NULL) {

res.errno = errno;
return (&res);

}
/* Free previous result */
xdr_free(xdr_readdir_res, &res);
/*

* Collect directory entries.
* Memory allocated here is free by

* xdr_free the next time readdir_1
* is called

*/
nlp = &res.readdir_res_u.list;
while (d = readdir(dirp)) {

nl = *nlp = (namenode *)
malloc(sizeof(namenode));

if (nl == (namenode *) NULL) {
res.errno = EAGAIN;
closedir(dirp);
return(&res);

}
nl->name = strdup(d->d_name);
nlp = &nl->next;

}
*nlp = (namelist)NULL;
/* Return the result */
res.errno = 0;
closedir(dirp);
return (&res);

}

Code Example 3–6shows the client-side implementation of the READDIRprocedure.

CODE EXAMPLE 3–6 Client-side Implementation of rls.c

/*
* rls.c: Remote directory listing client
*/

#include <stdio.h>
#include "dir.h" /* generated by rpcgen */

32 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

extern int errno;

main(argc, argv)
int argc;
char *argv[];

{
CLIENT *clnt;
char *server;
char *dir;
readdir_res *result;
namelist nl;

if (argc != 3) {
fprintf(stderr, "usage: %s host

directory\n",argv[0]);
exit(1);

}
server = argv[1];
dir = argv[2];
/*

* Create client "handle" used for
* calling MESSAGEPROG on the server
* designated on the command line.

*/
cl = clnt_create(server, DIRPROG,

DIRVERS, "tcp");
if (clnt == (CLIENT *)NULL) {

clnt_pcreateerror(server);
exit(1);

}
result = readdir_1(&dir, clnt);
if (result == (readdir_res *)NULL) {

clnt_perror(clnt, server);
exit(1);

}
/* Okay, we successfully called
* the remote procedure.
*/
if (result->errno != 0) {

/* Remote system error. Print
* error message and die.
*/

errno = result->errno;
perror(dir);
exit(1);

}
/* Successfully got a directory listing.
* Print it.
*/
for (nl = result->readdir_res_u.list;

nl != NULL;
nl = nl->next) {

(continued)

rpcgen Programming Guide 33

(Continuation)

printf("%s\n", nl->name);
}
xdr_free(xdr_readdir_res, result);
clnt_destroy(cl);
exit(0);

}

As in other examples, execution is on systems named local and remote . The files
are compiled and run as follows:

remote$ rpcgen dir.x
remote$ cc -c dir_xdr.c
remote$ cc rls.c dir_clnt.c dir_xdr.o -o rls -lnsl
remote$ cc dir_svc.c dir_proc.c dir_xdr.o -o dir_svc -lnsl
remote$ dir_svc

When you install rls() on system local , you can list the contents of
/usr/share/lib on system remote as follows:

local$ rls remote /usr/share/lib
ascii
eqnchar
greek
kbd
marg8
tabclr
tabs
tabs4
local$

rpcgen generated client code does not release the memory allocated for the results
of the RPC call. Call xdr_free() to release the memory when you are finished
with it. It is similar to calling the free() routine, except that you pass the XDR
routine for the result. In this example, after printing the list,
xdr_free(xdr_readdir_res, result); was called.

Note - Use xdr_free() to release memory allocated by malloc() . Failure to use
xdr_free() to release memory results in memory leaks.

Preprocessing Directives
rpcgen supports C and other preprocessing features. C preprocessing is performed
on rpcgen input files before they are compiled. All standard C preprocessing

34 ONC+ Developer’s Guide ♦ , 1998

directives are allowed in the.x source files. Depending on the type of output file
being generated, five symbols are defined by rpcgen .

rpcgen provides an additional preprocessing feature: any line that begins with a
percent sign (%) is passed directly to the output file, with no action on the line’s
content. Caution is required because rpcgen does not always place the lines where
you intend. Check the output source file and, if needed, edit it.

TABLE 3–1 rpcgen Preprocessing Directives

Symbol Use

RPC_HDR Header file output

RPC_XDR XDR routine output

RPC_SVC Server stub output

RPC_CLNT Client stub output

RPC_TBL Index table output

Code Example 3–7 is a simple rpcgen example. Note the use of rpcgen ‘s
pre-processing features.

CODE EXAMPLE 3–7 Time Protocol rpcgen Source

/*
* time.x: Remote time protocol
*/

program TIMEPROG {
version TIMEVERS {

unsigned int TIMEGET() = 1;
} = 1;

} = 0x20000044;

#ifdef RPC_SVC
%int *
%timeget_1()
%{
% static int thetime;
%
% thetime = time(0);
% return (&thetime);
%}
#endif

rpcgen Programming Guide 35

cpp Directive
rpcgen supports C preprocessing features. rpcgen defaults to use
/usr/ccs/lib/cpp as the C preprocessor. If that fails, rpcgen tries to use
/lib/cpp . You may specify a library containing a different cpp to rpcgen with the
−Y flag.

For example, if /usr/local/bin/cpp exists, you can specify it to rpcgen as
follows:

rpcgen -Y /usr/local/bin test.x

Compile-Time Flags
This section describes the rpcgen options available at compile time. The following
table summarizes the options which are discussed in this section.

TABLE 3–2 rpcgen Compile-time Flags

Option Flag Comments

Templates −a, −Sc, −Ss, −Sm See Table 3–3

C-style −N Also called Newstyle mode

ANSI C −C Often used with the -N option

MT-Safe code −M For use in multithreaded environments

MT Auto mode −A -A also turns on -M option

TS-RPC library −b TI-RPC library is default

xdr_inline count −i Uses 5 packed elements as default, but other
number may be specified

36 ONC+ Developer’s Guide ♦ , 1998

Client and Server Templates
rpcgen generates sample code for the client and server sides. Use these options to
generate the desired templates.

TABLE 3–3 rpcgen Template Selection Flags

Flag Function

−a
Generate all template files

−Sc
Generate client-side template

−Ss
Generate server-side template

−Sm
Generate makefile template

The files can be used as guides or by filling in the missing parts. These files are in
addition to the stubs generated.

A C-style mode server template is generated from the add.x source by the
command:

rpcgen -N -Ss -o add_server_template.c add.x

The result is stored in the file add_server_template.c . A C-style mode, client
template for the same add.x source is generated with the command line:

rpcgen -N -Sc -o add_client_template.c add.x

The result is stored in the file add_client_template.c . A make file template for
the same add.x source is generated with the command line:

rpcgen -N -Sm -o mkfile_template add.x

The result is stored in the file mkfile_template . It can be used to compile the
client and the server. If the −a flag is used as follows:

rpcgen -N -a add.x

rpcgen generates all three template files. The client template goes into
add_client.c , the server template to add_server.c , and the makefile template
to makefile.a . If any of these files already exists, rpcgen displays an error
message and exits.

rpcgen Programming Guide 37

Note - When you generate template files, give them new names to avoid the files
being overwritten the next time rpcgen is executed.

C-style Mode
Also called Newstyle mode, The -N flag causes rpcgen to produce code in which
arguments are passed by value and multiple arguments are passed without a
struct . These changes allow RPC code that is more like C and other high-level
languages. For compatibility with existing programs and make files, the previous
(standard) mode of argument passing is the default. The following examples
demonstrate the new feature. The source modules for both modes, C-style and
default, are given in Code Example 3–8and in Code Example 3–9 respectively.

CODE EXAMPLE 3–8 C-style Mode Version of add.x

/*
* This program contains a procedure
* to add 2 numbers. It demonstrates
* the C-style mode argument passing.
* Note that add() has 2 arguments.
*/

program ADDPROG { /* program number */
version ADDVER { /* version number */

int add(int, int) = 1; /* procedure */
} = 1;

} = 0x20000199;

CODE EXAMPLE 3–9 Default Mode Version of add.x

/*
* This program contains a procedure
* to add 2 numbers. It demonstrates
* the "default" mode argument passing.
* In this mode rpcgen can process
* only one argument.
*/

struct add_arg {
int first;
int second;

};
program ADDPROG { /* program number */

version ADDVER { /* version number */
int add (add_arg) = 1; /* procedure */

} = 1;
} = 0x20000199;

The next four figures show the resulting client-side templates.

38 ONC+ Developer’s Guide ♦ , 1998

CODE EXAMPLE 3–10 C-style Mode Client Stub for add.x

/*
* The C-style client side main
* routine calls the add() function
* on the remote rpc server
*/

#include <stdio.h>
#include "add.h"

main(argc, argv)
int argc;
char *argv[];
{

CLIENT *clnt;
int *result,x,y;

if(argc != 4) {
printf("usage: %s host num1

num2\n" argv[0]);
exit(1);

}
/* create client handle -
* bind to server
*/
clnt = clnt_create(argv[1], ADDPROG,

ADDVER, "udp");
if (clnt == NULL) {

clnt_pcreateerror(argv[1]);
exit(1);

}
x = atoi(argv[2]);
y = atoi(argv[3]);
/*

* invoke remote procedure: Note that
* multiple arguments can be passed to

* add_l() instead of a pointer
*/

result = add_1(x, y, clnt);
if (result == (int *) NULL) {

clnt_perror(clnt, "call failed:");
exit(1);

} else {
printf("Success: %d + %d = %d\n",

x, y, *result);
}
exit(0);

}

Code Example 3–11 shows how the default mode code differs from C-style mode
code.

rpcgen Programming Guide 39

CODE EXAMPLE 3–11 Default Mode Client

arg.first = atoi(argv[2]);
arg.second = atoi(argv[3]);
/*

* invoke remote procedure -- note
* that a pointer to the argument has

* to be passed to the client stub
*/

result = add_1(&arg, clnt);

The server-side procedure in C-style mode is shown in Code Example 3–12.

CODE EXAMPLE 3–12 C-style Mode Server

#include "add.h"

int *
add_1(arg1, arg2, rqstp)

int arg1;
int arg2;
struct svc_req *rqstp;

{
static int result;

result = arg1 + arg2;
return(&result);

}

The server side procedure in default mode is shown in Code Example 3–13.

CODE EXAMPLE 3–13 Default Mode Server Stub

#include "add.h"
int *
add_1(argp, rqstp)

add_arg *argp;
struct svc_req *rqstp;

{
static int result;

result = argp->first + argp->second;
return(&result);

}

MT-Safe Code
By default, the code generated by rpcgen is not MT safe. It uses unprotected global
variables and returns results in the form of static variables. The −Mflag generates
MT-safe code which can be used in a multithreaded environment. This can be used
with the C-style flag, the ANSI C flag, or both.

40 ONC+ Developer’s Guide ♦ , 1998

An example of an MT-safe program with this interface follows. The rpcgen protocol
file is msg.x , shown in Code Example 3–14.

CODE EXAMPLE 3–14 MT-Safe Program: msg.

program MESSAGEPROG {
version PRINTMESSAGE {

int PRINTMESSAGE(string) = 1;
} = 1;

} = 0x4001;

A string is passed to the remote procedure, which prints it and returns the length of
the string to the client. The MT-Safe stubs are generated with:

% rpcgen -M msg.x

A possible client-side code that could be used with this is shown in Code Example
3–15.

CODE EXAMPLE 3–15 MT-Safe Client Stub

#include "msg.h"

void
messageprog_1(host)

char *host;
{

CLIENT *clnt;
enum clnt_stat retval_1;
int result_1;
char * printmessage_1_arg;

clnt = clnt_create(host, MESSAGEPROG,
PRINTMESSAGE,
"netpath");

if (clnt == (CLIENT *) NULL) {
clnt_pcreateerror(host);
exit(1);

}
printmessage_1_arg =

(char *) malloc(256);
strcpy(printmessage_1_arg, "Hello World");

retval_1 = printmessage_1(&printmessage_1_arg,
&result_1,clnt);

if (retval_1 != RPC_SUCCESS) {
clnt_perror(clnt, "call failed");

}
printf("result = %d\n", result_1);

clnt_destroy(clnt);
}

main(argc, argv)

(continued)

rpcgen Programming Guide 41

(Continuation)

int argc;
char *argv[];

{
char *host;

if (argc < 2) {
printf("usage: %s server_host\n", argv[0]);
exit(1);

}
host = argv[1];
messageprog_1(host);

}

Note that a pointer to both the arguments and the results needs to be passed in to
the rpcgen -generated code. This is to preserve reentrancy. The value returned by the
stub function indicates whether this call is a success or a failure. The stub returns
RPC_SUCCESSif the call is successful. Compare the MT-safe client stub (generated
with the -M option) and the not MT-safe client stub shown in Code Example 3–16.
The client stub that is not MT safe uses a static to store returned results and can use
only one thread at a time.

CODE EXAMPLE 3–16 Client Stub (Not MT Safe)

int *
printmessage_1(argp, clnt)

char **argp;
CLIENT *clnt;

{
static int clnt_res;
memset((char *)&clnt_res, 0,

sizeof (clnt_res));
if (clnt_call(clnt, PRINTMESSAGE,

(xdrproc_t) xdr_wrapstring,
(caddr_t) argp,

(xdrproc_t) xdr_int, (caddr_t)
&clnt_res,

TIMEOUT) != RPC_SUCCESS) {
return (NULL);

}
return (&clnt_res);

}

The server side code is shown in Code Example 3–17.

Note - When compiling a server that uses MT-safe mode, you must link in the
threads library. To do this, specify the −lthread option in the compile command.

42 ONC+ Developer’s Guide ♦ , 1998

CODE EXAMPLE 3–17 MT-Safe Server Stub

#include "msg.h"
#include <syslog.h>

bool_t
printmessage_1_svc(argp, result, rqstp)

char **argp;
int *result;
struct svc_req *rqstp;

{
int retval;

if (*argp == NULL) {
syslog(LOG_INFO, "argp is NULL\n");
*result = 0;

}
else {

syslog("argp is %s\n", *argp);
*result = strlen (*argp);

}
retval = 1;
return (retval);

}

int
messageprog_1_freeresult(transp, xdr_result, result)

SVCXPRT *transp;
xdrproc_t xdr_result;
caddr_t result;

{
/*

* Insert additional freeing code here,
* if needed

*/
(void) xdr_free(xdr_result, result);

}

The server side code should not use statics to store returned results. A pointer to the
result is passed in and this should be used to pass the result back to the calling
routine. A return value of 1 indicates success to the calling routine, while 0 indicates
a failure.

In addition, the code generated by rpcgen also generates a call to a routine to free
any memory that may have been allocated when the procedure was called. To
prevent memory leaks, any memory allocated in the service routine needs to be freed
in this routine. messageprog_1_freeresult() frees the memory.

Normally, xdr_free() frees any allocated memory for you (in this case, no
memory was allocated, so no freeing needs to take place).

As an example of the use of the -M flag with the C-style and ANSI C flag, consider
the following file, add.x , shown in Code Example 3–18.

rpcgen Programming Guide 43

CODE EXAMPLE 3–18 MT-Safe Program: add.x

program ADDPROG {
version ADDVER {
int add(int, int) = 1;
} = 1;

}= 199;

This program adds two numbers and returns its result to the client. rpcgen is
invoked on it, with the following command: % rpcgen -N -M -C add.x The
multithreaded client code to call this is shown in Code Example 3–19.

CODE EXAMPLE 3–19 MT-Safe Client: add.x

/*
* This client-side main routine
* starts up a number of threads,
* each of which calls the server
* concurrently.
*/

#include "add.h"

CLIENT *clnt;
#define NUMCLIENTS 5
struct argrec {

int arg1;
int arg2;

};

/* Keeps count of number of
* threads running
*/

int numrunning;
mutex_t numrun_lock;
cond_t condnum;

void
addprog(struct argrec *args)
{

enum clnt_stat retval;
int result;
/* call server code */
retval = add_1(args->arg1, args->arg2,

&result, clnt);
if (retval != RPC_SUCCESS) {

clnt_perror(clnt, "call failed");
} else

printf("thread #%x call succeeded,
result = %d\n", thr_getself(),
result);

/* decrement the number of running
* threads
*/
mutex_lock(&numrun_lock);

(continued)

44 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

numrunning--;
cond_signal(&condnum);
mutex_unlock(&numrun_lock);
thr_exit(NULL);

}

main(int argc, char *argv[])
{

char *host;
struct argrec args[NUMCLIENTS];
int i;
thread_t mt;
int ret;

if (argc < 2) {
printf("usage: %s server_host\n",

argv[0]);
exit(1);

}
host = argv[1];
clnt = clnt_create(host, ADDPROG, ADDVER,

"netpath");
if (clnt == (CLIENT *) NULL) {

clnt_pcreateerror(host);
exit(1);

};
mutex_init(&numrun_lock, USYNC_THREAD, NULL);
cond_init(&condnum, USYNC_THREAD, NULL);
numrunning = 0;

/* Start up separate threads */
for (i = 0; i < NUMCLIENTS; i++) {

args[i].arg1 = i;
args[i].arg2 = i + 1;
ret = thr_create(NULL, NULL, addprog,

(char *) &args[i],
THR_NEW_LWP, &mt);

if (ret == 0)
numrunning++;

}

mutex_lock(&numrun_lock);
/* are any threads still running ? */
while (numrunning != 0)

cond_wait(&condnum, &numrun_lock);
mutex_unlock(&numrun_lock);
clnt_destroy(clnt);

}

The server-side procedure is shown in Code Example 3–20.

rpcgen Programming Guide 45

Note - When compiling a server that uses MT-safe mode, you must link in the
threads library. To do this, specify the −lthread option in the compile command.

CODE EXAMPLE 3–20 MT-Safe Server: add.x

add_1_svc(int arg1, int arg2,
int *result, struct svc_req *rqstp)

{
bool_t retval;
/* Compute result */
*result = arg1 + arg2;
retval = 1;
return (retval);

}

/* Routine for freeing memory that may
* be allocated in the server procedure
*/

int
addprog_1_freeresult(SVCXPRT *transp,

xdrproc_t xdr_result,
caddr_t result)

{
(void) xdr_free(xdr_result, result);

}

MT Auto Mode
MT Auto mode enables RPC servers to automatically use Solaris threads to process
client requests concurrently. Use the −A option to generate RPC code in MT Auto
mode. The −A option also has the effect of turning on the −Moption, so −Mdoes not
need to be explicitly specified. The −Moption is necessary because any code
generated has to be multithread safe.

Further discussion on multithreaded RPC begins on “Multithreaded RPC
Programming” on page 115; see also “MT Auto Mode” on page 121.

Here is an example of an Auto mode program generated by rpcgen . The rpcgen
protocol filetime.x is shown in Code Example 3–21. A string is passed to the
remote procedure, which prints it and returns the length of the string to the client.
The MT-safe stubs are generated with:

CODE EXAMPLE 3–21 MT Auto Mode: time.x

program TIMEPROG {
version TIMEVERS {

unsigned int TIMEGET(void) = 1;
void TIMESET(unsigned) = 2;

} = 1;
} = 0x20000044;

46 ONC+ Developer’s Guide ♦ , 1998

% rpcgen -A time.x

Note - When the −A option is used, the generated server code will contain
instructions for enabling MT Auto mode for the server.

When compiling a server that uses MT Auto mode, you must link in the threads
library. To do this, specify the −lthread option in the compile command.

TI-RPC or TS-RPC Library Selection
In older SunOS releases, rpcgen created stubs that used the socket functions. With
the current SunOS release, you can use either the transport-independent RPC
(TI-RPC) or the transport-specific socket (TS-RPC) routines. This provides backward
compatibility with previous releases. The default uses the TI-RPC interfaces. The −b
flag tells rpcgen to create TS-RPC variant source code as its output.

ANSI C-compliant Code
rpcgen can also produce output that is compatible with ANSI C or SPARCompiler
C++ 3.0. This feature is selected with the −C compile flag and is most often used with
the −N flag, described in “C-style Mode” on page 38.

The add.x example of the server template is generated by the command:

rpcgen -N -C -Ss -o add_server_template.c add.x

It is important to note that on the C++ 3.0 server, remote procedure names require an
_svc suffix. In the following example, the add.x template and the −C compile flag
produce the client side add_1 and the server stub add_1_svc .

CODE EXAMPLE 3–22 rpcgen ANSI C Server Template

/*
* This is a template. Use it to
* develop your own functions.
*/

#include <c_varieties.h>
#include "add.h"

int *
add_1_svc(int arg1, int arg2,

struct svc_req *rqstp)
{

static int result;
/*

(continued)

rpcgen Programming Guide 47

(Continuation)

* insert server code here
*/

return(&result);
}

This output conforms to the syntax requirements and structure of ANSI C. The
header files that are generated when this option is invoked can be used with ANSI C
or with C++

xdr_inline() Count
rpcgen tries to generate more efficient code by using xdr_inline() when possible
(see the xdr_admin (3N) manpage). When a structure contains elements that
xdr_inline() can be used on (for example integer , long , bool), the relevant
portion of the structure is packed with xdr_inline() . A default of five or more
packed elements in sequence causes in-line code to be generated. This default can be
changed with the −i flag. For example:

rpcgen -i 3 test.x

causes rpcgen to start generating in-line code after three qualifying elements are
found in sequence. The example:

rpcgen -i 0 test.x

prevents any in-line code from being generated.

In most situations, there is no reason to use the −i flag. The _xdr.c stub is the only
file affected by this feature.

rpcgen Programming Techniques
This section suggests some common RPC and rpcgen programming techniques.
Each topic is covered in its own subsection.

� Network Type

rpcgen can produce server code for specific transport types.

� Define Statements

48 ONC+ Developer’s Guide ♦ , 1998

C-preprocessing symbols can be defined on rpcgen command lines.

� Broadcast Calls

Servers need not send error replies to broadcast calls.

� Debugging Applications

Debug as normal function calls, then change to a distributed application.

� Port Monitor Support

Port monitors can “listen” on behalf of RPC servers.

� Dispatch Tables

Programs can access server dispatch tables.

� Time-out Changes

Client default time-out periods can be changed.

� Authentication

Clients may authenticate themselves to servers; interested servers can examine
client authentication information.

Network Types/Transport Selection
rpcgen takes optional arguments that allow a programmer to specify desired
network types or specific network identifiers. (For details of network selection, see
Transport Interfaces Programming Guide).

The −s flag creates a server that responds to requests on the specified type of
transport. For example, the invocation

rpcgen -s datagram_n prot.x

writes a server to standard output that responds to any of the connectionless
transports specified in the NETPATHenvironment variable (or in /etc/netconfig ,
if NETPATHis not defined). A command line can contain multiple −s flags and their
network types.

Similarly, the −n flag creates a server that responds only to requests from the
transport specified by a single network identifier.

Caution - Be careful using servers created by rpcgen with the −n flag. Network
identifiers are host specific, so the resulting server may not run as expected on other
hosts.

rpcgen Programming Guide 49

Command Line Define Statements
You can define C-preprocessing symbols and assign values to them from the
command line. Command line define statements can, for example, be used to generate
conditional debugging code when the DEBUGsymbol is defined. For example:

$ rpcgen -DDEBUG proto.x

Server Response to Broadcast Calls
When a procedure has been called through broadcast RPC and cannot provide a
useful response, the server should send no reply to the client. This reduces network
traffic. To prevent the server from replying, a remote procedure can return NULL as
its result. The server code generated by rpcgen detects this and sends no reply.

Code Example 3–23is a procedure that replies only if it is an NFS server.

CODE EXAMPLE 3–23 NFS Server Response to Broadcast Calls

void *
reply_if_nfsserver()
{

char notnull; /*only here so we can
*use its address
*/

if(access("/etc/dfs/sharetab",
F_OK) < 0) {

/* prevent RPC from replying */
return((void *) NULL);

}
/* assign notnull a non-null value
* so RPC will send a reply
*/
return((void *) ¬null);

}

A procedure must return a non-NULL pointer when it wants RPC library routines to
send a reply.

In Code Example 3–23, if the procedure reply_if_nfsserver() is defined to
return non void values, the return value (¬null) should point to a static variable.

Port Monitor Support
Port monitors such as inetd and listen can monitor network addresses for
specified RPC services. When a request arrives for a particular service, the port
monitor spawns a server process. After the call has been serviced, the server can exit.
This technique conserves system resources. The main server function generated by
rpcgen allows invocation by inetd . See “Using inetd ” on page 109“for details.

50 ONC+ Developer’s Guide ♦ , 1998

It may be useful for services to wait for a specified interval after satisfying a service
request, in case another request follows. If there is no call in the specified time, the
server exits, and some port monitors, like inetd , continue to monitor for the server.
If a later request for the service occurs, the port monitor gives the request to a
waiting server process (if any), rather than spawning a new process.

Note - When monitoring for a server, some port monitors, like listen() , always
spawn a new process in response to a service request. If a server is used with such a
monitor, it should exit immediately on completion.

By default, services created using rpcgen wait for 120 seconds after servicing a
request before exiting. The programmer can change the interval with the −K flag. In
this example,

$ rpcgen -K 20 proto.x

the server waits for 20 seconds before exiting. To create a server that exits
immediately, zero value can be used for the interval period:

$ rpcgen -K 0 proto.x.

To create a server that never exits, the value is −K -1 .

Time-out Changes
After sending a request to the server, a client program waits for a default period (25
seconds) to receive a reply. This time-out may be changed using the
clnt_control() routine. See “Standard Interfaces ” on page 66, for additional
uses of the clnt_control() routine. See also the rpc(3N) manpage. When
considering time-out periods, be sure to allow the minimum amount of time required
for “round-trip” communications over the network. Code Example 3–24 illustrates
the use of clnt_control() .

CODE EXAMPLE 3–24 clnt_control Routine

struct timeval tv;
CLIENT *clnt;
clnt = clnt_create("somehost", SOMEPROG,

SOMEVERS, "visible");

if (clnt == (CLIENT *)NULL)
exit(1);

tv.tv_sec = 60; /* change time-out to
* 60 seconds
*/

tv.tv_usec = 0;
clnt_control(clnt, CLSET_TIMEOUT, &tv);

rpcgen Programming Guide 51

Client Authentication
The client create routines do not have any facilities for client authentication. Some
clients may have to authenticate themselves to the server.

The following example illustrates one of the least secure authentication methods in
common use. See “Authentication ” on page 91 and “Authentication Using
RPCSEC_GSS” on page 98, for information on more secure authentication techniques.

CODE EXAMPLE 3–25 AUTH_SYS Authentication Program

CLIENT *clnt;
clnt = clnt_create("somehost", SOMEPROG,

SOMEVERS, "visible");
if (clnt != (CLIENT *)NULL) {

/* To set AUTH_SYS style authentication */
clnt->cl_auth = authsys_createdefault();

}

Authentication information is important to servers that have to achieve some level of
security. This extra information is supplied to the server as a second argument.

Code Example 3–26is a server that checks client authentication data. It is modified
from printmessage_1() in “An rpcgen Tutorial” on page 23 and only allows
superusers to print a message to the console.

CODE EXAMPLE 3–26 printmsg_1 for Superuser

int *
printmessage_1(msg, req)

char **msg;
struct svc_req *req;

{
static int result; /* Must be static */
FILE *f;
struct authsys_parms *aup;

aup = (struct authsys_parms *)req->rq_clntcred;
if (aup->aup_uid != 0) {

result = 0;
return (&result)

}

/* Same code as before. */
}

Dispatch Tables
It is sometimes useful for programs to have access to dispatch tables used by the
RPC package. For example, the server dispatch routine may check authorization and
then invoke the service routine; or a client library may deal with the details of
storage management and XDR data conversion.

52 ONC+ Developer’s Guide ♦ , 1998

When invoked with the −T option, rpcgen generates RPC dispatch tables for each
program defined in the protocol description file, proto.x , in the file proto_tbl.i .
The suffix.i stands for “index.” rpcgen may be invoked with the −t option to build
only the header file. rpcgen cannot be invoked in C-style mode (−N) with either the
−T or −t flag.

Each entry in the dispatch table is a struct rpcgen_table , defined in the header
file proto.h as follows:

struct rpcgen_table {
char *(*proc)();
xdrproc_t xdr_arg;
unsigned len_arg;
xdrproc_t xdr_res;
xdrproc_t len_res

};

where:

proc is a pointer to the service routine

xdr_arg is a pointer to the input (argument) xdr routine

len_arg is the length in bytes of the input argument

xdr_res is a pointer to the output (result) xdr routine

len_res is the length in bytes of the output result

The table, named dirprog_1_table for the dir.x example, is indexed by
procedure number. The variable dirprog_1_nproc contains the number of entries in the
table.

An example of how to locate a procedure in the dispatch tables is shown by the
routine find_proc() :

CODE EXAMPLE 3–27 Using a Dispatch Table

struct rpcgen_table *
find_proc(proc)

rpcproc_t proc;
{

if (proc >= dirprog_1_nproc)
/* error */

else
return (&dirprog_1_table[proc]);

}

Each entry in the dispatch table contains a pointer to the corresponding service
routine. However, that service routine is usually not defined in the client code. To
avoid generating unresolved external references, and to require only one source file
for the dispatch table, the rpcgen service routine initializer is
RPCGEN_ACTION(proc_ver) .

This way, the same dispatch table can be included in both the client and the server.
Use the following define statement when compiling the client:

rpcgen Programming Guide 53

#define RPCGEN_ACTION(routine) 0

And use the following define when writing the server:

#define RPCGEN_ACTION(routine)routine

64–bit Considerations for rpcgen
Note that in Code Example 3–27proc is declared as type rpcproc_t . Formerly, RPC
programs, versions, procedures, and ports were declared to be of type u_long . On a
32–bit machine, a u_long is a four–byte quantity (as is an int); on a 64–bit system,
a u_long is an eight-byte quantity. The data types rpcprog_t , rpcvers_t ,
rpc_proc_t , and rpcport_t – introduced in Solaris 7 – should be used whenever
possible in declaring RPC programs, versions, procedures, and ports in place of both
u_long and long . The reason is that these newer types provide backwards
compatibility with 32–bit systems; they’re guaranteed to be four–byte quantities no
matter which system rpcgen is run on. While rpcgen programs using
u_long versions of programs, versions, and procedures will still run, they may have
different consequences on 32– and 64–bit machines. For that reason it is a good idea
to replace them with the appropriate newer data types. In fact, it is a good idea to
avoid using long and u_long whenever possible (see the note below).

Beginning with Solaris 7, source files created byrpcgen , containing XDR routines,
use different inline macros depending on whether the code is to run on a 32– or
64–bit machine – specifically, it uses the IXDR_GET_INT32() and
IXDR_PUT_INT32() macros instead of IXDR_GETLONG() and IXDR_PUTLONG().
For example, if the rpcgen source file foo.x contains the following code

struct foo {
char c;
int i1;
int i2;
int i3;
long l;
short s;

};

the resulting foo_xdr.c file will ensure that the correct inline macro is used:

#if defined(_LP64) || defined(_KERNEL)
register int *buf;

#else
register long *buf;

#endif

. . .

#if defined(_LP64) || defined(_KERNEL)
IXDR_PUT_INT32(buf, objp->i1);
IXDR_PUT_INT32(buf, objp->i2);
IXDR_PUT_INT32(buf, objp->i3);
IXDR_PUT_INT32(buf, objp->l);
IXDR_PUT_SHORT(buf, objp->s);

#else

54 ONC+ Developer’s Guide ♦ , 1998

IXDR_PUT_LONG(buf, objp->i1);
IXDR_PUT_LONG(buf, objp->i2);
IXDR_PUT_LONG(buf, objp->i3);
IXDR_PUT_LONG(buf, objp->l);
IXDR_PUT_SHORT(buf, objp->s);

#endif

Note that the code declares buf to be either int or long , depending on whether the
machine is 64– or 32–bit.

Note - Currently, data types transported via RPC are limited in size to four-byte
quantities (32 bits). The eight-byte long is provided to allow applications to make
maximum use of 64–bit architecture. However, programmers should avoid using
long s, and functions that use long s, such as x_putlong() , in favor of int s
whenever possible. (As noted above, RPC programs, versions, procedures, and ports
have their own dedicated types.) The reason is that xdr_long() will fail if the data
value is not between INT32_MIN and INT32_MAX – or the data could be truncated if
inline macros such as IXDR_GET_LONG() and IXDR_PUT_LONG() are used. (The
same applies for u_long s.) See also the xdr_long (3N) man page.

Debugging Applications
You can simplify the testing and debugging process. First test the client program and
the server procedure in a single process by linking them with each other rather than
with the client and server skeletons. Comment out calls to the client create RPC
library routines (see the rpc_clnt_create(3N) manpage) and the authentication
routines. Do not link with libnsl.

Link the procedures from previous example by:

cc rls.c dir_clnt.c dir_proc.c -o rls

With the RPC and XDR functions commented out, the procedure calls execute as
ordinary local function calls, and the program is debugged with a local debugger
such as dbxtool . When the program works, the client program is linked to the
client skeleton produced by rpcgen and the server procedures are linked to the
server skeleton produced by rpcgen .

You can also use the Raw RPC mode to test the XDR routines. See “Testing Programs
Using Low-level Raw RPC ” on page 81 for details.

There are two kinds of errors that can happen in an RPC call. The first kind of error
is caused by a problem with the mechanism of the remote procedure calls. Examples
of these are (1) the procedure is not available, (2) the remote server is not
responding, and (3) the remote server is unable to decode the arguments. In Code
Example 3–26, an RPC error happens if result is NULL. The reason for the failure

rpcgen Programming Guide 55

can be displayed by using clnt_perror() , or an error string can be returned
through clnt_sperror() .

The second type of error is caused by the server itself. In Code Example 3–26, an
error can be returned by opendir() . The handling of these errors is application
specific and is the responsibility of the programmer.

Note that the mechanism illustrated by the paragraphs above does not function with
the −C option because of the _svc suffix added to the server-side routines.

56 ONC+ Developer’s Guide ♦ , 1998

CHAPTER 4

The Programmer’s Interface to RPC

This chapter addresses the C interface to RPC and describes how to write network
applications using RPC. For a complete specification of the routines in the RPC
library, see the rpc (3N) and related man pages.

� “ Simplified Interface ” on page 58

� “Standard Interfaces ” on page 66

� “Testing Programs Using Low-level Raw RPC ” on page 81

� “Advanced RPC Programming Techniques ” on page 84

� “Multithreaded RPC Programming” on page 115

� “MT Auto Mode” on page 121

� “MT User Mode” on page 125

� “Porting From TS-RPC to TI-RPC” on page 136

RPC Is Multithread Safe
The client and server interfaces described in this chapter are multithread safe, except
where noted (such as raw mode). This means that applications that contain RPC
function calls can be used freely in a multithreaded application.

57

Simplified Interface
The simplified interface is the easiest level to use because it does not require the use
of any other RPC routines. It also limits control of the underlying communications
mechanisms. Program development at this level can be rapid, and is directly
supported by the rpcgen compiler. For most applications, rpcgen and its facilities
are sufficient.

Some RPC services are not available as C functions, but they are available as RPC
programs. The simplified interface library routines provide direct access to the RPC
facilities for programs that do not require fine levels of control. Routines such as
rusers() are in the RPC services library librpcsvc. Code Example 4–1 is a program
that displays the number of users on a remote host. It calls the RPC library routine,
rusers() .

CODE EXAMPLE 4–1 rusers Program

#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>
#include <stdio.h>

/*
* a program that calls the
* rusers() service
*/

main(argc, argv)
int argc;
char **argv;

{
int num;

if (argc != 2) {
fprintf(stderr, "usage: %s hostname\n",

argv[0]);
exit(1);

}
if ((num = rnusers(argv[1])) < 0) {

fprintf(stderr, "error: rusers\n");
exit(1);

}
fprintf(stderr, "%d users on %s\n", num,

argv[1]);
exit(0);

}

Compile the program in Code Example 4–1 with:

cc program .c -lrpcsvc -lnsl

58 ONC+ Developer’s Guide ♦ , 1998

Client
There is just one function on the client side of the simplified interface: rpc_call() .
It has nine parameters:

int 0 or error code
rpc_call (

char *host /* Name of server host */
rpcprog_t prognum /* Server program number */
rpcvers_t versnum /* Server version number */
rpcproc_t procnum /* Server procedure number */
xdrproc_t inproc /* XDR filter to encode arg */
char *in /* Pointer to argument */
xdr_proc_t outproc /* Filter to decode result */
char *out /* Address to store result */
char *nettype /* For transport selection */

);

This function calls the procedure specified by prognum, versum, and procnum on the
host. The argument to be passed to the remote procedure is pointed to by the in
parameter, and inproc is the XDR filter to encode this argument. The out parameter is
an address where the result from the remote procedure is to be placed. outproc is an
XDR filter which will decode the result and place it at this address.

The client blocks on rpc_call() until it receives a reply from the server. If the
server accepts, it returns RPC_SUCCESSwith the value of zero. It will return a
non-zero value if the call was unsuccessful. This value can be cast to the type
clnt_stat , an enumerated type defined in the RPC include files and interpreted by
the clnt_sperrno() function. This function returns a pointer to a standard RPC
error message corresponding to the error code.

In the example, all “visible” transports listed in /etc/netconfig are tried.
Adjusting the number of retries requires use of the lower levels of the RPC library.

Multiple arguments and results are handled by collecting them in structures.

The example in Code Example 4–1, changed to use the simplified interface, looks like
Code Example 4–2.

CODE EXAMPLE 4–2 rusers Program Using Simplified Interface

#include <stdio.h>
#include <utmp.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>

/* a program that calls the RUSERSPROG
* RPC program
*/

main(argc, argv)
int argc;
char **argv;

(continued)

The Programmer’s Interface to RPC 59

(Continuation)

{
unsigned int nusers;
enum clnt_stat cs;

if (argc != 2) {
fprintf(stderr, "usage: rusers hostname\n");
exit(1);

}
if(cs = rpc_call(argv[1], RUSERSPROG,

RUSERSVERS, RUSERSPROC_NUM, xdr_void,
(char *)0, xdr_u_int, (char *)&nusers,
"visible") != RPC_SUCCESS) {

clnt_perrno(cs);
exit(1);
}

fprintf(stderr, "%d users on %s\n", nusers,
argv[1]);

exit(0);
}

Since data types may be represented differently on different machines, rpc_call()
needs both the type of, and a pointer to, the RPC argument (similarly for the result).
For RUSERSPROC_NUM, the return value is an unsigned int , so the first return
parameter of rpc_call() is xdr_u_int (which is for an unsigned int) and the
second is &nusers (which points to unsigned int storage). Because
RUSERSPROC_NUMhas no argument, the XDR encoding function of rpc_call() is
xdr_void() and its argument is NULL.

Server
The server program using the simplified interface is very straightforward. It simply
calls rpc_reg() to register the procedure to be called, and then it calls svc_run() ,
the RPC library’s remote procedure dispatcher, to wait for requests to come in.

rpc_reg() has the following arguments:

rpc_reg (
rpcprog_t prognum /* Server program number */
rpcvers_t versnum /* Server version number */
rpcproc_t procnum /* server procedure number */
char *procname /* Name of remote function */
xdrproc_t inproc /* Filter to encode arg */
xdrproc_t outproc /* Filter to decode result */
char *nettype /* For transport selection */

);

60 ONC+ Developer’s Guide ♦ , 1998

svc_run() invokes service procedures in response to RPC call messages. The
dispatcher in rpc_reg() takes care of decoding remote procedure arguments and
encoding results, using the XDR filters specified when the remote procedure was
registered. Some notes about the server program:

� Most RPC applications follow the naming convention of appending a _1 to the
function name. The sequence _n is added to the procedure names to indicate the
version number n of the service.

� The argument and result are passed as addresses. This is true for all functions that
are called remotely. If you pass NULL as a result of a function, then no reply is sent
to the client. It is assumed that there is no reply to send.

� The result must exist in static data space because its value is accessed after the
actual procedure has exited. The RPC library function that builds the RPC reply
message accesses the result and sends the value back to the client.

� Only a single argument is allowed. If there are multiple elements of data, they
should be wrapped inside a structure which can then be passed as a single entity.

� The procedure is registered for each transport of the specified type. If the type
parameter is (char *)NULL , the procedure is registered for all transports
specified in NETPATH.

Hand-Coded Registration Routine
You can sometimes implement faster or more compact code than can rpcgen .
rpcgen handles the generic code-generation cases. The following program is an
example of a hand-coded registration routine. It registers a single procedure and
enters svc_run() to service requests. Hand-Coded Registration Server

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>
void *rusers();

main()
{

if(rpc_reg(RUSERSPROG, RUSERSVERS,
RUSERSPROC_NUM, rusers,
xdr_void, xdr_u_int,
"visible") == -1) {

fprintf(stderr, "Couldn’t Register\n");
exit(1);

}
svc_run(); /* Never returns */
fprintf(stderr, "Error: svc_run

returned!\n");
exit(1);

(continued)

The Programmer’s Interface to RPC 61

(Continuation)

}

rpc_reg() can be called as many times as is needed to register different programs,
versions, and procedures.

Passing Arbitrary Data Types
Data types passed to and received from remote procedures can be any of a set of
predefined types, or can be programmer-defined types. RPC handles arbitrary data
structures, regardless of different machines’ byte orders or structure layout
conventions, by always converting them to a standard transfer format called external
data representation (XDR) before sending them over the transport. The conversion
from a machine representation to XDR is called serializing, and the reverse process is
called deserializing.

The translator arguments of rpc_call() and rpc_reg() can specify an XDR
primitive procedure, like xdr_u_int() , or a programmer-supplied routine that
processes a complete argument structure. Argument processing routines must take
only two arguments: a pointer to the result and a pointer to the XDR handle.

TABLE 4–1 XDR Primitive Type Routines

XDR Primitive Routines

xdr_int() xdr_netobj() xdr_u_long() xdr_enum()

xdr_long() xdr_float() xdr_u_int() xdr_bool()

xdr_short() xdr_double() xdr_u_short() xdr_wrapstring()

xdr_char() xdr_quadruple() xdr_u_char() xdr_void()

xdr_hyper() xdr_u_hyper()

For the convenience of ANSI C programmers who are accustomed to the fixed-width
integer types found in int_types.h , the routines xdr_char() , xdr_short() ,
xdr_int() , and xdr_hyper() (and the unsigned versions of each) have
equivalent functions with names familiar to ANSI C, as indicated in Table 4–2.

62 ONC+ Developer’s Guide ♦ , 1998

TABLE 4–2 Primitive Type Equivalences

Function Equivalent

xdr_char() xdr_int8_t()

xdr_u_char() xdr_u_int8_t()

xdr_short() xdr_int16_t()

xdr_u_short() xdr_u_int16_t()

xdr_int() xdr_int32_t()

xdr_u_int() xdr_u_int32_t()

xdr_hyper() xdr_int64_t()

xdr_u_hyper() xdr_u_int64_t()

The nonprimitive xdr_string() , which takes more than two parameters, is called
from xdr_wrapstring() .

For an example of a programmer-supplied routine, the structure:

struct simple {
int a;
short b;

} simple;

contains the calling arguments of a procedure. The XDR routine xdr_simple()
translates the argument structure as shown in Code Example 4–3.

CODE EXAMPLE 4–3 xdr_simple Routine

#include <rpc/rpc.h>
#include "simple.h"

bool_t
xdr_simple(xdrsp, simplep)

XDR *xdrsp;

(continued)

The Programmer’s Interface to RPC 63

(Continuation)

struct simple *simplep;
{

if (!xdr_int(xdrsp, &simplep->a))
return (FALSE);

if (!xdr_short(xdrsp, &simplep->b))
return (FALSE);

return (TRUE);
}

An equivalent routine can be generated automatically by rpcgen .

An XDR routine returns nonzero (a C TRUE) if it completes successfully, and zero
otherwise. A complete description of XDR is provided in Appendix C."

TABLE 4–3

Prefabricated Routines

xdr_array() xdr_bytes() xdr_reference()

xdr_vector() xdr_union() xdr_pointer()

xdr_string() xdr_opaque()

For example, to send a variable-sized array of integers, it is packaged in a structure
containing the array and its length:

struct varintarr {
int *data;
int arrlnth;

} arr;

Translate the array with xdr_varintarr() , as shown in Code Example 4–4.

CODE EXAMPLE 4–4 xdr_varintarr Syntax Use

bool_t
xdr_varintarr(xdrsp, arrp)

XDR *xdrsp;
struct varintarr *arrp;

{
return(xdr_array(xdrsp, (caddr_t)&arrp->data,

(u_int *)&arrp->arrlnth, MAXLEN,
sizeof(int), xdr_int));

}

64 ONC+ Developer’s Guide ♦ , 1998

The arguments of xdr_array() are the XDR handle, a pointer to the array, a pointer
to the size of the array, the maximum array size, the size of each array element, and
a pointer to the XDR routine to translate each array element. If the size of the array
is known in advance, use xdr_vector() , as shown in Code Example 4–5.

CODE EXAMPLE 4–5 xdr_vector Syntax Use

int intarr[SIZE];

bool_t
xdr_intarr(xdrsp, intarr)

XDR *xdrsp;
int intarr[];

{
return (xdr_vector(xdrsp, intarr, SIZE,

sizeof(int),
xdr_int));
}

XDR converts quantities to 4-byte multiples when serializing. For arrays of
characters, each character occupies 32 bits. xdr_bytes() packs characters. It has
four parameters similar to the first four parameters of xdr_array() .

Null-terminated strings are translated by xdr_string() . It is like xdr_bytes()
with no length parameter. On serializing it gets the string length from strlen() ,
and on deserializing it creates a null-terminated string.

Code Example 4–6 calls the built-in functions xdr_string() and
xdr_reference() , which translates pointers to pass a string, and struct simple
from the previous examples.

CODE EXAMPLE 4–6 xdr_reference Syntax Use

struct finalexample {
char *string;
struct simple *simplep;

} finalexample;

bool_t
xdr_finalexample(xdrsp, finalp)

XDR *xdrsp;
struct finalexample *finalp;

{
if (!xdr_string(xdrsp, &finalp->string,

MAXSTRLEN))
return (FALSE);

if (!xdr_reference(xdrsp, &finalp->simplep,
sizeof(struct simple), xdr_simple))

return (FALSE);
return (TRUE);

}

Note that xdr_simple() could have been called here instead of
xdr_reference() .

The Programmer’s Interface to RPC 65

Standard Interfaces
Interfaces to standard levels of the RPC package provide increasing control over RPC
communications. Programs that use this control are more complex. Effective
programming at these lower levels requires more knowledge of computer network
fundamentals. The top, intermediate, expert, and bottom levels are part of the
standard interfaces.

This section shows how to control RPC details by using lower levels of the RPC
library. For example, you can select the transport protocol, which can be done at the
simplified interface level only through the NETPATHvariable. You should be familiar
with the TLI in order to use these routines.

The routines shown in Table 4–4 cannot be used through the simplified interface
because they require a transport handle. For example, there is no way to allocate and
free memory while serializing or deserializing with XDR routines at the simplified
interface.

TABLE 4–4 XDR Routines Requiring a Transport Handle

Do Not Use With Simplified Interface

clnt_call() clnt_destroy() clnt_control()

clnt_perrno() clnt_pcreateerror() clnt_perror()

svc_destroy()

Top Level Interface
At the top level, the application can specify the type of transport to use but not the
specific transport. This level differs from the simplified interface in that the
application creates its own transport handles, in both the client and server.

Client
Assume the header file in Code Example 4–7.

66 ONC+ Developer’s Guide ♦ , 1998

CODE EXAMPLE 4–7 time_prot.h Header File

/* time_prot.h */
#include <rpc/rpc.h>
#include <rpc/types.h>

struct timev {
int second;
int minute;
int hour;

};
typedef struct timev timev;
bool_t xdr_timev();

#define TIME_PROG 0x40000001
#define TIME_VERS 1
#define TIME_GET 1

Code Example 4–8 shows the client side of a trivial date service using top-level
service routines. The transport type is specified as an invocation argument of the
program.

CODE EXAMPLE 4–8 Client for Trivial Date Service

#include <stdio.h>
#include "time_prot.h"

#define TOTAL (30)
/*

* Caller of trivial date service
* usage: calltime hostname
*/

main(argc, argv)
int argc;
char *argv[];

{
struct timeval time_out;
CLIENT *client;
enum clnt_stat stat;
struct timev timev;
char *nettype;

if (argc != 2 && argc != 3) {
fprintf(stderr,’’usage:%s host[nettype]\n’’

,argv[0]);
exit(1);

}
if (argc == 2)

nettype = "netpath"; /* Default */
else

nettype = argv[2];

(continued)

The Programmer’s Interface to RPC 67

(Continuation)

client = clnt_create(argv[1], TIME_PROG,
TIME_VERS, nettype);

if (client == (CLIENT *) NULL) {
clnt_pcreateerror(‘‘Couldn’t create client’’);
exit(1);

}
time_out.tv_sec = TOTAL;
time_out.tv_usec = 0;
stat = clnt_call(client, TIME_GET,

xdr_void, (caddr_t)NULL,
xdr_timev, (caddr_t)&timev,
time_out);

if (stat != RPC_SUCCESS) {
clnt_perror(client, "Call failed");
exit(1);

}
fprintf(stderr,"%s: %02d:%02d:%02d GMT\n",

nettype timev.hour, timev.minute,
timev.second);

(void) clnt_destroy(client);
exit(0);

}

If nettype is not specified in the invocation of the program, the string netpath is
substituted. When RPC libraries routines encounter this string, the value of the
NETPATHenvironment variable governs transport selection.

If the client handle cannot be created, display the reason for the failure with
clnt_pcreateerror() , or get the error status by reading the contents of the
global variable rpc_createerr.

After the client handle is created, clnt_call() is used to make the remote call. Its
arguments are the remote procedure number, an XDR filter for the input argument,
the argument pointer, an XDR filter for the result, the result pointer, and the time-out
period of the call. The program has no arguments, so xdr_void() is specified.
Clean up by calling clnt_destroy() .

In the above example, if the programmer wished to bound the time allowed for client
handle creation to thirty seconds, the call to clnt_create() should be replaced
with a call to clnt_create_timed() as shown in the following code segment:

struct timeval timeout;
timeout.tv_sec = 30; /* 30 seconds */
timeout.tv_usec = 0;

client = clnt_create_timed(argv[1],
TIME_PROG, TIME_VERS, nettype,
&timeout);

68 ONC+ Developer’s Guide ♦ , 1998

Code Example 4–9 shows a top-level implementation of a server for the trivial date
service.

CODE EXAMPLE 4–9 Server for Trivial Date Service

#include <stdio.h>
#include <rpc/rpc.h>
#include "time_prot.h"

static void time_prog();

main(argc,argv)
int argc;
char *argv[];

{
int transpnum;
char *nettype;

if (argc > 2) {

fprintf(stderr, "usage: %s [nettype]\n",
argv[0]);

exit(1);
}
if (argc == 2)

nettype = argv[1];
else

nettype = "netpath"; /* Default */
transpnum =

svc_create(time_prog,TIME_PROG,TIME_VERS,nettype);
if (transpnum == 0) {

fprintf(stderr,’’%s: cannot create %s service.\n’’,
argv[0], nettype);

exit(1);
}
svc_run();

}

/*
* The server dispatch function
*/

static void
time_prog(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
struct timev rslt;
time_t thetime;

switch(rqstp->rq_proc) {
case NULLPROC:

svc_sendreply(transp, xdr_void, NULL);
return;

case TIME_GET:
break;

default:

(continued)

The Programmer’s Interface to RPC 69

(Continuation)

svcerr_noproc(transp);
return;

}
thetime = time((time_t *) 0);
rslt.second = thetime % 60;
thetime /= 60;
rslt.minute = thetime % 60;
thetime /= 60;
rslt.hour = thetime % 24;
if (!svc_sendreply(transp, xdr_timev, &rslt)) {

svcerr_systemerr(transp);
}

}

svc_create() returns the number of transports on which it created server handles.
time_prog() is the service function called by svc_run() when a request specifies
its program and version numbers. The server returns the results to the client through
svc_sendreply() .

When rpcgen is used to generate the dispatch function, svc_sendreply() is
called after the procedure returns, so rslt (in this example) must be declared static
in the actual procedure. svc_sendreply() is called from inside the dispatch
function, so rslt is not declared static .

In this example, the remote procedure takes no arguments. When arguments must be
passed, the calls:

svc_getargs(SVCXPRT_handle, XDR_filter, argument_pointer);
svc_freeargs(SVCXPRT_handle, XDR_filter argument_pointer);

fetch, deserialize (XDR decode), and free the arguments.

Intermediate Level Interface
At the intermediate level, the application directly chooses the transport to use.

Client
Code Example 4–10 shows the client side of the time service from “Top Level
Interface” on page 66, written at the intermediate level of RPC. In this example, the
user must name the transport over which the call is made on the command line.

70 ONC+ Developer’s Guide ♦ , 1998

CODE EXAMPLE 4–10 Client for Time Service, Intermediate Level

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h> /* For netconfig structure */
#include "time_prot.h"

#define TOTAL (30)

main(argc,argv)
int argc;
char *argv[];

{
CLIENT *client;
struct netconfig *nconf;
char *netid;
/* Declarations from previous example */

if (argc != 3) {
fprintf(stderr, "usage: %s host netid\n’’,

argv[0]);
exit(1);

}
netid = argv[2];
if ((nconf = getnetconfigent(netid)) ==

(struct netconfig *) NULL) {
fprintf(stderr, "Bad netid type: %s\n",

netid);
exit(1);

}
client = clnt_tp_create(argv[1], TIME_PROG,

TIME_VERS, nconf);
if (client == (CLIENT *) NULL) {

clnt_pcreateerror("Could not create client");
exit(1);

}
freenetconfigent(nconf);

/* Same as previous example after this point */
}

In this example, the netconfig structure is obtained by a call to
getnetconfigent(netid) . (See the getnetconfig (3N)man page and Transport
Interfaces Programming Guide for more details.) At this level, the program explicitly
selects the network.

In the above example, if the programmer wished to bound the time allowed for client
handle creation to thirty seconds, the call to clnt_tp_create() should be replaced
with a call to clnt_tp_create_timed() as shown in the following code segment:

struct timeval timeout;
timeout.tv_sec = 30; /* 30 seconds */
timeout.tv_usec = 0;

The Programmer’s Interface to RPC 71

client = clnt_tp_create_timed(argv[1],
TIME_PROG, TIME_VERS, nconf,
&timeout);

Server

Code Example 4–11 shows the corresponding server. The command line that starts
the service must specify the transport over which the service is provided.

CODE EXAMPLE 4–11 Server for Time Service, Intermediate Level

/*
* This program supplies Greenwich mean
* time to the client that invokes it.
* The call format is: server netid
*/

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h> /* For netconfig structure */
#include "time_prot.h"

static void time_prog();

main(argc, argv)
int argc;
char *argv[];

{
SVCXPRT *transp;
struct netconfig *nconf;

if (argc != 2) {
fprintf(stderr, "usage: %s netid\n",

argv[0]);
exit(1);

}
if ((nconf = getnetconfigent(argv[1])) ==

(struct netconfig *) NULL) {
fprintf(stderr, "Could not find info on %s\n",

argv[1]);
exit(1);

}
transp = svc_tp_create(time_prog, TIME_PROG,

TIME_VERS, nconf);
if (transp == (SVCXPRT *) NULL) {

fprintf(stderr, "%s: cannot create
%s service\n", argv[0], argv[1]);

exit(1)
}
freenetconfigent(nconf);
svc_run();

}

static
void time_prog(rqstp, transp)

(continued)

72 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

struct svc_req *rqstp;
SVCXPRT *transp;

{
/* Code identical to Top Level version */

Expert Level Interface
At the expert level, network selection is done the same as at the intermediate level.
The only difference is in the increased level of control that the application has over
the details of the CLIENT and SVCXPRThandles. These examples illustrate this
control, which is exercised using the clnt_tli_create() and
svc_tli_create() routines. For more information on TLI, see Transport Interfaces
Programming Guide.

Client
Code Example 4–12 shows a version of clntudp_create() (the client creation
routine for UDP transport) using clnt_tli_create() . The example shows how to
do network selection based on the family of the transport you choose.
clnt_tli_create() is used to create a client handle and to:

� Pass an open TLI file descriptor, which may or may not be bound

� Pass the server’s address to the client

� Specify the send and receive buffer size

CODE EXAMPLE 4–12 Client for RPC Lower Level

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>
#include <netinet/in.h>
/*

* In earlier implementations of RPC,
* only TCP/IP and UDP/IP were supported.
* This version of clntudp_create()
* is based on TLI/Streams.
*/

CLIENT *
clntudp_create(raddr, prog, vers, wait, sockp)

struct sockaddr_in *raddr; /* Remote address */
rpcprog_t prog; /* Program number */

(continued)

The Programmer’s Interface to RPC 73

(Continuation)

prcvers_t vers; /* Version number */
struct timeval wait; /* Time to wait */
int *sockp; /* fd pointer */

{
CLIENT *cl; /* Client handle */
int madefd = FALSE; /* Is fd opened here */
int fd = *sockp; /* TLI fd */
struct t_bind *tbind; /* bind address */
struct netconfig *nconf; /* netconfig structure */
void *handlep;

if ((handlep = setnetconfig()) == (void *) NULL) {
/* Error starting network configuration */
rpc_createerr.cf_stat = RPC_UNKNOWNPROTO;
return((CLIENT *) NULL);

}
/*

* Try all the transports until it gets one that is
* connectionless, family is INET, and preferred name is UDP
*/

while (nconf = getnetconfig(handlep)) {
if ((nconf->nc_semantics == NC_TPI_CLTS) &&

(strcmp(nconf->nc_protofmly, NC_INET) == 0) &&
(strcmp(nconf->nc_proto, NC_UDP) == 0))

break;
}
if (nconf == (struct netconfig *) NULL)

rpc_createerr.cf_stat = RPC_UNKNOWNPROTO;
goto err;

}
if (fd == RPC_ANYFD) {

fd = t_open(nconf->nc_device, O_RDWR, &tinfo);
if (fd == -1) {

rpc_createerr.cf_stat = RPC_SYSTEMERROR;
goto err;

}
}
if (raddr->sin_port == 0) { /* remote addr unknown */

u_short sport;
/*

* rpcb_getport() is a user-provided routine that calls
* rpcb_getaddr and translates the netbuf address to port
* number in host byte order.
*/

sport = rpcb_getport(raddr, prog, vers, nconf);
if (sport == 0) {

rpc_createerr.cf_stat = RPC_PROGUNAVAIL;
goto err;

}
raddr->sin_port = htons(sport);

}
/* Transform sockaddr_in to netbuf */
tbind = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);

(continued)

74 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

if (tbind == (struct t_bind *) NULL)
rpc_createerr.cf_stat = RPC_SYSTEMERROR;
goto err;

}
if (t_bind->addr.maxlen < sizeof(struct sockaddr_in))

goto err;
(void) memcpy(tbind->addr.buf, (char *)raddr,

sizeof(struct sockaddr_in));
tbind->addr.len = sizeof(struct sockaddr_in);
/* Bind fd */
if (t_bind(fd, NULL, NULL) == -1) {

rpc_createerr.ct_stat = RPC_TLIERROR;
goto err;

}
cl = clnt_tli_create(fd, nconf, &(tbind->addr), prog, vers,

tinfo.tsdu, tinfo.tsdu);
/* Close the netconfig file */
(void) endnetconfig(handlep);
(void) t_free((char *) tbind, T_BIND);
if (cl) {

*sockp = fd;
if (madefd == TRUE) {

/* fd should be closed while destroying the handle */
(void)clnt_control(cl,CLSET_FD_CLOSE, (char *)NULL);

}
/* Set the retry time */
(void) clnt_control(l, CLSET_RETRY_TIMEOUT,

(char *) &wait);
return(cl);

}
err:

if (madefd == TRUE)
(void) t_close(fd);

(void) endnetconfig(handlep);
return((CLIENT *) NULL);

}

The network is selected using setnetconfig() , getnetconfig() , and
endnetconfig() .

Note - endnetconfig() is not called until after the call to clnt_tli_create() ,
near the end of the example.

clntudp_create() can be passed an open TLI fd. If passed none
(fd == RPC_ANYFD), it opens its own using the netconfig structure for UDP to
find the name of the device to pass to t_open() .

If the remote address is not known (raddr->sin_port == 0), it is obtained from
the remote rpcbind .

The Programmer’s Interface to RPC 75

After the client handle has been created, you can modify it using calls to
clnt_control() . The RPC library closes the file descriptor when destroying the
handle (as it does with a call to clnt_destroy() when it opens the fd itself) and
sets the retry time-out period.

Server
Code Example 4–13 shows the server side of Code Example 4–12. It is called
svcudp_create() . The server side uses svc_tli_create() .

svc_tli_create() is used when the application needs a fine degree of control,
particularly to:

� Pass an open file descriptor to the application.

� Pass the user’s bind address.

� Set the send and receive buffer sizes. The fd argument may be unbound when
passed in. If it is, then it is bound to a given address, and the address is stored in
a handle. If the bind address is set to NULL and the fd is initially unbound, it will
be bound to any suitable address.

Use rpcb_set() to register the service with rpcbind.

CODE EXAMPLE 4–13 Server for RPC Lower Level

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>
#include <netinet/in.h>

SVCXPRT *
svcudp_create(fd)

register int fd;
{

struct netconfig *nconf;
SVCXPRT *svc;
int madefd = FALSE;
int port;
void *handlep;
struct t_info tinfo;

/* If no transports available */
if ((handlep = setnetconfig()) == (void *) NULL) {

nc_perror("server");
return((SVCXPRT *) NULL);

}
/*

* Try all the transports until it gets one which is
* connectionless, family is INET and, name is UDP
*/

while (nconf = getnetconfig(handlep)) {
if ((nconf->nc_semantics == NC_TPI_CLTS) &&

(continued)

76 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

(strcmp(nconf->nc_protofmly, NC_INET) == 0)&&
(strcmp(nconf->nc_proto, NC_UDP) == 0))

break;
}
if (nconf == (struct netconfig *) NULL) {

endnetconfig(handlep);
return((SVCXPRT *) NULL);

}
if (fd == RPC_ANYFD) {

fd = t_open(nconf->nc_device, O_RDWR, &tinfo);
if (fd == -1) {

(void) endnetconfig();
return((SVCXPRT *) NULL);

}
madefd = TRUE;

} else
t_getinfo(fd, &tinfo);

svc = svc_tli_create(fd, nconf, (struct t_bind *) NULL,
tinfo.tsdu, tinfo.tsdu);

(void) endnetconfig(handlep);
if (svc == (SVCXPRT *) NULL) {

if (madefd)
(void) t_close(fd);

return((SVCXPRT *)NULL);
}
return (svc);

}

The network selection here is accomplished similar to clntudp_create() . The file
descriptor is not bound explicitly to a transport address because
svc_tli_create() does that.

svcudp_create() can use an open fd. It will open one itself using the selected
netconfig structure, if none is provided.

Bottom Level Interface
The bottom-level interface to RPC lets the application control all options.
clnt_tli_create() and the other expert-level RPC interface routines are based
on these routines. You rarely use these low-level routines.

Bottom-level routines create internal data structures, buffer management, RPC
headers, and so on. Callers of these routines, like the expert level routine
clnt_tli_create() , must initialize the cl_netid and cl_tp fields in the client
handle. For a created handle, cl_netid is the network identifier (for example udp) of
the transport and cl_tp is the device name of that transport (for example

The Programmer’s Interface to RPC 77

/dev/udp). The routines clnt_dg_create() and clnt_vc_create() set the
clnt_ops and cl_private fields.

Client
Code Example 4–14 shows calls to clnt_vc_create() and clnt_dg_create() .

CODE EXAMPLE 4–14 Client for Bottom Level

/*
* variables are:
* cl: CLIENT *
* tinfo: struct t_info returned from either t_open or t_getinfo
* svcaddr: struct netbuf *
*/
switch(tinfo.servtype) {

case T_COTS:
case T_COTS_ORD:

cl = clnt_vc_create(fd, svcaddr,
prog, vers, sendsz, recvsz);

break;
case T_CLTS:

cl = clnt_dg_create(fd, svcaddr,
prog, vers, sendsz, recvsz);

break;
default:

goto err;
}

These routines require that the file descriptor is open and bound. svcaddr is the
address of the server.

Server
Code Example 4–15 is an example of creating a bottom-level server.

CODE EXAMPLE 4–15 Server for Bottom Level

/*
* variables are:
* xprt: SVCXPRT *
*/

switch(tinfo.servtype) {
case T_COTS_ORD:
case T_COTS:

xprt = svc_vc_create(fd, sendsz, recvsz);

break;
case T_CLTS:

xprt = svc_dg_create(fd, sendsz, recvsz);

break;
default:

78 ONC+ Developer’s Guide ♦ , 1998

goto err;
}

Server Caching
svc_dg_enablecache() initiates service caching for datagram transports. Caching
should be used only in cases where a server procedure is a “once only” kind of
operation, because executing a cached server procedure multiple times will yield
different results.

svc_dg_enablecache(xprt, cache_size)
SVCXPRT *xprt;
unsigned int cache_size;

This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. A duplicate request cache is needed if the service
contains procedures with varying results. Once enabled, there is no way to disable
caching.

Low-Level Data Structures
The following are for reference only. The implementation may change.

First is the client RPC handle, defined in <rpc/clnt.h> . Low-level
implementations must provide and initialize one handle per connection, as shown in
Code Example 4–16.

CODE EXAMPLE 4–16 RPC Client Handle Structure

typedef struct {
AUTH *cl_auth; /* authenticator */
struct clnt_ops {

enum clnt_stat (*cl_call)(); /* call remote procedure */
void (*cl_abort)(); /* abort a call */
void (*cl_geterr)(); /* get specific error code */
bool_t (*cl_freeres)(); /* frees results */
void (*cl_destroy)(); /* destroy this structure */
bool_t (*cl_control)(); /* the ioctl() of rpc */

} *cl_ops;
caddrt_t cl_private; /* private stuff */
char *cl_netid; /* network token *l
char *cl_tp; /* device name */

} CLIENT;

The first field of the client-side handle is an authentication structure, defined in
<rpc/auth.h> . By default, it is set to AUTH_NONE. A client program must initialize
cl_auth appropriately, as shown in Code Example 4–17.

The Programmer’s Interface to RPC 79

CODE EXAMPLE 4–17 Client Authentication Handle

typedef struct {
struct opaque_auth ah_cred;
struct opaque_auth ah_verf;
union des_block ah_key;
struct auth_ops {

void (*ah_nextverf)();
int (*ah_marshal)(); /* nextverf & serialize */
int (*ah_validate)(); /* validate varifier */
int (*ah_refresh)(); /* refresh credentials */
void (*ah_destroy)(); /* destroy this structure */

} *ah_ops;
caddr_t ah_private;

} AUTH;

In the AUTHstructure, ah_cred contains the caller’s credentials, and ah_verf
contains the data to verify the credentials. See “Authentication ” on page 91 for
details.

Code Example 4–18 shows the server transport handle.

CODE EXAMPLE 4–18 Server Transport Handle

typedef struct {
int xp_fd;

#define xp_sock xp_fd
u_short xp_port; /* associated port number. Obsoleted */
struct xp_ops {

bool_t (*xp_recv)(); /* receive incoming requests */
enum xprt_stat (*xp_stat)(); /* get transport status */

bool_t (*xp_getargs)(); /* get arguments */
bool_t (*xp_reply)(); /* send reply */
bool_t (*xp_freeargs)(); /* free mem alloc for args */
void (*xp_destroy)(); /* destroy this struct */

} *xp_ops;
int xp_addrlen; /* length of remote addr. Obsolete */
char *xp_tp; /* transport provider device name */
char *xp_netid; /* network token */
struct netbuf xp_ltaddr; /* local transport address */
struct netbuf xp_rtaddr; /* remote transport address */
char xp_raddr[16]; /* remote address. Now obsoleted */
struct opaque_auth xp_verf; /* raw response verifier */
caddr_t xp_p1; /* private: for use by svc ops */
caddr_t xp_p2; /* private: for use by svc ops */
caddr_t xp_p3; /* private: for use by svc lib */

} SVCXPRT;

Table 4–5 shows the fields for the server transport handle.

80 ONC+ Developer’s Guide ♦ , 1998

TABLE 4–5 RPC Server Transport Handle Fields

xp_fd The file descriptor associated with the handle. Two or more server
handles can share the same file descriptor.

xp_netid The network identifier (e.g. udp) of the transport on which the handle
is created and xp_tp is the device name associated with that transport.

xp_ltaddr The server’s own bind address.

xp_rtaddr The address of the remote caller (and so may change from call to call).

xp_netid xp_tp
xp_ltaddr

Initialized by svc_tli_create() and other expert-level routines.

The rest of the fields are initialized by the bottom-level server routines
svc_dg_create() and svc_vc_create() .

For connection-oriented endpoints, the fields in Table 4–6 are not valid until a
connection has been requested and accepted for the server:

TABLE 4–6 RPC Connection-Oriented Endpoints

Fields Not Valid Until Connection Is Accepted

xp_fd xp_ops() xp_p1()

xp_p2 xp_verf() xp_tp()

xp_ltaddr xp_rtaddr() xp_netid()

Testing Programs Using Low-level Raw
RPC
There are two pseudo-RPC interface routines that bypass all the network software.
The routines shown in , clnt_raw_create() and svc_raw_create() , do not
use any real transport.

The Programmer’s Interface to RPC 81

Note - Do not use raw mode on production systems. Raw mode is intended as a
debugging aid only. Raw mode is not MT safe.

is compiled and linked using the following Makefile:

all: raw
CFLAGS += -g
raw: raw.o
cc -g -o raw raw.o -lnsl

CODE EXAMPLE 4–19 Simple Program Using Raw RPC

/*
* A simple program to increment a number by 1
*/

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpc/raw.h>
#define prognum 0x40000001
#define versnum 1
#define INCR 1

struct timeval TIMEOUT = {0, 0};
static void server();

main (argc, argv)
int argc;
char **argv;

{
CLIENT *cl;
SVCXPRT *svc;
int num = 0, ans;
int flag;

if (argc == 2)
num = atoi(argv[1]);
svc = svc_raw_create();

if (svc == (SVCXPRT *) NULL) {
fprintf(stderr, "Could not create server handle\n");
exit(1);

}
flag = svc_reg(svc, prognum, versnum, server,

(struct netconfig *) NULL);
if (flag == 0) {

fprintf(stderr, "Error: svc_reg failed.\n");
exit(1);

}
cl = clnt_raw_create(prognum, versnum);
if (cl == (CLIENT *) NULL) {

clnt_pcreateerror("Error: clnt_raw_create");
exit(1);

(continued)

82 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

}
if (clnt_call(cl, INCR, xdr_int, (caddr_t) &num, xdr_int,

(caddr_t) &ans, TIMEOUT)
!= RPC_SUCCESS) {

clnt_perror(cl, "Error: client_call with raw");
exit(1);

}
printf("Client: number returned %d\n", ans);
exit(0);

}

static void
server(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
int num;

fprintf(stderr, "Entering server procedure.\n");

switch(rqstp->rq_proc) {
case NULLPROC:

if (svc_sendreply(transp, xdr_void,
(caddr_t) NULL) == FALSE) {
fprintf(stderr, "error in null proc\n");
exit(1);

}
return;

case INCR:
break;

default:
svcerr_noproc(transp);
return;

}
if (!svc_getargs(transp, xdr_int, &num)) {

svcerr_decode(transp);
return;

}
fprintf(stderr, "Server procedure: about to increment.\n");

num++;
if (svc_sendreply(transp, xdr_int, &num) == FALSE) {

fprintf(stderr, "error in sending answer\n");
exit (1);

}
fprintf(stderr, "Leaving server procedure.\n");

}

Note the following points in :

� The server must be created before the client.

� svc_raw_create() has no parameters.

The Programmer’s Interface to RPC 83

� The server is not registered with rpcbind . The last parameter to svc_reg() is
(struct netconfig *) NULL, which means that it will not be registered with
rpcbind .

� svc_run() is not called.

� All the RPC calls occur within the same thread of control.

� The server-dispatch routine is the same as for normal RPC servers.

Advanced RPC Programming
Techniques
This section addresses areas of occasional interest to developers using the lower level
interfaces of the RPC package. The topics are:

� poll() on the server— how a server can call the dispatcher directly if calling
svc_run() is not feasible

� Broadcast RPC — how to use the broadcast mechanisms

� Batching —how to improve performance by batching a series of calls

� Authentication — what methods are available in this release

� Port monitors — how to interface with the inetd and listener port monitors

� Multiple program versions — how to service multiple program versions

poll() on the Server Side
This section applies only to servers running RPC in single-threaded (default) mode.

A process that services RPC requests and performs some other activity cannot always
call svc_run() . If the other activity periodically updates a data structure, the
process can set a SIGALRMsignal before calling svc_run() . This allows the signal
handler to process the data structure and return control to svc_run() when done.

A process can bypass svc_run() and access the dispatcher directly with the
svc_getreqset() call. Given the file descriptors of the transport endpoints
associated with the programs being waited on, the process can have its own poll()
that waits on both the RPC file descriptors and its own descriptors.

Code Example 4–20 shows svc_run() . svc_pollset is an array of pollfd
structures that is derived, through a call to __rpc_select_to_poll() , from
svc_fdset() . The array can change every time any RPC library routine is called,
because descriptors are constantly being opened and closed. svc_getreq_poll()

84 ONC+ Developer’s Guide ♦ , 1998

is called when poll() determines that an RPC request has arrived on some RPC file
descriptors.

Note - The functions __rpc_dtbsize() and __rpc_select_to_poll() are not
part of the SVID, but they are available in the libnsl library. The descriptions of these
functions are included here so that you may create versions of these functions for
non-Solaris implementations.

int __rpc_select_to_poll(int fdmax, fd_set *fdset,
struct pollfd *pollset)

Given an fd_set pointer and the number of bits to check in it, this function initializes
the supplied pollfd array for RPC’s use. RPC polls only for input events. The number
of pollfd slots that were initialized is returned.

int __rpc_dtbsize()

This function calls the getrlimit() function to determine the maximum value that
the system may assign to a newly created file descriptor. The result is cached for
efficiency.

For more information on the SVID routines in this section, see the
rpc_svc_calls (3N) and the poll (2)man pages.

CODE EXAMPLE 4–20 svc_run() and poll()

void
svc_run()
{

int nfds;
int dtbsize = __rpc_dtbsize();
int i;
struct pollfd svc_pollset[fd_setsize];

for (;;) {
/*

* Check whether there is any server fd on which we may have
* to wait.
*/

nfds = __rpc_select_to_poll(dtbsize, &svc_fdset,
svc_pollset);

if (nfds == 0)
break; /* None waiting, hence quit */

switch (i = poll(svc_pollset, nfds, -1)) {
case -1:

/*
* We ignore all errors, continuing with the assumption
* that it was set by the signal handlers (or any
* other outside event) and not caused by poll().
*/

case 0:
continue;

The Programmer’s Interface to RPC 85

default:
svc_getreq_poll(svc_pollset, i);

}
}

}

Broadcast RPC
When an RPC broadcast is issued, a message is sent to all rpcbind daemons on a
network. An rpcbind daemon with which the requested service is registered
forwards the request to the server. The main differences between broadcast RPC and
normal RPC calls are:

� Normal RPC expects one answer; broadcast RPC expects many answers (one or
more answer from each responding machine).

� Broadcast RPC works only on connectionless protocols that support broadcasting,
such as UDP.

� With broadcast RPC, all unsuccessful responses are filtered out; so, if there is a
version mismatch between the broadcaster and a remote service, the broadcaster
never hears from the service.

� Only datagram services registered with rpcbind are accessible through broadcast
RPC; service addresses may vary from one host to another, so rpc_broadcast()
sends messages to rpcbind ’s network address.

� The size of broadcast requests is limited by the maximum transfer unit (MTU) of
the local network; the MTU for Ethernet is 1500 bytes.

Code Example 4–21 shows how rpc_broadcast() is used and describes its
arguments.

CODE EXAMPLE 4–21 RPC Broadcast

/*
* bcast.c: example of RPC broadcasting use.
*/

#include <stdio.h>
#include <rpc/rpc.h>

main(argc, argv)
int argc;
char *argv[];

{
enum clnt_stat rpc_stat;
rpcprog_t prognum;
rpcvers_t vers;
struct rpcent *re;

if(argc != 3) {

(continued)

86 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

fprintf(stderr, "usage : %s RPC_PROG VERSION\n", argv[0]);
exit(1);

}
if (isdigit(*argv[1]))

prognum = atoi(argv[1]);
else {

re = getrpcbyname(argv[1]);
if (! re) {

fprintf(stderr, "Unknown RPC service %s\n", argv[1]);
exit(1);

}
prognum = re->r_number;

}
vers = atoi(argv[2]);
rpc_stat = rpc_broadcast(prognum, vers, NULLPROC, xdr_void,

(char *)NULL, xdr_void, (char *)NULL, bcast_proc,
NULL);

if ((rpc_stat != RPC_SUCCESS) && (rpc_stat != RPC_TIMEDOUT)) {
fprintf(stderr, "broadcast failed: %s\n",

clnt_sperrno(rpc_stat));
exit(1);

}
exit(0);

}

The function in Code Example 4–22 collects replies to the broadcast. Normal
operation is to collect either the first reply or all replies. bcast_proc() displays the
IP address of the server that has responded. Since the function returns FALSE it will
continue to collect responses, and the RPC client code will continue to resend the
broadcast until it times out.

CODE EXAMPLE 4–22 Collect Broadcast Replies

bool_t
bcast_proc(res, t_addr, nconf)

void *res; /* Nothing comes back */
struct t_bind *t_addr; /* Who sent us the reply */
struct netconfig *nconf;

{
register struct hostent *hp;
char *naddr;

naddr = taddr2naddr(nconf, &taddr->addr);
if (naddr == (char *) NULL) {

fprintf(stderr,"Responded: unknown\n");
} else {

fprintf(stderr,"Responded: %s\n", naddr);
free(naddr);

}
return(FALSE);

The Programmer’s Interface to RPC 87

}

If done is TRUE, then broadcasting stops, and rpc_broadcast() returns
successfully. Otherwise, the routine waits for another response. The request is
rebroadcast after a few seconds of waiting. If no responses come back, the routine
returns with RPC_TIMEDOUT.

Batching
RPC is designed so that clients send a call message and wait for servers to reply to
the call. This implies that a client is blocked while the server processes the call. This
is inefficient when the client does not need each message acknowledged.

RPC batching lets clients process asynchronously. RPC messages can be placed in a
pipeline of calls to a server. Batching requires that:

� The server does not respond to any intermediate message.

� The pipeline of calls is transported on a reliable transport, such as TCP.

� The result’s XDR routine in the calls must be NULL.

� The RPC call’s time-out must be zero.

Because the server does not respond to each call, the client can send new calls in
parallel with the server processing previous calls. The transport can buffer many call
messages and send them to the server in one write() system call. This decreases
interprocess communication overhead and the total time of a series of calls. The
client should end with a nonbatched call to flush the pipeline.

Code Example 4–23 shows the unbatched version of the client. It scans the character
array, buf, for delimited strings and sends each string to the server.

CODE EXAMPLE 4–23 Unbatched Client

#include <stdio.h>
#include <rpc/rpc.h>
#include "windows.h"

main(argc, argv)
int argc;
char **argv;

{
struct timeval total_timeout;
register CLIENT *client;
enum clnt_stat clnt_stat;
char buf[1000], *s = buf;

if ((client = clnt_create(argv[1], WINDOWPROG, WINDOWVERS,
"circuit_v")) == (CLIENT *) NULL) {

(continued)

88 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

clnt_pcreateerror("clnt_create");
exit(1);

}

total_timeout.tv_sec = 20;
total_timeout.tv_usec = 0;
while (scanf("%s", s) != EOF) {

if (clnt_call(client, RENDERSTRING, xdr_wrapstring, &s,
xdr_void, (caddr_t) NULL, total_timeout) != RPC_SUCCESS) {

clnt_perror(client, "rpc");
exit(1);

}
}

clnt_destroy(client);
exit(0);

}

Code Example 4–24 shows the batched version of the client. It does not wait after
each string is sent to the server. It waits only for an ending response from the server.

CODE EXAMPLE 4–24 Batched Client

#include <stdio.h>
#include <rpc/rpc.h>
#include "windows.h"

main(argc, argv)
int argc;
char **argv;

{
struct timeval total_timeout;
register CLIENT *client;
enum clnt_stat clnt_stat;
char buf[1000], *s = buf;

if ((client = clnt_create(argv[1], WINDOWPROG, WINDOWVERS,
"circuit_v")) == (CLIENT *) NULL) {

clnt_pcreateerror("clnt_create");
exit(1);

}
timerclear(&total_timeout);
while (scanf("%s", s) != EOF)

clnt_call(client, RENDERSTRING_BATCHED, xdr_wrapstring,
&s, xdr_void, (caddr_t) NULL, total_timeout);

/* Now flush the pipeline */
total_timeout.tv_sec = 20;
clnt_stat = clnt_call(client, NULLPROC, xdr_void,

(continued)

The Programmer’s Interface to RPC 89

(Continuation)

(caddr_t) NULL, xdr_void, (caddr_t) NULL,
total_timeout);

if (clnt_stat != RPC_SUCCESS) {
clnt_perror(client, "rpc");
exit(1);

}
clnt_destroy(client);
exit(0);

}

Code Example 4–25 shows the dispatch portion of the batched server. Because the
server sends no message, the clients are not notified of failures.

CODE EXAMPLE 4–25 Batched Server

#include <stdio.h>
#include <rpc/rpc.h>
#include "windows.h"

void
windowdispatch(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
char *s = NULL;

switch(rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, NULL))
fprintf(stderr, "can’t reply to RPC call\n");

return;
case RENDERSTRING:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {
fprintf(stderr, "can’t decode arguments\n");
/* Tell caller an error occurred */
svcerr_decode(transp);
break;

}
/* Code here to render the string s */
if (!svc_sendreply(transp, xdr_void, (caddr_t) NULL))

fprintf(stderr, "can’t reply to RPC call\n");
break;

case RENDERSTRING_BATCHED:
if (!svc_getargs(transp, xdr_wrapstring, &s)) {

fprintf(stderr, "can’t decode arguments\n");
/* Be silent in the face of protocol errors */
break;

(continued)

90 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

}
/* Code here to render string s, but send no reply! */
break;

default:
svcerr_noproc(transp);
return;

}
/* Now free string allocated while decoding arguments */
svc_freeargs(transp, xdr_wrapstring, &s);

}

Batching Performance
To illustrate the benefits of batching, the examples in Code Example 4–23, and Code
Example 4–25were completed to render the lines in a 25144-line file. The rendering
service simply throws the lines away. The batched version of the application was
four times as fast as the unbatched version.

Authentication
In all of the preceding examples in this chapter, the caller has not identified itself to
the server, and the server has not required identification of the caller. Some network
services, such as a network file system, require caller identification. Refer to System
Administration Guide, to implement any of the authentication methods described in
this section.

Just as different transports can be used when creating RPC clients and servers,
different “flavors” of authentication can be associated with RPC clients. The
authentication subsystem of RPC is open ended. So, many flavors of authentication
can be supported. The authentication protocols are further defined in Appendix B."

Sun RPC currently supports the authentication flavors shown in Table 4–7.

The Programmer’s Interface to RPC 91

TABLE 4–7 Authentication Methods Supported By Sun RPC

AUTH_NONE Default. No authentication performed

AUTH_SYS An authentication flavor based on UNIX operating system, process
permissions authentication

AUTH_SHORT An alternate flavor of AUTH_SYS used by some servers for efficiency.
Client programs using AUTH_SYS authentication can receive
AUTH_SHORT response verifiers from some servers. See Appendix B
for details

AUTH_DES An authentication flavor based on DES encryption techniques

AUTH_KERB Version 4 Kerberos authentication based on DES framework

When a caller creates a new RPC client handle as in:

clnt = clnt_create(host, prognum, versnum, nettype);

the appropriate client-creation routine sets the associated authentication handle to:

clnt->cl_auth = authnone_create();

If you create a new instance of authentication, you must destroy it with
auth_destroy(clnt->cl_auth) . This should be done to conserve memory.

On the server side, the RPC package passes the service-dispatch routine a request
that has an arbitrary authentication style associated with it. The request handle
passed to a service-dispatch routine contains the structure rq_cred . It is opaque,
except for one field: the flavor of the authentication credentials.

/*
* Authentication data
*/

struct opaque_auth {
enum_t oa_flavor; /* style of credentials */
caddr_t oa_base; /* address of more auth stuff */
u_int oa_length; /* not to exceed MAX_AUTH_BYTES */

};

The RPC package guarantees the following to the service-dispatch routine:

� The rq_cred field in the svc_req structure is well formed. So, you can check
rq_cred.oa_flavor to get the flavor of authentication. You can also check the
other fields of rq_cred if the flavor is not supported by RPC.

� The rq_clntcred field that is passed to service procedures is either NULL or
points to a well-formed structure that corresponds to a supported flavor of
authentication credential. There is no authentication data for the AUTH_NONE

92 ONC+ Developer’s Guide ♦ , 1998

flavor. rq_clntcred can be cast only as a pointer to an authsys_parms ,
short_hand_verf , authkerb_cred , or authdes_cred structure.

AUTH_SYSAuthentication
The client can use AUTH_SYS(called AUTH_UNIXin previous releases) style
authentication by setting clnt-->cl_auth after creating the RPC client handle:

clnt->cl_auth = authsys_create_default();

This causes each RPC call associated with clnt to carry with it the following
credentials-authentication structure shown in Code Example 4–26.

CODE EXAMPLE 4–26 AUTH_SYS Credential Structure

/*
* AUTH_SYS flavor credentials.
*/

struct authsys_parms {
u_long aup_time; /* credentials creation time */
char *aup_machname; /* client’s host name */
uid_t aup_uid; /* client’s effective uid */
gid_t aup_gid; /* client’s current group id */
u_int aup_len; /* element length of aup_gids*/
gid_t *aup_gids; /* array of groups user is in */

};

rpc.broadcast defaults to AUTH_SYSauthentication.

Code Example 4–27 shows a server, with procedure RUSERPROC_1(), that returns
the number of users on the network. As an example of authentication, it checks
AUTH_SYScredentials and does not service requests from callers whose uid is 16 .

CODE EXAMPLE 4–27 Authentication Server

nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
struct authsys_parms *sys_cred;
uid_t uid;
unsigned int nusers;

/* NULLPROC should never be authenticated */
if (rqstp->rq_proc == NULLPROC) {

if (!svc_sendreply(transp, xdr_void, (caddr_t) NULL))
fprintf(stderr, "can’t reply to RPC call\n");

return;
}

/* now get the uid */
switch(rqstp->rq_cred.oa_flavor) {

case AUTH_SYS:
sys_cred = (struct authsys_parms *) rqstp->rq_clntcred;

The Programmer’s Interface to RPC 93

uid = sys_cred->aup_uid;
break;

default:
svcerr_weakauth(transp);
return;

}
switch(rqstp->rq_proc) {

case RUSERSPROC_1:
/* make sure caller is allowed to call this proc */
if (uid == 16) {

svcerr_systemerr(transp);

return;
}
/*

* Code here to compute the number of users and assign it
* to the variable nusers
*/

if (!svc_sendreply(transp, xdr_u_int, &nusers))
fprintf(stderr, "can’t reply to RPC call\n");

return;
default:

svcerr_noproc(transp);
return;

}
}

Note the following:

� The authentication parameters associated with the NULLPROC(procedure number
zero) are usually not checked.

� The server calls svcerr_weakauth() if the authentication parameter’s flavor is
too weak; there is no way to get the list of authentication flavors the server
requires.

� The service protocol should return status for access denied; in Code Example 4–27,
the protocol calls the service primitive svcerr_systemerr() , instead.

The last point underscores the relation between the RPC authentication package and
the services: RPC deals only with authentication and not with an individual service’s
access control. The services themselves must establish access-control policies and
reflect these policies as return statuses in their protocols.

AUTH_DESAuthentication
Use AUTH_DESauthentication for programs that require more security than
AUTH_SYSprovides. AUTH_SYSauthentication is easy to defeat. For example,
instead of using authsys_create_default() , a program can call
authsys_create() and change the RPC authentication handle to give itself any
desired user ID and hostname.

AUTH_DESauthentication requires that keyserv() daemons are running on both
the server and client hosts. The NIS or NIS+ naming service must also be running.

94 ONC+ Developer’s Guide ♦ , 1998

Users on these hosts need public/secret key pairs assigned by the network
administrator in the publickey() database. They must also have decrypted their
secret keys with the keylogin() command (normally done by login() unless the
login password and secure-RPC password differ).

To use AUTH_DESauthentication, a client must set its authentication handle
appropriately. For example:

cl->cl_auth = authdes_seccreate(servername, 60, server,
(char *)NULL);

The first argument is the network name or “netname” of the owner of the server
process. Server processes are usually root processes, and you can get their netnames
with the following call:

char servername[MAXNETNAMELEN];
host2netname(servername, server, (char *)NULL);

servername points to the receiving string and server is the name of the host the
server process is running on. If the server process was run by a non-root user, use
the call user2netname() as follows:

char servername[MAXNETNAMELEN];
user2netname(servername, serveruid(), (char *)NULL);

serveruid() is the user id of the server process. The last argument of both
functions is the name of the domain that contains the server. NULL means “use the
local domain name.”

The second argument of authdes_seccreate() is the lifetime (known also as the
window) of the client’s credential, here, 60 seconds. A credential will expire 60
seconds after the client makes an RPC call. If a program tries to reuse the credential,
the server RPC subsystem recognizes that it has expired and does not service the
request carrying the expired credential. If any program tries to reuse a credential
within its lifetime, it is rejected, because the server RPC subsystem saves credentials
it has seen in the near past and does not serve duplicates.

The third argument of authdes_seccreate() is the name of the timehost used to
synchronize clocks. AUTH_DESauthentication requires that server and client agree on
the time. The example specifies to synchronize with the server. A (char *)NULL
says not to synchronize. Do this only when you are sure that the client and server
are already synchronized.

The fourth argument of authdes_seccreate() points to a DES encryption key to
encrypt time stamps and data. If this argument is (char *)NULL , as it is in this
example, a random key is chosen. The ah_key field of the authentication handle
contains the key.

The server side is simpler than the client. Code Example 4–28shows the server in
Code Example 4–27 changed to use AUTH_DES.

The Programmer’s Interface to RPC 95

CODE EXAMPLE 4–28 AUTH_DES Server

#include <rpc/rpc.h>
...
...

nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
struct authdes_cred *des_cred;
uid_t uid;
gid_t gid;
int gidlen;
gid_t gidlist[10];

/* NULLPROC should never be authenticated */
if (rqstp->rq_proc == NULLPROC) {

/* same as before */
}
/* now get the uid */
switch(rqstp->rq_cred.oa_flavor) {

case AUTH_DES:
des_cred = (struct authdes_cred *) rqstp->rq_clntcred;
if (! netname2user(des_cred->adc_fullname.name, &uid,

&gid, &gidlen, gidlist)) {
fprintf(stderr, "unknown user: %s\n",

des_cred->adc_fullname.name);
svcerr_systemerr(transp);
return;

}
break;

default:
svcerr_weakauth(transp);
return;

}
/* The rest is the same as before */

Note the routine netname2user() converts a network name (or “netname” of a
user) to a local system ID. It also supplies group IDs (not used in this example).

AUTH_KERBAuthentication

SunOS 5.x includes support for most client-side features of Kerberos 4.0, except
klogin. AUTH_KERBis conceptually similar to AUTH_DES; the essential difference is
that DESpasses a network name and DES-encrypted session key, while Kerberos
passes the encrypted service ticket. The other factors that affect implementation and
interoperability are given in the following subsections.

96 ONC+ Developer’s Guide ♦ , 1998

For more information, see the kerberos (3N)man page and the
Steiner-Neuman-Shiller paper1 on the MIT Project Athena implementation of
Kerberos. You may access MIT documentation through the FTP directory
/pub/kerberos/doc on athena-dist.mit.edu , or through Mosaic, using the
document URL, ftp://athena-dist.mit.edu/pub/kerberos/doc .

Time Synchronization

Kerberos uses the concept of a time window in which its credentials are valid. It
does not place restrictions on the clocks of the client or server. The client is required
to determine the time bias between itself and the server and compensate for the
difference by adjusting the window time specified to the server. Specifically, the
window is passed as an argument to authkerb_seccreate() ; the window does
not change. If a timehost is specified as an argument, the client side gets the time
from the timehost and alters its timestamp by the difference in time. Various methods
of time synchronization are available. See the kerberos_rpc (3N)man page for
more information.

Well-Known Names

Kerberos users are identified by a primary name, instance, and realm. The RPC
authentication code ignores the realm and instance, while the Kerberos library code
does not. The assumption is that user names are the same between client and server.
This enables a server to translate a primary name into user identification
information. Two forms of well-known names are used (omitting the realm):

� root.host represents a privileged user on client host.

� user.ignored represents the user whose user name is user. The instance is ignored.

Encryption

Kerberos uses cipher block chaining (CBC) mode when sending a full name
credential (one that includes the ticket and window), and electronic code book (ECB)
mode otherwise. CBC and ECB are two methods of DES encryption. See the
des_crypt(3) man page for more information. The session key is used as the initial
input vector for CBC mode. The notation

xdr_type(object)

means that XDR is used on object as a type . The length in the next code section is
the size, in bytes of the credential or verifier, rounded up to 4-byte units. The full
name credential and verifier are obtained as follows:

1. Steiner, Jennifer G., Neuman, Clifford, and Schiller, Jeffrey J. “Kerberos: An Authentication Service for Open
Network Systems.” USENIX Conference Proceedings, USENIX Association, Berkeley, CA, June 1988.

The Programmer’s Interface to RPC 97

xdr_long(timestamp.seconds)
xdr_long(timestamp.useconds)
xdr_long(window)
xdr_long(window - 1)

After encryption with CBC with input vector equal to the session key, the output is
two DES cipher blocks:

CB0
CB1.low
CB1.high

The credential is:

xdr_long(AUTH_KERB)
xdr_long(length)
xdr_enum(AKN_FULLNAME)
xdr_bytes(ticket)
xdr_opaque(CB1.high)

The verifier is:

xdr_long(AUTH_KERB)
xdr_long(length)
xdr_opaque(CB0)
xdr_opaque(CB1.low)

The nickname exchange yields:

xdr_long(timestamp.seconds)
xdr_long(timestamp.useconds)

The nickname is encrypted with ECB to obtain ECB0, and the credential is:

xdr_long(AUTH_KERB)
xdr_long(length)
xdr_enum(AKN_NICKNAME)
xdr_opaque(akc_nickname)

The verifier is:

xdr_long(AUTH_KERB)
xdr_long(length)
xdr_opaque(ECB0)
xdr_opaque(0)

Authentication Using RPCSEC_GSS
The authentication flavors mentioned previously – AUTH_SYS, AUTH_DES, and
AUTH_KERB – can be overcome by a determined snoop. For this reason a new
networking layer, the Generic Security Standard API, or GSS-API, has been added.
The GSS-API framework offers two extra services beyond authentication:

98 ONC+ Developer’s Guide ♦ , 1998

� Integrity. With the integrity service, the GSS-API uses the underlying mechanism
to authenticate messages exchanged between programs. Cryptographic checksums
establish

� the identity of the data originator to the recipient,
� the identity of the recepient to the originator (if mutual authentication is

requested), and
� the authenticity of the transmitted data itself.

� Privacy. The privacy service includes the integrity service, and, in addition, the
transmitted data is also encrypted so as to protect it from any eavesdroppers.

Additionally, the GSS-API allows applications to utilize any security mechanism
which it supports, such as Kerberos v5, RSA public key, Diffie-Hellman public key, or
CSM, as well as any future supported mechanisms. 2

The RPCSEC_GSS security flavor allows ONC RPC applications to take advantage of
the features of GSS-API. RPCSEC_GSS sits “on top” of the GSS-API layer as follows:

Figure 4–1 GSS-API and RPCSEC_GSS Security Layers

2. Currently, the GSS-API is not exposed. Certain GSS-API features, however, are “visible” through RPCSEC_GSS
functions –they can be manipulated in an “opaque” fashion. The programmer need not be directly concerned with
their values.

The Programmer’s Interface to RPC 99

Using the programming interface for RPCSEC_GSS, ONC RPC applications can
specify:

mechanism A security paradigm. Each kind of security
mechanism offers a different kind of data
protection, as well as one or more levels of data
protection. In this case, any security mechanism
supported by the GSS-API (Kerberos v5, RSA
public key, etc.).

service Either privacy or integrity (or neither).
Mechanism-independent.

QOP QOP stands for Quality of Protection. The QOP
specifies the type of cryptographic algorithm to
be used along with the privacy or integrity
services. Each security mechanism may have one
or more QOPs associated with it.

Applications can obtain valid QOPs and mechanisms either from a configuration file
(/etc/gss/qop and /etc/gss/mech) or from the name service. Developers
should avoid hard-coding mechanisms and QOPs into their applications, so that the
applications will not need to be modified to use new or different mechanisms and
QOPs.

Note - Historically, “security flavor” and “authentication flavor” have meant the
same thing. With the introduction of RPCSEC_GSS, “flavor” now has a somewhat
different sense. A flavor now can include a service (integrity or privacy) along with
authentication, although currently RPCSEC_GSS is the only flavor which does.

Using RPCSEC_GSS, ONC RPC applications establish a security context with a peer,
exchange data, and destroy the context, just as they do with other flavors. Once a
context is established, the application can change the QOP and service for each data
unit sent.

For more information on RPCSEC_GSS, including RPCSEC_GSS data types, see the
rpcsec_gss (3N) man page.

RPCSEC_GSS Routines
Table 4–8, summarizes RPCSEC_GSS commands. It’s intended as a general overview
of RPCSEC_GSS functions, rather than a specific description of each one. For more
information, see the man page for each function.

100 ONC+ Developer’s Guide ♦ , 1998

TABLE 4–8 RPCSEC_GSS Functions

Function Purpose Input Output Notes

rpc_gss_seccreate() Create a
security
context

Client handle,
principal
name,
mechanism,
QOP, service
type

AUTHhandle

rpc_gss_set_defaults() Change QOP,
service type
for context

Old QOP,
service

New QOP,
service

client-side

rpc_gss_max_data_length() Show
maximum size
for data before
security
transformation

Maximum
data size
allowed by
transport

Maximum
pre-
transformation
data size

client side

rpc_gss_svc_max_data_length() Show
maximum size
for data before
security
transformation

Maximum
data size
allowed by
transport

Maximum
pre-
transformation
data size

server side

rpc_gss_set_svc_name() Set name of
principal(s) for
server to
represent

Principal
name; RPC
program,
version #s

TRUE if
successful

server-side

rpc_gss_getcred() Fetch
credentials of
caller (client)

Pointer to
svc_req

structure

UNIX
credentials,
RPCSEC_GSS
credentials,
cookie

rpc_gss_set_callback() Specify
(user-writen)
callback
function

Pointer to
callback
function

TRUE if
successful

rpc_gss_get_principal_name() Create
RPCSEC_GSS
structure for
principal
names from
unique
parameters

Mechanism,
user name,
machine
name,
domain name

RPCSEC_GSS
principal
name
structure

The Programmer’s Interface to RPC 101

TABLE 4–8 RPCSEC_GSS Functions (continued)

Function Purpose Input Output Notes

rpc_gss_get_error() Fetch an error
code when an
RPCSEC_GSS
routine fails

RPCSEC_GSS
error number,
errno if
applicable

rpc_gss_get_mechanisms() Get strings for
installed
mechanisms

List of valid
mechanisms

rpc_gss_get_mech_info() Get valid QOP
strings

Mechanism Valid QOPs
for that
mechanism

rpc_gss_get_versions() Get the
highest, lowest
version
numbers of
RPCSEC_GSS
supported

Highest,
lowest
versions

rpc_gss_is_installed() Check to see if
a mechanism
is installed

Mechanism TRUE if
installed

rpc_gss_mech_to_oid() Convert ASCII
mechanism to
RPC object
identifier

Mechanism
(as string)

Mechanism
(as OID)

rpc_gss_qop_to_num() Convert ASCII
QOP to integer

QOP (as
string)

QOP (as
integer)

Creating a Context
Contexts are created with the rpc_gss_seccreate() call. This function takes as
its arguments a client handle (returned, for example, by clnt_create()) , the
name of the server principal (i.e., nfs@machine.eng.company.com), the
mechanism, service type, and QOP for the session, and two GSS-API parameters
which may remain opaque for most uses. It returns an AUTHauthentication handle.
The following code fragment shows how rpc_gss_seccreate() might be used to
create a context using the Kerberos v5 security mechanism and the integrity service:

CLIENT *clnt; /* client handle */
char server_host[] = "foo";

102 ONC+ Developer’s Guide ♦ , 1998

char service_name[] = "nfs@machine.eng.company.com";
char mech[] = "kerberosv5";

clnt = clnt_create(server_host, SERVER_PROG, SERV_VERS, "netpath");
clnt->clnt_auth = rpc_gss_seccreate(clnt, service_name, mech, \

rpc_gss_svc_integrity, NULL, NULL, NULL);

. . .

There are a few things to note about this example. First, although the mechanism
was declared explicitly (for ease of reading), it would be more commonly obtained
programmatically with rpc_gss_get_mechanisms() from a table of available
mechanisms. The same is true for the QOP (here passed as the first NULL, which sets
the QOP to this mechanism’s default). Second, the service type is an enum of the
RPCSEC_GSS type rpc_gss_service_t . Lastly, the two final NULL arguments are
for opaque GSS-API options; the programmer can safely passNULL for their values.

Changing Values & Destroying a Context
Once a context has been set, the application may wish to change QOP and service
values for individual data units being transmitted. (For example, one might want to
encrypt a password but not a login name.) rpc_gss_set_defaults() allows you
to do so:

rpc_gss_set_defaults(clnt->clnt_auth, rpc_gss_svc_privacy, qop);

. . .

Here qop is a pointer to a string naming the new QOP.

Contexts are destroyed in the usual way, with auth_destroy() .

Principal Names
Two types of principal names are needed in establishing and maintaining a security
context:

� A server principal name. A server’s principal name is always specified as a
NULL-terminated ASCII string of the form service@host – for example,
nfs@dalkey.eng.company.com .

When a client creates a security context (with rpc_gss_seccreate()), it
specifies the server principal name in this way. Similarly, when a server needs to
set the name of a principal it will represent, it uses rpc_gss_set_svc_name() ,
which takes a principal name in this format as an argument.

The Programmer’s Interface to RPC 103

� A client principal name. The principal name of a client, as received by a server,
takes the form of an rpc_gss_principal_t structure: a counted, opaque byte
string determined by the mechanism being used.

Setting Server Principal Names
A server needs to be told the names of the principals it will be representing when it
starts up. (A server may act as more than one principal.)
rpc_gss_set_svc_name() does this:

char *principal, *mechanism;
u_int req_time;

principal = "nfs@engineering.company.com";
mechanism = "kerberosv5";
req_time = 10000; /* time for which credential should be valid */

rpc_gss_set_svc_name(principal, mechanism, req_time, SERV_PROG, SERV_VERS);

Generating Client Principal Names
Servers need to be able to operate on a client’s principal name – for example, to
compare a client’s principal name to an access control list, or look up a UNIX
credential for that client, if such a credential exists. If a server wants to compare a
principal name it has received with the name of a known entity, it needs to be able to
generate an rpc_gss_principal_t principal name for known entities. The
rpc_gss_get_principal_name() call takes as input several parameters which
uniquely identify an idividual on a network, and sets a principal name in the form of
a rpc_gss_principal_t structure pointer:

rpc_gss_principal_t *principal;

rpc_gss_get_principal_name(principal, mechanism, name, node, domain);
. . .

The first argument is the rpc_gss_principal_t to be set. The second is the
security mechanism being used (remember, the principal name being generated is
mechanism-dependent); the final three arguments are the parameters used to identify
an idividual out there in net-space. name is an idividual or service name, such as
joeh or nfs . node might be a UNIX machine name. domain might be a DNS, NIS, or
NIS+ domain name. Each security mechanism requires different identifying
parameters. For example, Kerberos v5 requires a user name and, only optionally,
qualified node and domain names (in Kerberos-speak, host and realm names).

104 ONC+ Developer’s Guide ♦ , 1998

Freeing Up Principal Names

Principal names are freed up using the free() library call.

Receiving Credentials at the Server
A server must be able to fetch the credentials of a client. The rpc_gss_getcred()
function allows the server to retrieve either UNIX credentials or RPCSEC_GSS
credentials (or both, for that matter). It does so through two arguments which are set
if the function is successful. The first is a pointer to an rpc_gss_ucred_t structure,
which contains the caller’s UNIX credentials (uid and gid) , if such exist. The
second is a pointer to a rpc_gss_raw_cred_t structure:

typedef struct {
u_int version; /* RPCSEC_GSS program version */
char *mechanism;
char *qop;
rpc_gss_principal_t *client_principal; /* client principal name */
char *svc_principal; /* server principal name */
rpc_gss_service_t service; /* privacy, integrity enum */

} rpc_gss_rawcred_t;

(We have seen the rpc_gss_gss_principal_t structure above.) Because
rpc_gss_rawcred_t contains both the client and server principal names,
rpc_gss_getcred() can return them both.

Code Example 4–29 is an example of a simple server-side dispatch procedure, in
which the server gets the credentials for the caller. The procedure gets the caller’s
UNIX credentials and then verifies the user’s identity, using the mechanism, QOP,
and service type found in the rpc_gss_rcred_t argument.

CODE EXAMPLE 4–29 Getting Credentials

static void server_prog(struct svc_req *rqstp, SVCXPRT *xprt)
{

rpc_gss_ucred_t *ucred;
rpc_gss_rawcred_t *rcred;

if (rqst->rq_proq == NULLPROC) {
svc_sendreply(xprt, xdr_void, NULL);
return;

}
/*

* authenticate all other requests */
*/

switch (rqstp->rq_cred.oa_flavor) {
case RPCSEC_GSS:

/*
* get credential information
*/

The Programmer’s Interface to RPC 105

rpc_gss_getcred(rqstp, &rcred, &ucred, NULL);
/*
* verify that the user is allowed to access
* using received security parameters by
* peeking into my config file
*/
if (!authenticate_user(ucred->uid, rcred->mechanism,

rcred->qop, rcred->service)) {
svcerr_weakauth(xprt);
return;

}
break; /* allow the user in */

default:
svcerr_weakauth(xprt);
return;

} /* end switch */

switch (rqstp->rq_proq) {
case SERV_PROC1:

. . .
}

/* usual request processing; send response ... */

return;

}

Cookies

In Code Example 4–29, the last argument to rpc_gss_getcred() (here, a NULL) is
a user-defined cookie, whose value on return will be whatever was specified by the
server when the context was created. This cookie, a four-byte value, may be used in
any way appropriate for the application – RPC does not interpret it. For example, the
cookie may be a pointer or index to a structure that represents the context initiator;
instead of computing this value for every request, the server computes it at
context-creation time (thus saving on request-processing time).

Callbacks
Another place where cookies may be used is with callbacks. A server can specify a
(user-defined) callback so that it knows when a context first gets used, by using the
rpc_gss_set_callback() function. The callback will be invoked the first time a
context is used for data exchanges, after the context is established for the specified
program and version.

The user-defined callback routine takes the following form:

bool_t callback (struct svc_req *req, gss_cred_id_t deleg, gss_ctx_id_t gss_context,
rpc_gss_lock_t *lock, void **cookie);

The second and third arguments are GSS-API data types and are not currently
exposed, so the callback function can ignore them. (Briefly, deleg is the identity of any

106 ONC+ Developer’s Guide ♦ , 1998

delegated peer, while gss_context is a pointer to the GSS-API context, in case the
program wanted to perform GSS-API operations on the context – i.e., to test for
acceptance criteria.) The cookie argument we have already seen.

The lock argument is a pointer to a rpc_gss_lock_t structure:

typedef struct {
bool_t locked;
rpc_gss_rawcred_t *raw_cred;

} rpc_gss_lock_t;

This parameter enables a server to enforce a particular QOP and service for the
session. QOP and service are found in the rpc_gss_rawcred_t structure. (A server
should not change these values.) When the user-defined callback is invoked, the
locked parameter is set to FALSE. The server should set it to TRUE, thus locking the
context. When a context is locked, only requests with matching QOP and service
values will be accepted.

Maximum Data Size
Two functions – rpc_gss_max_data_length() and
rpc_gss_svc_max_data_length() are useful in determining how large a piece
of data may be before it is transformed by security measures and sent “over the
wire.” That is, a security transformation such as encryption usually changes the size
of a piece of transmitted data (generally enlarging it). To make sure that data won’t
be enlarged past a usable size, these two functions – the former is the client-side
version, the latter the server-side – return the maximum pre-transformation size for a
given transport.

Miscellaneous Functions
Several functions are useful for getting information about the installed security
system: rpc_gss_get_mechanisms() returns a list of installed security
mechanisms while rpc_gss_is_installed() checks to see if a specified
mechanism is installed. rpc_gss_get_mech_info() returns valid QOPs for a
given mechanism. Using these functions gives the programmer latitude in avoiding
hard-coding security parameters in applications. (See Table 4–8 and the
rpcsec_gss (3N) man page for a list of all RPCSEC_GSS functions.)

The Programmer’s Interface to RPC 107

Associated Files

The gsscred Table

When a server retrieves the client credentials associated with a request, it can get
either the client’s principal name (in the form of a rpc_gss_principal_t structure
pointer) or local UNIX credentials (UID) for that client. Services such as NFS require
a local UNIX credential for access checking, but others may not; they may, for
example, store the principal name, as a rpc_gss_principal_t structure, directly
in their own access control lists.

Note - The correspondence between a client’s network credential (its principal name)
and any local UNIX credential is not automatic – it must be set up explicitly by the
local security administrator.

The gsscred file contains both the client’s UNIX and network credentials. (The
latter is the Hex-ASCII representation of the rpc_gss_principal_t structure.) It is
accessed through XFN; thus, this table can be implemented over files, NIS, or NIS+,
or any future name service supported by XFN. In the XFN hierarchy, this table
appears as this_org_unit/ service/gsscred . The gsscred table is maintained with the
use of the gsscred utility, which allows administrators to add and delete users and
mechanisms.

/etc/gss/qop and /etc/gss/mech

For convience, RPCSEC_GSS uses string literals for representing mechanisms and
Quality of Protection (QOP) parameters. The underlying mechanisms themselves,
however, require mechanisms to be represented as object identifiers, and QOPs as
32–bit integers. Additionally, for each mechanism, the shared library that implements
the services for that mechanism needs to be specified.

The /etc/gss/mech file stores the following information on all installed
mechanisms on a system: the mechanism name, in ASCII; the mechanism’s OID; and
the shared library and kernel module implementing the service. For example:

kerberosv5 1.2.840.113554.1.2.2 mech_krb5.so kmech_krb5

The /etc//gss/qop file stores, for all mechanisms installed, all the QOPs supported
by each mechanism, both as an ASCII string as its corresponding 32–bit integer.

Both /etc/gss/mech and /etc/gss/qop are created when security mechanisms
are first installed on a given system.

108 ONC+ Developer’s Guide ♦ , 1998

Because many of the in-kernel RPC routines use non-string values to represent
mechanism and QOP, applications can use the rpc_gss_mech_to_oid() and
rpc_gss_qop_to_num() functions to get the non-string equivalents for these
parameters, should they wish to take advantage of those in-kernel routines.

Using Port Monitors
RPC servers can be started by port monitors such as inetd and listen . Port
monitors listen for requests and spawn servers in response. The forked server
process is passed file descriptor 0 on which the request has been accepted. For
inetd , when the server is done, it may exit immediately or wait a given interval for
another service request.

For listen , servers should exit immediately after replying because listen()
always spawns a new process. The following function call creates a SVCXPRThandle
to be used by the services started by port monitors:

transp = svc_tli_create(0, nconf, (struct t_bind *)NULL, 0, 0)

nconf is the netconfig structure of the transport from which the request is received.

Because the port monitors have already registered the service with rpcbind , there is
no need for the service to register with rpcbind . But it must call svc_reg() to
register the service procedure:

svc_reg(transp, PROGNUM, VERSNUM, dispatch,(struct netconfig *)NULL)

The netconfig structure here is NULL to prevent svc_reg() from registering the
service with rpcbind .

Note - Study rpcgen -generated server stubs to see the sequence in which these
routines are called.

For connection-oriented transports, the following routine provides a lower level
interface:

transp = svc_fd_create(0, recvsize, sendsize);

A 0 file descriptor is the first argument. You can set the value of recvsize and sendsize
to any appropriate buffer size. A 0 for either argument causes a system default size
to be chosen. Application servers that do not do any listening of their own use
svc_fd_create() .

Using inetd

Entries in /etc/inet/inetd.conf have different formats for socket-based,
TLI-based, and RPC services. The format of inetd.conf entries for RPC services is:

The Programmer’s Interface to RPC 109

rpc_prog/vers endpoint_type rpc/proto flags user pathname args
where:

TABLE 4–9 RPC inetd Services

rpc_prog/vers The name of an RPC program followed by a / and the version number
or a range of version numbers.

endpoint_type One of dgram (for connectionless sockets), stream (for connection
mode sockets), or tli (for TLI endpoints).

proto May be * (for all supported transports), a nettype, a netid, or a comma
separated list of nettype and netid.

flags Either wait or nowait .

user Must exist in the effective passwd database.

athname Full path name of the server daemon.

args Arguments to be passed to the daemon on invocation.

For example:

rquotad/1 tli rpc/udp wait root /usr/lib/nfs/rquotad rquotad

For more information, see the inetd.conf (4) man page.

Using the Listener

Use pmadmto add RPC services:

pmadm -a -p pm_tag -s svctag -i id -v vers \

-m ‘nlsadmin -c command -D -R prog:vers‘

The arguments are: −a means to add a service, −p pm_tag specifies a tag associated
with the port monitor providing access to the service, −s svctag is the server’s
identifying code, −i id is the /etc/passwd user name assigned to service svctag, −v
ver is the version number for the port monitor’s data base file, and −mspecifies the
nlsadmin command to invoke the service. nlsadmin can have additional
arguments. For example, to add version 1 of a remote program server named
rusersd , a pmadmcommand is:

pmadm -a -p tcp -s rusers -i root -v 4 \
-m ‘nlsadmin -c /usr/sbin/rpc.ruserd -D -R 100002:1‘

110 ONC+ Developer’s Guide ♦ , 1998

The command is given root permissions, installed in version 4 of the listener
data base file, and is made available over TCP transports. Because of the complexity
of the arguments and options to pmadm, use a command script or the menu system
to add RPC services. To use the menu system, enter sysadm ports and choose the
−port_services option.

After adding a service, the listener must be re-initialized before the service is
available. To do this, stop and restart the listener, as follows (note that rpcbind
must be running):

sacadm -k -p pmtag
sacadm -s -p pmtag

For more information, such as how to set up the listener process, see the listen(1M),
pmadm(1M), sacadm(1M) and sysadm(1M) man pages and the TCP/IP and Data
Communications Administration Guide.

Multiple Server Versions
By convention, the first version number of a program, PROG, is named
PROGVERS_ORIGand the most recent version is named PROGVERS. Program version
numbers must be assigned consecutively. Leaving a gap in the program version
sequence can cause the search algorithm to not find a matching program version
number that is defined.

Version numbers should never be changed by anyone other than the owner of a
program. Adding a version number to a program that you do not own can cause
severe problems when the owner increments the version number. Sun registers
version numbers and answers questions about them (rpc@Sun.com).

Suppose a new version of the ruser program returns an unsigned short rather
than an int. If you name this version RUSERSVERS_SHORT, a server that wants to
support both versions would do a double register. The same server handle is used
for both registrations.

CODE EXAMPLE 4–30 Server Handle for Two Versions of Single Routine

if (!svc_reg(transp, RUSERSPROG, RUSERSVERS_ORIG,
nuser, nconf))

{
fprintf(stderr, "can’t register RUSER service\n");
exit(1);

}
if (!svc_reg(transp, RUSERSPROG, RUSERSVERS_SHORT, nuser,

nconf)) {
fprintf(stderr, "can’t register RUSER service\n");
exit(1);

}

Both versions can be performed by a single procedure.

The Programmer’s Interface to RPC 111

CODE EXAMPLE 4–31 Procedure for Two Versions of Single Routine

void
nuser(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
unsigned int nusers;
unsigned short nusers2;
switch(rqstp->rq_proc) {

case NULLPROC:
if (!svc_sendreply(transp, xdr_void, 0))

fprintf(stderr, "can’t reply to RPC call\n");
return;

case RUSERSPROC_NUM:
/*

* Code here to compute the number of users
* and assign it to the variable nusers
*/

switch(rqstp->rq_vers) {
case RUSERSVERS_ORIG:

if (! svc_sendreply(transp, xdr_u_int, &nusers))
fprintf(stderr, "can’t reply to RPC call\n");

break;
case RUSERSVERS_SHORT:

nusers2 = nusers;
if (! svc_sendreply(transp, xdr_u_short, &nusers2))

fprintf(stderr, "can’t reply to RPC call\n");
break;

}
default:

svcerr_noproc(transp);
return;

}
return;

}

Multiple Client Versions
Since different hosts may run different versions of RPC servers, a client should be
capable of accommodating the variations. For example, one server may run the old
version of RUSERSPROG(RUSERSVERS_ORIG) while another server runs the newer
version (RUSERSVERS_SHORT).

If the version on a server does not match the version number in the client creation
call, clnt_call() fails with an RPCPROGVERSMISMATCHerror. You can get the
version numbers supported by a server and then create a client handle with the
appropriate version number. Use either the routine in Code Example 4–32, or
clnt_create_vers() . See the rpc (3N)man page for more details.

CODE EXAMPLE 4–32 RPC Versions on Client Side

main()
{

enum clnt_stat status;

112 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

u_short num_s;
u_int num_l;
struct rpc_err rpcerr;
int maxvers, minvers;
CLIENT *clnt;

clnt = clnt_create("remote", RUSERSPROG, RUSERSVERS_SHORT,
"datagram_v");

if (clnt == (CLIENT *) NULL) {
clnt_pcreateerror("unable to create client handle");
exit(1);

}
to.tv_sec = 10; /* set the time outs */
to.tv_usec = 0;

status = clnt_call(clnt, RUSERSPROC_NUM, xdr_void,
(caddr_t) NULL, xdr_u_short,

(caddr_t)&num_s, to);
if (status == RPC_SUCCESS) { /* Found latest version number */

printf("num = %d\n", num_s);
exit(0);

}
if (status != RPC_PROGVERSMISMATCH) { /* Some other error */

clnt_perror(clnt, "rusers");
exit(1);

}
/* This version not supported */
clnt_geterr(clnt, &rpcerr);
maxvers = rpcerr.re_vers.high; /* highest version supported */
minvers = rpcerr.re_vers.low; /*lowest version supported */
if (RUSERSVERS_SHORT < minvers || RUSERSVERS_SHORT > maxvers)

{
/* doesn’t meet minimum standards */

clnt_perror(clnt, "version mismatch");
exit(1);

}
(void) clnt_control(clnt, CLSET_VERSION, RUSERSVERS_ORIG);
status = clnt_call(clnt, RUSERSPROC_NUM, xdr_void,

(caddr_t) NULL, xdr_u_int, (caddr_t)&num_l, to);
if (status == RPC_SUCCESS)

/* We found a version number we recognize */
printf("num = %d\n", num_l);

else {
clnt_perror(clnt, "rusers");
exit(1);

}
}

The Programmer’s Interface to RPC 113

Using Transient RPC Program Numbers
Occasionally, it is useful for an application to use RPC program numbers that are
generated dynamically. This could be used for implementing callback procedures, for
example. In the callback example, a client program typically registers an RPC service
using a dynamically generated, or transient, RPC program number and passes this
on to a server along with a request. The server will then call back the client program
using the transient RPC program number in order to supply the results. Such a
mechanism may be necessary if processing the client’s request will take a huge
amount of time and the client cannot block (assuming it is single-threaded); in this
case, the server will acknowledge the client’s request, and call back later with the
results. Another use of callbacks is to generate periodic reports from a server; the
client makes an RPC call to start the reporting, and the server periodically calls back
the client with reports using the transient RPC program number supplied by the
client program.

Dynamically generated, or transient, RPC program numbers are in the transient
range, 0x40000000 - 0x5fffffff. The following routine creates a service based on a
transient RPC program for a given transport type. The service handle and the
transient rpc program number are returned. The caller supplies the service dispatch
routine, the version, and the transport type.

CODE EXAMPLE 4–33 Transient RPC Program—Server Side

SVCXPRT *register_transient_prog(dispatch, program, version, netid)
void (*dispatch)(); /* service dispatch routine */
rpcproc_t *program; /* returned transient RPC number */
rpcvers_t version; /* program version */
char *netid; /* transport id */

{
SVCXPRT *transp;
struct netconfig *nconf;
rpcprog_t prognum;
if ((nconf = getnetconfigent(netid)) == (struct netconfig

*)NULL)
return ((SVCXPRT *)NULL);

if ((transp = svc_tli_create(RPC_ANYFD, nconf,
(struct t_bind *)NULL, 0, 0)) == (SVCXPRT *)NULL) {

freenetconfigent(nconf);
return ((SVCXPRT *)NULL);

}
prognum = 0x40000000;
while (prognum < 0x60000000 && svc_reg(transp, prognum,

version,
dispatch, nconf) == 0) {

prognum++;
}
freenetconfigent(nconf);
if (prognum >= 0x60000000) {

svc_destroy(transp);
return ((SVCXPRT *)NULL);

}
*program = prognum;
return (transp);

}

114 ONC+ Developer’s Guide ♦ , 1998

Multithreaded RPC Programming
This manual does not cover basic topics and code examples for the Solaris
implementation of multithread programming. Instead, refer to the Multithreaded
Programming Guide for background on the following topics:

� Thread creation

� Scheduling

� Synchronization

� Signals

� Process resources

� Light-weight processes (lwp)

� Concurrency

� Data locking strategies

TI-RPC supports multithreaded RPC servers in releases since Solaris 2.4. The
difference between a multithreaded server and a single-threaded server is that a
multithreaded server uses threading technology to process incoming client requests
concurrently. Multithreaded servers can have higher performance and availability
compared with single-threaded servers.

The section “MT Server Overview ” on page 120 is a good place to start reading
about the interfaces available in this release.

MT Client Overview
In a multithread client program, a thread can be created to issue each RPC request.
When multiple threads share the same client handle, only one thread at a time will
be able to make an RPC request. All other threads will wait until the outstanding
request is complete. On the other hand, when multiple threads make RPC requests
using different client handles, the requests are carried out concurrently. Figure 4–2
illustrates a possible timing of a multithreaded client implementation consisting of
two client threads using different client handles.

Code Example 4–34 shows the client side implementation of a multithreaded rstat
program. The client program creates a thread for each host. Each thread creates its
own client handle and makes various RPC calls to the given host. Because the client
threads are using different handles to make the RPC calls, they can carry out the
RPC calls concurrently.

The Programmer’s Interface to RPC 115

Client thread 1

Time

Client thread 2

HOST A

Server Daemon

HOST B

Server Daemon

HOST C

Client 1 thread continues

Client 2 thread continues

Request
completed

Service
executes

Service
executes

Return
answer

Return
answer

Request
completed

Invoke
service

Invoke
service

Figure 4–2 Two Client Threads Using Different Client Handles (Real time)

Note - You must link in the thread library when writing any RPC
multi-threaded-safe application. The thread library must be the last named library on
the link line. To do this, specify the −lthread option in the compile command.

Compile the program in Code Example 4–34 by typing:

$ cc rstat.c -lnsl -lthread

CODE EXAMPLE 4–34 Client for MT rstat

/* @(#)rstat.c 2.3 93/11/30 4.0 RPCSRC */
/*

* Simple program that prints the status of a remote host,
* in a format similar to that used by the ’w’ command.
*/

#include <thread.h> /* thread interfaces defined */
#include <synch.h> /* mutual exclusion locks defined */
#include <stdio.h>
#include <sys/param.h>
#include <rpc/rpc.h>

(continued)

116 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

#include <rpcsvc/rstat.h>
#include <errno.h>

mutex_t tty; /* control of tty for printf’s */
cond_t cv_finish;
int count = 0;

main(argc, argv)
int argc;
char **argv;
{

int i;
thread_t tid;
void *do_rstat();

if (argc < 2) {
fprintf(stderr, ‘‘usage: %s \’’host\’’ [...]\n’’, argv[0]);
exit(1);

}

mutex_lock(&tty);

for (i = 1; i < argc; i++) {
if (thr_create(NULL, 0, do_rstat, argv[i], 0, &tid) < 0) {

fprintf(stderr, ‘‘thr_create failed: %d\n’’, i);
exit(1);

} else
fprintf(stderr, ‘‘tid: %d\n’’, tid);

}

while (count < argc-1) {
printf(‘‘argc = %d, count = %d\n’’, argc-1, count);
cond_wait(&cv_finish, &tty);

}

exit(0);
}

bool_t rstatproc_stats();

void *
do_rstat(host)
char *host;
{

CLIENT *rstat_clnt;
statstime host_stat;
bool_t rval;
struct tm *tmp_time;
struct tm host_time;
struct tm host_uptime;
char days_buf[16];
char hours_buf[16];

(continued)

The Programmer’s Interface to RPC 117

(Continuation)

mutex_lock(&tty);
printf(‘‘%s: starting\n’’, host);
mutex_unlock(&tty);

/* client handle to rstat */
rstat_clnt = clnt_create(host, RSTATPROG, RSTATVERS_TIME,

‘‘udp’’);
if (rstat_clnt == NULL) {

mutex_lock(&tty); /* get control of tty */
clnt_pcreateerror(host);
count++;
cond_signal(&cv_finish);
mutex_unlock(&tty); /* release control of tty */

thr_exit(0);

}

rval = rstatproc_stats(NULL, &host_stat, rstat_clnt);
if (!rval) {

mutex_lock(&tty); /* get control of tty */
clnt_perror(rstat_clnt, host);
count++;
cond_signal(&cv_finish);
mutex_unlock(&tty); /* release control of tty */

thr_exit(0);

}

tmp_time = localtime_r(&host_stat.curtime.tv_sec,
&host_time);

host_stat.curtime.tv_sec = host_stat.boottime.tv_sec;

tmp_time = gmtime_r(&host_stat.curtime.tv_sec,
&host_uptime);

if (host_uptime.tm_yday != 0)
sprintf(days_buf, ‘‘%d day%s, ‘‘, host_uptime.tm_yday,

(host_uptime.tm_yday > 1) ? ‘‘s’’ : ‘‘‘‘);
else

days_buf[0] = ’\0’;

if (host_uptime.tm_hour != 0)
sprintf(hours_buf, ‘‘%2d:%02d,’’,

host_uptime.tm_hour, host_uptime.tm_min);

else if (host_uptime.tm_min != 0)
sprintf(hours_buf, ‘‘%2d mins,’’, host_uptime.tm_min);

else

(continued)

118 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

hours_buf[0] = ’\0’;

mutex_lock(&tty); /* get control of tty */
printf(‘‘%s: ‘‘, host);
printf(‘‘ %2d:%02d%cm up %s%s load average: %.2f %.2f %.2f\n’’,

(host_time.tm_hour > 12) ? host_time.tm_hour - 12

: host_time.tm_hour,
host_time.tm_min,
(host_time.tm_hour >= 12) ? ’p’
: ’a’,
days_buf,
hours_buf,
(double)host_stat.avenrun[0]/FSCALE,
(double)host_stat.avenrun[1]/FSCALE,
(double)host_stat.avenrun[2]/FSCALE);

count++;
cond_signal(&cv_finish);
mutex_unlock(&tty); /* release control of tty */
clnt_destroy(rstat_clnt);

sleep(10);
thr_exit(0);

}

/* Client side implementation of MT rstat program */
/* Default timeout can be changed using clnt_control() */
static struct timeval TIMEOUT = { 25, 0 };

bool_t
rstatproc_stats(argp, clnt_resp, clnt)

void *argp;
statstime *clnt_resp;
CLIENT *clnt;

{

memset((char *)clnt_resp, 0, sizeof (statstime));
if (clnt_call(clnt, RSTATPROC_STATS,

(xdrproc_t) xdr_void, (caddr_t) argp,
(xdrproc_t) xdr_statstime, (caddr_t) clnt_resp,
TIMEOUT) != RPC_SUCCESS) {
return (FALSE);

}
return (TRUE);

}

The Programmer’s Interface to RPC 119

MT Server Overview
Prior to Solaris 2.4, RPC servers were single threaded. That is, they process client
requests sequentially, as the requests come in. For example, if two requests come in,
and the first takes 30 seconds to process, and the second takes only 1 second to
process, the client that made the second request will still have to wait for the first
request to complete before it receives a response. This is not desirable, especially in a
multiprocessor server environment, where each CPU could be processing a different
request simultaneously; or in a situation where one request is waiting for I/O to
complete, other requests could be processed by the server.

Releases since Solaris 2.4 provide facilities in the RPC library for service developers
to create multithreaded servers that deliver better performance to end users. Two
modes of server multithreading are supported in TI-RPC: the Automatic MT mode
and the User MT mode.

In the Auto mode, the server automatically creates a new thread for every incoming
client request. This thread processes the request, sends a response, and exits. In the
User mode, the service developer decides how to create and manage threads for
concurrently processing the incoming client requests. The Auto mode is much easier
to use than the User mode, but the User mode offers more flexibility for service
developers with special requirements.

Note - You must link in the thread library when writing RPC multithreaded-safe
applications. The thread library must be the last named library on the link line. To do
this, specify the −lthread option in the compile command.

The two calls that support server multithreading are rpc_control() and
svc_done() . The rpc_control() call is used to set the MT mode, either Auto or
User mode. If the server uses Auto mode, it does not need to invoke svc_done() at
all. In User mode, svc_done() must be invoked after each client request is
processed, so that the server can reclaim the resources from processing the request.
In addition, multithreaded RPC servers must call on svc_run() . Note that
svc_getreqpoll() and svc_getreqset() are unsafe in MT applications.

Note - If the server program does not invoke any of the MT interface calls, it
remains in single-threaded mode, which is the default mode.

You are required to make RPC server procedures multithreaded safe regardless of
which mode the server is using. Usually, this means that all static and global
variables need to be protected with mutex locks. Mutual exclusion and other
synchronization APIs are defined in synch.h . See the condition (3T), rwlock (3T),
and mutex (3T) man pages for a list of the various synchronization interfaces.

Figure 4–3 illustrates a possible timing of a server implemented in one of the MT
modes of operation.

120 ONC+ Developer’s Guide ♦ , 1998

Time

Client
program

Client
program

Client
program

continues
Client

program
continues

RPC call

RPC call Create thread

Create thread

HOST BHOST A

Service
daemon

HOST C

Service
executes

Service
executes

Return answer

Return answer

Figure 4–3 MT RPC Server Timing Diagram

Sharing the Service Transport Handle
The service transport handle, SVCXPRT, contains a single data area for decoding
arguments and encoding results. Therefore, in the default, single-threaded mode, this
structure cannot be freely shared between threads that call functions that perform
these operations. However, when a server is operating in the MT Auto or User
modes, a copy of this structure is passed to the service dispatch procedure in order
to enable concurrent request processing. Under these circumstances, some routines
which would otherwise be unsafe, become safe. Unless otherwise noted, the server
interfaces are generally MT safe. See the rpc_svc_calls (3N)man page for more
details on safety for server-side interfaces.

MT Auto Mode
In the Automatic mode, the RPC library creates and manages threads. The service
developer invokes a new interface call, rpc_control() , to put the server into MT
Auto mode before invoking the svc_run() call. In this mode, the programmer
needs only to ensure that service procedures are MT safe.

rpc_control() allows applications to set and modify global RPC attributes. At
present, it supports only server-side operations. Table 4–10 shows the

The Programmer’s Interface to RPC 121

rpc_control() operations defined for Auto mode. See also the rpc_control(3N)
man page for additional information.

TABLE 4–10 rpc_control() Library Routines

RPC_SVC_MTMODE_SET() Set multithread mode

RPC_SVC_MTMODE_GET() Get multithread mode

RPC_SVC_THRMAX_SET() Set Maximum number of threads

RPC_SVC_THRMAX_GET() Get Maximum number of threads

RPC_SVC_THRTOTAL_GET() Total number of threads currently active

RPC_SVC_THRCREATES_GET() Cumulative total number of threads created by
the RPC library

RPC_SVC_THRERRORS_GET() Number of thr_create errors within RPC library

Note - All of the get operations in Table 4–10, except RPC_SVC_MTMODE_GET(),
apply only to the Auto MT mode. If used in MT User mode or the single-threaded
default mode, the results of the operations may be undefined.

By default, the maximum number of threads that the RPC server library creates at
any time is 16. If a server needs to process more than 16 client requests concurrently,
the maximum number of threads must be set to the desired number. This parameter
may be set at any time by the server, and it allows the service developer to put an
upper bound on the thread resources consumed by the server. Code Example 4–35, is
an example RPC program written in MT Auto mode. In this case, the maximum
number of threads is set at 20.

MT performance is enhanced if the function svc_getargs() is called by every
procedure other than NULLPROCS, even if there are no arguments (xdr_void()
may be used in this case). This is true for both the MT Auto and MT User modes.
For more information on this call, see the rpc_svc_calls (3N)man page.

Code Example 4–35 illustrates the server in MT Auto mode.

Note - You must link in the thread library when writing RPC multithreaded-safe
applications. The thread library must be the last named library on the link line. To do
this, specify the −lthread option in the compile command.

Compile the program in Code Example 4–35 by typing:

122 ONC+ Developer’s Guide ♦ , 1998

$ cc time_svc.c -lnsl -lthread

CODE EXAMPLE 4–35 Server for MT Auto Mode

#include <stdio.h>
#include <rpc/rpc.h>
#include <synch.h>
#include <thread.h>
#include "time_prot.h"

void time_prog();

main(argc, argv)
int argc;
char *argv[];
{
int transpnum;
char *nettype;
int mode = RPC_SVC_MT_AUTO;
int max = 20; /* Set maximum number of threads to 20 */

if (argc > 2) {
fprintf(stderr, "usage: %s [nettype]\n", argv[0]);
exit(1);

}

if (argc == 2)
nettype = argv[1];

else
nettype = "netpath";

if (!rpc_control(RPC_SVC_MTMODE_SET, &mode)) {
printf("RPC_SVC_MTMODE_SET: failed\n");
exit(1);

}
if (!rpc_control(RPC_SVC_THRMAX_SET, &max)) {

printf("RPC_SVC_THRMAX_SET: failed\n");
exit(1);

}
transpnum = svc_create(time_prog, TIME_PROG, TIME_VERS,

nettype);

if (transpnum == 0) {
fprintf(stderr, "%s: cannot create %s service.\n",
argv[0], nettype);
exit(1);

}
svc_run();

}

/*
* The server dispatch function.
* The RPC server library creates a thread which executes

* the server dispatcher routine time_prog(). After which
* the RPC library will take care of destroying the thread.
*/

(continued)

The Programmer’s Interface to RPC 123

(Continuation)

static void
time_prog(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{

switch (rqstp->rq_proc) {
case NULLPROC:

svc_sendreply(transp, xdr_void, NULL);
return;

case TIME_GET:
dotime(transp);
break;

default:
svcerr_noproc(transp);
return;

}
}
dotime(transp)
SVCXPRT *transp;
{

struct timev rslt;
time_t thetime;

thetime = time((time_t *)0);
rslt.second = thetime % 60;
thetime /= 60;
rslt.minute = thetime % 60;
thetime /= 60;
rslt.hour = thetime % 24;
if (!svc_sendreply(transp, xdr_timev,(caddr_t) &rslt)) {

svcerr_systemerr(transp);
}

}

Code Example 4–36 shows the time_prot.h header file for the server.

CODE EXAMPLE 4–36 MT Auto Mode:time_prot.h

#include <rpc/types.h>

struct timev {
int second;
int minute;
int hour;

};

(continued)

124 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

typedef struct timev timev;
bool_t xdr_timev();

#define TIME_PROG 0x40000001
#define TIME_VERS 1
#define TIME_GET 1

MT User Mode
In MT User mode, the RPC library will not create any threads. This mode works, in
principle, like the single-threaded, or default mode. The only difference is that it
passes copies of data structures (such as the transport service handle to the service
dispatch routine) to be MT safe.

The RPC server developer takes the responsibility for creating and managing threads
through the thread library. In the dispatch routine, the service developer can assign
the task of procedure execution to newly created or existing threads. The
thr_create() API is used to create threads having various attributes. All thread
library interfaces are defined in thread.h . See the pthread_create (3T) man page
for more details.

There is a lot of flexibility available to the service developer in this mode. Threads can
now have different stack sizes based on service requirements. Threads may be bound.
Different procedures may be executed by threads with different characteristics. The
service developer may choose to run some services single threaded. The service
developer may choose to do special thread-specific signal processing.

As in the Auto mode, the rpc_control() library call is used to turn on User
mode. Note that the rpc_control() operations shown in Table 4–10 (except for
RPC_SVC_MTMODE_GET()) apply only to MT Auto mode. If used in MT User mode
or the single-threaded default mode, the results of the operations may be undefined.

Freeing Library Resources in User Mode

In the MT User mode, service procedures must invoke svc_done() before
returning. svc_done() frees resources allocated to service a client request directed
to the specified service transport handle. This function is invoked after a client
request has been serviced, or after an error or abnormal condition that prevents a
reply from being sent. After svc_done() is invoked, the service transport handle
should not be referenced by the service procedure. Code Example 4–37 shows a
server in MT User mode.

The Programmer’s Interface to RPC 125

Note - svc_done() must only be called within MT User mode. For more
information on this call, see the rpc_svc_calls (3N)man page.

CODE EXAMPLE 4–37 MT User Mode: rpc_test.h

#define SVC2_PROG 0x30000002
#define SVC2_VERS 1
#define SVC2_PROC_ADD 1)
#define SVC2_PROC_MULT 2

struct intpair {
u_short a;
u_short b;

};

typedef struct intpair intpair;

struct svc2_add_args {
int argument;
SVCXPRT *transp;

};

struct svc2_mult_args {
intpair mult_argument;
SVCXPRT *transp;

};

extern bool_t xdr_intpair();

#define NTHREADS_CONST 500

Code Example 4–38 is the client for MT User mode.

CODE EXAMPLE 4–38 Client for MT User Mode

#define _REENTRANT
#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/uio.h>
#include <netconfig.h>
#include <netdb.h>
#include <rpc/nettype.h>
#include <thread.h>
#include "rpc_test.h"
void *doclient();
int NTHREADS;
struct thread_info {

thread_t client_id;
int client_status;

};
struct thread_info save_thread[NTHREADS_CONST];
main(argc, argv)

(continued)

126 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

int argc;
char *argv[];

{
int index, ret;
int thread_status;
thread_t departedid, client_id;
char *hosts;
if (argc < 3) {

printf("Usage: do_operation [n] host\n");
printf("\twhere n is the number of threads\n");
exit(1);

} else
if (argc == 3) {

NTHREADS = NTHREADS_CONST;
hosts = argv[1]; /* live_host */

} else {
NTHREADS = atoi(argv[1]);
hosts = argv[2];

}
for (index = 0; index < NTHREADS; index++){

if (ret = thr_create(NULL, NULL, doclient,
(void *) hosts, THR_BOUND, &client_id)){

printf("thr_create failed: return value %d", ret);
printf(" for %dth thread\n", index);
exit(1);

}
save_thread[index].client_id = client_id;

}
for (index = 0; index < NTHREADS; index++){

if (thr_join(save_thread[index].client_id, &departedid,
(void *)
&thread_status)){

printf("thr_join failed for thread %d\n",
save_thread[index].client_id);
exit(1);

}
save_thread[index].client_status = thread_status;

}
}

void *doclient(host)
char *host;

{
struct timeval tout;
enum clnt_stat test;
int result = 0;
u_short mult_result = 0;
int add_arg;
int EXP_RSLT;
intpair pair;
CLIENT *clnt;
if ((clnt = clnt_create(host, SVC2_PROG, SVC2_VERS, "udp"

==NULL) {
clnt_pcreateerror("clnt_create error: ");

(continued)

The Programmer’s Interface to RPC 127

(Continuation)

thr_exit((void *) -1);
}
tout.tv_sec = 25;
tout.tv_usec = 0;
memset((char *) &result, 0, sizeof (result));
memset((char *) &mult_result, 0, sizeof (mult_result));
if (thr_self() % 2){

EXP_RSLT = thr_self() + 1;
add_arg = thr_self();
test = clnt_call(clnt, SVC2_PROC_ADD, (xdrproc_t) xdr_int,
(caddr_t) &add_arg, (xdrproc_t) xdr_int, (caddr_t) &result,
tout);

} else {
pair.a = (u_short) thr_self();
pair.b = (u_short) 1;
EXP_RSLT = pair.a * pair.b;
test = clnt_call(clnt, SVC2_PROC_MULT, (xdrproc_t)
xdr_intpair,
(caddr_t) &pair, (xdrproc_t) xdr_u_short,
(caddr_t) &mult_result, tout);
result = mult_result;

}
if (test != RPC_SUCCESS) {

printf("THREAD: %d clnt_call hav
thr_exit((void *) -1);

};
thr_exit((void *) 0);

}

Code Example 4–39 shows the server side in MT User mode. MT performance is
enhanced if the function svc_getargs() is called by every procedure other than
NULLPROC, even if there are no arguments (xdr_void may be used in this case). This
is true for both the MT Auto and MT User modes. For more information on this call,
see the rpc_svc_calls (3N)man page.

Note - You must link in the thread library when writing RPC multithreaded-safe
applications. The thread library must be the last named library on the link line. To do
this, specify the −lthread option in the compile command.

CODE EXAMPLE 4–39 Server for MT User Mode

#define _REENTRANT
#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/types.h>
#include <netinet/in.h>

128 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

#include <sys/uio.h>
#include <signal.h>
#include <thread.h>
#include "operations.h"

SVCXPRT *xprt;
void add_mult_prog();
void *svc2_add_worker();
void *svc2_mult_worker();
main(argc, argv)

int argc;
char **argv;

{
int transpnum;
char *nettype;
int mode = RPC_SVC_MT_USER;

if(rpc_control(RPC_SVC_MTMODE_SET,&mode) == FALSE){
printf(" rpc_control is failed to set AUTO mode\n");
exit(0);

}
if (argc > 2) {

fprintf(stderr, "usage: %s [nettype]\n", argv[0]);
exit(1);

}
if (argc == 2)

nettype = argv[1];
else

nettype = "netpath";
transpnum = svc_create(add_mult_prog, SVC2_PROG,

SVC2_VERS, nettype);
if (transpnum == 0) {

fprintf(stderr, "%s: cannot create %s service.\n", argv[0],
nettype);

exit(1);
}
svc_run();

}
void add_mult_prog (rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
int argument;
u_short mult_arg();
intpair mult_argument;
bool_t (*xdr_argument)();
struct svc2_mult_args *sw_mult_data;
struct svc2_add_args *sw_add_data;
int ret;
thread_t worker_id;
switch (rqstp->rq_proc){

case NULLPROC:
svc_sendreply(transp, xdr_void, (char *) 0);
svc_done(transp);

(continued)

The Programmer’s Interface to RPC 129

(Continuation)

break;
case SVC2_PROC_ADD:

xdr_argument = xdr_int;
(void) memset((char *) &argument, 0, sizeof (argument));
if (!svc_getargs(transp, xdr_argument,
(char *) &argument)){

printf("problem with getargs\n");
svcerr_decode(transp);
exit(1);

}
sw_add_data = (struct svc2_add_args *)
malloc(sizeof (struct svc2_add_args));
sw_add_data->transp = transp;
sw_add_data->argument = argument;
if (ret = thr_create(NULL, THR_MIN_STACK + 16 * 1024,
svc2_add_worker, (void *) sw_add_data, THR_DETACHED,

printf("SERVER: thr_create failed:");
printf(" return value %d", ret);
printf(" for add thread\n");
exit(1);

}
break;

case SVC2_PROC_MULT:
xdr_argument = xdr_intpair;
(void) memset((char *) &mult_argument, 0,
sizeof (mult_argument));
if (!svc_getargs(transp, xdr_argument,
(char *) &mult_argument)){

printf("problem with getargs\n");
svcerr_decode(transp);
exit(1);

}
sw_mult_data = (struct svc2_mult_args *)
malloc(sizeof (struct svc2_mult_args));
sw_mult_data->transp = transp;
sw_mult_data->mult_argument.a = mult_argument.a;
sw_mult_data->mult_argument.b = mult_argument.b;
if (ret = thr_create(NULL, THR_MIN_STACK + 16 * 1024,
svc2_mult_worker, (void *) sw_mult_data, THR_DETACHED,
&worker_id)){

printf("SERVER: thr_create failed:");
printf("return value %d", ret);
printf("for multiply thread\n");
exit(1);

break;
default:

svcerr_noproc(transp);
svc_done(transp);
break;

}
}
u_short mult_arg();
int add_one();

(continued)

130 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

void *svc2_add_worker(add_arg)
struct svc2_add_args *add_arg;
{ int *result;

bool_t (*xdr_result)();
xdr_result = xdr_int;
result = *malloc(sizeof (int));
*result = add_one(add_arg->argument);
if (!svc_sendreply(add_arg->transp, xdr_result,
(caddr_t) result)){

printf("sendreply failed\n");
svcerr_systemerr(add_arg->transp);
svc_done(add_arg->transp);
thr_exit((void *) -1);

}
svc_done(add_arg->transp);
thr_exit((void *) 0);

}
void *svc2_mult_worker(m_arg)
struct svc2_mult_args *m_arg;
{

u_short *result;
bool_t (*xdr_result)();
xdr_result = xdr_u_short;
result = (u_short *) malloc(sizeof (u_short));
*result = mult_arg(&m_arg->mult_argument);
if (!svc_sendreply(m_arg->transp, xdr_result,
(caddr_t) result)){

printf("sendreply failed\n");
svcerr_systemerr(m_arg->transp);
svc_done(m_arg->transp);
thr_exit((void *) -1);

}
svc_done(m_arg->transp);
thr_exit((void *) 0);

}
u_short mult_arg(pair)

intpair *pair;
{

u_short result;
result = pair->a * pair->b;
return (result);}

int add_one(arg)
int arg;

{
return (++arg);

}

The Programmer’s Interface to RPC 131

Connection-Oriented Transports
Code Example 4–40 copies a file from one host to another. The RPC send() call
reads standard input and sends the data to the server receive() , which writes the
data to standard output. This also illustrates an XDR procedure that behaves
differently on serialization and on deserialization. A connection-oriented transport is
used.

CODE EXAMPLE 4–40 Remote Copy (Two-Way XDR Routine)

/*
* The xdr routine:
* on decode, read wire, write to fp
* on encode, read fp, write to wire
*/

#include <stdio.h>
#include <rpc/rpc.h>

bool_t
xdr_rcp(xdrs, fp)

XDR *xdrs;
FILE *fp;

{
unsigned long size;
char buf[BUFSIZ], *p;

if (xdrs->x_op == XDR_FREE) /* nothing to free */
return(TRUE);

while (TRUE) {
if (xdrs->x_op == XDR_ENCODE) {

if ((size = fread(buf, sizeof(char), BUFSIZ, fp))
== 0 && ferror(fp)) {

fprintf(stderr, "can’t fread\n");
return(FALSE);

} else
return(TRUE);

}
p = buf;
if (! xdr_bytes(xdrs, &p, &size, BUFSIZ))

return(0);
if (size == 0)

return(1);
if (xdrs->x_op == XDR_DECODE) {

if (fwrite(buf, sizeof(char), size, fp) != size) {
fprintf(stderr, "can’t fwrite\n");
return(FALSE);

} else
return(TRUE);

}
}

(continued)

132 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

}

In Code Example 4–41 and Code Example 4–42, the serializing and deserializing are
done only by the xdr_rcp() routine shown in Code Example 4–40.

CODE EXAMPLE 4–41 Remote Copy Client Routines

/* The sender routines */
#include <stdio.h>
#include <netdb.h>
#include <rpc/rpc.h>
#include <sys/socket.h>
#include <sys/time.h>
#include "rcp.h"

main(argc, argv)
int argc;
char **argv;

{
int xdr_rcp();

if (argc != 2 7) {
fprintf(stderr, "usage: %s servername\n", argv[0]);
exit(1);

}
if(callcots(argv[1], RCPPROG, RCPPROC, RCPVERS, xdr_rcp,

stdin,
xdr_void, 0) != 0)

exit(1);
exit(0);

}

callcots(host, prognum, procnum, versnum, inproc, in, outproc,
out)

char *host, *in, *out;
xdrproc_t inproc, outproc;

{
enum clnt_stat clnt_stat;
register CLIENT *client;
struct timeval total_timeout;

if ((client = clnt_create(host, prognum, versnum,
"circuit_v")

== (CLIENT *) NULL)) {
clnt_pcreateerror("clnt_create");
return(-1);

}
total_timeout.tv_sec = 20;

(continued)

The Programmer’s Interface to RPC 133

(Continuation)

total_timeout.tv_usec = 0;
clnt_stat = clnt_call(client, procnum, inproc, in, outproc,

out,
total_timeout);

clnt_destroy(client);
if (clnt_stat != RPC_SUCCESS)

clnt_perror("callcots");
return((int)clnt_stat);

}

The receiving routines are defined in Code Example 4–42. Note that in the server,
xdr_rcp() did all the work automatically.

CODE EXAMPLE 4–42 Remote Copy Server Routines

/*
* The receiving routines
*/

#include <stdio.h>
#include <rpc/rpc.h
#include "rcp.h"

main()
{

void rcp_service();
if (svc_create(rpc_service,RCPPROG,RCPVERS,"circuit_v") == 0) {

fprintf(stderr, "svc_create: errpr\n");
exit(1);

}
svc_run(); /* never returns */
fprintf(stderr, "svc_run should never return\n");

}

void
rcp_service(rqstp, transp)

register struct svc_req *rqstp;
register SVCXPRT *transp;

{
switch(rqstp->rq_proc) {

case NULLPROC:
if (svc_sendreply(transp, xdr_void, (caddr_t) NULL) == FALSE)

fprintf(stderr, "err: rcp_service");
return;

case RCPPROC:
if (!svc_getargs(transp, xdr_rcp, stdout)) {

svcerr_decode(transp);
return();

(continued)

134 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

}
if(!svc_sendreply(transp, xdr_void, (caddr_t) NULL)) {

fprintf(stderr, "can’t reply\n");
return();

}
return();

default:
svcerr_noproc(transp);
return();

}

}

Memory Allocation With XDR
XDR routines normally serialize and deserialize data. XDR routines often
automatically allocate memory and free automatically allocated memory. The
convention is to use a NULL pointer to an array or structure to indicate that an XDR
function must allocate memory when deserializing. The next example,
xdr_chararr1() , processes a fixed array of bytes with length SIZE and cannot
allocate memory if needed:

xdr_chararr1(xdrsp, chararr)
XDR *xdrsp;
char chararr[];

{
char *p;
int len;

p = chararr;
len = SIZE;
return (xdr_bytes(xdrsp, &p, &len, SIZE));

}

If space has already been allocated in chararr, it can be called from a server like this:

char chararr[SIZE];
svc_getargs(transp, xdr_chararr1, chararr);

Any structure through which data is passed to XDR or RPC routines must be
allocated so that its base address is at an architecture-dependent boundary. An XDR
routine that does the allocation must be written so that it can:

The Programmer’s Interface to RPC 135

� Allocate memory when a caller requests

� Return the pointer to any memory it allocates

In the following example, the second argument is a NULL pointer, meaning that
memory should be allocated to hold the data being deserialized.

xdr_chararr2(xdrsp, chararrp)
XDR *xdrsp;
char **chararrp;

{

int len;

len = SIZE;
return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));

}

The corresponding RPC call is:

char *arrptr;
arrptr = NULL;
svc_getargs(transp, xdr_chararr2, &arrptr);
/*

* Use the result here
*/

svc_freeargs(transp, xdr_chararr2, &arrptr);

After use, the character array should be freed through svc_freeargs() .
svc_freeargs() does nothing if passed a NULL pointer as its second argument.

To summarize:

� An XDR routine normally serializes, deserializes, and frees memory.

� svc_getargs() calls the XDR routine to deserialize.

� svc_freeargs() calls the XDR routine to free memory.

Porting From TS-RPC to TI-RPC
The transport-independent RPC (TI-RPC) routines allow the developer stratified
levels of access to the transport layer. The highest-level routines provide complete
abstraction from the transport and provide true transport-independence. Lower
levels provide access levels similar to the TI-RPC of previous releases.

This section is an informal guide to porting transport-specific RPC (TS-RPC)
applications to TI-RPC. Table 4–11 shows the differences between selected routines

136 ONC+ Developer’s Guide ♦ , 1998

and their counterparts. For information on porting issues concerning sockets and
transport layer interface (TLI), see the Transport Interfaces Programming Guide.

Porting an Application
An application based on either TCP or UDP can run in binary-compatibility mode.
For some applications you only recompile and relink all source files. This may be true
of applications that use simple RPC calls and use no socket or TCP or UDP specifics.

Some editing and new code may be needed if an application depends on socket
semantics or features specific to TCP or UDP. Examples use the format of host
addresses or rely on the Berkeley UNIX concept of privileged ports.

Applications that are dependent on the internals of the library or the socket
implementation, or depend on specific transport addressing probably require more
effort to port and may require substantial modification.

Benefits of Porting
Some of the benefits of porting are:

� Applications transport independence means they operate over more transports
than before.

� Use of new interfaces make your application more efficient.

� Binary compatibility is less efficient than native mode.

� Old interfaces could removed from future releases.

Porting Issues

libnsl Library
libc no longer includes networking functions. libnsl must be explicitly specified at
compile time to link the network services routines.

Old Interfaces
Many old interfaces are supported in the libnsl library, but they work only with TCP
or UDP transports. To take advantage of new transports, you must use the new
interfaces.

The Programmer’s Interface to RPC 137

Name-to-Address Mapping
Transport independence requires opaque addressing. This has implications for
applications that interpret addresses.

Differences Between TI-RPC and TS-RPC
The major differences between transport-independent RPC and transport-specific
RPC are illustrated in Table 4–11. Also see section “Comparison Examples” on page
142 for code examples comparing TS-RPC with TI-RPC.

TABLE 4–11 Differences Between TI-RPC and TS-RPC

Category TI-RPC TS- RPC

Default Transport Selection TI-RPC uses the TLI interface. TS-RPC uses the socket interface.

RPC Address Binding TI-RPC uses rpcbind() for
service binding. rpcbind()
keeps address in universal
address format.

TS-RPC uses portmap for service
binding.

Transport Information Transport information is kept in
a local file, /etc/netconfig .
Any transport identified in
netconfig is accessible.

Only TCP and UDP transports are
supported.

Loopback Transports rpcbind service requires a
secure loopback transport for
server registration

TS-RPC services do not require a
loopback transport.

Host Name Resolution The order of host name
resolution in TI-RPC depends
on the order of dynamic
libraries identified by entries in
/etc/netconfig .

Host name resolution is done by name
services. The order is set by the state of
the hosts database.

File Descriptors Descriptors are assumed to be
TLI endpoints.

Descriptors are assumed to be sockets.

rpcgen The TI-RPC rpcgen tool adds
support for multiple arguments,
pass-by values, sample client
files, and sample server files.

rpcgen in SunOS 4.1 and previous
releases do not support the features
listed for TI-RPC rpcgen .

138 ONC+ Developer’s Guide ♦ , 1998

TABLE 4–11 Differences Between TI-RPC and TS-RPC (continued)

Category TI-RPC TS- RPC

Libraries TI-RPC requires that
applications be linked to the
libnsl library.

All TS-RPC functionality is provided in
libc.

MT Support Multithreaded RPC clients and
servers are supported.

Multithreaded RPC is not supported.

Function Compatibility Lists
The RPC library functions are listed in this section and grouped into functional areas.
Each section includes lists of functions that are unchanged, have added functionality,
and are new relative to previous releases.

Note - Functions marked with an asterisk are retained for ease of porting and may
be not be supported in future releases of Solaris.

Creating Client Handles
The following functions are unchanged from the previous release and available in
the current SunOS release:

clnt_destroy
clnt_pcreateerror
*clntraw_create
clnt_spcreateerror
*clnttcp_create
*clntudp_bufcreate
*clntudp_create
clnt_control
clnt_create
clnt_create_timed
clnt_create_vers
clnt_dg_create
clnt_raw_create
clnt_tli_create
clnt_tp_create
clnt_tp_create_timed
clnt_vc_create

The Programmer’s Interface to RPC 139

Creating and Destroying Services
The following functions are unchanged from the previous releases and available in
the current SunOS release:

svc_destroy
svcfd_create
*svc_raw_create
*svc_tp_create
*svcudp_create
*svc_udp_bufcreate
svc_create
svc_dg_create
svc_fd_create
svc_raw_create
svc_tli_create
svc_tp_create
svc_vc_create

Registering and Unregistering Services
The following functions are unchanged from the previous releases and available in
the current SunOS release:

*registerrpc
*svc_register
*svc_unregister
xprt_register
xprt_unregister
rpc_reg
svc_reg
svc_unreg

SunOS 4.x Compatibility Calls
The following functions are unchanged from previous releases and available in the
current SunOS release:

*callrpc
clnt_call
*svc_getcaller - works only with IP-based transports
rpc_call
svc_getrpccaller

Broadcasting
The following call has the same functionality as in previous releases, although it is
supported for backward compatibility only:

*clnt_broadcast

140 ONC+ Developer’s Guide ♦ , 1998

clnt_broadcast() can broadcast only to the portmap service. It does not support
rpcbind .

The following function that broadcasts to both portmap and rpcbind is also available
in the current release of SunOS:

rpc_broadcast

Address Management Functions
The TI-RPC library functions interface with either portmap or rpcbind . Since the
services of the programs differ, there are two sets of functions, one for each service.

The following functions work with portmap :

pmap_set
pmap_unset
pmap_getport
pmap_getmaps
pmap_rmtcall

The following functions work with rpcbind :

rpcb_set
rpcb_unset
rpcb_getaddr
rpcb_getmaps
rpcb_rmtcall

Authentication Functions
The following calls have the same functionality as in previous releases. They are
supported for backward compatibility only:

authdes_create
authunix_create
authunix_create_default
authdes_seccreate
authsys_create
authsys_create_default

Other Functions
rpcbind provides a time service (primarily for use by secure RPC client-server time
synchronization), available through the rpcb_gettime() function.
pmap_getport() and rpcb_getaddr() can be used to get the port number of a
registered service. rpcb_getaddr() communicates with any server running version
2, 3, or 4 of rcpbind . pmap_getport() can only communicate with version 2.

The Programmer’s Interface to RPC 141

Comparison Examples
The changes in client creation from TS-RPC to TI-RPC are illustrated in Code
Example 4–43 and Code Example 4–44. Each example

� Creates a UDP descriptor.

� Contacts the remote host’s RPC binding process to get the services address.

� Binds the remote service’s address to the descriptor.

� Creates the client handle and set its time out.

CODE EXAMPLE 4–43 Client Creation in TS-RPC

struct hostent *h;
struct sockaddr_in sin;
int sock = RPC_ANYSOCK;
u_short port;
struct timeval wait;

if ((h = gethostbyname("host")) == (struct hostent *) NULL)
{

syslog(LOG_ERR, "gethostbyname failed");
exit(1);

}
sin.sin_addr.s_addr = *(u_int *) hp->h_addr;
if ((port = pmap_getport(&sin, PROGRAM, VERSION, "udp")) == 0) {

syslog (LOG_ERR, "pmap_getport failed");
exit(1);

} else
sin.sin_port = htons(port);

wait.tv_sec = 25;
wait.tv_usec = 0;
clntudp_create(&sin, PROGRAM, VERSION, wait, &sock);

The TI-RPC version assumes that the UDP transport has the netid udp. A netid is
not necessarily a well-known name.

CODE EXAMPLE 4–44 Client Creation in TI-RPC

struct netconfig *nconf;
struct netconfig *getnetconfigent();
struct t_bind *tbind;
struct timeval wait;

nconf = getnetconfigent("udp");
if (nconf == (struct netconfig *) NULL) {

syslog(LOG_ERR, "getnetconfigent for udp failed");
exit(1);

}
fd = t_open(nconf->nc_device, O_RDWR, (struct t_info *)NULL);
if (fd == -1) {

syslog(LOG_ERR, "t_open failed");
exit(1);

}
tbind = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);
if (tbind == (struct t_bind *) NULL) {

syslog(LOG_ERR, "t_bind failed");

142 ONC+ Developer’s Guide ♦ , 1998

exit(1);
}
if (rpcb_getaddr(PROGRAM, VERSION, nconf, &tbind->addr, "host")

== FALSE) {
syslog(LOG_ERR, "rpcb_getaddr failed");
exit(1);

}
cl = clnt_tli_create(fd, nconf, &tbind->addr, PROGRAM, VERSION,

0, 0);
(void) t_free((char *) tbind, T_BIND);
if (cl == (CLIENT *) NULL) {

syslog(LOG_ERR, "clnt_tli_create failed");
exit(1);

}
wait.tv_sec = 25;
wait.tv_usec = 0;
clnt_control(cl, CLSET_TIMEOUT, (char *) &wait);

Code Example 4–45 and Code Example 4–46show the differences between broadcast
in TS-RPC and TI-RPC. The older clnt_broadcast() is similar to the newer
rpc_broadcast() . The primary difference is in the collectnames() function:
deletes duplicate addresses and displays the names of hosts that reply to the
broadcast.

CODE EXAMPLE 4–45 Broadcast in TS-RPC

statstime sw;
extern int collectnames();

clnt_broadcast(RSTATPROG, RSTATVERS_TIME, RSTATPROC_STATS,
xdr_void, NULL, xdr_statstime, &sw, collectnames);

...
collectnames(resultsp, raddrp)

char *resultsp;
struct sockaddr_in *raddrp;

{
u_int addr;
struct entry *entryp, *lim;
struct hostent *hp;
extern int curentry;

/* weed out duplicates */
addr = raddrp->sin_addr.s_addr;
lim = entry + curentry;
for (entryp = entry; entryp < lim; entryp++)

if (addr == entryp->addr)
return (0);

...
/* print the host’s name (if possible) or address */
hp = gethostbyaddr(&raddrp->sin_addr.s_addr, sizeof(u_int),

AF_INET);
if(hp == (struct hostent *) NULL)

printf("0x%x", addr);
else

printf("%s", hp->h_name);
}

The Programmer’s Interface to RPC 143

Code Example 4–46 shows the Broadcast for TI-RPC:

CODE EXAMPLE 4–46 Broadcast in TI-RPC

statstime sw;
extern int collectnames();

rpc_broadcast(RSTATPROG, RSTATVERS_TIME, RSTATPROC_STATS,
xdr_void, NULL, xdr_statstime, &sw, collectnames, (char *)

0);
...

collectnames(resultsp, taddr, nconf)
char *resultsp;
struct t_bind *taddr;
struct netconfig *nconf;

{
struct entry *entryp, *lim;
struct nd_hostservlist *hs;
extern int curentry;
extern int netbufeq();

/* weed out duplicates */
lim = entry + curentry;
for (entryp = entry; entryp < lim; entryp++)

if (netbufeq(&taddr->addr, entryp->addr))
return (0);

...
/* print the host’s name (if possible) or address */
if (netdir_getbyaddr(nconf, &hs, &taddr->addr) == ND_OK)

printf("%s", hs->h_hostservs->h_host);
else {

char *uaddr = taddr2uaddr(nconf, &taddr->addr);
if (uaddr) {

printf("%s\n", uaddr);
(void) free(uaddr);

} else
printf("unknown");

}
}
netbufeq(a, b)

struct netbuf *a, *b;
{

return(a->len == b->len && !memcmp(a->buf, b->buf, a->len));
}

144 ONC+ Developer’s Guide ♦ , 1998

PART III NIS+

Part 3 discusses the NIS+ API.

� Chapter 5

CHAPTER 5

NIS+ Programming Guide

This chapter presents the fundamental principles of the NIS+ applications
programming interface and a detailed sample program. The NIS+ API is for
programmers who need to build applications for Solaris-based networks. It provides
the essential features for supporting enterprise-wide applications.

� “NIS+ Overview” on page 147

� “NIS+ API” on page 151

� “NIS+ Sample Program” on page 156

The NIS+ network name service addresses the requirements of client/server networks
ranging in size from 10 clients supported by a few servers on a simple local area
network to 10,000 multi-vendor clients supported by 20 to 100 specialized servers
located in sites throughout the world and connected by several public networks.

NIS+ Overview
Domains
NIS+ supports hierarchical domains, illustrated as a simple case in Figure 5–1

Wiz

 Sales Eng TestCorp
Figure 5–1 NIS+ Domain

147

A NIS+ domain is a set of data describing the workstations, users, and network
services in a portion of an organization. NIS+ domains can be administered
independently of each other. This allows NIS+ to be used in a range of networks,
from small to very large.

Servers
Each domain is supported by a set of servers. The principal server is called the
master server, and the backup servers are called replicas. Both master and replica
servers run NIS+ server software. The master server stores the original tables, and
the backup servers store copies.

NIS+ accepts incremental updates to the replicas. Changes are first made on the
master server. Then they are automatically propagated to the replica servers and are
soon available to the entire namespace.

Tables
NIS+ stores information in tables instead of maps or zone files. NIS+ provides 16
types of predefined, or system, tables, shown in Figure 5–2.

Hosts

Bootparams

Password

Cred

Group

Services

Protocols

RPC

 Auto_Home

Auto_Master

Netgroups

Mail Aliases

 Timezone

 Networks

 Netmasks

 Ethers

Figure 5–2 NIS+ Tables

Each table stores a different type of information. For instance, the Hosts table stores
host name/Internet address pairs, and the Password table stores information about
users of the network.

NIS+ tables have two major improvements over NIS maps. First, a NIS+ table can be
accessed by any column, not just the first column (sometimes referred to as the
“key”). This eliminates the need for duplicate maps, such as the hosts.byname and
hosts.byaddr maps of NIS. Second, access to the information in NIS+ tables can

148 ONC+ Developer’s Guide ♦ , 1998

be controlled at three levels of granularity: the table level, the entry level, and the
column level.

NIS+ Security
The NIS+ security model provides both authorization and authentication
mechanisms. First, every object in the namespace specifies the type of operation it
accepts and from whom. This is authorization. Second, NIS+ attempts to authenticate
every requestor accessing the namespace. Once it identifies the originator of the
request, it determines whether the object has authorized that particular operation for
that particular principal. Based on its authentication and the object’s authorization,
NIS+ carries out or denies the access request.

Name Service Switch
NIS+ works in conjunction with a separate facility called the Name Service Switch.
The Name Service Switch, sometimes referred to as “the Switch,” lets Solaris
2.x-based workstations obtain their information from more than one network
information service; specifically, from local, or /etc files, from NIS maps, from DNS
zone files, or from NIS+ tables. The Switch not only offers a choice of sources, but
allows a workstation to specify different sources for different types of information.
The name service is configured through the file /etc/nsswitch.conf .

NIS+ Administration Commands
NIS+ provides a full set of commands for administering a namespace.

Table 5–1 summarizes them.

TABLE 5–1 NIS+ Namespace Administration Commands

Command Description

nischgrp Changes the group owner of a NIS+ object.

nischmod Changes an object’s access rights.

nischown Changes the owner of a NIS+ object.

NIS+ Programming Guide 149

TABLE 5–1 NIS+ Namespace Administration Commands (continued)

Command Description

nisgrpadm Creates or destroys a NIS+ group, or displays a list of its members.
Also adds members to a group, removes them, or tests them for
membership in the group.

niscat Displays the contents of NIS+ tables.

nisgrep Searches for entries in a NIS+ table.

nisls Lists the contents of a NIS+ directory.

nismatch Searches for entries in a NIS+ table.

nisaddent Adds information from /etc files or NIS maps into NIS+ tables.

nistbladm Creates or deletes NIS+ tables, and adds, modifies or deletes entries in
a NIS+ table.

nisaddcred Creates credentials for NIS+ principals and stores them in the Cred
table.

nispasswd Changes password information stored in the NIS+ Passwd table.

nisupdkeys Updates the public keys stored in a NIS+ object.

nisinit Initializes a NIS+ client or server.

nismkdir Creates a NIS+ directory and specifies its master and replica servers.

nisrmdir Removes NIS+ directories and replicas from the namespace.

nissetup Creates org_dir and groups_dir directories and a complete set of
(unpopulated) NIS+ tables for a NIS+ domain.

rpc.nisd The NIS+ server process.

nis_cachemgr Starts the NIS+ Cache Manager on a NIS+ client.

nischttl Changes a NIS+ object’s time-to-live value.

nisdefaults Lists a NIS+ object’s default values: domain name, group name,
workstation name, NIS+ principal name, access rights, directory search
path, and time-to-live.

150 ONC+ Developer’s Guide ♦ , 1998

TABLE 5–1 NIS+ Namespace Administration Commands (continued)

Command Description

nisln Creates a symbolic link between two NIS+ objects.

nisrm Removes NIS+ objects (except directories) from the namespace.

nisshowcache Lists the contents of the NIS+ shared cache maintained by the NIS+
Cache Manager.

NIS+ API
The NIS+ application programming interface (API) is a group of functions that can
be called by an application to access and modify NIS+ objects. The NIS+ API has 54
functions that fall into nine categories:

� Object Manipulation Functions (nis_names)

� Table Access Functions (nis_tables)

� Local Name Functions (nis_local_names)

� Group Manipulation Functions (nis_groups)

� Server Related Functions (nis_server)

� Database Access Functions (nis_db)

� Error Message Display Functions (nis_error)

� Transaction Log Functions (nis_admin)

� Miscellaneous Functions (nis_subr)

The functions in each category are summarized in Table 5–2. The category names
match the names by which they are grouped in the NIS+ manpages.

NIS+ Programming Guide 151

TABLE 5–2 NIS+ API Functions

Function Description

nis_names() Locate and Manipulate Objects

nis_lookup() Returns a copy of an NIS+ object. Can follow links.
Though it cannot search for an entry object, if a link
points to one, it can return an entry object.

nis_add() Adds an NIS+ object to the namespace.

nis_remove() Removes an NIS+ object in the namespace.

nis_modify() Modifies an NIS+ object in the namespace.

nis_tables Search and Update Tables.

nis_list() Searches a table in the NIS+ namespace and returns
entry objects that match the search criteria. Can
follow links and search paths from one table to
another.

nis_add_entry() Adds an entry object to an NIS+ table. Can be
instructed to either fail or overwrite if the entry
object already exists. Can return a copy of the
resulting object if the operation was successful.

nis_freeresult() Frees all memory associated with a nis_result
structure.

nis_remove_entry() Removes one or more entry objects from an NIS+
table. Can identify the object to be removed by using
search criteria or by pointing to a cached copy of the
object. If using search criteria, can remove all objects
that match the search criteria; therefore, with the
proper search criteria, can remove all entries in a
table. Can return a copy of the resulting object if the
operation was successful.

nis_modify_entry() Modifies one or more entry objects in an NIS+ table.
Can identify the object to be modified by using search
criteria or by pointing to a cached copy of the object.

nis_first_entry() Returns a copy of the first entry object in an NIS+
table.

152 ONC+ Developer’s Guide ♦ , 1998

TABLE 5–2 NIS+ API Functions (continued)

Function Description

nis_next_entry() Returns a copy of the “next” entry object in an NIS+
table. Because a table can be updated and entries
removed or modified between calls to this function,
the order of entries returned may not match the
actual order of entries in the table.

nis_local_names() Get Default Names for the Current Process

nis_local_directory() Returns the name of the workstation’s NIS+ domain.

nis_local_host() Returns the fully-qualified name of the workstation.
A fully qualified name has the form
<host-name>.<domain-name>.

nis_local_group() Returns the name of the current NIS+ group, which
is specified by the environment variable NIS_GROUP.

nis_local_principal() Returns the name of the NIS+ principal whose UID is
associated with the calling process.

nis_getnames() Returns a list of possible expansions to a particular
name.

nis_freenames() Frees the memory containing the list generated by
nis_getnames() .

nis_groups() Group Manipulation and Authorization

nis_ismember() Test whether a principal is a member of a group.

nis_addmember() Adds a member to a group. The member can be a
principal, a group, or a domain.

nis_removemember() Deletes a member from a group.

nis_creategroup() Create a group object.

nis_destroygroup() Delete a group object.

nis_verifygroup() Tests whether a group object exists.

nis_print_group_entry() Lists the principals that are members of a group
object.

NIS+ Programming Guide 153

TABLE 5–2 NIS+ API Functions (continued)

Function Description

nis_server Various services for NIS+ applications.

nis_mkdir() Creates the databases to support service for a named
directory on a specified host.

nis_rmdir() Removes the directory from a host.

nis_servstate() Sets and reads state variables of NIS+ servers and
flushes internal cashes.

nis_stats() Retrieves statistics about a server’s performance.

nis_getservlist() Returns a list of servers that support a particular
domain.

nis_freeservlist() Frees the list of servers returned by
nis_getservlist() .

nis_freetags() Frees the memory associated with the results of
nis_servstate() and nis_stats() .

nis_db Interface Between the NIS+ Server and the Database.
Not To Be Used By a NIS+ Client.

db_first_entry() Returns a copy of the first entry of the specified table.

db_next_entry() Returns a copy of the entry succeeding the specified
entry.

db_reset_next_entry() Terminates a first/next entry sequence.

db_list_entries() Returns copies of entries that meet specified
attributes.

db_remove_entry() Removes all entries that meet specified attributes.

db_add_entry() Replaces an entry in a table identified by specified
attributes with a copy of the specified object, or adds
the object to the table.

db_checkpoint() Reorganizes the contents of a table to make access to
the table more efficient.

db_standby() Advises the database manager to release resources.

154 ONC+ Developer’s Guide ♦ , 1998

TABLE 5–2 NIS+ API Functions (continued)

Function Description

nis_error() Functions that supply descriptive strings equivalent
to NIS+ status values

nis_sperrno() Returns a pointer to the appropriate string constant.

nis_perror() Displays the appropriate string constant on standard
output.

nis_lerror() Sends the appropriate string constant to syslog

nis_sperror() Returns a pointer to a statically allocated string to be
used or to be copied with strdup() .

nis_admin Transaction logging functions used by servers

nis_ping Used by the master server of a directory to time
stamp it. This forces replicas of the directory to be
updated.

nis_checkpoint() Forces logged data to be stored in the table on disk.

nis_subr Functions To Help Operate on NIS+ Names and
Objects.

nis_leaf_of() Returns the first label in an NIS+ name. The returned
name does not have a trailing dot.

nis_name_of() Removes all domain-related labels and returns only
the unique object portion of the name. The name
passed to the function must be either in the local
domain or in one of its child domains, or the
function returns NULL.

nis_domain_of() Returns the name of the domain in which an object
resides. The returned name ends in a dot.

nis_dir_cmp() Compares any two NIS+ names. The comparison
ignores case and states whether the names are the
same, descendants of each other, or not related.

nis_clone_object() Creates an exact duplicate of an NIS+ object.

NIS+ Programming Guide 155

TABLE 5–2 NIS+ API Functions (continued)

Function Description

nis_destroy_object() Destroys an object created by
nis_clone_object() .

nis_print_object() Prints the contents of an NIS+ object structure to
stdout .

NIS+ Sample Program
This program performs the following tasks:

� Determines the local principal and local domain

� Looks up the local directory object

� Creates a directory called foo under the local domain

� Creates the groups_dir and org_dir directories under domain foo

� Creates a group object admins.foo

� Adds the local principal to the admins group

� Creates a table under org_dir.foo

� Adds two entries to the org_dir.foo table

� Retrieves and displays the new membership list of the admins group

� Lists the namespace under the foo domain using callbacks

� Lists the contents of the table created using callbacks

� Cleans up all the objects that were created by removing the following:

� the local principal from the admins group
� the admins group
� the entries in the table followed by the table
� the groups_dir and org_dir directory objects
� the foo directory object

The example program is not a typical application. In a normal situation the
directories and tables would be created or removed through the command line
interface, and applications would manipulate NIS+ entry objects.

156 ONC+ Developer’s Guide ♦ , 1998

Unsupported Macros
The sample program uses unsupported macros that are defined in the file
<rpcsvc/nis.h> . These are not public APIs and can change or disappear in the
future. They are used for illustration purposes only and if you choose to use them,
you do so at your own risk. The macros used are:

� NIS_RES_OBJECT

� ENTRY_VAL

� DEFAULT_RIGHTS

Functions Used in the Example
The use of the following NIS+ C API functions is illustrated through this example:

nis_add() nis_add_entry() nis_addmember()

nis_creategroup() nis_destroygroup() nis_domain_of()

nis_freeresult() nis_leaf_of() nis_list()

nis_local_directory() nis_local_principal() nis_lookup()

nis_mkdir() nis_perror() nis_remove()

nis_remove_entry() nis_removemember()

Program Compilation
The program shown in Code Example 5–1 assumes that the NIS+ principal running
this application has permission to create directory objects in the local domain. The
program is compiled:

yourhost% cc -o example.c example -lnsl

It is invoked:

yourhost% example [dir]

where dir is the NIS+ directory in which the program creates all the NIS+ objects.
Specifying no directory argument causes the objects to be created in the parent
directory of the local domain. Note that for the call to nis_lookup() , a space and
the name of the local domain are appended to the string that names the directory.
The argument is the name of the NIS+ directory in which to create the NIS+ objects.
The principal running this program should have create permission in the directory.

NIS+ Programming Guide 157

CODE EXAMPLE 5–1 NIS+ Program Main example.c

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <rpcsvc/nis.h>

#define MAX_MESG_SIZE 512
#define BUFFER_SIZE 64
#define TABLE_TYPE "test_data"

main(argc, argv)
int argc;
char *argv[];

{
char *saved_grp, *saved_name, *saved_owner;
char dir_name[NIS_MAXNAMELEN];
char local_domain[NIS_MAXNAMELEN];
char local_princip [NIS_MAXNAMELEN];
char org_dir_name [NIS_MAXNAMELEN];
char grp_name [NIS_MAXNAMELEN];
char grp_dir_name [NIS_MAXNAMELEN];
char table_name [NIS_MAXNAMELEN];
nis_object *dirobj, entdata;
nis_result *pres;
u_int saved_num_servers;
int err;

if (argc == 2)
sprintf (local_domain, "%s.", argv[1]);

else
strcpy (local_domain, "");

strcat (local_domain, (char *) nis_local_directory());

strcpy (local_princip, (char *) nis_local_principal());

/*
* Lookup the directory object for the local domain for two

reasons:
* 1.To get a template of a nis_object.
* 2.To reuse some of the information contained in the

directory
* object returned. We could have declared a static

nis_object, but
* since we need to change very little, it is easier to make

the
* changes and not initialize the nis_object structure.
*/

pres = nis_lookup (local_domain, 0);
if (pres->status != NIS_SUCCESS) {

nis_perror (pres->status, "unable to lookup local
directory");

exit (1);
}

(continued)

158 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

/*
* re-use most of the fields in the parent directory object -

save
* pointers to the fields that are being changed so that we can
* free the original object and avoid dangling pointer

references.
*/

dirobj = NIS_RES_OBJECT (pres);
saved_name = dirobj->DI_data.do_name;
saved_owner = dirobj->zo_owner;
saved_grp = dirobj->zo_group;

/*
* set the new name, group, owner and new access rights for the
* foo domain.
*/

sprintf (dir_name, "%s.%s", "foo", local_domain);
sprintf (grp_name, "%s.%s", "admins", dir_name);
dirobj->DI_data.do_name = dir_name;
dirobj->zo_group = grp_name;
dirobj->zo_owner = local_princip;

/*
* Access rights in NIS+ are stored in a u_long with the

highest
* order bytes reserved for the "nobody" category, the next

eight
* bytes reserved for the owner, followed by group and world.

In
* this example we are giving access to the directory based

on the
* "----rmcdrmcd----" access right pattern.
*/

dirobj->zo_access = ((NIS_READ_ACC + NIS_MODIFY_ACC
+ NIS_CREATE_ACC + NIS_DESTROY_ACC) << 16)
| ((NIS_READ_ACC + NIS_MODIFY_ACC
+ NIS_CREATE_ACC + NIS_DESTROY_ACC) << 8);

/*
* Save the number of servers the parent directory object had

so
* that we can restore this value before calling

nis_freeresult()
* later and avoid memory leaks.
*/

saved_num_servers = dirobj-
>DI_data.do_servers.do_servers_len;

/* We want only one server to serve this directory */
dirobj->DI_data.do_servers.do_servers_len = 1;

dir_create (dir_name, dirobj);

(continued)

NIS+ Programming Guide 159

(Continuation)

/* create the groups_dir and org_dir directories under foo. */
sprintf (grp_dir_name, "groups_dir.%s", dir_name);
dirobj->DI_data.do_name = grp_dir_name;
dir_create (grp_dir_name, dirobj);

sprintf (org_dir_name, "org_dir.%s", dir_name);
dirobj->DI_data.do_name = org_dir_name;
dir_create (org_dir_name, dirobj);

grp_create (grp_name);

printf ("\nAdding principal %s to group %s ... \n",
local_princip, grp_name);

err = nis_addmember (local_princip, grp_name);

if (err != NIS_SUCCESS) {
nis_perror (err,
"unable to add local principal to group.");

exit (1);
}

sprintf (table_name, "test_table.org_dir.%s", dir_name);
tbl_create (dirobj, table_name);

/*
* Now create NIS+ entry objects in the table that was just

created
*/

stuff_table (table_name);

/* Display what we stuffed */
list_objs(dir_name, table_name, grp_name);

/* Clean out everything we created. */
cleanup (local_princip, grp_name, table_name, dir_name,

dirobj);

/*
* Restore the saved pointers from the original pres structure

* so that we can free up the associated memory and have no
* memory leaks.
*/

dirobj->DI_data.do_name = saved_name;
dirobj->zo_group = saved_grp;
dirobj->zo_owner = saved_owner;
dirobj->DI_data.do_servers.do_servers_len =

saved_num_servers;
(void) nis_freeresult (pres);

}

Code Example 5–2 shows the routine is called by main() to create directory objects.

160 ONC+ Developer’s Guide ♦ , 1998

CODE EXAMPLE 5–2 NIS+ Routine to Create Directory Objects

void
dir_create (dir_name, dirobj)

nis_name dir_name;
nis_object *dirobj;

{
nis_result *cres;
nis_error err;

printf ("\n Adding Directory %s to namespace ... \n",
dir_name);

cres = nis_add (dir_name, dirobj);

if (cres->status != NIS_SUCCESS) {
nis_perror (cres->status, "unable to add directory foo.");
exit (1);

}

(void) nis_freeresult (cres);

/*
* NOTE: you need to do a nis_mkdir to create the table to

store the
* contents of the directory you are creating.
*/

err = nis_mkdir (dir_name,

dirobj->DI_data.do_servers.do_servers_val);
if (err != NIS_SUCCESS) {

(void) nis_remove (dir_name, 0);

nis_perror (err,
"unable to create table for directory object foo.");

exit (1);
}

}

This routine is called by main() to create the group object. Since
nis_creategroup() works only on group objects, the “groups_dir” literal is not
needed in the group name.

CODE EXAMPLE 5–3 NIS+ Routine to Create Group Objects

void
grp_create (grp_name)

nis_name grp_name;
{

nis_error err;

printf ("\n Adding %s group to namespace ... \n", grp_name);
err = nis_creategroup (grp_name, 0);
if (err != NIS_SUCCESS) {

nis_perror (err, "unable to create group.");
exit (1);

}
}

NIS+ Programming Guide 161

The routine shown in Code Example 5–3 is called by main() to create a table object
laid out as shown in Table 5–3.

TABLE 5–3 NIS+ Table Objects

Column1 Column2

Name: id name

Attributes: Searchable, Text Searchable, Text

Access Rights —-rmcdr—r— —-rmcdr—r—

The TA_SEARCHABLEconstant indicates to the service that the column is searchable.
Only TEXT (the default) columns are searchable. TA_CASEindicates to the service
that the column value is to be treated in a case-insensitive manner during searches.

CODE EXAMPLE 5–4 NIS+ Routine to Create Table Objects

#define TABLE_MAXCOLS 2
#define TABLE_COLSEP ’:’
#define TABLE_PATH 0

void
tbl_create (dirobj, table_name)

nis_object *dirobj; /* need to use some of the fields */
nis_name table_name;

{
nis_result *cres;
static nis_object tblobj;
static table_col tbl_cols[TABLE_MAXCOLS] = {

{"Id", TA_SEARCHABLE | TA_CASE, DEFAULT_RIGHTS},
{"Name", TA_SEARCHABLE | TA_CASE, DEFAULT_RIGHTS}

};

tblobj.zo_owner = dirobj->zo_owner;
tblobj.zo_group = dirobj->zo_group;
tblobj.zo_access = DEFAULT_RIGHTS; /* macro defined in

nis.h */
tblobj.zo_data.zo_type = TABLE_OBJ; /* enumerated type in

nis.h */
tblobj.TA_data.ta_type = TABLE_TYPE;
tblobj.TA_data.ta_maxcol = TABLE_MAXCOLS;
tblobj.TA_data.ta_sep = TABLE_COLSEP;
tblobj.TA_data.ta_path = TABLE_PATH;
tblobj.TA_data.ta_cols.ta_cols_len =

tblobj.TA_data.ta_maxcol; /* ALWAYS ! */
tblobj.TA_data.ta_cols.ta_cols_val = tbl_cols;

/*
* Use a fully qualified table name i.e. the "org_dir" literal

should

162 ONC+ Developer’s Guide ♦ , 1998

* be embedded in the table name. This is necessary because
nis_add

* operates on all types of NIS+ objects and needs the full path
name

* if a table is created.
*/
printf ("\n Creating table %s ... \n", table_name);
cres = nis_add (table_name, &tblobj);
if (cres->status != NIS_SUCCESS) {

nis_perror (cres->status, "unable to add table.");
exit (1);

}
(void) nis_freeresult (cres);

}

The routine shown in Code Example 5–5 is called by main() to add entry objects to
the table object. Two entries are added to the table object. Note that the column
width in both entries is set to include the NULL character for a string terminator.

CODE EXAMPLE 5–5 NIS+ Routine to Add Objects to Table

#define MAXENTRIES 2
void
stuff_table(table_name)

nis_name table_name;
{

int i;
nis_object entdata;
nis_result *cres;
static entry_col ent_col_data[MAXENTRIES][TABLE_MAXCOLS] = {

{0, 2, "1", 0, 5, "John"},
{0, 2, "2", 0, 5, "Mary"}

};

printf ("\n Adding entries to table ... \n");

/*
* Look up the table object first since the entries being added
* should have the same owner, group owner and access rights as
* the table they go in.
*/

cres = nis_lookup (table_name, 0);

if (cres->status != NIS_SUCCESS) {
nis_perror (cres->status, "Unable to lookup table");
exit(1);

}
entdata.zo_owner = NIS_RES_OBJECT (cres)->zo_owner;
entdata.zo_group = NIS_RES_OBJECT (cres)->zo_group;
entdata.zo_access = NIS_RES_OBJECT (cres)->zo_access;

/* Free cres, so that it can be reused. */
(void) nis_freeresult (cres);

entdata.zo_data.zo_type = ENTRY_OBJ; /* enumerated type in
nis.h */

entdata.EN_data.en_type = TABLE_TYPE;

NIS+ Programming Guide 163

entdata.EN_data.en_cols.en_cols_len = TABLE_MAXCOLS;
for (i = 0; i < MAXENTRIES; ++i) {

entdata.EN_data.en_cols.en_cols_val = &ent_col_data[i][0];
cres = nis_add_entry (table_name, &entdata, 0);

if (cres->status != NIS_SUCCESS) {
nis_perror (cres->status, "unable to add entry.");
exit (1);

}
(void) nis_freeresult (cres);

}
}

The routine shown in Code Example 5–6 is the print function for the nis_list()
call. When list_objs() calls nis_list() , a pointer to print_info() is one of
the calling arguments. Each time the service calls this function, it prints the contents
of the entry object. The return value indicates to the library to call with the next
entry from the table.

CODE EXAMPLE 5–6 NIS+ Routine for nis_list Call

int
print_info (name, entry, cbdata)

nis_name name; /* Unused */
nis_object *entry; /* The NIS+ entry object */
void *cbdata; /* Unused */

{
static u_int firsttime = 1;
entry_col *tmp; /* only to make source more readable */
u_int i, terminal;

if (firsttime) {
printf ("\tId.\t\t\tName\n");
printf ("\t---\t\t\t----\n");
firsttime = 0;

}
for (i = 0; i < entry->EN_data.en_cols.en_cols_len; ++i) {

tmp = &entry->EN_data.en_cols.en_cols_val[i];
terminal = tmp->ec_value.ec_value_len;
tmp->ec_value.ec_value_val[terminal] = ’\0’;

}

/*
* ENTRY_VAL is a macro that returns the value of a specific
* column value of a specified entry.
*/

printf("\t%s\t\t\t%s\n", ENTRY_VAL (entry, 0),
ENTRY_VAL (entry, 1));

return (0); /* always ask for more */
}

The routine shown in Code Example 5–7 is called by main() to list the contents of
the group, table and directory objects. The routine demonstrates the use of callbacks
also. It retrieves and displays the membership of the group. The group membership

164 ONC+ Developer’s Guide ♦ , 1998

list is not stored as the contents of the object. So, it is queried through the
nis_lookup() instead of the nis_list() call. You must use the “groups_dir”
form of the group name since nis_lookup() works on all types of NIS+ objects.

CODE EXAMPLE 5–7 NIS+ Routine to List Objects

void
list_objs(dir_name, table_name, grp_name)

nis_name dir_name, table_name, grp_name;
{

group_obj *tmp; /* only to make source more readable */
u_int i;
char grp_obj_name [NIS_MAXNAMELEN];
nis_result *cres;
char index_name [BUFFER_SIZE];

sprintf (grp_obj_name, "%s.groups_dir.%s",
nis_leaf_of (grp_name), nis_domain_of (grp_name));

printf ("\nGroup %s membership is: \n", grp_name);

cres = nis_lookup(grp_obj_name, 0);

if (cres->status != NIS_SUCCESS) {
nis_perror (cres->status, "Unable to lookup group object.");
exit(1);

}

tmp = &(NIS_RES_OBJECT(cres)->GR_data);
for (i = 0; i < tmp->gr_members.gr_members_len; ++i)

printf ("\t %s\n", tmp->gr_members.gr_members_val[i]);
(void) nis_freeresult (cres);

/*
* Display the contents of the foo domain without using

callbacks.
*/

printf ("\nContents of Directory %s are: \n", dir_name);
cres = nis_list (dir_name, 0, 0, 0);
if (cres->status != NIS_SUCCESS) {

nis_perror (cres->status,
"Unable to list Contents of

Directory foo.");
exit(1);

}
for (i = 0; i < NIS_RES_NUMOBJ(cres); ++i)

printf("\t%s\n", NIS_RES_OBJECT(cres)[i].zo_name);
(void) nis_freeresult (cres);

/*
* List the contents of the table we created using the callback

form

* of nis_list().
*/

printf ("\n Contents of Table %s are: \n", table_name);
cres = nis_list (table_name, 0, print_info, 0);
if(cres->status != NIS_CBRESULTS && cres->status !=

NIS_NOTFOUND){
nis_perror (cres->status,

NIS+ Programming Guide 165

"Listing entries using callback failed");
exit(1);

}
(void) nis_freeresult (cres);

/*

* List only one entry from the table we created. We will
* use indexed names to do this retrieval.
*/

printf("\n Entry corresponding to id 1 is:\n");
/*

* The name of the column is usually extracted from the table
* object, which would have to be retrieved first.
*/

sprintf(index_name, "[Id=1],%s", table_name);
cres = nis_list (index_name, 0, print_info, 0);
if(cres->status != NIS_CBRESULTS && cres->status !=

NIS_NOTFOUND){
nis_perror (cres->status,
"Listing entry using indexed names and callback failed");
exit(1);

}
(void) nis_freeresult (cres);

}

The routine in Code Example 5–8 is called by cleanup() to remove a directory
object from the namespace. It also informs the servers serving the directory about
this deletion. Notice that the memory containing result structure, pointed to by cres,
must be freed after the result has been tested.

CODE EXAMPLE 5–8 NIS+ Routine to Remove Directory Objects

void
dir_remove(dir_name, srv_list, numservers)

nis_name dir_name;
nis_server *srv_list;
u_int numservers;

{
nis_result *cres;
nis_error err;
u_int i;

printf ("\nRemoving %s directory object from namespace ...
\n",

dir_name);
cres = nis_remove (dir_name, 0);
if (cres->status != NIS_SUCCESS) {

nis_perror (cres->status, "unable to remove directory");
exit (1);

}
(void) nis_freeresult (cres);

for (i = 0; i < numservers; ++i) {
err = nis_rmdir (dir_name, &srv_list[i]);
if (err != NIS_SUCCESS) {

166 ONC+ Developer’s Guide ♦ , 1998

nis_perror (err,
"unable to remove server from directory");
exit (1);

}
}

}

This routine, Code Example 5–9, is called by main() to delete all the objects that
were created in this example. Note the use of the REM_MULTIPLEflag in the call to
nis_remove_entry() . All entries must be deleted from a table before the table
itself can be deleted.

CODE EXAMPLE 5–9 NIS+ Routine to Remove All Objects

void
cleanup(local_princip, grp_name, table_name, dir_name, dirobj)

nis_name local_princip, grp_name, table_name, dir_name;
nis_object *dirobj;

{
char grp_dir_name [NIS_MAXNAMELEN];
char org_dir_name [NIS_MAXNAMELEN];
nis_error err;
nis_result *cres;

sprintf(grp_dir_name, "%s.%s", "groups_dir", dir_name);
sprintf(org_dir_name, "%s.%s", "org_dir", dir_name);

printf("\n\n\nStarting to Clean up ... \n");
printf("\n\nRemoving principal %s from group %s \n",

local_princip, grp_name);
err = nis_removemember (local_princip, grp_name);

if (err != NIS_SUCCESS) {
nis_perror (err,
"unable to delete local principal from group.");
exit (1);

}

/*
* Delete the admins group. We do not use the "groups_dir" form
* of the group name since this API is applicable to groups

only.
* It automatically embeds the groups_dir literal in the name

of
* the group.
*/

printf("\nRemoving %s group from namespace ... \n",
grp_name);

err = nis_destroygroup (grp_name);
if (err != NIS_SUCCESS) {

nis_perror (err, "unable to delete group.");
exit (1);

}

printf("\n Deleting all entries from table %s ... \n",

NIS+ Programming Guide 167

table_name);

cres = nis_remove_entry(table_name, 0, REM_MULTIPLE);
switch (cres->status) {

case NIS_SUCCESS:
case NIS_NOTFOUND:

break;
default:

nis_perror(cres->status, "Could not delete entries from
table");

exit(1);
}
(void) nis_freeresult (cres);

printf("\n Deleting table %s itself ... \n", table_name);
cres = nis_remove(table_name, 0);

if (cres->status != NIS_SUCCESS) {
nis_perror(cres->status, "Could not delete table.");

exit(1);
}
(void) nis_freeresult (cres);

/* delete the groups_dir, org_dir and foo directory objects.
*/

dir_remove (grp_dir_name,
dirobj->DI_data.do_servers.do_servers_val,
dirobj->DI_data.do_servers.do_servers_len);

dir_remove (org_dir_name,
dirobj->DI_data.do_servers.do_servers_val,
dirobj->DI_data.do_servers.do_servers_len);

dir_remove (dir_name, dirobj-
>DI_data.do_servers.do_servers_val,

dirobj->DI_data.do_servers.do_servers_len);
}

Running the program displays on the screen, as shown in Figure 5–3.

myhost% domainname
sun.com
myhost% ./sample
Adding Directory foo.sun.com. to namespace ...
Adding Directory groups_dir.foo.sun.com. to namespace ...
Adding Directory org_dir.foo.sun.com. to namespace ...
Adding admins.foo.sun.com. group to namespace ...
Adding principal myhost.sun.com. to group admins.foo.sun.com. ...
Creating table test_table.org_dir.foo.sun.com. ...
Adding entries to table ...
Group admins.foo.sun.com. membership is:

myhost.sun.com.
Contents of Directory foo.sun.com. are:

groups_dir
org_dir

Contents of Table test_table.org_dir.foo.sun.com. are:
Id. Name
--- ----

168 ONC+ Developer’s Guide ♦ , 1998

1 John
2 Mary

Entry corresponding to id 1 is:
1 John

Starting to Clean up ...

Removing principal myhost.sun.com. from group admins.foo.sun.com.
Removing admins.foo.sun.com. group from namespace ...
Deleting all entries from table test_table.org_dir.foo.sun.com. ...
Deleting table test_table.org_dir.foo.sun.com. itself ...
Removing groups_dir.foo.sun.com. directory object from namespace ...
Removing org_dir.foo.sun.com. directory object from namespace ...
Removing foo.sun.com. directory object from namespace ...
myhost%

Figure 5–3 NIS+ Program Execution

As a debugging aid, the same operations are performed by the following command
sequence. The first command:

% niscat -o ‘domainname‘

displays the name of the master server. Substitute the master server name where the
variable master appears below.

% nismkdir -m master foo.‘domainname‘.

Create the org_dir.foo subdirectory with the specified master
% nismkdir -m master org_dir.foo.‘domainname‘.
Create the groups_dir.foo subdirectory with the specified master
% nismkdir -m master groups_dir.foo.‘domainname‘.
Create the ‘‘admins’’ group
% nisgrpadm -c admins.foo.‘domainname‘.

Add yourself as a member of this group
% nisgrpadm -a admins.foo.‘domainname‘. ‘nisdefaults -p‘

Create a test_table with two columns : Id and Name
% nistbladm -c test_data id=SI Name=SI \
test_table.org_dir.foo.‘domainname‘

Add one entry to that table.
% nistbladm -a id=1 Name=John test_table.org_dir.foo.‘domainname‘.
Add another entry to that table.
% nistbladm -a id=2 Name=Mary test_table.org_dir.foo.‘domainname‘.

List the members of the group admins
% nisgrpadm -l admins.foo.‘domainname‘.
List the contents of the foo directory
% nisls foo.‘domainname‘.
List the contents of the test_table along with its header
% niscat -h test_table.org_dir.foo.‘domainname‘.

Get the entry from the test_table where id = 1
% nismatch id=1 test_table.org_dir.foo.‘domainname‘.

Delete all we created.

NIS+ Programming Guide 169

First, delete yourself from the admins group
% nisgrpadm -r admins.foo.‘domainname‘. ‘nisdefaults -p‘
Delete the admins group
% nisgrpadm -d admins.foo.‘domainname‘.
Delete all the entries from the test_table
% nistbladm -r ‘‘[],test_table.org_dir.foo.‘domainname‘.’’
Delete the test_table itself.
% nistbladm -d test_table.org_dir.foo.‘domainname‘.
Delete all three directories that we created
% nisrmdir groups_dir.foo.‘domainname‘.
% nisrmdir org_dir.foo.‘domainname‘.
% nisrmdir foo.‘domainname‘.

170 ONC+ Developer’s Guide ♦ , 1998

APPENDIX A

XDR Technical Note

This appendix is a technical note on SunSoft’s implementation of the external data
representation (XDR) standard, a set of library routines that enable C programmers
to describe arbitrary data structures in a machine-independent fashion.

What is XDR
XDR is the backbone of SunSoft’s Remote Procedure Call package, in the sense that
data for RPCs are transmitted using this standard. XDR library routines should be
used to transmit data accessed (read or written) by more than one type of machine.

XDR works across different languages, operating systems, and machine architectures.
Most users (particularly RPC users) only need the information in the sections on
Number Filters, Floating Point Filters, and Enumeration Filters. Programmers
wanting to implement RPC and XDR on new machines will be interested in this
technical note and the protocol specification.

rpcgen can be used to write XDR routines even in cases where no RPC calls are
being made.

C programs that use XDR routines must include the file <rpc/xdr.h> , which
contains all the necessary interfaces to the XDR system. Since the library libnsl.a
contains all the XDR routines, compile as follows:

example% cc program.c

In many environments several criteria must be observed to accomplish porting. It is
not always easy to see the ramifications of a small programmatic change, but they
can often have far reaching implications. Consider the examples of a program to
read/write a line of text, shown in Code Example A–1and Code Example A–2.

171

CODE EXAMPLE A–1 Writer Example (initial)

#include <stdio.h>

main() /* writer.c */
{ int i;

for (i = 0; i < 8; i++) {
if (fwrite((char *) &i, sizeof(i), 1, stdout) != 1) {

fprintf(stderr, "failed!\n");
exit(1);

}
}
exit(0);

}

CODE EXAMPLE A–2 Reader Example (initial)

#include <stdio.h>

main() /* reader.c */
{

int i, j;

for (j = 0; j < 8; j++) {
if (fread((char *) &i, sizeof(i), 1, stdin) != 1) {

fprintf(stderr, "failed!\n");
exit(1);

}
printf("%ld ", i);

}
printf("\n");
exit(0);

}

The two programs appear to be portable, because (a) they pass lint checking, and
(b) they exhibit the same behavior when executed on two different hardware
architectures, a SPARC and a VAX.

Piping the output of the writer program to the reader program gives identical
results on SPARC or VAX.

sun% writer | reader
0 1 2 3 4 5 6 7
sun%
vax% writer | reader
0 1 2 3 4 5 6 7
vax%

172 ONC+ Developer’s Guide ♦ , 1998

With the advent of local area networks and 4.2BSD came the concept of “network
pipes”—a process produces data on one machine, and a second process consumes
data on another machine. A network pipe can be constructed with writer and
reader . Here are the results if the first produces data on a SPARC, and the second
consumes data on a VAX.

sun% writer | rsh vax reader
0 16777216 33554432 50331648 67108864 83886080 100663296
117440512
sun%

Identical results can be obtained by executing writer on the VAX and reader on
the SPARC. These results occur because the byte ordering of data differs between the
VAX and the SPARC, even though word size is the same. Note that 16777216 is 224

—when four bytes are reversed, the 1 is placed in the 24th bit.

Whenever data is shared by two or more machine types, there is a need for portable
data. Programs can be made data-portable by replacing the read() and write()
calls with calls to an XDR library routine, xdr_int() , a filter that knows the
standard representation of an int integer in its external form. The revised versions of
writer are shown in Code Example A–3.

CODE EXAMPLE A–3 Writer Example (XDR modified

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc */

main() /* writer.c */
{

XDR xdrs;
int i;

xdrstdio_create(&xdrs, stdout, XDR_ENCODE);
for (i = 0; i < 8; i++) {

if (!xdr_int(&xdrs, &i)) {
fprintf(stderr, "failed!\n");
exit(1);

}
}
exit(0);

}

Code Example A–4 shows the revised versions of reader.

XDR Technical Note 173

CODE EXAMPLE A–4 Reader Example (XDR modified)

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc */

main() /* reader.c */
{

XDR xdrs;
int i, j;

xdrstdio_create(&xdrs, stdin, XDR_DECODE);
for (j = 0; j < 8; j++) {

if (!xdr_int(&xdrs, &i)) {
fprintf(stderr, "failed!\n");
exit(1);

}
printf("%ld ", i);

}
printf("\n");
exit(0);

}

The new programs were executed on a SPARC, on a VAX, and from a SPARC to a
VAX; the results are shown below.

sun% writer | reader
0 1 2 3 4 5 6 7
sun%
vax% writer | reader
0 1 2 3 4 5 6 7
vax%
sun% writer | rsh vax reader
0 1 2 3 4 5 6 7
sun%

Note - Integers are just the tip of the portable-data iceberg. Arbitrary data structures
present portability problems, particularly with respect to alignment and pointers.
Alignment on word boundaries may cause the size of a structure to vary from
machine to machine. And pointers, which are very convenient to use, have no
meaning outside the machine where they are defined.

A Canonical Standard
XDR’s approach to standardizing data representations is canonical. That is, XDR
defines a single byte order, a single floating-point representation (IEEE), and so on.

174 ONC+ Developer’s Guide ♦ , 1998

Any program running on any machine can use XDR to create portable data by
translating its local representation to the XDR standard representations. Similarly,
any program running on any machine can read portable data by translating the XDR
standard representations to its local equivalents. The single standard completely
decouples programs that create or send portable data from those that use or receive
portable data. The advent of a new machine or a new language has no effect upon
the community of existing portable-data creators and users. A new machine joins this
community by being “taught” how to convert the standard representations and its
local representations; the local representations of other machines are irrelevant.
Conversely, to existing programs running on other machines, the local
representations of the new machine are also irrelevant; such programs can
immediately read portable data produced by the new machine because such data
conforms to the canonical standards that they already understand.

There are strong precedents for XDR’s canonical approach. For example, TCP/IP,
UDP/IP, XNS, Ethernet, and, indeed, all protocols below layer five of the ISO model,
are canonical protocols. The advantage of any canonical approach is simplicity; in the
case of XDR, a single set of conversion routines is written once and is never touched
again. The canonical approach has a disadvantage, but it is unimportant in
real-world data transfer applications. Suppose two Little-Endian machines are
transferring integers according to the XDR standard. The sending machine converts
the integers from Little-Endian byte order to XDR (Big-Endian) byte order; the
receiving machine performs the reverse conversion. Because both machines observe
the same byte order, their conversions are unnecessary. The point, however, is not
necessity, but cost as compared to the alternative.

The time spent converting to and from a canonical representation is insignificant,
especially in distributed applications. Most of the time required to prepare a data
structure for transfer is not spent in conversion but in traversing the elements of the
data structure. To transmit a tree, for example, each leaf must be visited and each
element in a leaf record must be copied to a buffer and aligned there; storage for the
leaf may have to be de-allocated as well. Similarly, to receive a tree, storage must be
allocated for each leaf, data must be moved from the buffer to the leaf and properly
aligned, and pointers must be constructed to link the leaves together. Every machine
pays the cost of traversing and copying data structures whether or not conversion is
required. In distributed applications, communications overhead—the time required
to move the data down through the sender’s protocol layers, across the network and
up through the receiver’s protocol layers—dwarfs conversion overhead.

The XDR Library
The XDR library not only solves data portability problems, it also allows you to
write and read arbitrary C constructs in a consistent, specified, well-documented

XDR Technical Note 175

manner. Thus, it can make sense to use the library even when the data is not shared
among machines on a network.

The XDR library has filter routines for strings (null-terminated arrays of bytes),
structures, unions, and arrays, to name a few. Using more primitive routines, you can
write your own specific XDR routines to describe arbitrary data structures, including
elements of arrays, arms of unions, or objects pointed at from other structures. The
structures themselves may contain arrays of arbitrary elements, or pointers to other
structures.

Look closely at the two programs. There is a family of XDR stream creation routines
in which each member treats the stream of bits differently. In the example, data is
manipulated using standard I/O routines, so you use xdrstdio_create() . The
parameters to XDR stream creation routines vary according to their function. In the
example, xdrstdio_create() takes a pointer to an XDR structure that it
initializes, a pointer to a FILE that the input or output is performed on, and the
operation. The operation may be XDR_ENCODEfor serializing in the writer program,
or XDR_DECODEfor deserializing in the reader program.

Note - RPC users never need to create XDR streams; the RPC system itself creates
these streams, which are then passed to the users.

The xdr_int() primitive is characteristic of most XDR library primitives and all
client XDR routines. First, the routine returns FALSE (0) if it fails, and TRUE(1) if it
succeeds. Second, for each data type, xxx , there is an associated XDR routine of the
form:

xdr_xxx(xdrs, xp)
XDR *xdrs;
xxx *xp;

{
}

In this case, xxx is int, and the corresponding XDR routine is a primitive,
xdr_int() . The client could also define an arbitrary structure xxx in which case
the client would also supply the routine xdr_xxx() , describing each field by calling
XDR routines of the appropriate type. In all cases the first parameter, xdrs can be
treated as an opaque handle, and passed to the primitive routines.

XDR routines are direction independent; that is, the same routines are called to
serialize or deserialize data. This feature is critical to software engineering of
portable data. The idea is to call the same routine for either operation—this almost
guarantees that serialized data can also be deserialized. One routine is used by both
producer and consumer of networked data. This is implemented by always passing
the address of an object rather than the object itself—only in the case of
deserialization is the object modified. This feature is not shown in our trivial
example, but its value becomes obvious when nontrivial data structures are passed
among machines. If needed, the user can obtain the direction of the XDR operation.
For details, see the section, “ Operation Directions” on page 191.

176 ONC+ Developer’s Guide ♦ , 1998

A slightly more complicated example follows. Assume that a person’s gross assets
and liabilities are to be exchanged among processes. Also assume that these values
are important enough to warrant their own data type:

struct gnumbers {
int g_assets;
int g_liabilities;

};

The corresponding XDR routine describing this structure is:

bool_t /* TRUE is success, FALSE is failure */
xdr_gnumbers(xdrs, gp)

XDR *xdrs;
struct gnumbers *gp;

{
if (xdr_int(xdrs, &gp->g_assets) &&

xdr_int(xdrs, &gp->g_liabilities))
return(TRUE);

return(FALSE);
}

Note that the parameter xdrs is never inspected or modified; it is only passed on to
the subcomponent routines. It is imperative to inspect the return value of each XDR
routine call, and to give up immediately and return FALSE if the subroutine fails.

This example also shows that the type bool_t is declared as an integer whose only
values are TRUE(1) and FALSE (0). This document uses the following definitions:

#define bool_t int
#define TRUE 1
#define FALSE 0

Keeping these conventions in mind, xdr_gnumbers() can be rewritten as follows:

xdr_gnumbers(xdrs, gp)
XDR *xdrs;
struct gnumbers *gp;

{
return(xdr_int(xdrs, &gp->g_assets) &&

xdr_int(xdrs, &gp->g_liabilities));
}

This document uses both coding styles.

XDR Library Primitives
This section gives a synopsis of each XDR primitive. It starts with memory allocation
and the basic data types, then moves on to constructed data types. Finally, XDR
utilities are discussed. The interface to these primitives and utilities is defined in the
include file <rpc/xdr.h> , automatically included by <rpc/rpc.h> .

XDR Technical Note 177

Memory Requirements for XDR Routines
When using XDR routines, there is sometimes a need to pre-allocate memory (or to
determine memory requirements). In these instances where the developer needs to
control the allocation and de-allocation of memory for XDR conversion routines to
use there is a routine, xdr_sizeof() , that is used to return the number of bytes
needed to encode and decode data using one of the XDR filter functions (func()).
xdr_sizeof() ’s output does not include RPC headers or record markers and they
must be added in to get a complete accounting of the memory required.
xdr_sizeof() returns a zero on error.

xdr_sizeof(xdrproc_t func, void *data)

xdr_sizeof() is specifically useful the allocation of memory in applications that
use XDR outside of the RPC environment; to select between transport protocols; and
at the lower levels of RPC to perform client and server creation functions.

Code Example A–5 and Code Example A–6illustrate two uses of xdr_sizeof() .

CODE EXAMPLE A–5 xdr_sizeof Example #1

#include <rpc/rpc.h>

/*
* This function takes as input a CLIENT handle, an XDR function

and
* a pointer to data to be XDR’d. It returns TRUE if the amount of
* data to be XDR’d may be sent using the transport associated

with
* the CLIENT handle, and false otherwise.
*/

bool_t
cansend(cl, xdrfunc, xdrdata)

CLIENT *cl;
xdrproc_t xdrfunc;
void *xdrdata;

{
int fd;
struct t_info tinfo;

if (clnt_control(cl, CLGET_FD, &fd) == -1) {
/* handle clnt_control() error */
return (FALSE);

}

if (t_getinfo(fd, &tinfo) == -1) {
/* handle t_getinfo() error */
return (FALSE);

} else {
if (tinfo.servtype == T_CLTS) {

/*
* This is a connectionless transport. Use xdr_sizeof()
* to compute the size of this request to see whether it

(continued)

178 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

* is too large for this transport.
*/

switch(tinfo.tsdu) {
case 0: /* no concept of TSDUs */
case -2: /* can’t send normal data */

return (FALSE);
break;

case -1: /* no limit on TSDU size */
return (TRUE);
break;

default:
if (tinfo.tsdu < xdr_sizeof(xdrfunc, xdrdata))

return (FALSE);
else

return (TRUE);
}

} else
return (TRUE);

}
}

Code Example A–6 is the second xdr_sizeof() example.

CODE EXAMPLE A–6 xdr_sizeof Example #2

#include <sys/statvfs.h>
#include <sys/sysmacros.h>

/*
* This function takes as input a file name, an XDR function, and

a
* pointer to data to be XDR’d. It returns TRUE if the filesystem
* on which the file resides has room for the additional amount

of
* data to be XDR’d. Note that since the information statvfs(2)
* returns about the filesystem is in blocks you must convert the
* value returned by xdr_sizeof() from bytes to disk blocks.
*/

bool_t
canwrite(file, xdrfunc, xdrdata)

char *file;
xdrproc_t xdrfunc;
void *xdrdata;

{
struct statvfs s;

if (statvfs(file, &s) == -1) {
/* handle statvfs() error */
return (FALSE);

(continued)

XDR Technical Note 179

(Continuation)

}

if (s.f_bavail >= btod(xdr_sizeof(xdrfunc, xdrdata)))
return (TRUE);

else
return (FALSE);

}

Number Filters
The XDR library provides primitives to translate between numbers and their
corresponding external representations. Primitives cover the set of numbers in the
types:

[signed, unsigned] * [short, int, long]

Specifically, the eight primitives are:

bool_t xdr_char(xdrs, op)
XDR *xdrs;
char *cp;

bool_t xdr_u_char(xdrs, ucp)
XDR *xdrs;
unsigned char *ucp;

bool_t xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

bool_t xdr_u_int(xdrs, up)
XDR *xdrs;
unsigned *up;

bool_t xdr_long(xdrs, lip)
XDR *xdrs;
long *lip;

bool_t xdr_u_long(xdrs, lup)
XDR *xdrs;
u_long *lup;

bool_t xdr_short(xdrs, sip)
XDR *xdrs;
short *sip;

bool_t xdr_u_short(xdrs, sup)
XDR *xdrs;
u_short *sup;

The first parameter, xdrs, is an XDR stream handle. The second parameter is the
address of the number that provides data to the stream or receives data from it. All
routines return TRUEif they complete successfully, and FALSE otherwise.

180 ONC+ Developer’s Guide ♦ , 1998

Floating Point Filters
The XDR library also provides primitive routines for C floating point types:

bool_t xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;

bool_t xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

The first parameter, xdrs is an XDR stream handle. The second parameter is the
address of the floating point number that provides data to the stream or receives
data from it. Both routines return TRUEif they complete successfully, and FALSE
otherwise.

Note - Since the numbers are represented in IEEE floating point, routines may fail
when decoding a valid IEEE representation into a machine-specific representation, or
vice versa.

Enumeration Filters
The XDR library provides a primitive for generic enumerations. The primitive
assumes that a C enum has the same representation inside the machine as a C
integer. The Boolean type is an important instance of the enum. The external
representation of a Boolean is always TRUE(1) or FALSE (0).

#define bool_t int
#define FALSE 0
#define TRUE 1
#define enum_t int
bool_t xdr_enum(xdrs, ep)

XDR *xdrs;
enum_t *ep;

bool_t xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

The second parameters ep and bp are addresses of the associated type that provides
data to, or receives data from, the stream xdrs.

No-Data Routine
Occasionally, an XDR routine must be supplied to the RPC system, even when no
data is passed or required. The library provides such a routine:

bool_t xdr_void(); /* always returns TRUE */

XDR Technical Note 181

Constructed Data Type Filters
Constructed or compound data type primitives require more parameters and
perform more complicated functions than the primitives discussed previously. This
section includes primitives for strings, arrays, unions, and pointers to structures.

Constructed data type primitives may use memory management. In many cases,
memory is allocated when deserializing data with XDR_DECODE. Therefore, the XDR
package must provide means to de-allocate memory. This is done by an XDR
operation, XDR_FREE. To review, the three XDRdirectional operations are
XDR_ENCODE, XDR_DECODE, and XDR_FREE.

Strings
In the C language, a string is defined as a sequence of bytes terminated by a null
byte, which is not considered when calculating string length. However, when a string
is passed or manipulated, a pointer to it is employed. Therefore, the XDR library
defines a string to be a char * , and not a sequence of characters. The external
representation of a string is drastically different from its internal representation.

Externally strings are represented as sequences of ASCII characters, while internally
they are represented with character pointers. Conversion between the two
representations is accomplished with the routine xdr_string() :

bool_t xdr_string(xdrs, sp, maxlength)
XDR *xdrs;
char **sp;
u_int maxlength;

The first parameter xdrs is the XDR stream handle. The second parameter sp is a
pointer to a string (type char **). The third parameter maxlength specifies the
maximum number of bytes allowed during encoding or decoding. Its value is
usually specified by a protocol. For example, a protocol specification may say that a
file name may be no longer than 255 characters. The routine returns FALSE if the
number of characters exceeds maxlength, and TRUEif it doesn’t.

The behavior of xdr_string() is similar to the behavior of other routines
discussed in this section. The direction XDR_ENCODEis easiest to understand. The
parameter sp points to a string of a certain length; if the string does not exceed
maxlength, the bytes are serialized.

The effect of deserializing a string is subtle. First the length of the incoming string is
determined; it must not exceed maxlength. Next sp is dereferenced; if the value is
NULL, a string of the appropriate length is allocated and *sp is set to this string. If the
original value of *sp is nonnull, the XDR package assumes that a target area has been
allocated, which can hold strings no longer than maxlength. In either case, the string is
decoded into the target area. The routine then appends a null character to the string.

182 ONC+ Developer’s Guide ♦ , 1998

In the XDR_FREEoperation the string is obtained by dereferencing sp. If the string is
not NULL, it is freed and *sp is set to NULL. In this operation xdr_string() ignores
the maxlength parameter.

Note that you can use XDR on an empty string ("") but not on a NULL string.

Byte Arrays
Often variable-length arrays of bytes are preferable to strings. Byte arrays differ from
strings in the following three ways: (1) the length of the array (the byte count) is
explicitly located in an unsigned integer, (2) the byte sequence is not terminated by a
null character, and (3) the external representation of the bytes is the same as their
internal representation. The primitive xdr_bytes() converts between the internal
and external representations of byte arrays:

bool_t xdr_bytes(xdrs, bpp, lp, maxlength)
XDR *xdrs;
char **bpp;
u_int *lp;
u_int maxlength;

The usage of the first, second, and fourth parameters is identical to the first, second
and third parameters of xdr_string() respectively. The length of the byte area is
obtained by dereferencing lp when serializing; *lp is set to the byte length when
deserializing.

Arrays
The XDR library package provides a primitive for handling arrays of arbitrary
elements. The xdr_bytes() routine treats a subset of generic arrays, in which the
size of array elements is known to be 1, and the external description of each element
is built-in. The generic array primitive, xdr_array() requires parameters identical
to those of xdr_bytes() plus two more: the size of array elements, and an XDR
routine to handle each of the elements. This routine is called to encode or decode
each element of the array.

bool_t
xdr_array(xdrs, ap, lp, maxlength, elementsize, xdr_element)

XDR *xdrs;
char **ap;
u_int *lp;
u_int maxlength;
u_int elementsize;
bool_t (*xdr_element)();

The parameter ap is the address of the pointer to the array. If *ap is NULL when the
array is being deserialized, XDR allocates an array of the appropriate size and sets
*ap to that array. The element count of the array is obtained from *lp when the array

XDR Technical Note 183

is serialized; *lp is set to the array length when the array is deserialized. The
parameter maxlength is the maximum number of elements that the array is allowed
to have; elementsiz is the byte size of each element of the array (the C function
sizeof() can be used to obtain this value). The xdr_element() routine is called
to serialize, deserialize, or free each element of the array.

Before defining more constructed data types, it is appropriate to present three
examples.

Array Example 1
A user on a networked machine can be identified by (a) the machine name, such as
krypton ; (b) the user’s UID: see the geteuid man page; and (c) the group numbers
to which the user belongs: see the getgroups man page. A structure with this
information and its associated XDR routine could be coded as in Code Example A–7.

CODE EXAMPLE A–7 Array Example #1

struct netuser {
char *nu_machinename;
int nu_uid;
u_int nu_glen;
int *nu_gids;

};
#define NLEN 255 /* machine names < 256 chars */
#define NGRPS 20 /* user can’t be in > 20 groups */

bool_t
xdr_netuser(xdrs, nup)

XDR *xdrs;
struct netuser *nup;

{
return(xdr_string(xdrs, &nup->nu_machinename, NLEN) &&

xdr_int(xdrs, &nup->nu_uid) &&
xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen, NGRPS,

sizeof (int), xdr_int));
}

Array Example 2
A party of network users could be implemented as an array of netuser structure.
The declaration and its associated XDR routines are as shown in Code Example A–8.

CODE EXAMPLE A–8 Array Example #2

struct party {

u_int p_len;
struct netuser *p_nusers;

};
#define PLEN 500 /* max number of users in a party */
bool_t
xdr_party(xdrs, pp)

184 ONC+ Developer’s Guide ♦ , 1998

XDR *xdrs;
struct party *pp;

{
return(xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,

sizeof (struct netuser), xdr_netuser));
}

Array Example 3
The well-known parameters to main , argc and argv can be combined into a structure.
An array of these structures can make up a history of commands. The declarations
and XDR routines might look like Code Example A–9.

CODE EXAMPLE A–9 Array Example #3

struct cmd {
u_int c_argc;
char **c_argv;

};
#define ALEN 1000 /* args cannot be > 1000 chars */

#define NARGC 100 /* commands cannot have > 100 args */

struct history {
u_int h_len;
struct cmd *h_cmds;

};
#define NCMDS 75 /* history is no more than 75 commands */

bool_t
xdr_wrapstring(xdrs, sp)

XDR *xdrs;
char **sp;

{
return(xdr_string(xdrs, sp, ALEN));

}

bool_t
xdr_cmd(xdrs, cp)

XDR *xdrs;
struct cmd *cp;

{
return(xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,

sizeof (char *), xdr_wrapstring));
}
bool_t
xdr_history(xdrs, hp)

XDR *xdrs;
struct history *hp;

{
return(xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,

sizeof (struct cmd), xdr_cmd));
}

XDR Technical Note 185

The most confusing part of this example is that the routine xdr_wrapstring() is
needed to package the xdr_string() routine, because the implementation of
xdr_array() passes only two parameters to the array element description routine;
xdr_wrapstring() supplies the third parameter to xdr_string() .

By now the recursive nature of the XDR library should be obvious. Let’s continue
with more constructed data types.

Opaque Data
In some protocols, handles are passed from a server to client. The client passes the
handle back to the server at some later time. Handles are never inspected by clients;
they are obtained and submitted. That is to say, handles are opaque. The
xdr_opaque() primitive is used for describing fixed sized, opaque bytes.

bool_t
xdr_opaque(xdrs, p, len)

XDR *xdrs;
char *p;
u_int len;

The parameter p is the location of the bytes; len is the number of bytes in the opaque
object. By definition, the actual data contained in the opaque object are not machine
portable.

In SunOS/SVR4 there is another routine for manipulating opaque data. This routine,
xdr_netobj sends counted opaque data, much like xdr_opaque() . Code Example
A–10 illustrates the syntax of xdr_netobj() .

CODE EXAMPLE A–10 xdr_netobj Routine

struct netobj {
u_int n_len;
char *n_bytes;

};
typedef struct netobj netobj;

bool_t
xdr_netobj(xdrs, np)

XDR *xdrs;
struct netobj *np;

The xdr_netobj() routine is a filter primitive that translates between variable
length opaque data and its external representation. The parameter np is the address
of the netobj structure containing both a length and a pointer to the opaque data.
The length may be no more than MAX_NETOBJ_SZ bytes. This routine returns
TRUE if it succeeds, FALSE otherwise.

186 ONC+ Developer’s Guide ♦ , 1998

Fixed-Length Arrays
The XDR library provides a primitive, xdr_vector() , for fixed-length arrays,
shown in Code Example A–11.

CODE EXAMPLE A–11 xdr_vector Routine

#define NLEN 255 /* machine names must be < 256 chars */
#define NGRPS 20 /* user belongs to exactly 20 groups */

struct netuser {
char *nu_machinename;
int nu_uid;
int nu_gids[NGRPS];

};

bool_t
xdr_netuser(xdrs, nup)

XDR *xdrs;
struct netuser *nup;

{
int i;

if (!xdr_string(xdrs, &nup->nu_machinename, NLEN))
return(FALSE);

if (!xdr_int(xdrs, &nup->nu_uid))
return(FALSE);

if (!xdr_vector(xdrs, nup->nu_gids, NGRPS, sizeof(int),
xdr_int))

return(FALSE);
return(TRUE);

}

Discriminated Unions
The XDR library supports discriminated unions. A discriminated union is a C union
and an enum_t value that selects an “arm” of the union.

struct xdr_discrim {
enum_t value;
bool_t (*proc)();

};

bool_t
xdr_union(xdrs, dscmp, unp, arms, defaultarm)

XDR *xdrs;
enum_t *dscmp;
char *unp;
struct xdr_discrim *arms;
bool_t (*defaultarm)(); /* may equal NULL */

First the routine translates the discriminant of the union located at *dscmp. The
discriminant is always an enum_t . Next the union located at *unp is translated. The
parameter arms is a pointer to an array of xdr_discrim structures. Each structure

XDR Technical Note 187

contains an ordered pair of [value,proc]. If the union’s discriminant is equal to the
associated value, then the proc is called to translate the union. The end of the
xdr_discrim structure array is denoted by a routine of value NULL (0). If the
discriminant is not found in the arms array, then the defaultarm() procedure is
called if it is nonnull; otherwise the routine returns FALSE.

Discriminated Union Example
Suppose the type of a union may be integer, character pointer (a string), or a
gnumbers structure. Also, assume the union and its current type are declared in a
structure. The declaration is:

enum utype {INTEGER=1, STRING=2, GNUMBERS=3};
struct u_tag {

enum utype utype; /* the union’s discriminant */
union {

int ival;
char *pval;
struct gnumbers gn;

} uval;
};

Code Example A–12 constructs and XDR procedure (de)serialize the discriminated
union.

CODE EXAMPLE A–12 XDR Discriminated Union

struct xdr_discrim u_tag_arms[4] = {
{INTEGER, xdr_int},
{GNUMBERS, xdr_gnumbers}
{STRING, xdr_wrapstring},
{__dontcare__, NULL}
/* always terminate arms with a NULL xdr_proc */

}

bool_t
xdr_u_tag(xdrs, utp)

XDR *xdrs;
struct u_tag *utp;

{
return(xdr_union(xdrs, &utp->utype, &utp->uval,

u_tag_arms, NULL));
}

The routine xdr_gnumbers() was presented above in the XDR Library section.
xdr_wrapstring() was presented in example C. The default arm parameter to
xdr_union() (the last parameter) is NULL in this example. Therefore the value of
the union’s discriminant may legally take on only values listed in the u_tag_arms
array. This example also demonstrates that the elements of the arm’s array do not
need to be sorted.

188 ONC+ Developer’s Guide ♦ , 1998

It is worth pointing out that the values of the discriminant may be sparse, though in
this example they are not. It is always good practice to assign explicitly integer
values to each element of the discriminant’s type. This practice both documents the
external representation of the discriminant and guarantees that different C compilers
emit identical discriminant values.

Exercise
Implement xdr_union() using the other primitives in this section.

Pointers
In C it is often convenient to put pointers to another structure within a structure. The
xdr_reference() primitive makes it easy to serialize, deserialize, and free these
referenced structures.

bool_t
xdr_reference(xdrs, pp, size, proc)

XDR *xdrs;
char **pp;
u_int ssize;
bool_t (*proc)();

Parameter pp is the address of the pointer to the structure; parameter ssize is the size
in bytes of the structure (use the C function sizeof() to obtain this value); and
proc() is the XDR routine that describes the structure. When decoding data,
storage is allocated if *pp is NULL.

There is no need for a primitive xdr_struct() to describe structures within
structures, because pointers are always sufficient.

Exercise
Implement xdr_reference() using xdr_array() .

Warning - xdr_reference() and xdr_array() are NOT interchangeable
external representations of data.

Pointer Example
Suppose there is a structure containing a person’s name and a pointer to a gnumbers
structure containing the person’s gross assets and liabilities. The construct is:

struct pgn {
char *name;

XDR Technical Note 189

struct gnumbers *gnp;
};

The corresponding XDR routine for this structure is:

bool_t
xdr_pgn(xdrs, pp)

XDR *xdrs;
struct pgn *pp;

{
return(xdr_string(xdrs, &pp->name, NLEN) &&

xdr_reference(xdrs, &pp->gnp, sizeof(struct gnumbers),
xdr_gnumbers));

}

Pointer Semantics
In many applications, C programmers attach double meaning to the values of a
pointer. Typically the value NULL (or zero) means data is not needed, yet some
application-specific interpretation applies. In essence, the C programmer is encoding
a discriminated union efficiently by overloading the interpretation of the value of a
pointer. For instance, in example E a NULL pointer value for gnp could indicate that
the person’s assets and liabilities are unknown. That is, the pointer value encodes
two things: whether or not the data is known; and if it is known, where it is located
in memory. Linked lists are an extreme example of the use of application-specific
pointer interpretation.

The primitive xdr_reference() cannot and does not attach any special meaning
to a null-value pointer during serialization. That is, passing an address of a pointer
whose value is NULL to xdr_reference() when serializing data will most likely
cause a memory fault and, on the UNIX system, a core dump.

xdr_pointer() correctly handles NULL pointers.

Nonfilter Primitives
XDR streams can be manipulated with the primitives discussed in this section.

u_int xdr_getpos(xdrs)
XDR *xdrs;

bool_t xdr_setpos(xdrs, pos)
XDR *xdrs;
u_int pos;

xdr_destroy(xdrs)
XDR *xdrs;

The routine xdr_getpo()s()

returns an unsigned integer that describes the current position in the data stream.
Warning: In some XDR streams, the value returned by x()dr_getpos() is

190 ONC+ Developer’s Guide ♦ , 1998

meaningless; the routine returns a -1 in this case (though -1 should be a legitimate
value).

The routine xdr_setpos() sets a stream position to pos. Warning: In some XDR
streams, setting a position is impossible; in such cases, xdr_setpos() will return
FALSE. This routine will also fail if the requested position is out-of-bounds. The
definition of bounds varies from stream to stream.

The xdr_destroy() primitive destroys the XDR stream. Usage of the stream after
calling this routine is undefined.

Operation Directions
At times you may want to optimize XDR routines by taking advantage of the
direction of the operation—XDR_ENCODE, XDR_DECODEor XDR_FREE.
The value xdrs->x_op always contains the direction of the XDR operation. An
example in “Linked Lists” on page 195 demonstrates the usefulness of the
xdrs->x_op field.

Stream Access
An XDR stream is obtained by calling the appropriate creation routine. These
creation routines take arguments that are tailored to the specific properties of the
stream. Streams currently exist for (de)serialization of data to or from standard I/O
FILE streams, record streams, and UNIX files, and memory.

Standard I/O Streams
XDR streams can be interfaced to standard I/O using the xdrstdio_create() routine:

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is part of rpc */

void
xdrstdio_create(xdrs, fp, xdr_op)

XDR *xdrs;
FILE *fp;
enum xdr_op x_op;

The routine xdrstdio_create() initializes an XDR stream pointed to by xdrs. The
XDR stream interfaces to the standard I/O library. Parameter fp is an open file, and
x_op is an XDR direction.

XDR Technical Note 191

Memory Streams
Memory streams allow the streaming of data into or out of a specified area of
memory:

#include <rpc/rpc.h>

void
xdrmem_create(xdrs, addr, len, x_op)

XDR *xdrs;
char *addr;
u_int len;
enum xdr_op x_op;

The routine xdrmem_create() initializes an XDR stream in local memory. The
memory is pointed to by parameter addr; parameter len is the length in bytes of the
memory. The parameters xdrs and x_op are identical to the corresponding parameters
of xdrstdio_create() . Currently, the datagram implementation of RPC uses
xdrmem_create() . Complete call or result messages are built in memory before
calling the t_sndndata() TLI routine.

Record (TCP/IP) Streams
A record stream is an XDR stream built on top of a record marking standard that is
built on top of the UNIX file or 4.2 BSD connection interface.

#include <rpc/rpc.h> /* xdr is part of rpc */

xdrrec_create(xdrs, sendsize, recvsize, iohandle, readproc,
writeproc)

XDR *xdrs;
u_int sendsize, recvsize;
char *iohandle;
int (*readproc)(), (*writeproc)();

The routine xdrrec_create() provides an XDR stream interface that allows for a
bidirectional, arbitrarily long sequence of records. The contents of the records are
meant to be data in XDR form. The stream’s primary use is for interfacing RPC to
TCP connections. However, it can be used to stream data into or out of normal UNIX
files.

The parameter xdrs is similar to the corresponding parameter described above. The
stream does its own data buffering similar to that of standard I/O. The parameters
sendsize and recvsize determine the size in bytes of the output and input buffers,
respectively; if their values are zero (0), then predetermined defaults are used. When
a buffer needs to be filled or flushed, the routine readproc() or writeproc() is
called, respectively. The usage and behavior of these routines are similar to the UNIX
system calls read() and write() . However, the first parameter to each of these
routines is the opaque parameter iohandle. The other two parameters (and nbytes) and

192 ONC+ Developer’s Guide ♦ , 1998

the results (byte count) are identical to the system routines. If xxx() is readproc()
or writeproc() , then it has the following form:

/* returns the actual number of bytes transferred. -1 is an error */int
xxx(iohandle, buf, len)

char *iohandle;
char *buf;
int nbytes;

The XDR stream provides means for delimiting records in the byte stream. Abstract
data types needed to implement the XDR stream mechanism are discussed in “XDR
Stream Implementation ” on page 193. The protocol RPC uses to delimit XDR stream
records is discussed in “Record-Marking Standard” on page 208.

The primitives that are specific to record streams are as follows:

bool_t
xdrrec_endofrecord(xdrs, flushnow)

XDR *xdrs;
bool_t flushnow;

bool_t
xdrrec_skiprecord(xdrs)

XDR *xdrs;

bool_t
xdrrec_eof(xdrs)

XDR *xdrs;

The routine xdrrec_endofrecord() causes the current outgoing data to be
marked as a record. If the parameter flushnow is TRUE, then the stream’s
writeproc() will be called; otherwise, writeproc() will be called when the
output buffer has been filled.

The routine xdrrec_skiprecord() causes an input stream’s position to be moved
past the current record boundary and onto the beginning of the next record in the
stream.

If there is no more data in the stream’s input buffer, then the routine xdrrec_eof()
returns TRUE. That is not to say that there is no more data in the underlying file
descriptor.

XDR Stream Implementation
This section provides the abstract data types needed to implement new instances of
XDR streams.

XDR Technical Note 193

The XDR Object
The structure in Code Example A–13defines the interface to an XDR stream.

CODE EXAMPLE A–13 XDR Stream Interface Example

enum xdr_op {XDR_ENCODE=0, XDR_DECODE=1, XDR_FREE=2};

typedef struct {
enum xdr_op x_op;
struct xdr_ops {

bool_t (*x_getlong)(); /* get long from stream */
bool_t (*x_putlong)(); /* put long to stream */
bool_t (*x_getbytes)(); /* get bytes from stream */
bool_t (*x_putbytes)(); /* put bytes to stream */
u_int (*x_getpostn)(); /* return stream offset */
bool_t (*x_setpostn)(); /* reposition offset */
caddr_t (*x_inline)(); /* ptr to buffered data */
VOID (*x_destroy)(); /* free private area */

bool_t (*x_control)(); /* change, retrieve client info */
bool_t (*x_getint32)(); /* get int from stream */

bool_t (*x_putint32)(); /* put intto stream */
} *x_ops;
caddr_t x_public; /* users’ data */
caddr_t x_private; /* pointer to private data */
caddr_t x_base; /* private for position info */
int x_handy; /* extra private word */

} XDR;

The x_op field is the current operation being performed on the stream. This field is
important to the XDR primitives, but should not affect a stream’s implementation.
That is, a stream’s implementation should not depend on this value. The fields
x_private , x_base , and x_handy are private to the particular stream’s
implementation. The field x_public is for the XDR client and should never be used
by the XDR stream implementations or the XDR primitives. x_getpostn() ,
x_setpostn() , and x_destroy() are macros for accessing operations. The
operation x_inline() has two parameters: an XDR *, and an unsigned integer,
which is a byte count. The routine returns a pointer to a piece of the stream’s
internal buffer. The caller can then use the buffer segment for any purpose. From the
stream’s point of view, the bytes in the buffer segment have been consumed. The
routine may return NULL if it cannot return a buffer segment of the requested size.
(The x_inline() routine is used to squeeze cycles, and the resulting buffer is not
data portable. Users are cautioned against using this feature.)

The operations x_getbytes() and x_putbytes() blindly get and put sequences
of bytes from or to the underlying stream; they return TRUEif they are successful,
and FALSE otherwise. The routines have identical parameters (replace xxx):

bool_t
xxxbytes(xdrs, buf, bytecount)

XDR *xdrs;

194 ONC+ Developer’s Guide ♦ , 1998

char *buf;
u_int bytecount;

The operations x_getint32() and x_putint32() receive and put int numbers
from and to the data stream. It is the responsibility of these routines to translate the
numbers between the machine representation and the (standard) external
representation. The UNIX primitives htonl() and ntohl() can be helpful in
accomplishing this. The higher-level XDR implementation assumes that signed and
unsigned integers contain the same number of bits, and that nonnegative integers
have the same bit representations as unsigned integers. The routines return TRUE if
they succeed, and FALSE otherwise.

The x_getint() and x_putint() functions make use of these operations. They
have identical parameters:

bool_t
xxxint(xdrs, ip)

XDR *xdrs;
int32_t *ip;

The long version of these operations (x_getlong() and x_putlong()) also call
x_getint32() and x_putint32() , ensuring that a 4–byte quantity is operated
on, no matter whether the program is running on a 64– or 32–bit machine.

Implementors of new XDR streams must make an XDR structure (with new
operation routines) available to clients, using some kind of create routine.

Advanced Topics
This section describes techniques for passing data structures that are not covered in
the preceding sections. Such structures include linked lists (of arbitrary lengths).
Unlike the simpler examples covered in the earlier sections, the following examples
are written using both the XDR C library routines and the XDR data description
language. Appendix C, describes this language in detail.

Linked Lists
The “Pointer Example ” on page 189 presented a C data structure and its associated
XDR routines for an individual’s gross assets and liabilities. Code Example A–14
uses a linked list to duplicate the pointer example.

CODE EXAMPLE A–14 Linked List

struct gnumbers {
int g_assets;

XDR Technical Note 195

int g_liabilities;
};

bool_t
xdr_gnumbers(xdrs, gp)

XDR *xdrs;
struct gnumbers *gp;

{
return(xdr_int(xdrs, &(gp->g_assets) &&

xdr_int(xdrs, &(gp->g_liabilities)));
}

Now assume that you want to implement a linked list of such information. A data
structure could be constructed as follows:

struct gnumbers_node {
struct gnumbers gn_numbers;
struct gnumbers_node *gn_next;

};
typedef struct gnumbers_node *gnumbers_list;

The head of the linked list can be thought of as the data object; that is, the head is
not merely a convenient shorthand for a structure. Similarly the gn_next field is
used to indicate whether the object has terminated. Unfortunately, if the object
continues, the gn_next field is also the address of where it continues. The link
addresses carry no useful information when the object is serialized.

The XDR data description of this linked list is described by the recursive declaration
of gnumbers_list :

struct gnumbers {
int g_assets;
int g_liabilities;

};
struct gnumbers_node {

gnumbers gn_numbers;
gnumbers_node *gn_next;

};

In this description, the Boolean indicates whether there is more data following it. If
the Boolean is FALSE, it is the last data field of the structure. If it is TRUE, it is
followed by a gnumbers structure and (recursively) by a gnumbers_list . Note
that the C declaration has no Boolean explicitly declared in it (though the gn_next
field implicitly carries the information), while the XDR data description has no
pointer explicitly declared in it.

Hints for writing the XDR routines for a gnumbers_list follow easily from the
XDR description above. Note how the primitive xdr_pointer() is used to
implement the XDR union above.

CODE EXAMPLE A–15 xdr_pointer

bool_t
xdr_gnumbers_node(xdrs, gn)

XDR *xdrs;

196 ONC+ Developer’s Guide ♦ , 1998

gnumbers_node *gn;
{

return(xdr_gnumbers(xdrs, &gn->gn_numbers) &&
xdr_gnumbers_list(xdrs, &gn->gn_next));

}

bool_t
xdr_gnumbers_list(xdrs, gnp)

XDR *xdrs;
gnumbers_list *gnp;

{
return(xdr_pointer(xdrs, gnp, sizeof(struct gnumbers_node),

xdr_gnumbers_node));
xdr_pointer}

The unfortunate side effect of using XDR on a list with these routines is that the C
stack grows linearly with respect to the number of nodes in the list. This is due to
the recursion. Code Example A–16collapses the above two mutually recursive
routines into a single, nonrecursive one.

CODE EXAMPLE A–16 Nonrecursive Stack in XDR

bool_t
xdr_gnumbers_list(xdrs, gnp)

XDR *xdrs;
gnumbers_list *gnp;

{
bool_t more_data;
gnumbers_list *nextp;

for(;;) {
more_data = (*gnp != NULL);
if (!xdr_bool(xdrs, &more_data))

return(FALSE);
if (! more_data)

break;
if (xdrs->x_op == XDR_FREE)

nextp = &(*gnp)->gn_next;
if (!xdr_reference(xdrs, gnp,
sizeof(struct gnumbers_node), xdr_gnumbers))
return(FALSE);
gnp = (xdrs->x_op == XDR_FREE) ? nextp : &(*gnp)->gn_next;

}
*gnp = NULL;
return(TRUE);

}

The first task is to find out whether there is more data, so that this Boolean
information can be serialized. Notice that this statement is unnecessary in the
XDR_DECODEcase, since the value of more_data is not known until you deserialize it
in the next statement.

The next statement implements XDR on the more_data field of the XDR union. Then if
there is truly no more data, you set this last pointer to NULL to indicate the end of
the list, and return TRUEbecause you are done. Note that setting the pointer to NULL

XDR Technical Note 197

is only important in the XDR_DECODEcase, since it is already NULL in the
XDR_ENCODEand XDR_FREEcases.

Next, if the direction is XDR_FREE, the value of nextp is set to indicate the location of
the next pointer in the list. We do this now because you need to dereference gnp to
find the location of the next item in the list, and after the next statement, the storage
pointed to by gnp will be freed up and no be longer valid. We can’t do this for all
directions though, because in the XDR_DECODEdirection the value of gnp won’t be
set until the next statement.

Next, you XDR the data in the node using the primitive xdr_reference() .
xdr_reference() is like xdr_pointer() which you used before, but it does not
send over the Boolean indicating whether there is more data. We use it instead of
xdr_pointer() because you have already used XDR on this information yourself.
Notice that the XDR routine passed is not the same type as an element in the list.
The routine passed is xdr_gnumbers() , but each element in the list is actually of
type gnumbers_node . You don’t pass xdr_gnumbers_node() because it is
recursive. Instead use xdr_gnumbers() which uses XDR on all of the nonrecursive
part. Note that this trick works only if the gn_numbers field is the first item in each
element, so that their addresses are identical when passed to xdr_reference() .

Finally, you update gnp to point to the next item in the list. If the direction is
XDR_FREE, you set it to the previously saved value; otherwise you can dereference
gnp to get the proper value. Though harder to understand than the recursive version,
this nonrecursive routine will run more efficiently since much of the procedure call
overhead has been removed. Most lists are small though (in the hundreds of items or
less) and the recursive version should be sufficient for them.

198 ONC+ Developer’s Guide ♦ , 1998

APPENDIX B

RPC Protocol and Language
Specification

This appendix specifies a message protocol used in implementing the RPC package.
The message protocol is specified with the XDR language. The companion appendix
to this one is Appendix C.".

� “Protocol Overview” on page 199

� “Program and Procedure Numbers” on page 202

� “Authentication Protocols” on page 208

� “The RPC Language Specification” on page 219

Protocol Overview
The RPC protocol provides for the following:

� Unique specification of a procedure to be called.

� Provisions for matching response messages to request messages.

� Provisions for authenticating the caller to service and vice-versa. In addition, the
RPC package provides features that detect the following:

� RPC protocol mismatches
� Remote program protocol version mismatches
� Protocol errors (such as incorrect specification of a procedure’s parameters)
� Reasons why remote authentication failed

Consider a network file service composed of two programs. One program may deal
with high-level applications such as file system access control and locking. The other

199

may deal with low-level file I/O and have procedures like “read” and “write.” A
client machine of the network file service would call the procedures associated with
the two programs of the service on behalf of some user on the client machine. In the
client-server model a remote procedure call is used to call the service.

The RPC Model
The RPC model is similar to the local procedure call model. In the local case, the
caller places arguments to a procedure in some well-specified location. The caller
then transfers control to the procedure, and eventually regains control. At that point,
the results of the procedure are extracted from a well-specified location, and the
caller continues execution.

The RPC is similar, in that one thread of control logically winds through two
processes. One is the caller’s process, the other is a server’s process. Conceptually,
the caller process sends a call message to the server process and waits (blocks) for a
reply message. The call message contains the procedure’s parameters, among other
things. The reply message contains the procedure’s results, among other things. Once
the reply message is received, the results of the procedure are extracted, and the
caller’s execution is resumed.

On the server side, a process is dormant awaiting the arrival of a call message. When
one arrives, the server process extracts the procedure’s parameters, computes the
results, sends a reply message, and then awaits the next call message.

Note that in this description only one of the two processes is active at any given
time. However, this need not be the case. The RPC protocol makes no restrictions on
the concurrency model implemented. For example, an implementation may choose to
have RPC calls be asynchronous, so that the client may do useful work while waiting
for the reply from the server. Another possibility is to have the server create a task to
process an incoming request, so that the server can be free to receive other requests.

Transports and Semantics
The RPC protocol is independent of transport protocols. That is, RPC disregards how
a message is passed from one process to another. The protocol deals only with
specification and interpretation of messages.

RPC does not attempt to ensure transport reliability. Therefore, you must supply the
application with information about the type of transport protocol used under RPC. If
you tell the RPC service it is running on top of a reliable transport such as TCP, most
of the work is already done for it. On the other hand, if RPC is running on top of an
unreliable transport such as UDP, the service must devise its own retransmission and
time-out policy. RPC does not provide this service.

200 ONC+ Developer’s Guide ♦ , 1998

Because of transport independence, the RPC protocol does not attach specific
semantics to the remote procedures or their execution. Semantics can be inferred
from (but should be explicitly specified by) the underlying transport protocol. For
example, consider RPC running on top of an unreliable transport. If an application
retransmits RPC messages after short time-outs, the only thing it can infer if it
receives no reply is that the procedure was executed zero or more times. If it does
receive a reply, it can infer that the procedure was executed at least once.

A server may choose to remember previously granted requests from a client and not
regrant them to insure some degree of execute-at-most-once semantics. A server can
do this by taking advantage of the transaction ID that is packaged with every RPC
request. The main use of this transaction ID is by the RPC client for matching replies
to requests. However, a client application may choose to reuse its previous
transaction ID when retransmitting a request. The server application, checking this
fact, may choose to remember this ID after granting a request and not regrant
requests with the same ID. The server is not allowed to examine this ID in any other
way except as a test for equality.

On the other hand, if using a reliable transport such as TCP, the application can infer
from a reply message that the procedure was executed exactly once, but if it receives
no reply message, it cannot assume the remote procedure was not executed. Note
that even if a connection-oriented protocol like TCP is used, an application still needs
time-outs and reconnection to handle server crashes.

Binding and Rendezvous Independence
The act of binding a client to a service is not part of the remote procedure call
specification. This important and necessary function is left up to some higher-level
software. (The software may use RPC itself; see “rpcbind Protocol” on page 227.)

Implementers should think of the RPC protocol as the jump-subroutine instruction
(JSR) of a network; the loader (binder) makes JSR useful, and the loader itself uses
JSR to accomplish its task. Likewise, the network makes RPC useful, enabling RPC to
accomplish this task.

The RPC protocol provides the fields necessary for a client to identify itself to a
service and vice-versa. Security and access control mechanisms can be built on top of
the message authentication. Several different authentication protocols can be
supported. A field in the RPC header specifies the protocol being used. More
information on authentication protocols can be found in the section “Record-Marking
Standard” on page 208.

RPC Protocol and Language Specification 201

Program and Procedure Numbers
The RPC call message has three unsigned fields that uniquely identify the procedure
to be called:

� remote program number

� remote program version number

� remote procedure number

Program numbers are administered by a central authority, as described in “Program
Number Registration” on page 204.

The first implementation of a program will most likely have version number 1.
Because most new protocols evolve into better, stable, and mature protocols, a
version field of the call message identifies the version of the protocol the caller is
using. Version numbers make “speaking” old and new protocols through the same
server process possible.

The procedure number identifies the procedure to be called. These numbers are
documented in the individual program’s protocol specification. For example, a file
service’s protocol specification may state that its procedure number 5 is “read” and
procedure number 12 is “write.”

Just as remote program protocols may change over several versions, the RPC
message protocol itself may change. Therefore, the call message also has in it the RPC
version number, which is always equal to 2 for the version of RPC described here.

The reply message to a request message has enough information to distinguish the
following error conditions:

� The remote implementation of RPC does not “speak” protocol version 2. The
lowest and highest supported RPC version numbers are returned.

� The remote program is not available on the remote system.

� The remote program does not support the requested version number. The lowest
and highest supported remote program version numbers are returned.

� The requested procedure number does not exist. (This is usually a caller-side
protocol or programming error.)

� The parameters to the remote procedure appear to be garbage from the server’s
point of view. (Again, this is usually caused by a disagreement about the protocol
between client and service.)

Provisions for authentication of caller to service and vice versa are provided as a part
of the RPC protocol. The call message has two authentication fields, the credentials
and verifier. The reply message has one authentication field, the response verifier. The
RPC protocol specification defines all three fields to be the following opaque type:

enum auth_flavor {
AUTH_NONE = 0,

202 ONC+ Developer’s Guide ♦ , 1998

AUTH_SYS = 1,
AUTH_SHORT = 2,
AUTH_DES = 3,

AUTH_KERB = 4
/* and more to be defined */

};
struct opaque_auth {

enum auth_flavor; /* style of credentials */
caddr_t oa_base; /* address of more auth stuff */
u_int oa_length; /* not to exceed MAX_AUTH_BYTES */

};

An opaque_auth structure is an auth_flavor enumeration followed by bytes that
are opaque to the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication
fields are specified by individual, independent authentication protocol specifications.
(See “Record-Marking Standard” on page 208 for definitions of the various
authentication protocols.)

If authentication parameters are rejected, the response message contains information
stating why they are rejected.

Program Number Assignment
Program numbers are distributed in groups of 0x20000000 , as shown in Table B–1.

TABLE B–1 RPC Program Number Assignment

Program
Numbers

Description

00000000 - 1fffffff Defined by Sun

20000000 - 3fffffff Defined by user

40000000 - 5fffffff Transient (Reserved for customer-written applications)

60000000 - 7fffffff Reserved

80000000 - 9fffffff Reserved

a0000000 - bfffffff Reserved

c0000000 - dfffffff Reserved

e0000000 - ffffffff Reserved

RPC Protocol and Language Specification 203

Sun Microsystems administers the first group of numbers, which should be identical
for all customers. If a customer develops an application that might be of general
interest, that application should be given an assigned number in the first range.

The second group of numbers is reserved for specific customer applications. This
range is intended primarily for debugging new programs.

The third group is reserved for applications that generate program numbers
dynamically.

The final groups are reserved for future use, and should not be used.

Program Number Registration
To register a protocol specification, send a request by email to rpc@sun.com , or
write to: RPC Administrator Sun Microsystems 2550 Garcia Avenue Mountain View,
CA 94043

Please include a compilable rpcgen ‘‘.x’’ file describing your protocol. You will
be given a unique program number in return.

The RPC program numbers and protocol specifications of standard RPC services can
be found in the include files in /usr/include/rpcsvc . These services, however,
constitute only a small subset of those that have been registered.

Other Uses of the RPC Protocol
The intended use of this protocol is for calling remote procedures. That is, each call
message is matched with a response message. However, the protocol itself is a
message-passing protocol with which other (non-RPC) protocols can be
implemented. Some of the non-RPC protocols supported by the RPC package are
batching and broadcasting.

Batching
Batching allows a client to send an arbitrarily large sequence of call messages to a
server; batching typically uses reliable byte stream protocols (like TCP) for its
transport. In batching, the client never waits for a reply from the server, and the
server does not send replies to batch requests. A sequence of batch calls is usually
finished by a non-batch RPC call to flush the pipeline (with positive
acknowledgment). For more information, see “Batching ” on page 88.

204 ONC+ Developer’s Guide ♦ , 1998

Broadcast RPC
In broadcast RPC, the client sends a broadcast packet to the network and waits for
numerous replies. Broadcast RPC uses connectionless, packet-based protocols (like
UDP) as its transports. Servers that support broadcast protocols only respond when
the request is successfully processed, and are silent in the face of errors. Broadcast
RPC uses the rpcbind service to achieve its semantics. See “Broadcast RPC ” on
page 86 and “rpcbind Protocol” on page 227 for further information.

The RPC Message Protocol
This section defines the RPC message protocol in the XDR data description language.
The message is defined in a top-down style, as shown in Code Example B–1.

CODE EXAMPLE B–1 RPC Message Protocol

enum msg_type {
CALL = 0,
REPLY = 1

};

/*
* A reply to a call message can take on two forms: The message was
* either accepted or rejected.
*/
enum reply_stat {

MSG_ACCEPTED = 0,
MSG_DENIED = 1

};

/*
* Given that a call message was accepted, the following is the
* status of an attempt to call a remote procedure.
*/

enum accept_stat {
SUCCESS = 0, /* RPC executed successfully */
PROG_UNAVAIL = 1, /* remote service hasn’t exported prog */
PROG_MISMATCH = 2, /* remote service can’t support versn # */
PROC_UNAVAIL = 3, /* program can’t support proc */
GARBAGE_ARGS = 4 /* procedure can’t decode params */

};

/*
* Reasons a call message was rejected:
*/

enum reject_stat {
RPC_MISMATCH = 0, /* RPC version number != 2 */
AUTH_ERROR = 1 /* remote can’t authenticate caller */

};
/*

* Why authentication failed:
*/

(continued)

RPC Protocol and Language Specification 205

(Continuation)

enum auth_stat {
AUTH_BADCRED = 1, /* bad credentials */
AUTH_REJECTEDCRED = 2, /* clnt must do new session */
AUTH_BADVERF = 3, /* bad verifier */
AUTH_REJECTEDVERF = 4, /* verif expired or replayed */
AUTH_TOOWEAK = 5 /* rejected for security */

};

/*
* The RPC message:
* All messages start with a transaction identifier, xid, followed
* by a two-armed discriminated union. The union’s discriminant is
* a msg_type which switches to one of the two types of the
* message.
* The xid of a REPLY message always matches that of the
* initiating CALL message. NB: The xid field is only used for
* clients matching reply messages with call messages or for servers
* detecting retransmissions; the service side cannot treat this id as
* any type of sequence number.
*/

struct rpc_msg {
unsigned int xid;
union switch (msg_type mtype) {

case CALL:
call_body cbody;

case REPLY:
reply_body rbody;

} body;
};

/*
* Body of an RPC request call:
* In version 2 of the RPC protocol specification, rpcvers must be
* equal to 2. The fields prog, vers, and proc specify the remote
* program, its version number, and the procedure within the
* remote program to be called. After these fields are two
* authentication parameters: cred (authentication credentials) and
* verf (authentication verifier). The two authentication parameters
* are followed by the parameters to the remote procedure, which are
* specified by the specific program protocol.
*/

struct call_body {
unsigned int rpcvers; /* must be equal to two (2) */
unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque_auth cred;
opaque_auth verf;
/* procedure specific parameters start here */

};

/*
* Body of a reply to an RPC request:
* The call message was either accepted or rejected.

(continued)

206 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

*/
union reply_body switch (reply_stat stat) {

case MSG_ACCEPTED:
accepted_reply areply;

case MSG_DENIED:
rejected_reply rreply;

} reply;

/*
* Reply to an RPC request that was accepted by the server: there
* could be an error even though the request was accepted. The
* first field is an authentication verifier that the server
* generates in order to validate itself to the caller. It is
* followed by a union whose discriminant is an enum accept_stat.
* The SUCCESS arm of the union is protocol specific.
* The PROG_UNAVAIL, PROC_UNAVAIL, and GARBAGE_ARGP arms of
* the union are void. The PROG_MISMATCH arm specifies the lowest
* and highest version numbers of the remote program supported by
* the server.
*/

struct accepted_reply {
opaque_auth verf;
union switch (accept_stat stat) {

case SUCCESS:
opaque results[0];
/* procedure-specific results start here */

case PROG_MISMATCH:
struct {

unsigned int low;
unsigned int high;

} mismatch_info;
default:

/*
* Void. Cases include PROG_UNAVAIL, PROC_UNAVAIL, and

* GARBAGE_ARGS.
*/

void;
} reply_data;

};

/*
* Reply to an RPC request that was rejected by the server:
* The request can be rejected for two reasons: either the server
* is not running a compatible version of the RPC protocol
* (RPC_MISMATCH), or the server refuses to authenticate the
* caller AUTH_ERROR). In case of an RPC version mismatch,
* the server returns the lowest and highest supported RPC
* version numbers. In case of refused authentication, failure
* status is returned.
*/

union rejected_reply switch (reject_stat stat) {
case RPC_MISMATCH:

struct {
unsigned int low;

(continued)

RPC Protocol and Language Specification 207

(Continuation)

unsigned int high;
} mismatch_info;

case AUTH_ERROR:
auth_stat stat;

};

Record-Marking Standard
When RPC messages are passed on top of a byte stream transport (like TCP), it is
necessary, or at least desirable, to delimit one message from another to detect and
possibly recover from user protocol errors. This is called record marking (RM). One
RPC message fits into one RM record.

A record is composed of one or more record fragments. A record fragment is a
four-byte header followed by 0 to (2**31) - 1 bytes of fragment data. The bytes
encode an unsigned binary number; as with XDR integers, the byte order is the
network byte order.

The header encodes two values:

� A Boolean that specifies whether the fragment is the last fragment of the record
(bit value 1 implies the fragment is the last fragment).

� A 31-bit unsigned binary value that is the length in bytes of the fragment’s data.
The Boolean value is the highest-order bit of the header; the length is the 31
low-order bits. (This record specification is not in XDR standard form).

Authentication Protocols
Authentication parameters are opaque but open-ended to the rest of the RPC
protocol. This section defines some flavors of authentication that have already been
implemented. Other sites are free to invent new authentication types, with the same
rules of flavor number assignment for program number assignment. SunSoft
maintains and administers a range of authentication flavors. To have authentication
numbers (like RPC program numbers) allocated (or registered to them), contact the
Sun RPC Administrator, as described in “Program Number Registration” on page
204.

208 ONC+ Developer’s Guide ♦ , 1998

AUTH_NONE
Calls are often made where the caller does not authenticate itself and the server
disregards who the caller is. In these cases, the flavor value (the “discriminant” of the
opaque_auth “union”) of the RPC message’s credentials, verifier, and response
verifier is AUTH_NONE. The body length is zero when AUTH_NONEauthentication
flavor is used.

AUTH_SYS
This is the same as the authentication flavor previously known as AUTH_UNIX.The
caller of a remote procedure may wish to identify itself using traditional UNIX
process permissions authentication. The flavor of the opaque_auth of such an RPC
call message is AUTH_SYS. The bytes of the body encode the following structure:

struct auth_sysparms {
unsigned int stamp;
string machinename<255>;
uid_t uid;
gid_t gid;
gid_t gids<10>;

};

� stamp is an arbitrary ID that the caller machine may generate.

� machinename is the name of the caller’s machine.

� uid is the caller’s effective user ID.

� gid is the caller’s effective group ID.

� gids is a counted array of groups in which the caller is a member.

The flavor of the verifier accompanying the credentials should be AUTH_NONE.

The AUTH_SHORT Verifier
When using AUTH_SYSauthentication, the flavor of the response verifier received in
the reply message from the server may be AUTH_NONEor AUTH_SHORT.

If AUTH_SHORT, the bytes of the response verifier’s string encode a
short_hand_verf structure. This opaque structure may now be passed to the
server instead of the original AUTH_SYScredentials.

The server keeps a cache that maps shorthand opaque structures (passed back by
way of an AUTH_SHORTstyle response verifier) to the original credentials of the
caller. The caller can save network bandwidth and server cpu cycles by using the
new credentials.

The server may flush the shorthand opaque structure at any time. If this happens,
the remote procedure call message will be rejected owing to an authentication error.

RPC Protocol and Language Specification 209

The reason for the failure will be AUTH_REJECTEDCRED. At this point, the caller may
wish to try the original AUTH_SYSstyle of credentials. See Figure B–1.

 AUTH_SYS

AUTH_SHORT

Credential

Verification

AUTH_SHORT

Credential
..

.

AUTH_SHORT

 Credential

AUTH_REJECTED

 Error

AUTH_SYS

 Credential

. .
 .

Figure B–1 Authentication Process Map

AUTH_DES Authentication
AUTH_SYSauthentication has the following problems:

1. Caller identification cannot be guaranteed to be unique if machines with differing
operating systems are on the same network.

2. There is no verifier, so credentials can easily be faked. AUTH_DESauthentication
attempts to fix these two problems.

The first problem is handled by addressing the caller by a simple string of characters
instead of by an operating system specific integer. This string of characters is known
as the netname or network name of the caller. The server should not interpret the

210 ONC+ Developer’s Guide ♦ , 1998

caller’s name in any way other than as the identity of the caller. Thus, netnames
should be unique for every caller in the naming domain.

It is up to each operating system’s implementation of AUTH_DESauthentication to
generate netnames for its users that ensure this uniqueness when they call remote
servers. Operating systems already distinguish users local to their systems. It is
usually a simple matter to extend this mechanism to the network. For example, a
user with a user ID of 515 might be assigned the following netname:
‘‘UNIX.515@sun.com’’ . This netname contains three items that serve to ensure it
is unique. Going backward, there is only one naming domain called sun.com in the
Internet. Within this domain, there is only one UNIX user with user ID 515 . However,
there may be another user on another operating system, for example VMS, within the
same naming domain who, by coincidence, happens to have the same user ID. To
ensure that these two users can be distinguished you add the operating system name.
So one user is ‘‘UNIX.515@sun.com’’ and the other is ‘‘VMS.515@sun.com’’ .

The first field is actually a naming method rather than an operating system name. It
just happens that there is almost a one-to-one correspondence between naming
methods and operating systems. If the world could agree on a naming standard, the
first field could be a name from that standard, instead of an operating system name.

AUTH_DES Authentication Verifiers
Unlike AUTH_SYSauthentication, AUTH_DESauthentication does have a verifier so
the server can validate the client’s credential (and vice versa). The contents of this
verifier are primarily an encrypted timestamp. The server can decrypt this
timestamp, and if it is close to its current real time, then the client must have
encrypted it correctly. The only way the client could encrypt it correctly is to know
the conversation key of the RPC session. If the client knows the conversation key, it
must be the real client.

The conversation key is a DES [5] key that the client generates and notifies the server
of in its first RPC call. The conversation key is encrypted using a public key scheme
in this first transaction. The particular public key scheme used in AUTH_DES
authentication is Diffie-Hellman [3] with 192-bit keys. The details of this encryption
method are described later.

The client and the server need the same notion of the current time for this to work. If
network time synchronization cannot be guaranteed, then client can synchronize
with the server before beginning the conversation. rpcbind provides a procedure,
RPCBPROC_GETTIME, which may be used to obtain the current time.

A server can determine if a client timestamp is valid. For any transaction after the
first, the server checks for two things:

� The timestamp is greater than the one previously seen from the same client.

� The timestamp has not expired. A timestamp is expired if the server’s time is later
than the sum of the client’s timestamp plus what is known as the client’s window.

RPC Protocol and Language Specification 211

The window is a number the client passes (encrypted) to the server in its first
transaction. The window can be thought of as a lifetime for the credential.

For the first transaction, the server checks that the timestamp has not expired. As an
added check, the client sends an encrypted item in the first transaction known as the
window verifier which must be equal to the window minus 1, or the server will
reject the credential.

The client must check the verifier returned from the server to be sure it is legitimate.
The server sends back to the client the encrypted timestamp it received from the
client, minus one second. If the client gets anything other than this, it will reject it.

Nicknames and Clock Synchronization
After the first transaction, the server’s AUTH_DESauthentication subsystem returns in
its verifier to the client an integer nickname that the client may use in its further
transactions instead of passing its netname, encrypted DES key and window every
time. The nickname is most likely an index into a table on the server that stores for
each client its netname, decrypted DES key and window. It should however be
treated an opaque data by the client.

Though originally synchronized, client and server clocks can get out of sync. If this
happens, the client RPC subsystem most likely will receive an RPC_AUTHERRORat
which point it should resynchronize.

A client may still get the RPC_AUTHERRORerror even though it is synchronized with
the server. The reason is that the server’s nickname table is a limited size, and it may
flush entries whenever it wants. The client should resend its original credential and
the server will give it a new nickname. If a server crashes, the entire nickname table
will be flushed, and all clients will have to resend their original credentials.

DES Authentication Protocol (in XDR language)
CODE EXAMPLE B–2 AUTH_DES Authentication Protocol

/*
* There are two kinds of credentials: one in which the client
* uses its full network name, and one in which it uses its
* ‘‘nickname’’ (just an unsigned integer) given to it by the
* server. The client must use its full name in its first
* transaction with the server, in which the server will return
* to the client its nickname. The client may use its nickname
* in all further transactions with the server. There is no
* requirement to use the nickname, but it is wise to use it for
* performance reasons.
*/

(continued)

212 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

enum authdes_namekind {
ADN_FULLNAME = 0,
ADN_NICKNAME = 1

};

/*
* A 64-bit block of encrypted DES data
*/
typedef opaque des_block[8];

/*
* Maximum length of a network user’s name
*/

const MAXNETNAMELEN = 255;

/*
* A fullname contains the network name of the client, an
* encrypted conversation key and the window. The window
* is actually a lifetime for the credential. If the time
* indicated in the verifier timestamp plus the window has
* passed, then the server should expire the request and
* not grant it. To insure that requests are not replayed,
* the server should insist that timestamps be greater
* than the previous one seen, unless it is the first transaction.
* In the first transaction, the server checks instead that the
* window verifier is one less than the window.
*/

struct authdes_fullname {
string name<MAXNETNAMELEN>; /* name of client */
des_block key; /* PK encrypted conversation key */
unsigned int window; /* encrypted window */

}; /* NOTE: PK means "public key" */

/*
* A credential is either a fullname or a nickname

*/
unionauthdes_credswitch(authdes_namekindadc_namekind){

case ADN_FULLNAME:
authdes_fullname adc_fullname;

case ADN_NICKNAME:
unsigned int adc_nickname;

};

/*
* A timestamp encodes the time since midnight, January 1, 1970.
*/

struct timestamp {
unsigned int seconds; /* seconds */
unsigned int useconds; /* and microseconds */

};

/*

(continued)

RPC Protocol and Language Specification 213

(Continuation)

* Verifier: client variety

*/
struct authdes_verf_clnt {

timestamp adv_timestamp; /* encrypted timestamp */
unsigned int adv_winverf; /* encrypted window verifier */

};

/*
* Verifier: server variety
* The server returns (encrypted) the same timestamp the client gave
* it minus one second. It also tells the client its nickname to be
* used in future transactions (unencrypted).
*/

struct authdes_verf_svr {
timestamp adv_timeverf; /* encrypted verifier */
unsigned int adv_nickname; /* new nickname for clnt */

};

Diffie-Hellman Encryption
In this scheme, there are two constants, PROOTand HEXMODULUS. The particular
values chosen for these for the DES authentication protocol are:

const PROOT = 3;
const HEXMODULUS = /* hex */

"d4a0ba0250b6fd2ec626e7efd637df76c716e22d0944b88b";

The way this scheme works is best explained by an example. Suppose there are two
people “A” and “B” who want to send encrypted messages to each other. A and B
each generate a random secret key that they do not disclose to anyone. Let these
keys be represented as SK(A) and SK(B). They also publish in a public directory their
public keys. These keys are computed as follows:

PK(A) = (PROOT ** SK(A)) mod HEXMODULUS
PK(B) = (PROOT ** SK(B)) mod HEXMODULUS

The ** notation is used here to represent exponentiation.

Now, both A and B can arrive at the common key between them, represented here as
CK(A,B) , without disclosing their secret keys.

A computes:

CK(A, B) = (PK(B) ** SK(A)) mod HEXMODULUS

while B computes:

CK(A, B) = (PK(A) ** SK(B)) mod HEXMODULUS

214 ONC+ Developer’s Guide ♦ , 1998

These two can be shown to be equivalent: (PK(B)**SK(A)) mod HEXMODULUS =
(PK(A)**SK(B)) mod HEXMODULUS . Drop the mod HEXMODULUSparts and
assume modulo arithmetic to simplify the process:

PK(B) ** SK(A) = PK(A) ** SK(B)

Then replace PK(B) by what B computed earlier and likewise for PK(A) .

((PROOT ** SK(B)) ** SK(A) = (PROOT ** SK(A)) ** SK(B)

which leads to:

PROOT ** (SK(A) * SK(B)) = PROOT ** (SK(A) * SK(B))

This common key CK(A,B) is not used to encrypt the timestamps used in the
protocol. It is used only to encrypt a conversation key that is then used to encrypt
the timestamps. The reason for doing this is to use the common key as little as
possible, for fear that it could be broken. Breaking the conversation key is a far less
serious offense, because conversations are comparatively short-lived.

The conversation key is encrypted using 56-bit DES keys, yet the common key is 192
bits. To reduce the number of bits, 56 bits are selected from the common key as
follows. The middle-most 8 bytes are selected from the common key, and then parity
is added to the lower order bit of each byte, producing a 56-bit key with 8 bits of
parity.

AUTH_KERB Authentication
To avoid compiling Kerberos code into the operating system kernel, the kernel used
in the SunOS 5.x implementation of AUTH_KERBuses a proxy RPC daemon called
kerbd . The daemon exports three procedures. Refer to the kerbd (1M) manpage for
more details.

1. KGETKCREDis used by the server-side RPC to check the authenticator presented
by the client.

2. KSETKCREDreturns the encrypted ticket and DES session key, given a primary
name, instance, and realm.

3. KGETUCREDis UNIX-specific. It returns the user’s ID, the group ID, and groups
list, assuming that the primary name is mapped to a user name known to the
server.

The best way to describe how Kerberos works is to use an example based on a
service currently implementing Kerberos: the network file system (NFS). The NFS
service on server s is assumed to have the well-known principal name nfs.s A
privileged user on client c is assumed to have the primary name root and an
instance c. Note that (unlike AUTH_DES) when the user’s ticket-granting ticket has
expired, kinit() must be reinvoked. NFS service for Kerberos mounts will fail
until a new ticket-granting ticket is obtained.

RPC Protocol and Language Specification 215

NFS Mount Example
This section follows an NFS mount request from start to finish using AUTH_KERB.
Since mount requests are executed as root in SunOS, the user’s identity is root .c.

Client c makes a MOUNTPROC_MOUNTrequest to the server s to obtain the file handle
for the directory to be mounted. The client mount program makes an NFS mount
system call, handing the client kernel the file handle, mount flavor, time
synchronization address, and the server’s well-known name, nfs .s. Next the client
kernel contacts the server at the time synchronization host to obtain the client-server
time bias.

The client kernel makes the following RPC calls: (1) KSETKCREDto the local kerbd
to obtain the ticket and session key, (2) NFSPROC_GETATTRto the server’s NFS
service, using the full name credential and verifier. The server receives the calls and
makes the KGETKCREDcall to its local kerbd to check the client’s ticket.

The server’s kerbd and the Kerberos library decrypt the ticket and return, among
other data, the principal name and DES session key. The server checks that the ticket
is still valid, uses the session key to decrypt the DES-encrypted portions of the
credential and verifier, and checks that the verifier is valid.

The possible Kerberos authentication errors returned at this time are:

� AUTH_BADCREDis returned if the verifier is invalid (the decrypted win in the
credential and win +1 in the verifier do not match), or the timestamp is not within
the window range

� AUTH_REJECTEDCREDis returned if a replay is detected

� AUTH_BADVERFis returned if the verifier is garbled

If no errors are received, the server caches the client’s identity and allocates a
nickname (small integer) to be returned in the NFS reply. The server then checks if
the client is in the same realm as the server. If it is, the server calls KGETUCREDto its
local kerbd to translate the principal’s primary name into UNIX credentials. If it is
not translatable, the user is marked anonymous. The server checks these credentials
against the file system’s export information. There are three cases to consider:

1. If the KGETUCREDcall fails and anonymous requests are allowed, the UNIX
credentials of the anonymous user are assigned.

2. If the KGETUCREDcall fails and anonymous requests are not allowed, the NFS call
fails with the AUTH_TOOWEAK.

3. If the KGETUCREDcall succeeds, the credentials are assigned, and normal
protection checking follows, including checking for root permission.

Next the server sends an NFS reply, including the nickname and server’s verifier. The
client receives the reply, decrypts and validates the verifier, and stores the nickname
for future calls. The client makes a second NFS call to the server, and the calls to the
server described earlier are repeated. The client kernel makes an NFSPROC_STATVFS
call to the server’s NFS service, using the nickname credential and verifier described
previously. The server receives the call and validates the nickname. If it is out of

216 ONC+ Developer’s Guide ♦ , 1998

range, the error AUTH_BADCREDis returned. The server uses the session key just
obtained to decrypt the DES-encrypted portions of the verifier and validates the
verifier.

The possible Kerberos authentication errors returned at this time are:

� AUTH_REJECTEDVERFis returned if the timestamp is invalid, a replay is detected,
or if the timestamp is not within the window range

� AUTH_TIMEEXPIREis returned if the service ticket is expired

If no errors are received, the server uses the nickname to retrieve the caller’s UNIX
credentials. Then it checks these credentials against the file system’s export
information, and sends an NFS reply that includes the nickname and the server’s
verifier. The client receives the reply, decrypts and validates the verifier, and stores
the nickname for future calls. Last, the client’s NFS mount system call returns, and
the request is finished.

KERB Authentication Protocol (in XDR Language)
Code Example B–3 (AUTH_KERB) has many similarities to the one for AUTH_DES,
shown in Code Example B–2. Note the differences.

CODE EXAMPLE B–3 AUTH_KERB Authentication Protocol

#define AUTH_KERB 4
/*

* There are two kinds of credentials: one in which the client
* sends the (previously encrypted) Kerberos ticket, and one in
* which it uses its ‘‘nickname’’ (just an unsigned integer)
* given to it by the server. The client must use its full name
* in its first transaction with the server, in which the server
* will return to the client its nickname. The client may use
* its nickname in all further transactions with the server
* (until the ticket expires). There is no requirement to use
* the nickname, but it is wise to use it for performance reasons.
*/

enum authkerb_namekind {
AKN_FULLNAME = 0,
AKN_NICKNAME = 1

};

/*
* A fullname contains the encrypted service ticket and the

* window. The window is actually a lifetime
* for the credential. If the time indicated in the verifier
* timestamp plus the window has passed, then the server should
* expire the request and not grant it. To insure that requests
* are not replayed, the server should insist that timestamps be
* greater than the previous one seen, unless it is the first
* transaction. In the first transaction, the server checks

(continued)

RPC Protocol and Language Specification 217

(Continuation)

* instead that the window verifier is one less than the window.
*/

struct authkerb_fullname {
KTEXT_ST ticket; /* Kerberos service ticket */
unsigned long window; /* encrypted window */

};
/*

* A credential is either a fullname or a nickname
*/

union authkerb_credswitch(authkerb_namekind akc_namekind){
case AKN_FULLNAME:

authkerb_fullname akc_fullname;
case AKN_NICKNAME:

unsigned long akc_nickname;
};

/*
* A timestamp encodes the time since midnight, January 1, 1970.

*/
struct timestamp {

unsigned long seconds; /* seconds */
unsigned long useconds; /* and microseconds */

};

/*
* Verifier: client variety

*/
struct authkerb_verf_clnt {

timestamp akv_timestamp; /* encrypted timestamp */
unsigned long akv_winverf; /* encrypted window verifier */

};

/*
* Verifier: server variety
* The server returns (encrypted) the same timestamp the client
* gave it minus one second. It also tells the client its
* nickname to be used in future transactions (unencrypted).
*/

struct authkerb_verf_svr {
timestamp akv_timeverf; /* encrypted verifier */
unsigned long akv_nickname; /* new nickname for clnt */

};

218 ONC+ Developer’s Guide ♦ , 1998

The RPC Language Specification
Just as there was a need to describe the XDR data types in a formal language, there is
also need to describe the procedures that operate on these XDR data types in a formal
language as well. The RPC Language, an extension to the XDR language, serves this
purpose. The following example is used to describe the essence of the language.

An Example Service Described in the RPC
Language
Code Example B–4 shows the specification of a simple ping program.

CODE EXAMPLE B–4 ping Service Using RPC Language

/*
* Simple ping program
*/

program PING_PROG {
version PING_VERS_PINGBACK {

void
PINGPROC_NULL(void) = 0;
/*
* ping the caller, return the round-trip time
* in milliseconds. Return a minus one (-1) if

* operation times-out
*/

int
PINGPROC_PINGBACK(void) = 1;
/* void - above is an argument to the call */

} = 2;
/*

* Original version
*/

version PING_VERS_ORIG {
void
PINGPROC_NULL(void) = 0;

} = 1;
} = 200000;
const PING_VERS = 2; /* latest version */

The first version described is PING_VERS_PINGBACKwith two procedures,
PINGPROC_NULLand PINGPROC_PINGBACK.

PINGPROC_NULLtakes no arguments and returns no results, but it is useful for such
things as computing round-trip times from the client to the server and back again.

RPC Protocol and Language Specification 219

By convention, procedure 0 of any RPC program should have the same semantics,
and never require authentication.

The second procedure returns the amount of time (in microseconds) that the
operation used.

The next version, PING_VERS_ORIG, is the original version of the protocol and it
does not contain PINGPROC_PINGBACKprocedure. It is useful for compatibility with
old client programs, and as this program matures it may be dropped from the
protocol entirely.

RPCL Syntax
The RPC language (RPCL) is similar to C. This section describes the syntax of the
RPC language, showing a few examples along the way. It also shows how RPC and
XDR type definitions get compiled into C type definitions in the output header file.

An RPC language file consists of a series of definitions.

definition-list:
definition;
definition; definition-list

It recognizes six types of definitions.

definition:
enum-definition

const-definition
typedef-definition
struct-definition
union-definition
program-definition

Definitions are not the same as declarations. No space is allocated by a definition –
only the type definition of a single or series of data elements. This means that
variables still must be declared.

The RPC language is identical to the XDR language, except for the added definitions
described in Table B–2.

220 ONC+ Developer’s Guide ♦ , 1998

TABLE B–2 RPC Language Definitions

Term Definition

program-
definition

program program-ident {version-list} = value

version-list version;

version; version-list

version version version-ident {procedure-list} = value

procedure-list procedure;

procedure; procedure-list

procedure type-ident procedure-ident (type-ident) = value

� The following keywords are added and cannot be used as identifiers: program
version.

� Neither version name nor a version number can occur more than once within the
scope of a program definition.

� Neither a procedure name nor a procedure number can occur more than once
within the scope of a version definition.

� Program identifiers are in the same name space as constant and type identifiers.

� Only unsigned constants can be assigned to programs, versions, and procedures.

Enumerations
RPC/XDR enumerations have the same syntax as C enumerations.

enum-definition:
"enum" enum-ident "{"
enum-value-list

"}"
enum-value-list:

enum-value
enum-value "," enum-value-list

enum-value:
enum-value-ident
enum-value-ident "=" value

Here is an example of an XDR enum and the C enum to which it gets compiled.

RPC Protocol and Language Specification 221

enum colortype { enum colortype {
RED = 0, RED = 0,
GREEN = 1, --> GREEN = 1,
BLUE = 2 BLUE = 2,

}; };
typedef enum colortype colortype;

Constants
XDR symbolic constants may be used wherever an integer constant is used. For
example, in array size specifications:

const-definition:
const const-ident = integer

The following example defines a constant, DOZENas equal to 12 :

const DOZEN = 12; --> #define DOZEN 12

Type Definitions
XDR typedef s have the same syntax as C typedef s.

typedef-definition:
typedef declaration

This example defines an fname_type used for declaring file name strings that have
a maximum length of 255 characters.

typedef string fname_type<255>; --> typedef char *fname_type;

Declarations
In XDR, there are four kinds of declarations. These declarations must be a part of a
struct or a typedef ; they cannot stand alone:

declaration:
simple-declaration

fixed-array-declaration
variable-array-declaration
pointer-declaration

Simple Declarations
Simple declarations are just like simple C declarations:

simple-declaration:
type-ident variable-ident

Example:

colortype color; --> colortype color;

222 ONC+ Developer’s Guide ♦ , 1998

Fixed-Length Array Declarations
Fixed-length array declarations are just like C array declarations:

fixed-array-declaration:
type-ident variable-ident [value]

Example:

colortype palette[8]; --> colortype palette[8];

Many programmers confuse variable declarations with type declarations. It is
important to note that rpcgen does not support variable declarations. This example
is a program that will not compile:

int data[10];
program P {

version V {
int PROC(data) = 1;

} = 1;
} = 0x200000;

The example above will not compile because of the variable declaration:

int data[10]

Instead, use:

typedef int data[10];

or

struct data {int dummy [10]};

Variable-Length Array Declarations
Variable-length array declarations have no explicit syntax in C. The XDR language
does have a syntax, using angle brackets:

variable-array-declaration:
type-ident variable-ident <value>
type-ident variable-ident < >

The maximum size is specified between the angle brackets. The size may be omitted,
indicating that the array may be of any size:

int heights<12>; /* at most 12 items */
int widths<>; /* any number of items */

Because variable-length arrays have no explicit syntax in C, these declarations are
compiled into struct declarations. For example, the heights declaration compiled
into the following struct :

RPC Protocol and Language Specification 223

struct {
u_int heights_len; /* # of items in array */

int *heights_val; /* pointer to array */
} heights;

The number of items in the array is stored in the _len component and the pointer to
the array is stored in the _val component. The first part of each component name is
the same as the name of the declared XDR variable (heights).

Pointer Declarations
Pointer declarations are made in XDR exactly as they are in C. Address pointers are
not really sent over the network; instead, XDR pointers are useful for sending
recursive data types such as lists and trees. The type is called “optional-data,” not
“pointer,” in XDR language:

pointer-declaration:
type-ident *variable-ident

Example:

listitem *next; --> listitem *next;

Structures
An RPC/XDR struct is declared almost exactly like its C counterpart. It looks like
the following:

struct-definition:
struct struct-ident "{"

declaration-list
"}"

declaration-list:
declaration ";"
declaration ";" declaration-list

The following XDR structure is an example of a two-dimensional coordinate and the
C structure that it compiles into:

struct coord { struct coord {
int x; --> int x;
int y; int y;

}; };
typedef struct coord coord;

The output is identical to the input, except for the added typedef at the end of the
output. This enables one to use coord instead of struct coord when declaring
items.

224 ONC+ Developer’s Guide ♦ , 1998

Unions
XDR unions are discriminated unions, and do not look like C unions – they are more
similar to Pascal variant records:

union-definition:
"union" union-ident "switch" "("simple declaration")" "{"

case-list
"}"

case-list:
"case" value ":" declaration ";"
"case" value ":" declaration ";" case-list
"default" ":" declaration ";"

The following is an example of a type returned as the result of a “read data”
operation: If there is no error, return a block of data; otherwise, don’t return anything.

union read_result switch (int errno) {
case 0:

opaque data[1024];
default:

void;
};

It compiles into the following:

struct read_result {
int errno;
union {

char data[1024];
} read_result_u;

};
typedef struct read_result read_result;

Notice that the union component of the output struct has the same name as the type
name, except for the trailing _u .

Programs
RPC programs are declared using the following syntax:

program-definition:
"program" program-ident "{"

version-list
"}" "=" value;

version-list:
version ";"
version ";" version-list

version:
"version" version-ident "{"

procedure-list
"}" "=" value;

procedure-list:
procedure ";"
procedure ";" procedure-list

RPC Protocol and Language Specification 225

procedure:
type-ident procedure-ident "(" type-ident ")" "=" value;

When the −N option is specified, rpcgen also recognizes the following syntax:

procedure:
type-ident procedure-ident "(" type-ident-list ")" "=" value;

type-ident-list:
type-ident
type-ident "," type-ident-list

For example:

/*
* time.x: Get or set the time. Time is represented as seconds
* since 0:00, January 1, 1970.
*/

program TIMEPROG {
version TIMEVERS {

unsigned int TIMEGET(void) = 1;
void TIMESET(unsigned) = 2;

} = 1;
} = 0x20000044;

Note that the void argument type means that no argument is passed.

This file compiles into these #define statements in the output header file:

#define TIMEPROG 0x20000044
#define TIMEVERS 1
#define TIMEGET 1
#define TIMESET 2

Special Cases
There are several exceptions to the RPC language rules.

C-style Mode
In the new features section we talked about the features of the C-style mode of
rpcgen . These features have implications with regard to the passing of void
arguments. No arguments need be passed if their value is void .

Booleans
C has no built-in boolean type. However, the RPC library uses a boolean type called
bool_t that is either TRUEor FALSE. Parameters declared as type bool in XDR
language are compiled into bool_t in the output header file.

Example:

bool married; --> bool_t married;

226 ONC+ Developer’s Guide ♦ , 1998

Strings
The C language has no built-in string type, but instead uses the null-terminated
char * convention. In C, strings are usually treated as null- terminated
single-dimensional arrays.

In XDR language, strings are declared using the string keyword, and compiled
into type char * in the output header file. The maximum size contained in the
angle brackets specifies the maximum number of characters allowed in the strings
(not counting the NULL character). The maximum size may be omitted, indicating a
string of arbitrary length.

Examples:

string name<32>; --> char *name;
string longname<>; --> char *longname;

Note - NULL strings cannot be passed; however, a zero-length string (that is, just the
terminator or NULL byte) can be passed.

Opaque Data
Opaque data is used in XDR to describe untyped data, that is, sequences of arbitrary
bytes. It may be declared either as a fixed length or variable length array. Examples:

opaque diskblock[512]; --> char diskblock[512];
opaque filedata<1024>; --> struct {

u_int filedata_len;
char *filedata_val;

} filedata;

Voids
In a void declaration, the variable is not named. The declaration is just void and
nothing else. Void declarations can only occur in two places: union definitions and
program definitions (as the argument or result of a remote procedure, for example no
arguments are passed.)

rpcbind Protocol
rpcbind maps RPC program and version numbers to universal addresses, thus
making dynamic binding of remote programs possible.

rpcbind is bound to a well-known address of each supported transport, and other
programs register their dynamically allocated transport addresses with it. rpcbind
then makes those addresses publicly available. Universal addresses are string

RPC Protocol and Language Specification 227

representations of the transport-dependent address. They are defined by the
addressing authority of the given transport.

rpcbind also aids in broadcast RPC. RPC programs will have different addresses on
different machines, so there is no way to broadcast directly to all these programs.
rpcbind , however, has a well-known address. So, to broadcast to a given program,
the client actually sends its message to the rpcbind process on the machine it
chooses to reach. rpcbind picks up the broadcast and calls the local service
specified by the client. When rpcbind gets a reply from the local service, it passes
the reply on to the client.)

CODE EXAMPLE B–5 rpcbind Protocol Specification (in RPC Language)

/*
* rpcb_prot.x
* RPCBIND protocol in rpc language
*/

/*
* A mapping of (program, version, network ID) to universal

address
*/

struct rpcb {
rpcproc_t r_prog; /* program number */
rpcvers_t r_vers; /* version number */
string r_netid<>; /* network id */
string r_addr<>; /* universal address */
string r_owner<>; /* owner of this service */ };

/* A list of mappings */
struct rpcblist {

rpcb rpcb_map;
struct rpcblist *rpcb_next;

};

/* Arguments of remote calls */
struct rpcb_rmtcallargs {

rpcprog_t prog; /* program number */
rpcvers_t vers; /* version number */
rpcproc_t proc; /* procedure number */
opaque args<>; /* argument */

};

/* Results of the remote call */
struct rpcb_rmtcallres {

string addr<>; /* remote universal address */
opaque results<>; /* result */

};

/*
* rpcb_entry contains a merged address of a service on a

particular
* transport, plus associated netconfig information. A list of
* rpcb_entrys is returned by RPCBPROC_GETADDRLIST. See

netconfig.h
* for values used in r_nc_* fields.

(continued)

228 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

*/
struct rpcb_entry {

string r_maddr<>; /* merged address of service */
string r_nc_netid<>; /* netid field */
unsigned int r_nc_semantics; /* semantics of transport */
string r_nc_protofmly<>; /* protocol family */
string r_nc_proto<>; /* protocol name */

};

/* A list of addresses supported by a service. */
struct rpcb_entry_list {

rpcb_entry rpcb_entry_map;
struct rpcb_entry_list *rpcb_entry_next;

};

typedef rpcb_entry_list *rpcb_entry_list_ptr;

/* rpcbind statistics */
const rpcb_highproc_2 = RPCBPROC_CALLIT;
const rpcb_highproc_3 = RPCBPROC_TADDR2UADDR;
const rpcb_highproc_4 = RPCBPROC_GETSTAT;
const RPCBSTAT_HIGHPROC = 13; /* # of procs in rpcbind V4 plus
one */
const RPCBVERS_STAT = 3; /* provide only for rpcbind V2, V3 and
V4 */
const RPCBVERS_4_STAT = 2;
const RPCBVERS_3_STAT = 1;
const RPCBVERS_2_STAT = 0;

/* Link list of all the stats about getport and getaddr */
struct rpcbs_addrlist {

rpcprog_t prog;
rpcvers_t vers;
int success;
int failure;
string netid<>;
struct rpcbs_addrlist *next;

};

/* Link list of all the stats about rmtcall */
struct rpcbs_rmtcalllist {

rpcprog_t prog;
rpcvers_t vers;
rpcproc_t proc;
int success;
int failure;
int indirect; /* whether callit or indirect */
string netid<>;
struct rpcbs_rmtcalllist *next;

};

typedef int rpcbs_proc[RPCBSTAT_HIGHPROC];
typedef rpcbs_addrlist *rpcbs_addrlist_ptr;

(continued)

RPC Protocol and Language Specification 229

(Continuation)

typedef rpcbs_rmtcalllist *rpcbs_rmtcalllist_ptr;

struct rpcb_stat {
rpcbs_proc info;
int setinfo;
int unsetinfo;
rpcbs_addrlist_ptr addrinfo;
rpcbs_rmtcalllist_ptr rmtinfo;

};

/*
* One rpcb_stat structure is returned for each version of rpcbind
* being monitored.
*/

typedef rpcb_stat rpcb_stat_byvers[RPCBVERS_STAT];
/* rpcbind procedures */
program RPCBPROG {

version RPCBVERS {
void
RPCBPROC_NULL(void) = 0;

/*
* Registers the tuple [r_prog, r_vers, r_addr, r_owner,

* r_netid]. The rpcbind server accepts requests for this
* procedure on only the loopback transport for security
* reasons. Returns TRUE if successful, FALSE on failure.
*/

bool
RPCBPROC_SET(rpcb) = 1;

/*
* Unregisters the tuple [r_prog, r_vers, r_owner, r_netid].

* If vers is zero, all versions are unregistered. The rpcbind
* server accepts requests for this procedure on only the
* loopback transport for security reasons. Returns TRUE if
* successful, FALSE on failure.
*/

bool
RPCBPROC_UNSET(rpcb) = 2;

/*
* Returns the universal address where the triple [r_prog,

* r_vers, r_netid] is registered. If r_addr specified,
* return a universal address merged on r_addr. Ignores
* r_owner. Returns FALSE on failure.
*/

string
RPCBPROC_GETADDR(rpcb) = 3;

/* Returns a list of all mappings. */

(continued)

230 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

rpcblist
RPCBPROC_DUMP(void) = 4;

/*
* Calls the procedure on the remote machine. If it is not

* registered, this procedure IS quiet; that is, it DOES NOT
* return error information.
*/

rpcb_rmtcallres
RPCBPROC_CALLIT(rpcb_rmtcallargs) = 5;

/*
* Returns the time on the rpcbind server’s system.

*/
unsigned int
RPCBPROC_GETTIME(void) = 6;

struct netbuf
RPCBPROC_UADDR2TADDR(string) = 7;

string
RPCBPROC_TADDR2UADDR(struct netbuf) = 8;

} = 3;
version RPCBVERS4 {
bool
RPCBPROC_SET(rpcb) = 1;

bool
RPCBPROC_UNSET(rpcb) = 2;

string
RPCBPROC_GETADDR(rpcb) = 3;

rpcblist_ptr
RPCBPROC_DUMP(void) = 4;

/*
* NOTE: RPCBPROC_BCAST has the same functionality as CALLIT;

* the new name is intended to indicate that this procedure
* should be used for broadcast RPC, and RPCBPROC_INDIRECT
* should be used for indirect calls.
*/

rpcb_rmtcallres
RPCBPROC_BCAST(rpcb_rmtcallargs) = RPCBPROC_CALLIT;

unsigned int
RPCBPROC_GETTIME(void) = 6;

(continued)

RPC Protocol and Language Specification 231

(Continuation)

struct netbuf
RPCBPROC_UADDR2TADDR(string) = 7;

string
RPCBPROC_TADDR2UADDR(struct netbuf) = 8;

/*
* Same as RPCBPROC_GETADDR except that if the given version

* number is not available, the address is not returned.
*/

string
RPCBPROC_GETVERSADDR(rpcb) = 9;

/*
* Calls the procedure on the remote machine. If it is not
* registered, this procedure IS NOT quiet; that is, it DOES
* return error information.
*/

rpcb_rmtcallres
RPCBPROC_INDIRECT(rpcb_rmtcallargs) = 10;

/*
* Same as RPCBPROC_GETADDR except that it returns a list of

* addresses registered for the combination (prog, vers).
*/

rpcb_entry_list_ptr
RPCBPROC_GETADDRLIST(rpcb) = 11;

/*
* Returns statistics about the rpcbind server’s activity.

*/
rpcb_stat_byvers
RPCBPROC_GETSTAT(void) = 12;

} = 4;
} = 100000;

rpcbind Operation

rpcbind is contacted by way of an assigned address specific to the transport being
used. For TCP/IP and UDP/IP, for example, it is port number 111. Each transport

232 ONC+ Developer’s Guide ♦ , 1998

has such an assigned well known address. The following is a description of each of
the procedures supported by rpcbind .

RPCBPROC_NULL

This procedure does no work. By convention, procedure zero of any program takes
no parameters and returns no results.

RPCBPROC_SET

When a program first becomes available on a machine, it registers itself with the
rpcbind program running on the same machine. The program passes its program
number prog; version number vers; network identifier netid; and the universal address
uaddr; on which it awaits service requests.

The procedure returns a Boolean response with the value TRUEif the procedure
successfully established the mapping and FALSE otherwise. The procedure refuses to
establish a mapping if one already exists for the ordered set (prog, vers, netid).

Note that neither netid nor uaddr can be NULL, and that netid should be a valid
network identifier on the machine making the call.

RPCBPROC_UNSET

When a program becomes unavailable, it should unregister itself with the rpcbind
program on the same machine.

The parameters and results have meanings identical to those of RPCBPROC_SET. The
mapping of the (prog, vers, netid) tuple with uaddr is deleted.

If netid is NULL, all mappings specified by the ordered set (prog, vers, *) and the
corresponding universal addresses are deleted. Only the owner of the service or the
super-user is allowed to unset a service.

RPCBPROC_GETADDR

Given a program number prog, version number vers, and network identifier netid, this
procedure returns the universal address on which the program is awaiting call
requests.

The netid field of the argument is ignored and the netid is inferred from the netid of
the transport on which the request came in.

RPC Protocol and Language Specification 233

RPCBPROC_DUMP

This procedure lists all entries in rpcbind ’s database.

The procedure takes no parameters and returns a list of program, version, netid, and
universal addresses. Call this procedure using a stream rather than a datagram
transport to avoid the return of a large amount of data.

RPCBPROC_CALLIT

This procedure allows a caller to call another remote procedure on the same machine
without knowing the remote procedure’s universal address. It is intended for
supporting broadcasts to arbitrary remote programs via rpcbind ’s universal
address.

The parameters prog, vers, proc, and the args_ptr are the program number, version
number, procedure number, and parameters of the remote procedure.

Note - This procedure sends a response only if the procedure was successfully
executed, and is silent (no response) otherwise.

The procedure returns the remote program’s universal address, and the results of the
remote procedure.

RPCBPROC_GETTIME

This procedure returns the local time on its own machine in seconds since midnight
of January 1, 1970.

RPCBPROC_UADDR2TADDR

This procedure converts universal addresses to transport (netbuf) addresses.
RPCBPROC_UADDR2TADDRis equivalent to uaddr2taddr() . See the netdir (3N)
manpage. Only processes that cannot link to the name-to-address library modules
should use RPCBPROC_UADDR2TADDR.

RPCBPROC_TADDR2UADDR

This procedure converts transport (netbuf) addresses to universal addresses.
RPCBPROC_TADDR2UADDRis equivalent to taddr2uaddr() . See the netdir (3N)
manpage. Only processes that can not link to the name-to-address library modules
should use RPCBPROC_TADDR2UADDR.

234 ONC+ Developer’s Guide ♦ , 1998

Version 4 rpcbind
Version 4 of the rpcbind protocol includes all of the above procedures, and adds
several others.

RPCBPROC_BCAST

This procedure is identical to the version 3 RPCBPROC_CALLITprocedure. The new
name indicates that the procedure should be used for broadcast RPCs only.
RPCBPROC_INDIRECT, defined in the following text, should be used for indirect
RPC calls.

RPCBPROC_GETVERSADDR

This procedure is similar to RPCBPROC_GETADDR. The difference is the r_vers field
of the rpcb structure can be used to specify the version of interest. If that version is
not registered, no address is returned.

RPCBPROC_INDIRECT

This procedure is similar to RPCBPROC_CALLIT. Instead of being silent about errors
(such as the program not being registered on the system), this procedure returns an
indication of the error. This procedure should not be used for broadcast RPC. It is
intended to be used with indirect RPC calls only.

RPCBPROC_GETADDRLIST

This procedure returns a list of addresses for the given rpcb entry. The client may be
able use the results to determine alternate transports that it can use to communicate
with the server.

RPCBPROC_GETSTAT

This procedure returns statistics on the activity of the rpcbind server. The
information lists the number and kind of requests the server has received.

Note - All procedures except RPCBPROC_SETand RPCBPROC_UNSETcan be called
by clients running on a machine other than a machine on which rpcbind is
running. rpcbind accepts only RPCPROC_SETand RPCPROC_UNSETrequests on the
loopback transport.

RPC Protocol and Language Specification 235

Bibliography
For further information on the technologies and architectures discussed in this
appendix, reference the following resources.

1. Birrel, Andrew D. & Nelson, Bruce Jay; “Implementing Remote Procedure Calls,”
XEROX CSL-83-7, October 1983.

2. Cheriton, D.; “VMTP: Versatile Message Transaction Protocol,” Preliminary
Version 0.3; Stanford University, January 1987.

3. Diffie and Hellman; “New Directions in Cryptography,” IEEE Transactions on
Information Theory IT-22, November 1976.

4. Harrenstien, K.; “Time Server,” RFC 738; Information Sciences Institute, October
1977.

5. National Bureau of Standards; “Data Encryption Standard,” Federal Information
Processing Standards Publication 46, January 1977.

6. Postel, J.; “Transmission Control Protocol - DARPA Internet Program Protocol
Specification,” RFC 793; Information Sciences Institute, September 1981.

7. Postel, J.; “User Datagram Protocol,” RFC 768; Information Sciences Institute,
August 1980.

236 ONC+ Developer’s Guide ♦ , 1998

APPENDIX C

XDR Protocol Specification

This appendix contains the XDR Protocol Language Specification.

� “XDR Protocol Introduction” on page 237

� “XDR Data Type Declarations” on page 238

� “The XDR Language Specification ” on page 251

XDR Protocol Introduction
External data representation (XDR) is a standard for the description and encoding of
data. The XDR protocol is useful for transferring data between different computer
architectures and has been used to communicate data between such diverse
machines as the Sun® Workstation®, VAX®, IBM® PC, and Cray. XDR fits into the ISO
reference model’s presentation layer (layer 6) and is roughly analogous in purpose to
X.409, ISO Abstract Syntax Notation. The major difference between the two is that
XDR uses implicit typing, while X.409 uses explicit typing.

XDR uses a language to describe data formats and only can be used to describe data;
it is not a programming language. This language makes it possible to describe
intricate data formats in a concise manner. The XDR language is similar to the C
language. Protocols such as RPC and the NFS use XDR to describe the format of
their data.

The XDR standard assumes that bytes (or octets) are portable and that a byte is
defined to be 8 bits of data.

237

Graphic Box Notation
This appendix uses graphic box notation for illustration and comparison. In most
illustrations, each box depicts a byte. The representation of all items requires a
multiple of four bytes (or 32 bits) of data. The bytes are numbered 0 through n-1 .
The bytes are read or written to some byte stream such that byte malways precedes
byte m+1. The n bytes are followed by enough (0 to 3) residual zero bytes, r , to make
the total byte count a multiple of four. Ellipses (...) between boxes show zero or
more additional bytes where required. For example:

byte 0 byte 1 0 0byte n-1

n bytes r bytes
n+r (where (n+r) mod4 = 0)

Basic Block Size
Choosing the XDR block size requires a trade off. Choosing a small size such as two
makes the encoded data small, but causes alignment problems for machines that are
not aligned on these boundaries. A large size such as eight means the data will be
aligned on virtually every machine, but causes the encoded data to grow too large.
Four was chosen as a compromise. Four is big enough to support most architectures
efficiently, except for rare machines such as the eight-byte aligned Cray.

This is not to say that the computers cannot utilize standard XDR, just that they do so
at a greater overhead per data item than 4-byte (32-bit) architectures. Four is also
small enough to keep the encoded data restricted to a reasonable size.

The same data should encode into an equivalent result on all machines, so that
encoded data can be compared or checksummed. So, variable length data must be
padded with trailing zeros.

XDR Data Type Declarations
Each of the sections that follow:

� Describe a data type defined in the XDR standard

� Show how that data type is declared in the language

� Include a graphic illustration of the encoding

For each data type in the language we show a general paradigm declaration. Note
that angle brackets (< and >) denote variable length sequences of data and square
brackets ([and]) denote fixed-length sequences of data. n, mand r denote integers.

238 ONC+ Developer’s Guide ♦ , 1998

For the full language specification, refer to “The XDR Language Specification ” on
page 251.

For some data types, specific examples are included. A more extensive example is
given in the section, “XDR Data Description ” on page 254.

Signed Integer

Description
An XDR signed integer is a 32-bit datum that encodes an integer in the range
[-2147483648,2147483647]. The integer is represented in two’s complement notation;
the most and least significant bytes are 0 and 3, respectively.

Declaration
Integers are declared:

int identifier;

Encoding
Integer

byte 0 byte 1 byte 3byte 2

32 bits

(MSB) (LSB)

Unsigned Integer

Description
An XDR unsigned integer is a 32-bit datum that encodes a nonnegative integer in the
range [0, 4294967295]. The integer is represented by an unsigned binary number
whose most and least significant bytes are 0 and 3, respectively.

Declaration
An unsigned integer is declared as follows:

unsigned int identifier;

XDR Protocol Specification 239

Encoding
Unsigned Integer

byte 0 byte 1 byte 3byte 2

32 bits

(MSB) (LSB)

Enumerations

Description
Enumerations have the same representation as signed integers and are handy for
describing subsets of the integers.

Declaration
Enumerated data is declared as follows:

enum {name-identifier = constant, ... } identifier;

For example, an enumerated type could represent the three colors red, yellow, and
blue as follows:

enum {RED = 2, YELLOW = 3, BLUE = 5} colors;

It is an error to assign to an enum an integer that has not been assigned in the enum
declaration.

Encoding
See “Signed Integer” on page 239.

Booleans

Description
Booleans are important enough and occur frequently enough to warrant their own
explicit type in the standard. Booleans are integers of value 0 or 1.

240 ONC+ Developer’s Guide ♦ , 1998

Declaration
Booleans are declared as follows:

bool identifier;

This is equivalent to:

enum {FALSE = 0, TRUE = 1} identifier;

Encoding
See “Signed Integer” on page 239.

Hyper Integer and Unsigned Hyper Integer

Description
The standard defines 64-bit (8-byte) numbers called hyper int and unsigned
hyper int whose representations are the obvious extensions of integer and
unsigned integer, defined above. They are represented in two’s complement
notation; the most and least significant bytes are 0 and 7, respectively.

Declaration
Hyper integers are declared as follows:

hyper int identifier;
unsigned hyper int identifier;

Encoding
Hyper Integer

byte 2 byte 3 byte 6byte 1 byte 4 byte 7byte 5byte 0

(MSB) (LSB)

64 bits

XDR Protocol Specification 241

Floating Point

Description
The standard defines the floating-point data type float (32-bits or 4-bytes). The
encoding used is the IEEE standard for normalized single-precision floating-point
numbers [1]. The following three fields describe the single-precision floating-point
number:

S: The sign of the number. Values 0 and 1 represent positive and negative,
respectively. One bit.

E: The exponent of the number, base 2. There are eight bits in this field. The
exponent is biased by 127.

F: The fractional part of the number’s mantissa, base 2. There are 23 bits are in this
field.

Therefore, the floating-point number is described by:

(-1)**S * 2**(E-Bias) * 1.F

Declaration
Single-precision floating-point data is declared as follows:

float identifier;

Double-precision floating-point data is declared as follows:

double identifier;

Encoding
Double-Precision Floating Point

byte 2 byte 3 byte 6byte 1 byte 4 byte 7byte 5byte 0

(MSB) (LSB)

64 bits

S

1 11
E F

52 bits

Just as the most and least significant bytes of an integer are 0 and 3, the most and
least significant bits of a double-precision floating- point number are 0 and 63. The
beginning bit (and most significant bit) offsets of S, E, and F are 0, 1, and 12,
respectively.

These offsets refer to the logical positions of the bits, not to their physical locations
(which vary from medium to medium).

The IEEE specifications should be consulted about the encoding for signed zero,
signed infinity (overflow), and de-normalized numbers (underflow) [1]. According to

242 ONC+ Developer’s Guide ♦ , 1998

IEEE specifications, the NaN (not a number) is system dependent and should not be
used externally.

Quadruple-Precision Floating Point

Description
The standard defines the encoding for the quadruple-precision floating-point data
type quadruple (128 bits or 16 bytes). The encoding used is the IEEE standard for
normalized quadruple-precision floating-point numbers [1]. The standard encodes the
following three fields, which describe the quadruple-precision floating-point number:

S: The sign of the number. Values 0 and 1 represent positive and negative,
respectively. One bit.

E: The exponent of the number, base 2. There are 15 bits in this field. The exponent is
biased by 16383.

F: The fractional part of the number’s mantissa, base 2. There are 111 bits in this field.

Therefore, the floating-point number is described by:

(-1)**S * 2**(E-Bias) * 1.F

Declaration
quadruple identifier;

Encoding
Quadruple-Precision Floating Point

byte 2 byte 3byte 1 byte 4 byte 15byte 5byte 0

(MSB) (LSB)

128 bits

15 111 bits
S
1

E F

Just as the most and least significant bytes of an integer are 0 and 3, the most and
least significant bits of a quadruple-precision floating- point number are 0 and 127.
The beginning bit (and most significant bit) offsets of S, E, and F are 0, 1, and 16,
respectively. These offsets refer to the logical positions of the bits, not to their
physical locations (which vary from medium to medium).

The IEEE specifications should be consulted about the encoding for signed zero,
signed infinity (overflow), and de-normalized numbers (underflow) [1]. According to
IEEE specifications, the NaN (not a number) is system dependent and should not be
used externally.

XDR Protocol Specification 243

Fixed-Length Opaque Data

Description
At times, fixed-length uninterpreted data needs to be passed among machines. This
data is called opaque .

Declaration
Opaque data is declared as follows:

opaque identifier[n];

where the constant n is the (static) number of bytes necessary to contain the opaque
data.The n bytes are followed by enough (0 to 3) residual zero bytes, r , to make the
total byte count of the opaque object a multiple of four.

Encoding
The n bytes are followed by enough (0 to 3) residual zero bytes, r , to make the total
byte count of the opaque object a multiple of four.

Fixed-Length Opaque

byte 0 byte 1 0 0byte n-1

n bytes r bytes

n+r (where (n+r) mod4 = 0)

0 1 ...

Variable-Length Opaque Data

Description
The standard also provides for variable-length (counted) opaque data, defined as a
sequence of n (numbered 0 through n-1) arbitrary bytes to be the number n
encoded as an unsigned integer (as described subsequently), and followed by the n
bytes of the sequence.

Byte b of the sequence always precedes byte b+1 of the sequence, and byte 0 of the
sequence always follows the sequence’s length (count). The n bytes are followed by
enough (0 to 3) residual zero bytes, r , to make the total byte count a multiple of four.

244 ONC+ Developer’s Guide ♦ , 1998

Declaration
Variable-length opaque data is declared in the following way:

opaque identifier<m>;

or

opaque identifier<>;;

The constant m denotes an upper bound of the number of bytes that the sequence
may contain. If m is not specified, as in the second declaration, it is assumed to be
(2**32) - 1 , the maximum length. For example, a filing protocol may state that
the maximum data transfer size is 8192 bytes, as follows:

opaque filedata<8192>;

Encoding
Variable-Length Opaque

byte 0 byte 1 0 0byte n-1

n bytes r bytes

n+r (where (n+r) mod4 = 0)

4 bytes

3 4 5 ...1

length n

It is an error to encode a length greater than the maximum described in the
specification.

Counted Byte Strings

Description
The standard defines a string of n (numbered 0 through n-1) ASCII bytes to be the
number n encoded as an unsigned integer (as described previously), and followed by
the n bytes of the string. Byte b of the string always precedes byte b+1 of the string,
and byte 0 of the string always follows the string’s length. The n bytes are followed
by enough (0 to 3) residual zero bytes, r , to make the total byte count a multiple of
four.

Declaration
Counted byte strings are declared as follows:

string object<m>;

or

XDR Protocol Specification 245

string object<>;

The constant m denotes an upper bound of the number of bytes that a string may
contain. If m is not specified, as in the second declaration, it is assumed to be
(2**32) - 1 , the maximum length. The constant m would normally be found in a
protocol specification. For example, a filing protocol may state that a file name can be
no longer than 255 bytes, as follows:

string filename<255>;

Encoding
String

byte 0 byte 1 0 0byte n-1

n bytes r bytes
n+r (where (n+r) mod4 = 0)

4 bytes

3 4 5 ...1

length n

It is an error to encode a length greater than the maximum described in the
specification.

Fixed-Length Array
Fixed-length arrays of elements numbered 0 through n-1 are encoded by
individually encoding the elements of the array in their natural order, 0 through n-1 .
Each element’s size is a multiple of four bytes. Though all elements are of the same
type, the elements may have different sizes. For example, in a fixed-length array of
strings, all elements are of type string , yet each element will vary in its length.

Declaration
Declarations for fixed-length arrays of homogenous elements are in the following
form:

type-name identifier[n];

Encoding
Fixed-Length Array

element n-1element 0

n elements

element 1

246 ONC+ Developer’s Guide ♦ , 1998

Variable-Length Array

Description
Counted arrays allow variable-length arrays to be encoded as homogeneous
elements: the element count n (an unsigned integer) is followed by each array
element, starting with element 0 and progressing through element n-1 .

Declaration
The declaration for variable-length arrays follows this form:

type-name identifier<m>;

or

type-name identifier<>;

The constant m specifies the maximum acceptable element count of an array. If m is
not specified, it is assumed to be (2**32) - 1 .

Encoding
Counted Array

element n-1 n element 0

0 1 2 3

n elements4 bytes

element 1

It is an error to encode a length greater than the maximum described in the
specification.

Structure

Description
The components of the structure are encoded in the order of their declaration in the
structure. Each component’s size is a multiple of four bytes, though the components
may be different sizes.

XDR Protocol Specification 247

Declaration
Structures are declared as follows:

struct {
component-declaration-A;
component-declaration-B;
...

} identifier;

Encoding
Structure

component Bcomponent A

Discriminated Union

Description
A discriminated union is a type composed of a discriminant followed by a type
selected from a set of prearranged types according to the value of the discriminant.
The type of discriminant is either int , unsigned int , or an enumerated type, such
as bool . The component types are called arms of the union, and are preceded by the
value of the discriminant that implies their encoding.

Declaration
Discriminated unions are declared as follows:

union switch (discriminant-declaration) {
case discriminant-value-A:

arm-declaration-A;
case discriminant-value-B:

arm-declaration-B;
...
default:

default-declaration;
} identifier;

Each case keyword is followed by a legal value of the discriminant. The default arm
is optional. If it is not specified, then a valid encoding of the union cannot take on
unspecified discriminant values. The size of the implied arm is always a multiple of
four bytes.

The discriminated union is encoded as its discriminant followed by the encoding of
the implied arm.

248 ONC+ Developer’s Guide ♦ , 1998

Encoding
Discriminated Union

discriminant implied arm

0 1 2 3

4 bytes

Void

Description
An XDR void is a 0-byte quantity. Voids are useful for describing operations that
take no data as input or no data as output. They are also useful in unions, where
some arms may contain data and others do not.

Declaration
The declaration is simply as follows:

void;

Constant

Description
const is used to define a symbolic name for a constant; it does not declare any data.
The symbolic constant may be used anywhere a regular constant may be used.

The following example defines a symbolic constant DOZEN, equal to 12 .

const DOZEN = 12;

Declaration
The declaration of a constant follows this form:

const name-identifier = n;

Typedef
typedef does not declare any data either, but serves to define new identifiers for
declaring data. The syntax is:

typedef declaration;

XDR Protocol Specification 249

The new type name is actually the variable name in the declaration part of the
typedef . The following example defines a new type called eggbox using an
existing type called egg and the symbolic constant DOZEN:

typedef egg eggbox[DOZEN];

Variables declared using the new type name have the same type as the new type
name would have in the typedef , if it were considered a variable. For example, the
following two declarations are equivalent in declaring the variable fresheggs:

eggbox fresheggs;
egg fresheggs[DOZEN];

When a typedef involves a struct , enum, or union definition, there is another
(preferred) syntax that may be used to define the same type. In general, a typedef
of the following form:

typedef <<struct, union, or enum definition>> identifier;

may be converted to the alternative form by removing the typedef part and placing
the identifier after the struct , enum, or union keyword, instead of at the end. For
example, here are the two ways to define the type bool :

typedef enum {/* using typedef */
FALSE = 0,
TRUE = 1

} bool;
enum bool {/* preferred alternative */

FALSE = 0,
TRUE = 1

};

This syntax is preferred because one does not have to go to the end of a declaration
to learn the name of the new type.

Optional-Data
Optional-data is one kind of union that occurs so frequently that it is given a special
syntax of its own for declaring it. It is declared as follows:

type-name *identifier;

This is equivalent to the following union:

union switch (bool opted) {
case TRUE:
type-name element;
case FALSE:
void;

} identifier;

250 ONC+ Developer’s Guide ♦ , 1998

It is also equivalent to the following variable-length array declaration, since the
Boolean opted can be interpreted as the length of the array:

type-name identifier<1>;

Optional-data is useful for describing recursive data-structures, such as linked lists
and trees.

The XDR Language Specification
Notational Conventions
This specification uses a modified Backus-Naur Form notation for describing the
XDR language. Here is a brief description of the notation:

1. The characters | , (,) , [,] , and * are special.

2. Terminal symbols are strings of any characters embedded in quotes (").

3. Nonterminal symbols are strings of nonspecial italic characters.

4. Alternative items are separated by a vertical bar (|).

5. Optional items are enclosed in brackets.

6. Items are grouped together by enclosing them in parentheses.

7. A * following an item means 0 or more occurrences of the item.

For example, consider the following pattern:

"a " "very" (", " " very")* [" cold " "and"] " rainy "
("day" | "night")

An infinite number of strings match this pattern. A few of them are:

a very rainy day
a very, very rainy day
a very cold and rainy day
a very, very, very cold and rainy night

Lexical Notes
1. Comments begin with /* and end with */ .

2. White space serves to separate items and is otherwise ignored.

3. An identifier is a letter followed by an optional sequence of letters, digits, or
underbars (_). The case of identifiers is not ignored.

4. A constant is a sequence of one or more decimal digits, optionally preceded by a
minus-sign (-).

XDR Protocol Specification 251

CODE EXAMPLE C–1 XDR Specification

Syntax Information
declaration:

type-specifier identifier
| type-specifier identifier "[" value "]"
| type-specifier identifier "<" [value] ">"
| "opaque" identifier "[" value "]"
| "opaque" identifier "<" [value] ">"
| "string" identifier "<" [value] ">"
| type-specifier "*" identifier
| "void"

value:
constant
| identifier

type-specifier:
["unsigned"] "int"

| ["unsigned"] "hyper"
| "float"
| "double"
| "quadruple"
| "bool"
| enum-type-spec
| struct-type-spec
| union-type-spec
| identifier

enum-type-spec:
"enum" enum-body

enum-body:
"{"
(identifier "=" value)
("," identifier "=" value)*
"}"

struct-type-spec:
"struct" struct-body

struct-body:
"{"
(declaration ";")
(declaration ";")*
"}"

union-type-spec:
"union" union-body

union-body:
"switch" "(" declaration ")" "{"
("case" value ":" declaration ";")
("case" value ":" declaration ";")*
["default" ":" declaration ";"]
"}"

(continued)

252 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

constant-def:
"const" identifier "=" constant ";"

type-def:
"typedef" declaration ";"
| "enum" identifier enum-body ";"
| "struct" identifier struct-body ";"
| "union" identifier union-body ";"

definition:
type-def
| constant-def

specification:
definition *

Syntax Notes
1. The following are keywords and cannot be used as identifiers:

TABLE C–1 XDR Keywords

bool const enum int string typedef void

cas default float opaque struct union

cha double hyper quadruple switch unsigned

1. Only unsigned constants may be used as size specifications for arrays. If an
identifier is used, it must have been declared previously as an unsigned constant
in a const definition.

2. Constant and type identifiers within the scope of a specification are in the same
name space and must be declared uniquely within this scope.

3. Similarly, variable names must be unique within the scope of struct and union
declarations. Nested struct and union declarations create new scopes.

4. The discriminant of a union must be of a type that evaluates to an integer. That
is, int , unsigned int, bool , an enum type, or any typedef that evaluates to
one of these. Also, the case values must be legal discriminant values. Finally, a
case value may not be specified more than once within the scope of a union
declaration.

XDR Protocol Specification 253

XDR Data Description
Here is a short XDR data description of a file data structure, which might be used to
transfer files from one machine to another.

CODE EXAMPLE C–2 XDR File Data Structur

const MAXUSERNAME = 32;/* max length of a user name */
const MAXFILELEN = 65535; /* max length of a file */
const MAXNAMELEN = 255; /* max length of a file name */

/* Types of files: */
enum filekind {

TEXT = 0, /* ascii data */
DATA = 1, /* raw data */
EXEC = 2 /* executable */

};

/* File information, per kind of file: */
union filetype switch (filekind kind) {

case TEXT:
void; /* no extra information */

case DATA:
string creator<MAXNAMELEN>; /* data creator */

case EXEC:
string interpretor<MAXNAMELEN>; /*proginterptr*/

};

/* A complete file: */
struct file {

string filename<MAXNAMELEN>; /* name of file */
filetype type; /* info about file */
string owner<MAXUSERNAME>; /* owner of file */
opaque data<MAXFILELEN>; /* file data */

};

Suppose now that there is a user named john who wants to store his LISP program
sillyprog that contains just the data "quit." His file would be encoded as follows:

TABLE C–2 XDR Data Description Example

Offset Hex Bytes ASCII Description

0 00 00 00 09 Length of filename = 9

4 73 69 6c 6c sill Filename characters

8 79 70 72 6f ypro ... and more characters ...

12 67 00 00 00 g... .. and 3 zero-bytes of fill

254 ONC+ Developer’s Guide ♦ , 1998

TABLE C–2 XDR Data Description Example (continued)

Offset Hex Bytes ASCII Description

16 00 00 00 02 Filekind is EXEC = 2

20 00 00 00 04 Length of interpretor = 4

24 6c 69 73 70 lisp Interpretor characters

28 00 00 00 04 Length of owner = 4

32 6a 6f 68 6e john Owner characters

36 00 00 00 06 Length of file data = 6

40 28 71 75 69 (qu File data bytes ...

44 74 29 00 00 t).. ... and 2 zero-bytes of fill

RPC Language Reference
The RPC language is an extension of the XDR language. The sole extension is the
addition of the program and version types.

For a description of the RPC extensions to the XDR language, see Appendix B.

The RPC language is similar to C. This section describes the syntax of the RPC
language, showing a few examples along the way. It also shows how RPC and XDR
type definitions get compiled into C type definitions in the output header file.

An RPC language file consists of a series of definitions.

definition-list:
definition;
definition; definition-list

It recognizes six types of definitions.

definition:
enum-definition
const-definition
typedef-definition
struct-definition
union-definition
program-definition

XDR Protocol Specification 255

Definitions are not the same as declarations. No space is allocated by a definition –
only the type definition of a single or series of data elements. This means that
variables still must be declared.

Enumerations
RPC/XDR enumerations have similar syntax as C enumerations.

enum-definition:
"enum" enum-ident "{"
enum-value-list
"}"

enum-value-list:
enum-value
enum-value "," enum-value-list

enum-value:
enum-value-ident
enum-value-ident "=" value

Here is an example of an XDR enum and the C enum to which it gets compiled.
enum colortype { enum colortype {

RED = 0, RED = 0,
GREEN = 1, --> GREEN = 1,
BLUE = 2 BLUE = 2,

}; };
typedef enum colortype colortype;

Constants
XDR symbolic constants may be used wherever an integer constant is used. For
example, in array size specifications:

const-definition:
const const-ident = integer

The following example defines a constant, DOZENas equal to 12 :

const DOZEN = 12; --> #define DOZEN 12

Type Definitions
XDR typedef s have the same syntax as C typedef s.

typedef-definition:
typedef declaration

This example defines an fname_type used for declaring file name strings that have
a maximum length of 255 characters.

typedef string fname_type<255>; --> typedef char *fname_type;

256 ONC+ Developer’s Guide ♦ , 1998

Declarations
In XDR, there are four kinds of declarations. These declarations must be a part of a
struct or a typedef ; they cannot stand alone:

declaration:
simple-declaration
fixed-array-declaration
variable-array-declaration
pointer-declaration

Simple Declarations
Simple declarations are just like simple C declarations:

simple-declaration:
type-ident variable-ident

Example:

colortype color; --> colortype color;

Fixed-Length Array Declarations
Fixed-length array declarations are just like C array declarations:

fixed-array-declaration:
type-ident variable-ident [value]

Example:

colortype palette[8]; --> colortype palette[8];

Many programmers confuse variable declarations with type declarations. It is
important to note that rpcgen does not support variable declarations. This example
is a program that will not compile:

int data[10];
program P {

version V {
int PROC(data) = 1;

} = 1;
} = 0x200000;

The example above will not compile because of the variable declaration:

int data[10]

Instead, use:

typedef int data[10];

or

struct data {int dummy [10]};

XDR Protocol Specification 257

Variable-Length Array Declarations
Variable-length array declarations have no explicit syntax in C. The XDR language
does have a syntax, using angle brackets:

variable-array-declaration:
type-ident variable-ident <value>
type-ident variable-ident < >

The maximum size is specified between the angle brackets. The size may be omitted,
indicating that the array may be of any size:

int heights<12>; /* at most 12 items */
int widths<>; /* any number of items */

Because variable-length arrays have no explicit syntax in C, these declarations are
compiled into struct declarations. For example, the heights declaration compiled
into the following struct :

struct {
u_int heights_len; /* # of items in array */

int *heights_val; /* pointer to array */
} heights;

The number of items in the array is stored in the _len component and the pointer to
the array is stored in the _val component. The first part of each component name is
the same as the name of the declared XDR variable (heights).

Pointer Declarations
Pointer declarations are made in XDR exactly as they are in C. Address pointers are
not really sent over the network; instead, XDR pointers are useful for sending
recursive data types such as lists and trees. The type is called “optional-data,” not
“pointer,” in XDR language:

pointer-declaration:
type-ident *variable-ident

Example:

listitem *next; --> listitem *next;

Structures
An RPC/XDR struct is declared almost exactly like its C counterpart. It looks like
the following:

struct-definition:
struct struct-ident "{"

declaration-list
"}"

258 ONC+ Developer’s Guide ♦ , 1998

declaration-list:
declaration ";"

declaration ";" declaration-list

The following XDR structure is an example of a two-dimensional coordinate and the
C structure that it compiles into:

struct coord { struct coord {
int x; --> int x;

int y; int y;
}; };

typedef struct coord coord;

The output is identical to the input, except for the added typedef at the end of the
output. This enables one to use coord instead of struct coord when declaring
items.

Unions
XDR unions are discriminated unions, and do not look like C unions – they are more
similar to Pascal variant records:

union-definition:

"union" union-ident "switch" "("simple declaration")" "{"
case-list

"}"

case-list:
"case" value ":" declaration ";"

"case" value ":" declaration ";" case-list
"default" ":" declaration ";"

The following is an example of a type returned as the result of a “read data”
operation: If there is no error, return a block of data; otherwise, don’t return anything.

union read_result switch (int errno) {
case 0:

opaque data[1024];
default:

void;
};

It compiles into the following:

struct read_result {
int errno;
union {

char data[1024];
} read_result_u;

};
typedef struct read_result read_result;

XDR Protocol Specification 259

Notice that the union component of the output struct has the same name as the type
name, except for the trailing _u .

Programs
RPC programs are declared using the following syntax:

program-definition:
"program" program-ident "{"

version-list
"}" "=" value;

version-list:
version ";"
version ";" version-list

version:
"version" version-ident "{"

procedure-list
"}" "=" value;

procedure-list:
procedure ";"
procedure ";" procedure-list

procedure:
type-ident procedure-ident "(" type-ident ")" "=" value;

When the −N option is specified, rpcgen also recognizes the following syntax:

procedure:
type-ident procedure-ident "(" type-ident-list ")" "=" value;

type-ident-list:
type-ident
type-ident "," type-ident-list

For example:

/*
* time.x: Get or set the time. Time is represented as seconds
* since 0:00, January 1, 1970.
*/

program TIMEPROG {
version TIMEVERS {

unsigned int TIMEGET(void) = 1;
void TIMESET(unsigned) = 2;

} = 1;
} = 0x20000044;

Note that the void argument type means that no argument is passed.

This file compiles into these #define statements in the output header file:

#define TIMEPROG 0x20000044
#define TIMEVERS 1
#define TIMEGET 1
#define TIMESET 2

260 ONC+ Developer’s Guide ♦ , 1998

Special Cases
There are several exceptions to the RPC language rules.

C-style Mode
In the new features section we talked about the features of the C-style mode of
rpcgen . These features have implications with regard to the passing of void
arguments. No arguments need be passed if their value is void .

Booleans
C has no built-in boolean type. However, the RPC library uses a boolean type
called bool_t that is either TRUEor FALSE. Parameters declared as type bool in
XDR language are compiled into bool_t in the output header file.

Example:

bool married; --> bool_t married;

Strings
The C language has no built-in string type, but instead uses the null-terminated
char * convention. In C, strings are usually treated as null- terminated
single-dimensional arrays .

In XDR language, strings are declared using the string keyword, and compiled
into type char * in the output header file. The maximum size contained in the
angle brackets specifies the maximum number of characters allowed in the strings
(not counting the NULL character). The maximum size may be omitted, indicating a
string of arbitrary length.

Examples:

string name<32>; --> char *name;
string longname<>; --> char *longname;

Note - NULL strings cannot be passed; however, a zero-length string (that is, just
the terminator or NULL byte) can be passed.

Opaque Data
Opaque data is used in XDR to describe untyped data, that is, sequences of arbitrary
bytes. It may be declared either as a fixed length or variable length array. Examples:

opaque diskblock[512]; --> char diskblock[512];
opaque filedata<1024>; --> struct {

XDR Protocol Specification 261

u_int filedata_len;
char *filedata_val;

} filedata;

Voids

In a void declaration, the variable is not named. The declaration is just void and
nothing else. Void declarations can only occur in two places: union definitions and
program definitions (as the argument or result of a remote procedure, for example no
arguments are passed.)

262 ONC+ Developer’s Guide ♦ , 1998

APPENDIX D

Live RPC Code Examples

This appendix contains copies of the complete live code modules used in the rpcgen
and RPC chapters of this book. They are compilable as they are written and will run
(unless otherwise noted to be pseudo-code or the like). They are provided for
informational purposes only. SunSoft assumes no liability from their use.

Directory Listing Program and Support
Routines (rpcgen)
CODE EXAMPLE D–1 rpcgen Program: dir.x

/*
* dir.x: Remote directory listing
* protocol
*
* This source module is a rpcgen source module
* used to demonstrate the functions of the rpcgen
* tool.
*
* It is compiled with the rpcgen -h -T switches to
* generate both the header (.h) file and the
* accompanying data structures.
*
*/

const MAXNAMELEN = 255; /*maxlengthofadirectoryentry*/

typedef string nametype<MAXNAMELEN>; /* directory entry */
typedef struct namenode *namelist; /*linkinthelisting*/
/*

(continued)

263

(Continuation)

* A node in the directory listing
*/

struct namenode {
nametype name; /* name of directory entry */
namelist next; /* next entry */

};

/*
* The result of a READDIR operation:
* a truly portable application would use an agreed upon list of
* error codes rather than, as this sample program does, rely

upon
* passing UNIX errno’s back. In this example the union is used

to
* discriminate between successful and unsuccessful remote

calls.
*/

union readdir_res switch (int errno) {
case 0:

namelist list; /*no error: return directory listing*/
default:

void; /*error occurred: nothing else to return*/
};

/*
* The directory program definition
*/

program DIRPROG {
version DIRVERS {

readdir_res
READDIR(nametype) = 1;

} = 1;
} = 0x20000076;

CODE EXAMPLE D–2 Remote dir_proc.c

/*
* dir_proc.c: remote readdir implementation
*/

#include <rpc/rpc.h> /* Always needed */
#include <dirent.h>
#include "dir.h" /* Created by rpcgen */

extern int errno;
extern char *malloc();
extern char *strdup();

(continued)

264 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

/* ARGSUSED1*/
readdir_res *
readdir_1(dirname,req)

nametype *dirname;
struct svc_req *req;

{
DIR *dirp;
struct dirent *d;
namelist nl;
namelist *nlp;
static readdir_res res; /* must be static! */

/*
* Open directory
*/

dirp = opendir(*dirname);
if (dirp == (DIR *)NULL) {

res.errno = errno;
return (&res);

}
/*

* Free previous result
*/

xdr_free(xdr_readdir_res, &res);
/*

* Collect directory entries. Memory allocated here is freed
by

* xdr_free the next time readdir_1 is called.
*/

nlp = &res.readdir_res_u.list;
while (d = readdir(dirp)) {

nl = *nlp = (namenode *) malloc(sizeof(namenode));
if (nl == (namenode *) NULL) {

res.errno = EAGAIN;
closedir(dirp);
return(&res);

}
nl->name = strdup(d->d_name);
nlp = &nl->next;

}
*nlp = (namelist)NULL;
/* Return the result */
res.errno = 0;
closedir(dirp);
return (&res);

}

Live RPC Code Examples 265

CODE EXAMPLE D–3 rls.c Client

/*
* rls.c: Remote directory listing client
*/

#include <stdio.h>
#include <rpc/rpc.h> /* always need this */
#include "dir.h" /* generated by rpcgen */

extern int errno;

main(argc, argv)
int argc;
char *argv[];

{
CLIENT *cl;
char *server;
char *dir;
readdir_res *result;
namelist nl;

if (argc != 3) {
fprintf(stderr, "usage: %s host directory\n",
argv[0]);
exit(1);

}
server = argv[1];

dir = argv[2];
/*

* Create client "handle" used for calling MESSAGEPROG on the
server

* designated on the command line.
*/
cl = clnt_create(server, DIRPROG, DIRVERS, "visible");

if (cl == (CLIENT *)NULL) {
clnt_pcreateerror(server);
exit(1);

}

result = readdir_1(&dir, cl);
if (result == (readdir_res *)NULL) {

clnt_perror(cl, server);
exit(1);

}

/* Okay, we successfully called the remote procedure. */

if (result->errno != 0) {
/*

* A remote system error occurred. Print error message and
die.

*/
}
if (result->errno < sys_nerr)

fprintf (stderr, "%s : %s\n", dir,
sys_enlist[result->errno]);

(continued)

266 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

errno = result->errno;
perror(dir);
exit(1);

}

/* Successfully got a directory listing. Print it out. */
for(nl = result->readdir_res_u.list; nl != NULL; nl = nl-

>next) {
printf("%s\n", nl->name);

}
exit(0);

Time Server Program (rpcgen)
CODE EXAMPLE D–4 rpcgen Program: time.x

/*
* time.x: Remote time protocol
*/

program TIMEPROG {
version TIMEVERS {

unsigned int TIMEGET(void) = 1;
} = 1;

} = 0x20000044;

#ifdef RPC_SVC
%int *
%timeget_1()
%{
% static int thetime;
%
% thetime = time(0);
% return (&thetime);
%}
#endif

Live RPC Code Examples 267

Add Two Numbers Program (rpcgen)
CODE EXAMPLE D–5 rpcgen program: Add Two Numbers

/* This program contains a procedure to add 2 numbers to
demonstrate

* some of the features of the new rpcgen. Note that add() takes 2
* arguments in this case.
*/

program ADDPROG { /* program number */
version ADDVER { /* version number */

int add (int, int) /* procedure */
= 1;

} = 1;
} = 199;

Spray Packets Program (rpcgen)
Refer to the notes section on the spray (1M) man page for information about using
this tool.

CODE EXAMPLE D–6 rpcgen program: spray.x

/*
* Copyright (c) 1987, 1991 by Sun Microsystems, Inc.
*/

/* from spray.x */

#ifdef RPC_HDR
#pragma ident "@(#)spray.h 1.2 91/09/17 SMI"
#endif

/*
* Spray a server with packets
* Useful for testing flakiness of network interfaces
*/

const SPRAYMAX = 8845; /* max amount can spray */

/*

(continued)

268 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

* GMT since 0:00, 1 January 1970
*/

struct spraytimeval {
unsigned int sec;
unsigned int usec;

};

/*
* spray statistics
*/

struct spraycumul {
unsigned int counter;
spraytimeval clock;

};

/*
* spray data
*/

typedef opaque sprayarr<SPRAYMAX>;

program SPRAYPROG {
version SPRAYVERS {

/*
* Just throw away the data and increment the counter. This
* call never returns, so the client should always time it

out.
*/

void
SPRAYPROC_SPRAY(sprayarr) = 1;

/*
* Get the value of the counter and elapsed time since last
* CLEAR.
*/

spraycumul
SPRAYPROC_GET(void) = 2;

/*
* Clear the counter and reset the elapsed time
*/

void
SPRAYPROC_CLEAR(void) = 3;

} = 1;
} = 100012;

Live RPC Code Examples 269

Print Message Program With Remote
Version
CODE EXAMPLE D–7 printmesg.c

/* printmsg.c: print a message on the console */
#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];

{
char *message;

if (argc != 2) {
fprintf(stderr, "usage: %s <message>\n", argv[0]);
exit(1);

}
message = argv[1];
if(!printmessage(message)) {

fprintf(stderr, "%s: couldn’t print your message\n",
argv[0]);

exit(1);
}
printf("Message Delivered!\n");
exit(0);

}

/* Print a message to the console. */

/*
* Return a boolean indicating whether the message was actually
* printed.
*/

printmessage(msg)
char *msg;

{
FILE *f;

if = fopen("/dev/console","w");
if (f == (FILE *)NULL)

return (0);
fprintf(f,"%sen’’, msg);
fclose(f);
return (1);

}

270 ONC+ Developer’s Guide ♦ , 1998

CODE EXAMPLE D–8 Remote Version of printmesg.c

/* * rprintmsg.c: remote version of "printmsg.c’’ */
#include <stdio.h>
#include <rpc/rpc.h> /* always needed */
#include "msg.h’’ /* msg.h generated by rpcgen */

main(argc, argv)
int argc;
char *argv[];

{
CLIENT *cl;
int *result;
char *server;
char *message;
extern int sys_nerr;
extern char *sys_errlist[];

if (argc != 3) {
fprintf(stderr,"usage: %s host messagen", argv[0]);
exit(1);

}
/*

* Save values of command line arguments
*/

server = argv[1];
message = argv[2];

/*
* Create client"handle’’ used for calling
* MESSAGEPROG on the server
* designated on the command line.
*/
cl = clnt_create(server, MESSAGEPROG, PRINTMESSAGEVERS,

"visible");
if (cl == (CLIENT *)NULL) {

/*
* Couldn’t establish connection with server.
* Print error message and die.
*/

clnt_pcreateerror(server);
exit(1);

}
/* Call the remote procedure "printmessage" on the server */
result = printmessage_1(&message, cl);
if (result == (int *)NULL) {
/*

* An error occurred while calling the server.
* Print error message and die.
*/
clnt_perror(cl, server);
exit(1);

}
/* Okay, we successfully called the remote procedure. */
if (*result == 0) {

/*
* Server was unable to print our message.
* Print error message and die.

(continued)

Live RPC Code Examples 271

(Continuation)

*/
fprintf(stderr,"%s"

}
/* The message got printed on the server’s console */

printf("Message delivered to %s!\n", server);
exit(0);

}

CODE EXAMPLE D–9 rpcgen Program: msg.x

/* msg.x: Remote message printing protocol */
program MESSAGEPROG {

version MESSAGEVERS {
int PRINTMESSAGE(string) = 1;

} = 1;
} = 0x20000001;

CODE EXAMPLE D–10 mesg_proc.c

/*
* msg_proc.c: implementation of the remote
* procedure "printmessage"
*/

#include <stdio.h>
#include <rpc/rpc.h> /* always needed */
#include "msg.h’’ /* msg.h generated by rpcgen */

/*
* Remote version of "printmessage"
*/

/*ARGSUSED1*/
int printmessage_1(msg, req)

char **msg;
struct svc_req *req;

{
static int result; /* must be static! */
FILE *f;

f = fopen("/dev/console", "w");
if (f == (FILE *)NULL) {

result = 0;
return (&result);

(continued)

272 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

}
fprintf(f, "%sen", *msg);

fclose(f);
result = 1;
return (&result);

}

Batched Code Example
CODE EXAMPLE D–11 Batched Client Program

#include <stdio.h>
#include <rpc/rpc.h>
#include "windows.h"

main(argc, argv)
int argc;
char **argv;

{
struct timeval total_timeout;
register CLIENT *client;
enum clnt_stat clnt_stat;
char buf[1000], *s = buf;

if ((client = clnt_create(argv[1], WINDOWPROG, WINDOWVERS,
"CIRCUIT_V")) == (CLIENT *) NULL) {

clnt_pcreateerror("clnt_create");
exit(1);

}

timerclear(&total_timeout);
while (scanf("%s", s) != EOF) {

clnt_call(client, RENDERSTRING_BATCHED, xdr_wrapstring,
&s,xdr_void, (caddr_t) NULL, total_timeout);

}

/* Now flush the pipeline */
total_timeout.tv_sec = 20;
clnt_stat = clnt_call(client, NULLPROC, xdr_void,

(caddr_t) NULL, xdr_void, (caddr_t) NULL,
total_timeout);

if (clnt_stat != RPC_SUCCESS) {

(continued)

Live RPC Code Examples 273

(Continuation)

clnt_perror(client, "rpc");
exit(1);

}
clnt_destroy(client);
exit(0);

}

CODE EXAMPLE D–12 Batched Server Program

#include <stdio.h>
#include <rpc/rpc.h>
#include "windows.h"

void windowdispatch();
main()
{

int num;

num = svc_create(windowdispatch, WINDOWPROG, WINDOWVERS,
"CIRCUIT_V");

if (num == 0) {
fprintf(stderr, "can’t create an RPC server\n");
exit(1);

}
svc_run(); /* Never returns */
fprintf(stderr, "should never reach this point\n");

}

void
windowdispatch(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
char *s = NULL;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0))
fprintf(stderr, "can’t reply to RPC call\n");

return;
case RENDERSTRING:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {
fprintf(stderr, "can’t decode arguments\n");
/* Tell caller an error occurred */
svcerr_decode(transp);
break;

}

(continued)

274 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

/* Code here to render the string s */
if (!svc_sendreply(transp, xdr_void, (caddr_t) NULL))

fprintf(stderr, "can’t reply to RPC call\n");
break;

case RENDERSTRING_BATCHED:
if (!svc_getargs(transp, xdr_wrapstring, &s)) {

fprintf(stderr, "can’t decode arguments\n");
/* Be silent in the face of protocol errors */
break;

}
/* Code here to render string s, but send no reply! */
break;

default:
svcerr_noproc(transp);
return;

}
/* Now free string allocated while decoding arguments */
svc_freeargs(transp, xdr_wrapstring, &s);

}

Non-Batched Example
This example is included for reference only. It is a version of the batched client string
rendering service, Code Example D–11, written in as a non-batched program.

CODE EXAMPLE D–13 Unbatched Version of Batched Client

#include <stdio.h>
#include <rpc/rpc.h>
#include "windows.h"

main(argc, argv)
int argc;
char **argv;

{
struct timeval total_timeout;
register CLIENT *client;
enum clnt_stat clnt_stat;
char buf[1000], *s = buf;

if ((client = clnt_create(argv[1], WINDOWPROG, WINDOWVERS,

(continued)

Live RPC Code Examples 275

(Continuation)

"CIRCUIT_V")) == (CLIENT *) NULL) {
clnt_pcreateerror("clnt_create");
exit(1);

}
total_timeout.tv_sec = 20;
total_timeout.tv_usec = 0;
while (scanf("%s", s) != EOF) {

if(clnt_call(client, RENDERSTRING, xdr_wrapstring, &s,
xdr_void, (caddr_t) NULL, total_timeout) != RPC_SUCCESS) {

clnt_perror(client, "rpc");
exit(1);

}
}
clnt_destroy(client);
exit(0);

}

276 ONC+ Developer’s Guide ♦ , 1998

APPENDIX E

The portmap Utility

The rpcbind utility replaces the portmap utility available in previous releases of
SunOS. This appendix is included to help you understand the history of port and
network address resolution using the portmap utility.

SunOS 4.x RPC-based services use portmap as a system registration service. It
manages a table of correspondences between ports (logical communications channels)
and the services registered at them. It provides a standard way for a client to look up
the TCP/IP or UDP/IP port number of an RPCprogram supported by the server.

System Registration Overview
For client programs to find distributed services on a network, they need a way to look
up the network addresses of server programs. Network transport (protocol) services
do not provide this function. Their task is to provide process-to-process message
transfer across a network (that is, a message is sent to a transport-specific network
address). A network address is a logical communications channel—by listening on a
specific network address, a process receives messages from the network.

The way a process waits on a network address varies from one operating system to
the next, but all provide mechanisms by which a process can synchronize its activity
with arriving messages. Messages are not sent across networks to receiving processes,
but rather to the network address at which receiving processes pick them up.
Network addresses are valuable because they allow message receivers to be specified
in a way that is independent of the conventions of the receiving operating system.
TI-RPC , being transport independent, makes no assumptions about the structure of
a network address. It uses a universal addresses. This universal address is specified
as a null-terminated string of characters. Such universal addresses are translated into
local transport addresses by routines specific to each transport provider.

277

The rpcbind protocol defines a network service that provides a standard way for
clients to look up the network address of any remote program supported by a server.
Because it can be implemented on any transport, it provides a single solution to a
general problem that works for all clients, all servers, and all networks.

portmap Protocol
The portmap program maps RPC program and version numbers to transport-specific
port numbers. This program makes dynamic binding of remote programs possible.

Client program Portmap

Server program

Client system Server system Network

2

3

 1

 a

111

 b

 c

Figure E–1 Typical Portmap Sequence (For TCP/IP Only)

Figure E–1 shows the process:

1. The server registers with portmap

2. The client gets the server’s port from portmap

3. The client calls the server.

The range of reserved port numbers is small and the number of potential remote
programs is very large. By running only the port mapper on a well known port, the
port numbers of other remote programs can be ascertained by querying the port
mapper. In Figure E–1, a, 111 , b, and c represent port numbers, where 111 is the
assigned portmapper port number.

The port mapper also aids in broadcast RPC. A given RPCprogram usually has
different port number bindings on different machines, so there is no way to directly
broadcast to all of these programs. The port mapper, however, does have a fixed port
number. So, to broadcast to a given program, the client actually sends its message to

278 ONC+ Developer’s Guide ♦ , 1998

the port mapper located at the broadcast address. Each port mapper that receives the
broadcast then calls the local service specified by the client. When portmap gets the
reply from the local service, it returns the reply to the client. The portmap protocol
specification is shown in Code Example E–1.)

CODE EXAMPLE E–1 portmap Protocol Specification (in RPC Language

const PMAP_PORT = 111; /* portmapper port number */
/*

* A mapping of (program, version, protocol) to port number
*/

struct pmap {
rpcprog_t prog;
rpcvers_t vers;
rpcprot_t prot;
rpcport_t port;

};
/*

* Supported values for the "prot" field
*/

const IPPROTO_TCP = 6; /* protocol number for TCP/IP */
const IPPROTO_UDP = 17; /* protocol number for UDP/IP */
/*

* A list of mappings
*/

struct pmaplist {
pmap map;
pmaplist *next;

};
/*

* Arguments to callit
*/

struct call_args {
rpcprog_t prog;

rpcvers_t vers;
rpcproc_t proc;

opaque args<>;
};
/*
* Results of callit
*/
struct call_result {

rpcport_t port;
opaque res<>;

};
/*
* Port mapper procedures
*/
program PMAP_PROG {

version PMAP_VERS {
void
PMAPPROC_NULL(void) = 0;
bool
PMAPPROC_SET(pmap) = 1;
bool

(continued)

The portmap Utility 279

(Continuation)

PMAPPROC_UNSET(pmap) = 2;
unsigned int
PMAPPROC_GETPORT(pmap) = 3;
pmaplist
PMAPPROC_DUMP(void) = 4;
call_result
PMAPPROC_CALLIT(call_args) = 5;

} = 2;
} = 100000;

portmap Operation
portmap currently supports two protocols (UDP/IP and TCP/IP). portmap is
contacted by talking to it on assigned port number 111 (SUNRPC (5)) on either of
these protocols. The following is a description of each of the portmapper procedures.

PMAPPROC_NULL
This procedure does no work. By convention, procedure zero of any protocol takes
no parameters and returns no results.

PMAPPROC_SET
When a program first becomes available on a machine, it registers itself with the
local port map program. The program passes its program number prog, version
number vers, transport protocol number prot, and the port port on which it receives
service requests. The procedure refuses to establish a mapping if one already exists
for the specified port and it is bound. If the mapping exists and the port is not bound,
portmap unregisters the port and performs the requested mapping. The procedure
returns TRUEif the procedure successfully established the mapping and FALSE
otherwise. See also the pmap_set() function in the rpc_soc (3N) manpage.

280 ONC+ Developer’s Guide ♦ , 1998

PMAPPROC_UNSET
When a program becomes unavailable, it should unregister itself with the port
mapper program on the same machine. The parameters and results have meanings
identical to those of PMAPPROC_SET. The protocol and port number fields of the
argument are ignored. See also the pmap_unset() function in the rpc_soc (3N)
manpage.

PMAPPROC_GETPORT
Given a program number prog, version number vers, and transport protocol number
prot, this procedure returns the port number on which the program is awaiting call
requests. A port value of zeros means the program has not been registered. The port
field of the argument is ignored. See also the pmap_getport() function in the
rpc_soc (3N) manpage.

PMAPPROC_DUMP
This procedure enumerates all entries in the port mapper’s database. The procedure
takes no parameters and returns a list of program , version , protocol , and port
values. See also the pmap_getmaps() function in the rpc_soc (3N) manpage.

PMAPPROC_CALLIT
This procedure allows a caller to call another remote procedure on the same machine
without knowing the remote procedure’s port number. It is intended for supporting
broadcasts to arbitrary remote programs via the well-known port mapper’s port. The
parameters prog, vers, proc, and the bytes of args are the program number, version
number, procedure number, and parameters of the remote procedure. See also the
pmap_rmtcall() function in the rpc_soc (3N) manpage.

This procedure only sends a response if the procedure was successfully executed and
is silent (no response) otherwise. It also returns the remote program’s port number ,
and the bytes of results are the results of the remote procedure.

The port mapper communicates with the remote program using UDP/IP only.

The portmap Utility 281

Bibliography
1. Birrell, Andrew D. and Nelson, Bruce Jay; “Implementing Remote Procedure

Calls”; XEROX CSL-83-7, October 1983.

2. Cheriton, D.; “VMTP: Versatile Message Transaction Protocol,” Preliminary
Version 0.3; Stanford University, January 1987.

3. Postel, J.; “Transmission Control Protocol - DARPA Internet Program Protocol
Specification,” RFC 793; Information Sciences Institute, September 1981.

4. Postel, J.; “User Datagram Protocol,” RFC 768; Information Sciences Institute,
August 1980.

5. Reynolds, J. & Postel, J.; “Assigned Numbers,” RFC 923; Information Sciences
Institute, October 1984.

282 ONC+ Developer’s Guide ♦ , 1998

APPENDIX F

Writing a Port Monitor With the Service
Access Facility (SAF)

This appendix gives a brief description of the functions a port monitor must perform
to run under the service access facility (SAF) and service access controller (SAC).

� “What Is the SAF” on page 283

� “What Is the SAC” on page 284

� “SAF Files” on page 287

� “The SAC/Port Monitor Interface” on page 288

� “The Port Monitor Administrative Interface” on page 290

� “Configuration Files and Scripts” on page 297

� “Sample Port Monitor Code ” on page 301

� “Logic Diagram and Directory Structure ” on page 307

What Is the SAF
The SAF generalizes the procedures for service access so that login access on the local
system and network access to local services are managed in similar ways. Under the
SAF, systems may access services using a variety of port monitors, including
ttymon , the listener, and port monitors written expressly for a user’s application.

The manner in which a port monitor observes and manages access ports is specific to
the port monitor and not to any component of the SAF. Users may therefore extend
their systems by developing and installing their own port monitors. One of the
important features of the SAF is that it can be extended in this way by users.

283

Relative to the SAF, a service is a process that is started. There are no restrictions on
the functions a service may provide.

The SAF consists of a controlling process, the service access controller (SAC), and two
administrative levels corresponding to two levels in the supporting directory
structure. The top administrative level is concerned with port monitor
administration, the lower level with service administration.

From an administrative point of view, the SAF consists of the following components:

� The SAC

� A per-system configuration script

� The SACadministrative file

� The SACadministrative command sacadm

� Port monitors

� Optional per-port monitor configuration scripts

� An administrative file (for each port monitor)

� The administrative command pmadm

� Optional per-service configuration scripts

What Is the SAC
The SACis the SAF’s controlling process. The SACis started by init() by means of
an entry in /etc/inittab . Its function is to maintain the port monitors on the
system in the state specified by the system administrator.

The administrative command sacadm is used to tell the SACto change the state of a
port monitor. sacadm can also be used to add or remove a port monitor from SAC
supervision and to list information about port monitors known to the SAC.

The SAC’s administrative file contains a unique tag for each port monitor known to
the SACand the path name of the command used to start each port monitor.

The SACperforms three main functions:

� Customizes its own environment

� Starts the appropriate port monitors

� Polls its port monitors and initiates recovery procedures when necessary

284 ONC+ Developer’s Guide ♦ , 1998

Basic Port Monitor Functions
A port monitor is a process that is responsible for monitoring a set of homogeneous,
incoming ports on a machine. A port monitor’s major purpose is to detect incoming
service requests and to dispatch them appropriately.

A port is an externally seen access point on a system. A port may be an address on a
network (TSAPor PSAP), a hardwired terminal line, an incoming phone line, etc. The
definition of what constitutes a port is strictly a function of the port monitor itself.

A port monitor performs certain basic functions. Some of these are required to
conform to the SAF; others may be specified by the requirements and design of the
port monitor itself.

Port monitors have two main functions:

� Managing ports

� Monitoring ports for indications of activity

Port Management
The first function of a port monitor is to manage a port. The actual details of how a
port is managed are defined by the person who defines the port monitor. A port
monitor is not restricted to handling a single port; it may handle multiple ports
simultaneously.

Note - Some examples of port management are setting the line speed on incoming
phone connections, binding an appropriate network address, reinitializing the port
when the service terminates, outputting a prompt, etc.

Activity Monitoring
The second function of a port monitor is to monitor the port or ports for which it is
responsible for indications of activity. Two types of activity may be detected.

1. The first is an indication to the port monitor to take some port monitor-specific
action. Pressing the break key to indicate that the line speed should be cycled is
an example of a port monitor activity. Not all port monitors need to recognize and
respond to the same indications. The indication used to attract the attention of the
port monitor is defined by the person who defines the port monitor.

2. The second is an incoming service request. When a service request is received, a
port monitor must be able to determine which service is being requested from the
port on which the request is received. Note that the same service may be available
on more than one port.

Writing a Port Monitor With the Service Access Facility (SAF) 285

Other Port Monitor Functions
This section briefly describes other port monitor functions.

Restricting Access to the System
A port monitor must be able to restrict access to the system without disturbing
services that are still running. In order to do this, a port monitor must maintain two
internal states: enabled and disabled. The port monitor starts in the state indicated
by the ISTATE environment variable provided by the sac . See “The SAC/Port
Monitor Interface” on page 288.

Enabling or disabling a port monitor affects all ports for which the port monitor is
responsible. If a port monitor is responsible for a single port, only that port will be
affected. If a port monitor is responsible for multiple ports, the entire collection of
ports will be affected.

Enabling or disabling a port monitor is a dynamic operation: It causes the port
monitor to change its internal state. The effect does not persist across new
invocations of the port monitor.

Enabling or disabling an individual port, however, is a static operation: It causes a
change to an administrative file. The effect of this change will persist across new
invocations of the port monitor.

Creating utmp Entries
Port monitors are responsible for creating utmp entries with the type field set to
USER_PROCESSfor services they start, if this action has been specified (that is, if −fu
was specified in the pmadmline that added the service). These utmp entries may in
turn be modified by the service. When the service terminates, the utmp entry must
be set to DEAD_PROCESS.

Port Monitor Process IDs and Lock Files
When a port monitor starts, it writes its process id into a file named _pid in the
current directory and places an advisory lock on the file.

Changing the Service Environment: Running doconfig()

Before invoking the service designated in the port monitor administrative file,
_pmtab , a port monitor must arrange for the per-service configuration script to be
run (if one exists by calling the library function doconfig() . Because the
per-service configuration script may specify the execution of restricted commands, as
well as for other security reasons, port monitors are invoked with root permissions.

286 ONC+ Developer’s Guide ♦ , 1998

The details of how services are invoked are specified by the person who defines the
port monitor.

Terminating a Port Monitor
A port monitor must terminate itself gracefully on receipt of the signal SIGTERM.
The termination sequence is the following:

1. The port monitor enters the stopping state; no further service requests are
accepted.

2. Any attempt to re-enable the port monitor will be ignored.

3. The port monitor yields control of all ports for which it is responsible. It must be
possible for a new instantiation of the port monitor to start correctly while a
previous instantiation is stopping.

4. The advisory lock on the process id file is released. Once this lock is released, the
contents of the process id file are undefined and a new invocation of the port
monitor may be started.

SAF Files
This section briefly covers the files used by the SAF.

The Port Monitor Administrative File
A port monitor’s current directory contains an administrative file named _pmtab .
_pmtab is maintained by the pmadmcommand in conjunction with a port
monitor-specific administrative command.

Note - The port monitor administrative command for a listen port monitor is
nlsadmin() ; the port monitor administrative command for ttymon is ttyadm() .
Any port monitor written by a user must be provided with an administrative
command specific to that port monitor to perform similar functions.

Writing a Port Monitor With the Service Access Facility (SAF) 287

Per-Service Configuration Files
A port monitor’s current directory also contains the per-service configuration scripts,
if they exist. The names of the per-service configuration scripts correspond to the
service tags in the _pmtab file.

Private Port Monitor Files
A port monitor may create private files in the directory /var/saf/tag , where tag is
the name of the port monitor. Examples of private files are log files or temporary
files.

The SAC/Port Monitor Interface
The sac creates two environment variables for each port monitor it starts:

1. PMTAG

2. ISTATE

This variable is set to a unique port monitor tag by the sac . The port monitor
uses this tag to identify itself in response to sac messages. ISTATE is used to
indicate to the port monitor what its initial internal state should be. ISTATE is set
to “enabled ” or “disabled ” to indicate that the port monitor is to start in the
enabled or disabled state respectively. The sac performs a periodic sanity poll of
the port monitors.

The sac communicates with port monitors through FIFOs. A port monitor should
open _pmpipe , in the current directory, to receive messages from the sac and
../_sacpipe to send return messages to the sac .

Message Formats
This section describes the messages that may be sent from the sac to a port monitor
(sac messages), and from a port monitor to the sac (port monitor messages). These
messages are sent through FIFOs and are in the form of C structures . See Code
Example F–2.

sac Messages
The format of messages from the sac is defined by the structure sacmsg :

288 ONC+ Developer’s Guide ♦ , 1998

struct sacmsg {
int sc_size; /* size of optional data portion */
char sc_type; /* type of message */

};

The sac may send four types of messages to port monitors. The type of message is
indicated by setting the sc_type field of the sacmsg structure to one of the
following:

SC_STATUS status request SC_ENABLE enable message SC_DISABLE disable
message SC_READDBmessage indicating that the port monitor’s _pmtab file
should be read

sc_size indicates the size of the optional data part of the message. See “Message
Classes” on page 290. For Solaris, sc_size should always be set to 0.

A port monitor must respond to every message sent by the sac .

Port Monitor Messages
The format of messages from a port monitor to the sac is defined by the structure
pmmsg:

struct pmmsg {
char pm_type; /* type of message */
unchar pm_state; /* current state of port monitor */
char pm_maxclass; /* maximum message class this port

monitor understands */
char pm_tag[PMTAGSIZE + 1]; /* port monitor’s tag */
int pm_size; /* size of optional data portion */

};

Port monitors may send two types of messages to the sac . The type of message is
indicated by setting the pm_type field of the pmmsgstructure to one of the
following:

PM_STATUS state information PM_UNKNOWN negative acknowledgment

For both types of messages, the pm_tag field is set to the port monitor’s tag and the
pm_state field is set to the port monitor’s current state. Valid states are:

PM_STARTING starting PM_ENABLEDenabled PM_DISABLED disabled
PM_STOPPINGstopping

The current state reflects any changes caused by the last message from the sac .

The status message is the normal return message. The negative acknowledgment
should be sent only when the message received is not understood.

pm_size indicates the size of the optional data part of the message. pm_maxclass
is used to specify a message class. Both are discussed under “Message Classes” on
page 290.". In Solaris, always set pm_maxclass to 1 and sc_size to 0.

Writing a Port Monitor With the Service Access Facility (SAF) 289

Port monitors may never initiate messages; they may only respond to messages that
they receive.

Message Classes
The concept of message class has been included to accommodate possible SAF
extensions. The messages described above are all class 1 messages. None of these
messages contains a variable data portion; all pertinent information is contained in
the message header.

If new messages are added to the protocol, they will be defined as new message
classes (for example, class 2). The first message the sac sends to a port monitor
will always be a class 1 message. Since all port monitors, by definition,
understand class 1 messages, the first message the sac sends is guaranteed to be
understood. In its response to the sac , the port monitor sets the pm_maxclass field
to the maximum message class number for that port monitor. The sac will not send
messages to a port monitor from a class with a larger number than the value of
pm_maxclass . Requests that require messages of a higher class than the port
monitor can understand will fail. For Solaris, always set pm_maxclass to 1.

Note - For any given port monitor, messages of class pm_maxclass and messages of
all classes with values lower than pm_maxclass are valid. Thus, if the pm_maxclass
field is set to 3, the port monitor understands messages of classes 1, 2, and 3. Port
monitors may not generate messages; they may only respond to messages. A port
monitor’s response must be of the same class as the originating message.

Since only the sac can generate messages, this protocol will function even if the port
monitor is capable of dealing with messages of a higher class than the sac can
generate.

pm_size (an element of the pmmsgstructure) and sc_size (an element of the
sacmsg structure) indicate the size of the optional data part of the message. The
format of this part of the message is undefined. Its definition is inherent in the type
of message. For Solaris, always set both sc_size and pm_size to 0.

The Port Monitor Administrative
Interface
This section discusses the administrative files available under the SAC.

290 ONC+ Developer’s Guide ♦ , 1998

The SACAdministrative File _sactab
The service access controller’s administrative file contains information about all the
port monitors for which the SACis responsible. This file exists on the delivered
system. Initially, it is empty except for a single comment line that contains the
version number of the SAC. Port monitors are added to the system by making entries
in the SAC’s administrative file. These entries should be made using the
administrative command sacadm with a −a option. sacadm is also used to remove
entries from the SAC’s administrative file.

Each entry in the SAC’s administrative file contains the following information, shown
in Table F–1.

TABLE F–1 Service Access Controller _sactab File

Fields Description

PMTAG A unique tag that identifies a particular port monitor. The system administrator is responsible
for naming a port monitor. This tag is then used by the SACto identify the port monitor for
all administrative purposes. PMTAGmay consist of up to 14 alphanumeric characters.

PMTYPE The type of the port monitor. In addition to its unique tag, each port monitor has a type
designator. The type designator identifies a group of port monitors that are different
invocations of the same entity. ttymon and listen are examples of valid port monitor
types. The type designator is used to facilitate the administration of groups of related port
monitors. Without a type designator, the system administrator has no way of knowing
which port monitor tags correspond to port monitors of the same type. PMTYPEmay consist
of up to 14 alphanumeric characters.

FLGS The flags that are currently defined are: −d When started, do not enable the port monitor. −x
Do not start the port monitor. If no flag is specified, the default action is taken. By default a
port monitor is started and enabled.

RCNT The number of times a port monitor may fail before being placed in a failed state. Once a
port monitor enters the failed state, the SACwill not try to restart it. If a count is not
specified when the entry is created, this field is set to 0. A restart count of 0 indicates that
the port monitor is not to be restarted when it fails.

COMMAND A string representing the command that will start the port monitor. The first component of
the string, the command itself, must be a full path name.

The Port Monitor Administrative File _pmtab
Each port monitor will have two directories for its exclusive use. The current
directory will contain files defined by the SAF (_pmtab , _pid) and the per-service

Writing a Port Monitor With the Service Access Facility (SAF) 291

configuration scripts, if they exist. The directory /var/saf/pmtag , where pmtag is
the tag of the port monitor, is available for the port monitor’s private files.

Each port monitor has its own administrative file. The pmadmcommand should be
used to add, remove, or modify service entries in this file. Each time a change is
made using pmadm, the corresponding port monitor rereads its administrative file.
Each entry in a port monitor’s administrative file defines how the port monitor treats
a specific port and what service is to be invoked on that port.

Some fields must be present for all types of port monitors. Each entry must include a
service tag to identify the service uniquely and an identity to be assigned to
the service when it is started (for example, root).

Note - The combination of a service tag and a port monitor tag uniquely define an
instance of a service. The same service tag may be used to identify a service under a
different port monitor. The record must also contain port monitor specific data (for
example, for a ttymon port monitor, this will include the prompt string which is
meaningful to ttymon). Each type of port monitor must provide a command that
takes the necessary port monitor-specific data as arguments and outputs these data
in a form suitable for storage in the file. The ttyadm command does this for ttymon
and nlsadmin does it for listen . For a user-defined port monitor, a similar
administrative command must also be supplied.

Each service entry in the port monitor administrative file must have the following
format and contain the information listed below:

svctag:flgs:id:reserved:reserved:reserved: pmspecific# comment

SVCTAGis a unique tag that identifies a service. This tag is unique only for the port
monitor through which the service is available. Other port monitors may offer the
same or other services with the same tag. A service requires both a port monitor tag
and a service tag to identify it uniquely.

SVCTAGmay consist of up to 14 alphanumeric characters. The service entries are
defined in Table F–2.

TABLE F–2 SVCTAG Service Entries

Service Entries Description

FLGS Flags with the following meanings may currently be included in this field:

−x Do not enable this port. By default the port is enabled.

−u Create a utmp entry for this service. By default no utmp entry is created for the service.

ID The identity under which the service is to be started. The identity has the form of a login
name as it appears in /etc/passwd .

292 ONC+ Developer’s Guide ♦ , 1998

TABLE F–2 SVCTAG Service Entries (continued)

Service Entries Description

PMSPECIFIC Examples of port monitor information are addresses, the name of a process to execute, or
the name of a STREAMSpipe to pass a connection through. This information will vary to
meet the needs of each different type of port monitor.

COMMENT A comment associated with the service entry.

Note - Port monitors may ignore the −u flag if creating a utmp entry for the service
is not appropriate to the manner in which the service is to be invoked. Some services
may not start properly unless utmp entries have been created for them (for example,
login).

Each port monitor administrative file must contain one special comment of the form:

VERSION=value

where value is an integer that represents the port monitor’s version number. The
version number defines the format of the port monitor administrative file. This
comment line is created automatically when a port monitor is added to the system. It
appears on a line by itself, before the service entries.

The SACAdministrative Command sacadm
sacadm is the administrative command for the upper level of the SAF hierarchy, that
is, for port monitor administration (see the sacadm(1M) manpage). Under the SAF,
port monitors are administered by using the sacadm command to make changes in
the SAC’s administrative file. sacadm performs the following functions:

� Prints requested port monitor information from the SACadministrative file

� Adds or removes a port monitor

� Enables or disables a port monitor

� Starts or stops a port monitor

� Installs or replaces a per-system configuration script

� Installs or replaces a per-port monitor configuration script

� Asks the SACto reread its administrative file

Writing a Port Monitor With the Service Access Facility (SAF) 293

The Port Monitor Administrative Command
pmadm
pmadmis the administrative command for the lower level of the SAF hierarchy, that
is, for service administration (see the pmadm(1M) manpage). A port may have only
one service associated with it although the same service may be available through
more than one port. pmadmperforms the following functions:

� Prints service status information from the port monitor’s administrative file

� Adds or removes a service

� Enables or disables a service

� Installs or replaces a per-service configuration script

Note that in order to identify an instance of a service uniquely, the pmadmcommand
must identify both the service (−s) and the port monitor or port monitors through
which the service is available (−p or −t).

Monitor-Specific Administrative Command
In the previous section, two pieces of information included in the _pmtab file were
described: the port monitor’s version number and the port monitor part of the
service entries in the port monitor’s _pmtab file. When a new port monitor is added,
the version number must be known so that the _pmtab file can be correctly
initialized. When a new service is added, the port monitor part of the _pmtab entry
must be formatted correctly.

Each port monitor must have an administrative command to perform these two
tasks. The person who defines the port monitor must also define such an
administrative command and its input options. When the command is invoked with
these options, the information required for the port monitor part of the service entry
must be correctly formatted for inclusion in the port monitor’s _pmtab file and must
be written to the standard output. To request the version number the command must
be invoked with a −V option; when it is invoked in this way, the port monitor’s
current version number must be written to the standard output .

If the command fails for any reason during the execution of either of these tasks, no
data should be written to standard output .

The Port Monitor/Service Interface
The interface between a port monitor and a service is determined solely by the
service. Two mechanisms for invoking a service are presented here as examples.

294 ONC+ Developer’s Guide ♦ , 1998

New Service Invocations
The first interface is for services that are started anew with each request. This
interface requires the port monitor to first fork() a child process. The child will
eventually become the designated service by performing an exec() . Before the
exec() happens, the port monitor may take some port monitor-specific action;
however, one action that must occur is the interpretation of the per-service
configuration script, if one is present. This is done by calling the library routine
doconfig() .

Standing Service Invocations
The second interface is for invocations of services that are actively running. To use
this interface, a service must have one end of a stream pipe open and be prepared
to receive connections through it.

Port Monitor Requirements
To implement a port monitor, several generic requirements must be met. This section
summarizes these requirements. In addition to the port monitor itself, an
administrative command must be supplied.

Initial Environment
When a port monitor is started, it expects an initial execution environment in which:

� It has no file descriptors open

� It cannot be a process group leader

� It has an entry in /etc/utmp of type LOGIN_PROCESS

� An environment variable, ISTATE , is set to “enabled ” or “disabled ” to indicate
the port monitor’s correct initial state

� An environment variable, PMTAG, is set to the port monitor’s assigned tag

� The directory that contains the port monitor’s administrative files is its current
directory

� The port monitor is able to create private files in the directory /var/saf/tag ,
where tag is the port monitor’s tag

� The port monitor is running with user id 0 (root)

Important Files
Relative to its current directory, the following key files exist for a port monitor.

Writing a Port Monitor With the Service Access Facility (SAF) 295

TABLE F–3 Key Port Monitor Files

File Description

_config The port monitor’s configuration script. The port monitor configuration script is run by the
SAC. The SAC is started by init() as a result of an entry in /etc/inittab that calls sac .

_pid The file into which the port monitor writes its process id.

_pmtab The port monitor’s administrative file. This file contains information about the ports and
services for which the port monitor is responsible.

_pmpipe The FIFO through which the port monitor will receive messages from sac .

svctag The per-service configuration script for the service with the tag svctag .

../_sacpipe The FIFO through which the port monitor will send messages to sac .

Port Monitor Responsibilities
A port monitor is responsible for performing the following tasks in addition to its
port monitor function:

� Write its process id into the file _pid and place an advisory lock on the file

� Terminate gracefully on receipt of the signal SIGTERM.

� Follow the protocol for message exchange with sac

A port monitor must perform the following tasks during service invocation:

� Create a utmp entry if the requested service has the “−u” flag set in _pmtab

Note - Port monitors may ignore this flag if creating a utmp entry for the service
does not make sense because of the manner in which the service is to be invoked. On
the other hand, some services may not start properly unless utmp entries have been
created for them.

� Interpret the per-service configuration script for the requested service, if it exists,
by calling the doconfig() library routine

296 ONC+ Developer’s Guide ♦ , 1998

Configuration Files and Scripts
Interpreting Configuration Scripts With
doconfig()
The library routine doconfig() , defined in libnsl.so, interprets the
configuration scripts contained in the files /etc/saf/_sysconfig (the per-system
configuration file), and /etc/saf/pmtag/_config (per-port monitor
configuration files); and in /etc/saf/pmtag/svctag (per-service configuration
files). Its syntax is:

include <sac.h>
int doconfig (int fd, char *script, long rflag);

script is the name of the configuration script; fd is a file descriptor that designates the
stream to which stream manipulation operations are to be applied; rflag is a bitmask
that indicates the mode in which script is to be interpreted. rflag may take two
values, NORUNand NOASSIGN, which may be or’d. If rflag is zero, all commands in
the configuration script are eligible to be interpreted. If rflag has the NOASSIGNbit
set, the assign command is considered illegal and will generate an error return. If
rflag has the NORUNbit set, the run and runwait commands are considered illegal
and will generate error returns.

If a command in the script fails, the interpretation of the script ceases at that point
and a positive integer is returned; this number indicates which line in the script
failed. If a system error occurs, a value of -1 is returned.

If a script fails, the process whose environment was being established should not be
started.

In the example, doconfig() is used to interpret a per-service configuration script.

. . .
if ((i = doconfig (fd, svctag, 0)) != 0){
error ("doconfig failed online %d of script %s",i,svctag);

}

The Per-System Configuration File
The per-system configuration file, /etc/saf/_sysconfig , is delivered empty. It
may be used to customize the environment for all services on the system by writing
a command script in the interpreted language described in this chapter and on the
doconfig (3N)manpage. When the SACis started, it calls the doconfig() function
to interpret the per-system configuration script. The SACis started when the system
enters multiuser mode.

Writing a Port Monitor With the Service Access Facility (SAF) 297

Per-Port Monitor Configuration Files
Per-port monitor configuration scripts (/etc/saf/pmtag/_config) are optional.
They allow the user to customize the environment for any given port monitor and
for the services that are available through the ports for which that port monitor is
responsible. Per-port monitor configuration scripts are written in the same language
used for per-system configuration scripts.

The per-port monitor configuration script is interpreted when the port monitor is
started. The port monitor is started by the SACafter the SAChas itself been started
and after it has run its own configuration script, /etc/saf/_sysconfig .

The per-port monitor configuration script may override defaults provided by the
per-system configuration script.

Per-Service Configuration Files
Per-service configuration files allow the user to customize the environment for a
specific service. For example, a service may require special privileges that are not
available to the general user. Using the language described in the
doconfig (3N)manpage, you can write a script that will grant or limit such special
privileges to a particular service offered through a particular port monitor.

The per-service configuration may override defaults provided by higher-level
configuration scripts. For example, the per-service configuration script may specify a
set of STREAMSmodules other than the default set.

The Configuration Language
The language in which configuration scripts are written consists of a sequence of
commands, each of which is interpreted separately. The following reserved keywords
are defined: assign , push , pop , runwait , and run . The comment character is #.
Blank lines are not significant. No line in a command script may exceed 1024
characters.

assign variable=value

Used to define environment variables. variable is the name of the environment
variable and value is the value to be assigned to it. The value assigned must be a
string constant; no form of parameter substitution is available. value may be
quoted. The quoting rules are those used by the shell for defining environment
variables. assign will fail if space cannot be allocated for the new variable or if any
part of the specification is invalid.

push module1[,
module2, module3, ...]

298 ONC+ Developer’s Guide ♦ , 1998

Used to push STREAMSmodules onto the stream designated by fd. See the
doconfig (3N)manpage. module1 is the name of the first module to be pushed,
module2 is the name of the second module to be pushed, and so on. The command
will fail if any of the named modules cannot be pushed. If a module cannot be
pushed, the subsequent modules on the same command line will be ignored and
modules that have already been pushed will be popped.

pop [module]

Used to pop STREAMSmodules off the designated stream. If pop is invoked with no
arguments, the top module on the stream is popped. If an argument is given,
modules will be popped one at a time until the named module is at the top of the
stream. If the named module is not on the designated stream, the stream is left as it
was and the command fails. If module is the special keyword ALL, then all modules
on the stream will be popped. Note that only modules above the topmost driver are
affected.

runwait command

The runwait command runs a command and waits for it to complete. command is
the path name of the command to be run. The command is run with /bin/sh −c
prepended to it; shell scripts may thus be executed from configuration scripts. The
runwait command will fail if command cannot be found or cannot be executed, or if
command exits with a nonzero status.

run command

The run command is identical to runwait except that it does not wait for command
to complete. command is the path name of the command to be run. run will not fail
unless it is unable to create a child process to execute the command.

Although they are syntactically indistinguishable, some of the commands available to
run and runwait are interpreter built-in commands. Interpreter built-ins are used
when it is necessary to alter the state of a process within the context of that process.
The doconfig() interpreter built-in commands are similar to the shell special
commands and, like these, they do not spawn another process for execution. See the
sh (1)manpage. The initial set of built-in commands is:

cd ulimit umask

Printing, Installing, and Replacing Configuration
Scripts
This section describes the form of the SACand port monitor administrative
commands used to install the three types of configuration scripts. Per-system and

Writing a Port Monitor With the Service Access Facility (SAF) 299

per-port monitor configuration scripts are administered using the sacadm command.
Per-service configuration scripts are administered using the pmadmcommand.

Per-System Configuration Scripts
sacadm −G [−z script]

The −G option is used to print or replace the per-system configuration script. The −G
option by itself prints the per-system configuration script. The −G option in
combination with a −z option replaces /etc/saf/_sysconfig with the contents of
the file script . Other combinations of options with a −G option are invalid.

Sample Per-System Configuration Script

The _sysconfig file in the example sets the time zone variable, TZ.

assign TZ=EST5EDT # set TZ
runwait echo SAC is starting > /dev/console

Per-Port Monitor Configuration Scripts
sacadm -g -p pmtag [-z script]

The −g option is used to print, install, or replace the per-port monitor configuration
script. A −g option requires a −p option. The −g option with only a −p option prints
the per-port monitor configuration script for port monitor pmtag. The −g option with
a −p option and a −z option installs the file script as the per-port monitor
configuration script for port monitor pmtag, or, if /etc/saf/pmtag/_config exists,
it replaces _config with the contents of script. Other combinations of options with
−g are invalid.

Sample Per-Port Monitor Configuration Script

In the hypothetical _config file in the figure, the command /usr/bin/daemon is
assumed to start a daemon process that builds and holds together a STREAMS
multiplexor. By installing this configuration script, the command can be executed just
before starting the port monitor that requires it.

build a STREAMS multiplexor
run /usr/bin/daemon
runwait echo $PMTAG is starting > /dev/console

Per-Service Configuration Scripts
pmadm -g -p pmtag -s svctag [-z script]

pmadm -g -s svctag -t type -z script

300 ONC+ Developer’s Guide ♦ , 1998

Per-service configuration scripts are interpreted by the port monitor before the
service is invoked.

Note - The SACinterprets both its own configuration file, _sysconfig , and the port
monitor configuration files. Only the per-service configuration files are interpreted by
the port monitors.

The −g option is used to print, install, or replace a per-service configuration script.
The −g option with a −p option and a −s option prints the per-service configuration
script for service svctag available through port monitor pmtag. The −g option with a
−p option, a −s option, and a −z option installs the per-service configuration script
contained in the file script as the per-service configuration script for service svctag
available through port monitor pmtag. The −g option with a −s option, a −t option,
and a −z option installs the file script as the per-service configuration script for
service svctag available through any port monitor of type type. Other combinations of
options with −g are invalid.

Sample Per-Service Configuration Script
The following per-service configuration script does two things: It specifies the
maximum file size for files created by a process by setting the process’s ulimit to
4096 . It also specifies the protection mask to be applied to files created by the
process by setting umask to 077 .

runwait ulimit 4096
runwait umask 077

Sample Port Monitor Code
Code Example F–1shows an example of a “null” port monitor that simply responds
to messages from the SAC.

CODE EXAMPLE F–1 Sample Port Monitor

include <stdlib.h>
include <stdio.h>
include <unistd.h>
include <fcntl.h>
include <signal.h>
include <sac.h>

char Scratch[BUFSIZ]; /* scratch buffer */

(continued)

Writing a Port Monitor With the Service Access Facility (SAF) 301

(Continuation)

char Tag[PMTAGSIZE + 1]; /* port monitor’s tag */
FILE *Fp; /* file pointer for log file */
FILE *Tfp; /* file pointer for pid file */
char State; /* port monitor’s current state*/

main(argc, argv)
int argc;
char *argv[];

{
char *istate;
strcpy(Tag, getenv("PMTAG"));

/*
* open up a log file in port monitor’s private directory
*/
sprintf(Scratch, "/var/saf/%s/log", Tag);
Fp = fopen(Scratch, "a+");
if (Fp == (FILE *)NULL)

exit(1);
log(Fp, "starting");

/*
* retrieve initial state (either "enabled" or "disabled") and set
* State accordingly
*/
istate = getenv("ISTATE");
sprintf(Scratch, "ISTATE is %s", istate);
log(Fp, Scratch);
if (!strcmp(istate, "enabled"))

State = PM_ENABLED;
else if (!strcmp(istate, "disabled"))

State = PM_DISABLED;
else {

log(Fp, "invalid initial state");
exit(1);

}
sprintf(Scratch, "PMTAG is %s", Tag);
log(Fp, Scratch);

/*
* set up pid file and lock it to indicate that we are active

*/
Tfp = fopen("_pid", "w");
if (Tfp == (FILE *)NULL) {

log(Fp, "couldn’t open pid file");
exit(1);

}
if (lockf(fileno(Tfp), F_TEST, 0) < 0) {

log(Fp, "pid file already locked");
exit(1);

}
fprintf(Tfp, "%d", getpid());
fflush(Tfp);
log(Fp, "locking file");

(continued)

302 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

if (lockf(fileno(Tfp), F_LOCK, 0) < 0) {
log(Fp, "lock failed");
exit(1);

}
/*

* handle poll messages from the sac ... this function never
returns

*/
handlepoll();
pause();
fclose(Tfp);
fclose(Fp);

}

handlepoll()
{

int pfd; /* file descriptor for incoming pipe */
int sfd; /* file descriptor for outgoing pipe */
struct sacmsg sacmsg; /* incoming message */
struct pmmsg pmmsg; /* outgoing message */

/*
* open pipe for incoming messages from the sac
*/
pfd = open("_pmpipe", O_RDONLY|O_NONBLOCK);
if (pfd < 0) {

log(Fp, "_pmpipe open failed");
exit(1);

}
/*

* open pipe for outgoing messages to the sac
*/
sfd = open("../_sacpipe", O_WRONLY);
if (sfd < 0) {

log(Fp, "_sacpipe open failed");
exit(1);

}
/*

* start to build a return message; we only support class 1
messages

*/
strcpy(pmmsg.pm_tag, Tag);
pmmsg.pm_size = 0;
pmmsg.pm_maxclass = 1;

/*
* keep responding to messages from the sac
*/

for (;;) {
if (read(pfd, &sacmsg, sizeof(sacmsg)) != sizeof(sacmsg)) {

log(Fp, "_pmpipe read failed");
exit(1);

}
/*

* determine the message type and respond appropriately

(continued)

Writing a Port Monitor With the Service Access Facility (SAF) 303

(Continuation)

*/
switch (sacmsg.sc_type) {

case SC_STATUS:
log(Fp, "Got SC_STATUS message");
pmmsg.pm_type = PM_STATUS;
pmmsg.pm_state = State;
break;

case SC_ENABLE:
/*note internal state change below*/
log(Fp, "Got SC_ENABLE message");
pmmsg.pm_type = PM_STATUS;
State = PM_ENABLED;
pmmsg.pm_state = State;
break;

case SC_DISABLE:
/*noteinternalstatechangebelow*/
log(Fp, "Got SC_DISABLE message");
pmmsg.pm_type = PM_STATUS;
State = PM_DISABLED;
pmmsg.pm_state = State;
break;

case SC_READDB:
/*
* if this were a fully functional port monitor it
* would read _pmtab here and take appropriate action
*/
log(Fp, "Got SC_READDB message");
pmmsg.pm_type = PM_STATUS;
pmmsg.pm_state = State;
break;

default:
sprintf(Scratch, "Got unknown message <%d>",
sacmsg.sc_type);
log(Fp, Scratch);
pmmsg.pm_type = PM_UNKNOWN;
pmmsg.pm_state = State;
break;

}
/*

* send back a response to the poll
* indicating current state
*/

if (write(sfd, &pmmsg, sizeof(pmmsg)) != sizeof(pmmsg))
log(Fp, "sanity response failed");

}
}
/*

* general logging function
*/

log(fp, msg)
FILE *fp;
char *msg;

(continued)

304 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

{
fprintf(fp, "%d; %s\n", getpid(), msg);
fflush(fp);

}

Code Example F–2 shows the sac.h header file.

CODE EXAMPLE F–2 sac.h Header File

/* length in bytes of a utmp id */
define IDLEN 4
/* wild character for utmp ids */
define SC_WILDC 0xff
/* max len in bytes for port monitor tag */
define PMTAGSIZE 14
/*

* values for rflag in doconfig()
*/

/* don’t allow assign operations */
define NOASSIGN 0x1
/* don’t allow run or runwait operations */
define NORUN 0x2
/*

* message to SAC (header only). This header is forever fixed. The
* size field (pm_size) defines the size of the data portion of

the
* message, which follows the header. The form of this optional

data
* portion is defined strictly by the message type (pm_type).
*/

struct pmmsg {
char pm_type; /* type of message */
unchar pm_state; /* current state of pm */
char pm_maxclass; /* max message class this port

monitor
understands */

char pm_tag[PMTAGSIZE + 1]; /* pm’s tag */
int pm_size; /* size of opt data portion */

};
/*

* pm_type values
*/

define PM_STATUS 1 /* status response */
define PM_UNKNOWN 2 /* unknown message was received */
/*

* pm_state values
*/

/*
* Class 1 responses

(continued)

Writing a Port Monitor With the Service Access Facility (SAF) 305

(Continuation)

*/
define PM_STARTING 1 /* monitor in starting state */
define PM_ENABLED 2 /* monitor in enabled state */
define PM_DISABLED 3 /* monitor in disabled state */
define PM_STOPPING 4 /* monitor in stopping state */
/*

* message to port monitor
*/

struct sacmsg {
int sc_size; /* size of optional data portion */
char sc_type; /* type of message */

};
/*

* sc_type values
* These represent commands that the SAC sends to a port monitor.
* These commands are divided into "classes" for extensibility.

Each
* subsequent "class" is a superset of the previous "classes" plus
* the new commands defined within that "class". The header for

all
* commands is identical; however, a command may be defined such

that
* an optional data portion may be sent in addition to the header.
* The format of this optional data piece is self-defining based

on
* the command. Important note:the first message sent by the SAC

will
* always be a class 1 message. The port monitor response

indicates
* the maximum class that it is able to understand. Another note

is
* that port monitors should only respond to a message with an
* equivalent class response (i.e. a class 1 command causes a

class 1
* response).
*/

/*
* Class 1 commands (currently, there are only class 1 commands)
*/

define SC_STATUS 1 /* status request *
define SC_ENABLE 2 /* enable request */
define SC_DISABLE 3 /* disable request */
define SC_READDB 4 /* read pmtab request */
/*

* ‘errno’ values for Saferrno, note that Saferrno is used by both
* pmadm and sacadm and these values are shared between them
*/

define E_BADARGS 1 /* bad args/ill-formed cmd line */
define E_NOPRIV 2 /* user not priv for operation */
define E_SAFERR 3 /* generic SAF error */
define E_SYSERR 4 /* system error */
define E_NOEXIST 5 /* invalid specification */
define E_DUP 6 /* entry already exists */

(continued)

306 ONC+ Developer’s Guide ♦ , 1998

(Continuation)

define E_PMRUN 7 /* port monitor is running */
define E_PMNOTRUN 8 /* port monitor is not running */
define E_RECOVER 9 /* in recovery */

Logic Diagram and Directory Structure
Figure F–2 is a logical diagram of the SAF. It illustrates how a single service access
controller may spawn a number of port monitors on a per-system basis. This means
that several monitors may be running concurrently, providing for the simultaneous
operation of several different protocols.

Writing a Port Monitor With the Service Access Facility (SAF) 307

Service Access Contr oller

Per-System Configuration

Port Monitor #1
Configuration

Port Monitor #2
Configuration

Port Monitor #3
Configuration

. . .

. . .

. . .

. . .Port Monitor #3Port Monitor #2Port Monitor #1

Service 1
Config

Service 2
Config

Service 3
Config

Service 4
Config

Service 5
Config

Service 6
Config

Service 1 Service 2 Service 5 Service 6Service 3 Service 4

Specification

Figure F–1 SAF Logical Framework

“/etc/saf/_sysconfig ” on page 309 is the corresponding directory structure
diagram. Following the diagram is a description of the files and directories..

_log pmtag1 pmtagN

var

saf

etc

saf

_sysconfig _sactab pmtag1 pmtag N

_config _pmtab ...

/ (Root)

_pid _pmpipesvctag _pmtab_config

Figure F–2 SAF Directory Structure

308 ONC+ Developer’s Guide ♦ , 1998

/etc/saf/_sysconfig
The per-system configuration script.

/etc/saf/_sactab
The SAC’s administrative file. Contains information about the port monitors for
which the SACis responsible.

/etc/saf/pmtag
The home directory for port monitor pmtag.

/etc/saf/pmtag/_config
The per-port monitor configuration script for port monitor pmtag.

/etc/saf/pmtag/_pmtab
Port monitor pmtag’s administrative file. Contains information about the services for
which pmtag is responsible.

/etc/saf/pmtag/svctag
The file in which the per-service configuration script for service svctag (available
through port monitor pmtag) is placed.

/etc/saf/pmtag/_pid
The file in which a port monitor writes its process id in the current directory and
places an advisory lock on the file.

/etc/saf/pmtag/_pmpipe
The file in which the port monitor receives messages from the sac and
../_sacpipe and sends return messages to the sac .

Writing a Port Monitor With the Service Access Facility (SAF) 309

/var/saf/_log
The SAC’s log file.

/var/saf/pmtag
The directory for files created by port monitor pmtag, for example its log file.

310 ONC+ Developer’s Guide ♦ , 1998

Glossary

RPC Programming Terms
The following terms define the RPC concepts used throughout this manual.

client A program or system that uses the services of a remote program or
system.

client handle A client process data structure that represents the binding of the
client to a particular server’s RPC program.

connection-oriented
transport

See stream transport.

connectionless
transport

See datagram transport.

datagram transport Datagram transports have less overhead than connection-oriented
transports but are considered less reliable and data transmissions
are limited by buffer size.

deserialize Convert data from XDR format to a machine-specific representation.

handle An abstraction used by the service libraries to refer to a file or a
file-like object such as a socket.

host A computer (mainframe, mini, server, workstation, or personal
computer) connected to a network.

MT hot An interface is multithreaded hot if the library or call automatically
creates threads.

MT safe An interface is multithreaded safe if it can be called in a threaded
environment. An MT-safe interface may be invoked concurrently for
multiple threads.

Glossary-311

network client Usually client. A process that makes remote procedure calls to
services.

network server Usually server. A process that performs a network service. A server
may support more than one version of a remote program to be
forward compatible with changing protocols.

network service A collection of one or more remote service programs.

ping The ping service is used to verify activity on a remote system.

remote program A program that implements one or more remote procedures.

RPC Language
(RPCL)

A C-like programming language translated by the rpcgen compiler.
RPCL is a superset of XDR Language.

RPC library libnsl, specified to the link editor at compile time. Also known as
the RPC package.

RPC protocol The message-passing protocol that is the basis of the RPC package.

RPC/XDR See RPC Language.

serialize Converting data from a machine representation to XDR format.

server A process that provides remote service to clients.

stream transport Stream transport is considered reliable. It supports byte-stream
deliveries of unlimited data size.

transport The fourth layer of the Open Systems Interconnection (OSI)
Reference Model.

transport handle An abstraction used by the RPC libraries to refer to the transport’s
data structures.

TI-RPC Transport-independent RPC. The version of RPC supported in
SunOS 5.x.

TS-RPC Transport-specific RPC. The version of RPC supported in SunOS 4.x.
TS-RPC is also supported in SunOS 5.x.

universal address A machine-independent representation of a transport address.

Glossary-312 ONC+ Developer’s Guide ♦ , 1998

virtual circuit
transport

See streamtransport.

XDR Language A data description language and data representation protocol.

Glossary-313

Glossary-314 ONC+ Developer’s Guide ♦ , 1998

Index

Special Characters
% preprocessing directive, 35
&, server invocation and, 29

Numbers
_1 suffix, 26, 61
32–bit system, see 64–bit system,
64–bit system, 195

long vs. int, 55
rpcgen, 54
rpcproc_t, 54
rpcprog_t, 54
rpcvers_t, 54

A
access control

authentication vs., 94
port monitors and, 286

add.x source file, 37, 38, 40, 43, 46, 47
adding

address registrations, 19
NIS+ database entries, 154
NIS+ group members, 153
NIS+ objects to namespace, 152
NIS+ table entry objects, 152, 163, 164
port monitor services, 292
port monitors, 284
two numbers, 268

ADDPROG program, 268
addresses

information reporting for, 20
lookup services, 15, 18, 19

management functions, 141
name-to-address translation routines, 18,

19, 138
network, 277, 278
overview, 277, 278
passing arguments as, 26, 61
passing server’s address to client, 73
passing user’s bind address, 76
transport (netbuf), 19, 234
universal, 18, 233, 234, 277, 312
unregistering

current vs. previous release, 140
portmap routine, 281
rpcbind routine, 19, 230, 233
rpcinfo routine, 20

addresses, see portmap routine
mapping RPC services to,,
registering,,

ah_cred field, 80
ah_key field, 95
ah_verf field, 80
allocating memory, , see memory\x0d,
ampersand (&), server invocation and, 29
ANSI C standards

rpcgen tool and, 23, 36, 47
application programming interface (API)

NIS+, 151, 156
applications

porting from TS-RPC to TI-RPC, 137
arguments (remote procedures)

overview, 11
passing arbitrary data types, 62, 65
passing by address, 26, 61

Index-315

passing by value, 38, 40
passing open TLI file descriptors, 73, 76
passing server’s address to client, 73
passing user’s bind address, 76
void, 226

arrays, xv
converting to XDR format, 65, 135, 136
declarations

RPC language, 223, 224
XDR language, 246, 247, 253

XDR code examples, 183, 186, 187
assign configuration-script keyword, 298
asynchronous mode, 84, 86
AUTH_BADCRED error, 216, 217
AUTH_BADVERF error, 216
AUTH_DES authentication, 94, 96, 210, 215

common key, 214, 215
conversation key, 211, 213, 215
credentials, 95, 212, 213
described, 92, 94, 95, 210, 211
Diffie-Hellman encryption, 95, 214, 215
errors, 212
handle, 95
-Hellman encryption, 211
nicknames, 212 to 214
protocol in XDR language, 212, 215
server, 95, 96
time synchronization, 95, 212
verifiers, 211, 212, 214

auth_destroy, 103
auth_destroy routine, 92
AUTH_KERB authentication, 96, 98, 215, 218

credentials, 97, 98, 216, 218
described, 92, 96, 98, 215
encryption, 97, 98
errors, 216, 217
NFS and, 215, 217
nicknames, 98, 216 to 218
protocol in XDR language, 217, 218
time synchronization, 97, 218
verifiers, 97, 98, 217, 218

AUTH_NONE authentication, 92, 93, 209
AUTH_REJECTEDCRED error, 210, 216
AUTH_REJECTEDVERF error, 217
AUTH_SHORT authentication, 92
AUTH_SHORT verifier, 209, 210
AUTH_SYS authentication, 92 to 94, 209, 210
AUTH_SYS) authentication, 93

AUTH_TIMEEXPIRE error, 217
AUTH_TOOWEAK error, 216
AUTH_UNIX (AUTH_SYS) authentication, 92,

94, 209, 210
authdes_create routine, 141
authdes_seccreate routine, 95, 141
authentication, 91, 98, 208, 218

access control vs., 94
allocating authentication numbers, 208
AUTH_DES, 92, 94, 96, 210, 215
AUTH_KERB, 92, 96, 98, 215, 218
AUTH_NONE, 92, 93, 209
AUTH_SHORT, 92, 209, 210
AUTH_SYS (AUTH_UNIX), 92 to 94, 209,

210
credentials

AUTH_DES, 95, 212, 213
AUTH_KERB, 97, 98, 216, 218
described, 202, 203
window (lifetime) of, 95, 97, 212, 213,

217
current vs. previous release, 141
destroying an, 92
errors

AUTH_DES, 212
AUTH_KERB, 216, 217
AUTH_SYS, 94, 210

handles, 79, 95
low-level data structures and, 79
methods supported, 92, 102
nicknames

AUTH_DES, 212 to 214
AUTH_KERB, 98, 216 to 218

NIS+, 149
overview, 91, 92, 208
registering authentication numbers, 208
RPC protocol and, 202, 203
rpcgen tool and, 49, 52
RPCSEC_GSS, 98
servers, 92 to 96
service-dispatch routine and, 92, 93
time synchronization

AUTH_DES authentication, 95, 211,
212

AUTH_KERB authentication, 97, 218

Index-316 ONC+ Developer’s Guide ♦ , 1998

verifiers
AUTH_DES, 211, 212
AUTH_KERB, 97, 98, 217, 218
AUTH_SYS, 209, 210
described, 202, 203

authkerb_seccreate routine, 97
authorization, xv

NIS+, 149
authsys_create routine, 94, 141
authsys_create_default routine, 94, 141
authunix_create routine, 141
authunix_create_default routine, 141
Automatic MT mode, , see MT Auto

mode\x0d,

B
batching, 88, 91, 204, 273, 276
bcast.c program, 86, 87
bcast_proc routine, 87, 88
binding, xv

dynamic, 278
TI-RPC and, 11, 201

booleans
RPC language, 226
XDR language, 240

bottom level interface routines (RPC), 15, 77,
79

broadcast RPC, 86, 88
current vs. previous release, 140, 141
overview, 86, 205
portmap routine and, 279, 281
routines for, 13, 86, 88
rpcbind routine and, 228, 235
server response to, 49, 50, 87, 88
TS-RPC vs. TI-RPC, 143, 145

buffer size
specifying send and receive, 73, 76

byte arrays, xv
XDR, 183

C
C

rpcgen tool and
ANSI C compliance, 23, 36, 47
C-style mode, 22, 36, 38, 40, 226
preprocessing directives, 35, 36, 49, 50
SPARCompiler C++ 3.0

compatibility, 47
XDR routines and, 171

C-style mode
rpcgen tool, 22, 36, 38, 40, 226

caching
NIS+, 150
server, 79

call semantics
TI-RPC, 11, 201

callback procedures
NIS+, 165, 166
RPCSEC_GSS, 106
transient RPC program numbers and, 114
uses for, 114

callrpc routine, 140
CBC (cipher block chaining) mode, 97
cd command, 299
changing

NIS+ objects in namespace, 152
NIS+ table entry objects, 152
port monitor configuration scripts, 300,

301
port monitor services, 292
version numbers of programs, 111

cipher block chaining (CBC) mode, 97
circuit-oriented transports

when to use, 17
circuit_n transport type, 17
circuit_v transport type, 16
cl_auth field, 79, 92
cl_netid field, 78
cl_private field, 78
cl_tp field, 78
classes of messages, 290
client authentication, , see

authentication\x0d,
client handles

Index-317

creating
bottom level interface, 15, 78
current vs. previous release, 139
expert level interface, 15, 73, 76
intermediate level interface, 14, 70, 72
top level interface, 13, 14, 28, 66, 69

defined, 311
destroying

current vs. previous release, 140
expert level interface, 76
top level interface, 28, 68

low-level data structures for, 79, 80
client programs

remote copy, 133, 134
rpcgen tool and

ANSI C-compliance, 47
complex data structure passing, 32, 34
debugging, 55, 56
directory listing service, 32, 34, 267
message printing code example, 26, 29
MT-safety, 22, 44, 45
overview, 23, 26, 29

simplified interface, 59, 60
client stub routines

rpcgen tool and, 21, 28, 29
C-style mode, 38, 40
MT Auto mode, 46
MT-safe, 41, 42
MT-unsafe, 42
preprocessing directive, 35

client templates
rpcgen tool, 22, 36 to 38, 40

client time-out periods
creating timed clients, 14, 68, 71
rpcgen tool and, 49, 51

clients
batched, 88, 90, 273, 274
defined, 311, 312
multiple versions, 112, 114
multithreaded

overview, 115, 120
safety, 40, 42, 44, 45, 57, 311
User mode, 125, 126, 128

NIS+, 150
transaction IDs and, 201
TS-RPC vs. TI-RPC, 142, 143

_clnt.c suffix, 29
clnt_broadcast routine, 141, 143

clnt_call routine
current vs. previous release, 140
described, 14, 15
RPCPROGVERSMISMATCH error, 112
top level interface and, 68

clnt_control routine
current vs. previous release, 140
described, 51, 76
using, 51

clnt_create routine
code example, 27, 28
current vs. previous release, 140
described, 14

clnt_create_timed routine
current vs. previous release, 140
described, 14
using, 68

clnt_create_vers routine, 112, 140
clnt_destroy routine

current vs. previous release, 140
described, 28, 68, 76

clnt_dg_create routine
current vs. previous release, 140
described, 15, 78
using, 78

clnt_ops field, 78
clnt_pcreateerror routine

current vs. previous release, 140
described, 68

clnt_perror routine, 56
clnt_raw_create routine, 81, 84, 140
clnt_spcreateerror routine, 140
clnt_sperror routine, 56
clnt_tli_create routine

current vs. previous release, 140
described, 15, 73, 77, 78
using, 73, 75

clnt_tp_create routine, 14, 140
clnt_tp_create_timed routine

current vs. previous release, 140
described, 14
using, 71

clnt_vc_create routine
current vs. previous release, 140
described, 15, 78
using, 78

clntraw_create routine, 140

Index-318 ONC+ Developer’s Guide ♦ , 1998

clnttcp_create routine, 140
clntudp_bufcreate routine, 140
clntudp_create routine, 73, 76, 140
clock synchronization, , see time

synchronization\x0d,
comments

XDR language, 251
compatibility

library functions, current vs. previous
release, 139, 141

compilation
NIS+, 157
rpcgen tool, 22, 38, 40

complex data structures, xv
packing with xdr_inline, 36, 48
rpcgen tool and, 30, 34

compound data type filters
XDR, 65, 182

_config file, 296 to 300
configuration scripts, , see port monitors,

configuration scripts\x0d,
connection-oriented endpoints, 81
connection-oriented transports, xv

client handle creation for, 15
defined, 311
nettype parameters for, 16
port monitors and, 109
remote copy code example, 132, 135
server handle creation for, 16

connectionless transports, xv
client handle creation for, 15
defined, 311
nettype parameters for, 17
server handle creation for, 15

UDP (user datagram protocol), xv
constants

RPC language, 222
XDR language, 249, 251, 253

constructed data type filters
XDR, 65, 182

conversation key
AUTH_DES authentication, 211, 213, 215

converting
addresses, 18, 19, 138
from XDR format, 62, 65, 70, 135, 136, 176,

177, 311
local procedures to remote procedures, 23,

29

to XDR format, 30, 34, 62, 65, 135, 136,
173, 174, 176, 177, 312

cookies (in RPCSEC_GSS security flavor), 106
copying

NIS+ database entries, 154
NIS+ objects, 155
NIS+ table entry objects, 152
remote, 132, 135

counted byte strings, , see string declarations,
cpp directive

rpcgen tool and, 36
crashes

server, 201, 212
creating

NIS+ databases, 154
NIS+ directory objects, 160
NIS+ group objects, 153, 161
NIS+ table objects, 162, 164
utmp entries, 286, 293, 296

creating, see client handles, creating
client handles,,

creating, see server handles, creating\x0d
server handles,,

credentials
AUTH_DES, 95, 212, 213
AUTH_KERB, 97, 98, 216, 218
described, 202, 203
RPCSEC_GSS, 105
window (lifetime) of, 95, 97, 212, 213, 217

D
daemons

kerbd, 215, 216
rpcbind, 19, 86

data representation, xv
TI-RPC, 12

data structures, xv
converting to XDR format, 30, 34, 62, 65,

135, 136, 174, 176, 177
low-level, 79
MT safe, 125
packing with xdr_inline, 36, 48
recursive, 195, 198, 251
rpcgen tool and, 30, 34

structure declarations, xv
data types

Index-319

passing arbitrary, 62, 65
database access functions (NIS+), 151, 154
datagram transports, xv

broadcast RPC and, 86
defined, 311
nettype parameters, 16, 17
when to use, 17

datagram_n transport type, 17
datagram_v transport type, 17
date service

intermediate level client for, 70, 72
intermediate level server for, 72
top level client for trivial, 67, 69
top level server for, 69, 70

db_add_entry function, 154
db_checkpoint function, 154
db_first_entry function, 154
db_list_entries function, 154
db_next_entry function, 154
db_remove_entry function, 154
db_reset_next_entry function, 154
db_standby function, 154
dbxtool routine, 55
deallocating memory, , see memory,

releasing\x0d,
debugging

raw mode and, 81, 84
rpcgen tool and, 49, 50, 55, 56

declarations
RPC language, 222, 227
XDR language, 238, 251

defaults
maximum number of threads, 122
single-threaded mode, 120

defaults, see rpcgen tool, defaults\x0d
rpcgen tool,,

define statements, command line, rpcgen
tool, 48, 50

definitions
RPC language, 220, 221, 255

deleting, xv
address registrations, 140
assocations, 15
mappings, 15
NIS+ database entries, 154
NIS+ directory from host, 154
NIS+ group members, 153
NIS+ group objects, 153, 167, 171

NIS+ objects from namespace, 152, 166,
167

NIS+ table entry objects, 152, 167, 171
port monitor services, 292
port monitors, 284

deleting, see unregistering\x0d
address registrations,,

memory, releasing, xv
DES encryption, 95, 97, 98, 211, 214, 215
deserializing, xv, 62, 65, 70, 135, 136, 176, 177,

311
destroying, xv

client authentication handles, 92
client handles, 28, 68, 76, 140
NIS+ objects, 156
server handles, 140
XDR streams, 190

Diffie-Hellman encryption, 95, 211, 214, 215
dir.x program, 30, 31, 263, 264
dir_proc.c routine, 31, 32, 263, 265
dir_remove function, 168
directories

remote directory listing service, 30, 34,
263, 267

SAF (service access facility), 310, 308
disabling port monitors, xv, 286, 288
discriminated unions

declarations
RPC language, 225
XDR language, 225, 248, 253

XDR code samples, 187, 189
dispatch tables

rpcgen tool, 49, 52, 54
doconfig function, 287, 295, 297
domains (NIS+)

administration commands, 150
functions, 153, 155
overview, 147, 148

dynamic binding, 278
dynamic program numbers, 114, 115, 203

E
ECB (electronic code book) mode, 97, 98
electronic code book (ECB) mode, 97
enabling

port monitors, 286, 288

Index-320 ONC+ Developer’s Guide ♦ , 1998

server caching, 79
encryption

AUTH_DES authentication
(Diffie-Hellman), 95, 211, 214,
215

AUTH_KERB authentication, 97, 98
endnetconfig routine, 75
endpoints

connection-oriented, 81
enumeration filters

XDR primitives, 181
enumerations

RPC language, 31, 221, 222
XDR language, 240

errors
authentication

AUTH_DES, 212
AUTH_KERB, 216, 217
AUTH_SYS, 94, 210

client handle creation, 68
multiple client version, 112
NIS+ error message display

functions, 151, 155
RPC, 28, 56, 202
thr_create, 122

/etc/gss/mech, 100, 108
/etc/inet/inetd.conf file, 109
/etc/netconfig database, 16, 49, 138
/etc/rpc database, 12
/etc/saf/_pid file, 286, 296, 309, 302
/etc/saf/ directory, 309
/etc/saf//_config file, 296 to 300
/etc/saf//_pmpipe file, 288, 296, 309
/etc/saf//_pmtab file, 287, 292, 293, 296, 309
/etc/saf//svctag file, 292, 293, 296, 297, 309
/etc/saf/_sactab files, 291
/etc/saf/_sactab files, 309
/etc/saf/_sysconfig file, 297, 300, 309
expert level interface routines (RPC), 14, 73, 77

client, 73, 76
overview, 14, 73
server, 76, 77

external data representation, , see XDR
(external data
representation)\x0d,

F
file data structure

XDR language, 254
file descriptors, passing open TLI, 73, 76
file system, , see NFS (network file

system)\x0d,
filters (XDR)

arrays, 183, 186, 187
constructed (compound) data type, 65, 182
enumeration, 181
floating point, 62, 181
number, 62, 64, 180
opaque data, 186
strings, 65, 182, 183
unions, 187, 189

fixed-length arrays, xv
declarations

RPC language, 223
XDR language, 246

XDR code sample, 187
fixed-length opaque data

XDR language, 244
flags, , see rpcgen tool, flags\x0d,
flavor

meaning, with RPCSEC_GSS, 100
floating point

XDR language, 242, 243
floating point filters

XDR primitives, 62, 181
free routine, 34
freeing resources, xv
freenetconfigent routine, 71

G
General Security Standard API (GSS-API), 98
getnetconfig routine, 75
getnetconfigent routine, 71
glossary, 311, 313
groups (NIS+)

administration commands, 149, 150
manipulation functions, 151, 153
sample programs, 161, 167, 171

GSS-API, 98
gsscred command, 108
gsscred file, 108

Index-321

H
hand-coded registration routine, 61
handles, xv

authentication, 79, 95
defined, 311

transport handles, xv
header files

rpcgen tool and, 29, 35
hosts

defined, 311
hyper integers

XDR language, 241

I
.i suffix, 53
I/O streams

XDR, 191
idempotent

defined, 11
identifiers

XDR language, 251
identifying, xv

port monitor services, 292
remote procedures, 12, 201, 202, 204

naming, xv
index table

rpcgen tool and, 35
indirect RPC, 231, 232, 235
inetd port monitor

RPC services, 110, 113
rpcgen tool and, 29, 50, 51
using, 109

inetd.conf file, 109
information reporting

addresses, 20
NIS+, 153
remote host status, 115, 120
RPC, 20
rpcbind server, 235
server callbacks, 114

installing port monitor configuration
scripts, 300, 301

int vs. long, 55
integers, xv

XDR language, 173, 174
integers, XDR language, 239, 241
integrity (security service), 99

interfaces, , see RPC (remote procedure call),
interface routines,

intermediate level interface routines (RPC), 14,
70

Internet protocols, , see TCP (transport control
protocol),

ISTATE environment variable, 286, 288, 295
IXDR_GET_LONG, 55
IXDR_PUT_LONG, 55

K
kerbd daemon, 215, 216
Kerberos authentication, , see AUTH_KERB

authentication\x0d,
keywords

RPC language, 31
XDR language, 253

KGETKCRED procedure, 215, 216
KGETUCRED procedure, 215, 216
KSETKCRED procedure, 215, 216

L
lib library, 34
libc library, 137, 139
libnsl library, 29, 31, 137, 139
libraries

lib, 34
libc, 137, 139
libnsl, 29, 31, 137, 139
librpcsvc, 58
lthread, 116
RPC functions, 139, 141
rpcgen tool and

libnsl, 29, 31, 137, 139
selecting TI-RPC or TS-RPC

library, 23, 36, 47
XDR, xv, 176, 177

librpcsvc library, 58
lifetime of credentials, , see window of

credentials\x0d,
limits

broadcast request size, 86
maximum number of threads, 122

linked lists
XDR, 195, 198, 251

Index-322 ONC+ Developer’s Guide ♦ , 1998

listen port monitor
administrative command for, 287
rpcgen tool and, 29, 50, 51
using, 109 to 111

listing, xv
NIS+ objects, 156, 165, 166
NIS+ principals, 153
NIS+ servers, 154
NIS+ table objects, 152, 164, 166
portmap mappings, 281
remote directory listing service, 30, 34,

263, 267
rpcbind addresses, 235
rpcbind mappings, 12, 231, 234

live code examples, 263, 276
adding two numbers program, 268
batched code, 273, 276
directory listing program, 263, 267
print message program, 270, 273
spray packets program, 268, 269
time server program, 267

loading, , see binding\x0d,
local procedures

converting to remote procedures, 23, 29
locks

mutex, multithreaded mode and, 120
port monitor IDs and lock files, 286, 296,

309
log functions

NIS+ transaction, 151, 155
_log file

SAC (service access controller), 310
long vs. int, 55
low-level data structures, 79
lthread library, 116

M
main server function, 50
makefile templates

rpcgen tool, 22, 37
mapping, xv, 15
rpcbind routine, xv
master servers

NIS+, 148, 150, 169, 170
maximums

broadcast request size, 86
number of threads, 122

mechanism (security), 100
memory

allocating with XDR, 135, 136
releasing

clnt_destroy routine, 28, 68, 76
free routine, 34
messageprog_1_freeresult routine, 43
NIS+, 152 to 154
simplified interface and, 66
svc_done routine, 125
svc_freeargs routine, 136
XDR_FREE operation, 182
xdr_free routine, 34, 43

XDR primitive requirements for, 178, 180,
182

memory streams
XDR, 192

memory, releasing, xv
mesg_proc.c routine, 272, 273
message classes, 290
message interface (SAF), 288, 290, 296, 309,

301, 307
messageprog_1_freeresult routine, 43
modifying, , see changing\x0d,
msg.h header file, 29
msg.x program, 41
msg_clnt.c routine, 29
msg_svc.c program, 29
msg_svc.c routine, 29
MT Auto mode, 120, 121, 125

code examples, 122, 125
described, 120, 121
rpcgen tool and, 22, 36, 46
service transport handle and, 121

MT hot
defined, 311

MT RPC programming, , see multithreaded
RPC programming\x0d,

MT User mode, xv, 120, 121, 125, 132
MT-safe code, xv

clients, 22, 40, 42, 44, 45, 57, 311
defined, 311
rpcgen tool and, 22, 36, 40, 46
servers, 22, 42, 43, 45, 46, 57, 120, 311

multiple client versions, 112, 114
multiple server versions, 111, 112

Index-323

multithreaded Auto mode, , see MT Auto
mode\x0d,

multithreaded hot
defined, 311

multithreaded RPC programming, xv, 115, 132
clients

overview, 115, 120
safety, 22, 40, 42, 44, 45, 57, 311
User mode, 125, 126, 128

library, 116
maximum number of threads, 122
overview, 115
performance enhancement, 122, 128
rpcgen tool and, 22, 36, 40, 47
servers

Auto mode, 22, 36, 46, 120, 121, 125
overview, 115, 120, 121
safety, 22, 42, 43, 45, 46, 57, 120, 311
timing diagram, 120
unsafe routines, 120
User mode, 120, 121, 125, 128, 132

multithreaded User mode, 120, 121, 125, 132
multithreaded-safe code, , see MT-safe

code\x0d,
mutex locks

multithreaded mode and, 120

N
Name Service Switch, 149
name-to-address translation, 18, 19, 138
naming, xv

client stub programs by rpcgen, 29
netnames, 95, 211
programs by version number, 111
remote procedure calls by rpcgen, 26
server programs by rpcgen, 29
standard for, 211
template files for rpcgen, 38

naming service, , see NIS+ (Network
Information Services
Plus)\x0d,

NIS+ (Network Information Services Plus), xv
netbuf addresses, 234
netconfig database, 16, 49, 138
netnames, 95, 211
NETPATH environment variable, 16, 49, 68
nettype parameters, 16, 17

network addresses, , see addresses\x0d,
network file system, , see NFS (network file

system)\x0d,
Network Information Services Plus, , see NIS+

(Network Information
Services Plus)\x0d,

network names, 95, 211
network pipes, 173
network selection

RPC, 16
rpcgen tool, 48, 49

network services
defined, 312

Newstyle (C-style) mode
rpcgen tool, 22, 36, 38, 40

NFS (network file system)
described, 4
Kerberos authentication and, 215, 217

NFSPROC_GETATTR procedure, 216
NFSPROC_STATVFS procedure, 217
nicknames

AUTH_DES, 212 to 214
AUTH_KERB, 98, 216 to 218

NIS+
servers

sample program, 169, 170
NIS+ (Network Information Services

Plus), 147, 171
application programming interface

(API), 151, 156
cache administration commands, 150
client administration commands, 150
compilation, 157
database access functions, 151, 154
domains

administration commands, 150
functions, 153, 155
overview, 147, 148

error message display functions, 151, 155
groups

administration commands, 149, 150
manipulation functions, 151, 153
sample programs, 161, 167, 171

local name functions, 151, 153, 155, 156
miscellaneous functions, 151, 155, 156
Name Service Switch, 149

Index-324 ONC+ Developer’s Guide ♦ , 1998

namespace administration commands, 149
to 151

objects
administration commands, 149, 150
manipulation functions, 151, 155
sample programs, 157, 171

overview, 5, 147, 151
sample program, 156, 171
security, 149

administration commands, 149
servers

administration commands, 150
functions, 151, 154
overview, 148

tables
access functions, 151, 152
administration commands, 150
overview, 148, 149
sample programs, 162, 164

time synchronization, 155
transaction log functions, 151, 155
unsupported macros, 156

nis_add function, 152, 157, 161, 163
nis_add_entry function, 152, 157, 164
nis_addmember function, 153, 157, 160
nis_admin functions, 155
nis_cachemgr command, 150
nis_checkpoint function, 155
nis_clone_object function, 155
nis_creategroup function, 153, 157, 161
nis_db functions, 154
nis_destroy_object function, 156
nis_destroygroup function, 153, 157, 167
nis_dir_cmp function, 155
nis_domain_of function, 155, 157
nis_error functions, 155
nis_first_entry function, 152
nis_freenames function, 153
nis_freeresult function, 152, 157
nis_freeservlist function, 154
nis_freetags function, 154
nis_getnames function, 153
nis_getservlist function, 154
nis_groups functions, 153
nis_ismember function, 153
nis_leaf_of function, 155, 157, 165
nis_lerror function, 155
nis_list function, 152, 157, 164, 166

nis_local_directory function, 153, 157, 158
nis_local_group function, 153
nis_local_host function, 153
nis_local_names functions, 153
nis_local_principal function, 153, 157, 158
nis_lookup function, 152, 157, 159, 163, 165
nis_mkdir function, 154, 157, 161
nis_modify function, 152
nis_modify_entry function, 152
nis_name_of function, 155
nis_next_entry function, 153
nis_perror function, 155, 157
nis_ping function, 155
nis_print_group_entry function, 153
nis_print_object function, 156
nis_remove function, 152, 157, 161, 166 to 168
nis_remove_entry function, 152, 157, 167, 168
nis_removemember function, 153, 157, 167
nis_rmdir function, 154
nis_server functions, 154
nis_servstate function, 154
nis_sperrno function, 155
nis_sperror function, 155
nis_stats function, 154
nis_subr functions, 155, 156
nis_tables functions, 152
nis_verifygroup function, 153
nisaddcred command, 150
nisaddent command, 150
niscat command, 150
nischgrp command, 149
nischmod command, 149
nischown command, 149
nischttl command, 150
nisdefaults command, 150
nisgrep command, 150
nisgrpadm command, 150
nisinit command, 150
nisln command, 151
nisls command, 150
nismatch command, 149, 150
nismkdir command, 150
nispasswd command, 150
nisrm command, 151
nisrmdir command, 150
nissetup command, 150
nisshowcache command, 151

Index-325

nistbladm command, 150
nisupdkeys command, 150
nlsadmin command, 287
no-data routine

XDR, 181
NULL arguments, 61
NULL pointers, 190
NULL strings, 227
NULL transport type, 16
number filters, XDR, xv, 62, 64, 180
number of users

on a network, 93, 94
on a remote host, 58

numbers, xv
adding two, 268

version numbers, xv

O
objects (NIS+)

administration commands, 149, 150
manipulation functions, 151, 155
sample programs, 157, 171

ONC+ overview, 4, 5
opaque data

declarations
RPC language, 227
XDR language, 244, 245

XDR code examples, 186
open TLI file descriptors

passing, 73, 76
optional-data unions

XDR language, 250

P
parameters, , see arguments\x0d,
passing parameters, , see arguments\x0d,
percent sign (%), preprocessing directive, 35
_pid file, 286, 296, 309, 302
ping program, 219, 220, 312
pipes

network, 173
_pmpipe file, 288, 296, 309
_sacpipe file, 288, 296, 309

pm_maxclass field, 290
pm_size field, 289, 290

pmadm command, 110, 111, 287, 292, 294, 300,
301

pmap_getmaps routine, 141
pmap_getport routine, 141
pmap_rmtcall routine, 141
pmap_set routine, 141
pmap_unset routine, 141
PMAPPROC_CALLIT procedure, 281
PMAPPROC_DUMP procedure, 281
PMAPPROC_GETPORT procedure, 281
PMAPPROC_NULL procedure, 280
PMAPPROC_SET procedure, 280
PMAPPROC_UNSET procedure, 281
pmmsg structure, 289
_pmpipe file, 288, 296, 309
_pmtab file, 287, 292, 293, 296, 309
/ directory, 288, 292, 310, 309
PMTAG environment variable, 288, 295
pointers

remote procedures, 26
RPC language, 224
XDR code examples, 189, 190

poll routine, 84, 86
pop configuration-script keyword, 299
port monitors

activity monitoring, 285
adding, 284
adding services, 292
administrative commands

monitor-specific command, 294
pmadm, 110, 111, 287, 292, 294, 300,

301
sacadm, 110, 284, 291, 293, 300

administrative files
_pmtab, 287, 292, 293, 296, 309
_sactab, 309
_sactab, 291

administrative interface, 290, 296
changing port monitor services, 292
configuration scripts, 297, 301

installing, 300, 301
language for writing, 298, 299
per-port monitor, 296 to 300
per-service, 287, 288, 295 to 301
per-system, 297, 300, 309
printing, 300, 301
replacing, 300, 301

Index-326 ONC+ Developer’s Guide ♦ , 1998

deleting services, 292
disabling, 286, 288
enabling, 286, 288
files

administrative, 287, 291 to 293, 295,
309, 309

key, 295
per-port monitor configuration, 296 to

300
per-service configuration, 287, 288,

295 to 297, 309 to 301
per-system configuration, 297, 300,

309
private, 288, 292
process ID, 286, 296, 309

functions, 285, 287, 296
home directory for, 309
identifying services, 292
management function, 285
message interface, 288, 290, 296, 309, 301,

307
_pmpipe file, 288, 296, 309
private files, 288, 292
process IDs and lock files, 286, 296, 309
removing, 284
requirements for implementing, 295
restricting access to system, 286
rpcgen tool and, 29, 49 to 51
sample code, 301, 307
service interface, 294
terminating, 287, 296
types of, 291
using, 109, 111
utmp entry creation, 286, 293, 296
version numbers, 293, 294

port monitors, see SAF (service access
facility)\x0d

writing with service access facility,,
port numbers, xv

getting for registered services, 141, 277,
281

portmap routine, 280
rpcbind routine, 19, 233
TCP/IP protocol, 19, 233, 280
UDP/IP protocol, 19, 233, 280

porting data, , see XDR (external data
representation)\x0d,

porting TS-RPC to TI-RPC, 136, 145

applications, 137
benefits, 137
code comparison examples, 142, 145
differences between TI-RPC and

TS-RPC, 138, 142, 145
function compatibility lists, 139, 141
libc library and, 137
libnsl library and, 137
name-to-address mapping and, 138
old interfaces and, 137

portmap routine, 277, 281
address management functions, 141
broadcast RPC and, 279, 281
operation of, 280, 281
overview, 277, 278
port number, 280
protocol specification for, 278, 280
replacement of, 18, 277
TS-RPC and, 138

ports
defined, 285

preprocessing directives
rpcgen tool, 35, 36, 48, 50

printing, xv
message to system console, 23, 29, 270, 273
port monitor configuration scripts, 300,

301
printmsg.c program

remote version, 24, 29, 270, 273
single process version, 23, 24, 270

privacy (security service), 99
procedure numbers, xv

described, 12, 202
error conditions, 202

procedure-lists
RPC language, 221

procedures
registering as RPC programs, 13, 61
RPC language, 221

program declarations
RPC language, 225, 226

program numbers, xv, 202, 204
assigning, 203, 204
described, 12, 202
error conditions, 202
registering, 204

Index-327

transient (dynamically assigned), 114, 115,
203

program numbers, see portmap routine
mapping,,

program-definitions
RPC language, 221

PROGVERS program name, 111
PROGVERS_ORIG program name, 111
protocols, xv

AUTH_DES, 212, 215
rpcbind protocol specification, 227, 232
specifying in RPC language, 25

XDR language, xv
push configuration-script keyword, 298

Q
QOP (Quality of Protection), 100
quadruple-precision floating point

XDR language, 243
Quality of Protection (QOP), 100

R
raw RPC

testing programs using low-level, 81, 84
READDIR procedure, 30, 34, 263, 267
record streams

XDR, 192, 193, 208
record-marking standard, 208
recursive data structures, 195, 198, 251
registering

authentication numbers, 208
current vs. previous release, 140
hand-coded registration routine, 61
procedures as RPC programs, 13, 60, 61
program numbers, 204
program version numbers, 111

registering, see portmap routine
addresses,,

registerrpc routine, 140
releasing memory, , see memory,

releasing\x0d,
remote copy routine, 132, 135
remote directory listing service, 30, 34
remote procedure call, , see RPC (remote

procedure call)\x0d,
remote procedures

converting local procedures to, 23, 29
identifying, 12, 201, 202, 204

remote time protocol, 35, 46
removing, , see deleting,
rendezvousing

TI-RPC and, 201
replacing, , see changing\x0d,
replica servers

NIS+, 148, 150
reporting, , see information reporting\x0d,
rls.c routine, 34, 267
RPC (remote procedure call), xv

address lookup services, 15, 18, 19
address reporting, 20
address translation, 18, 19, 138
asynchronous mode, 84, 86
batching, 88, 91, 204, 273, 276
described, 9, 10, 200
errors, 28, 56, 202
failure of, 28
identifying remote procedures, 12, 201,

202, 204
indirect, 231, 232, 235
information reporting, 20, 114
interface routines, 12, 16, 57, 79

bottom level, 15, 77, 79
caching servers, 79
expert level, 14, 73, 77
intermediate level, 14, 70
low-level data structures, 79
overview, 12, 16, 57, 58, 66
simplified, 13, 58, 65, 66
standard, 13, 16, 66
top level, 13, 28, 66, 70

multiple client versions, 112, 114
multiple server versions, 111, 112
name-to-address translation, 18, 19, 138
network selection, 16
poll routine, 84, 86
port monitor usage, 109, 111
raw, testing programs using low-level, 81
record-marking standard, 208
standards, 10, 208
transient RPC program numbers, 114, 115,

203
transport selection, 17
transport types, 16, 17

Index-328 ONC+ Developer’s Guide ♦ , 1998

RPC (remote procedure call), see broadcast
RPC\x0d

broadcast,,
RPC (remote procedure call), see portmap

routine
address registration,,

RPC (remote procedure call), see TI-RPC
(transport-independent
remote procedure
call)protocol\x0d

protocol,,
RPC (remote procedure call), see TI-RPC

(transport-independent
remote procedure call),
interface routines\x0d

interface routines,,
rpcgen tool, xv
RPC language

reference, 255, 262
RPC language (RPCL), xv, 219, 227

arrays, 223, 224
booleans, 226
C vs., 21
C-style mode and, 226
constants, 222
declarations, 222, 224
definitions, 220, 221, 255
discriminated unions, 31, 225
enumerations, 31, 221, 222
example protocol described in, 25
example service described in, 219, 220
fixed-length arrays, 223
keywords, 31
opaque data, 227
overview, 255, 312
pointers, 224
portmap protocol specification in, 279, 280
program declarations, 225, 226
simple declarations, 222
special cases, 226, 227
specification for, 219, 227
strings, 25, 227
structures, 31, 224
syntax, 220, 221, 255
type definitions, 222
unions, 31, 225
variable-length arrays, 223
voids, 227

XDR language vs., 219, 220, 255
rpc.nisd command, 150
RPC/XDR, , see RPC language (RPCL)\x0d,
RPC_AUTHERROR error, 212
rpc_broadcast routine

current vs. previous release, 141, 143
described, 13
source code, 144, 145
using, 86, 88

rpc_call routine
current vs. previous release, 140
described, 13, 59
using, 59, 60

RPC_CLNT preprocessing directive, 35
rpc_control routine, 120, 121, 125
rpc_createerr global variable, 68
__rpc_dtbsize function, 85
rpc_gss_get_mechanisms, 107
rpc_gss_get_principal_name, 103
rpc_gss_getcred, 105
rpc_gss_is_installed, 107
rpc_gss_max_data_length, 107
rpc_gss_seccreate, 102
rpc_gss_set_callback, 106
rpc_gss_set_defaults, 103
rpc_gss_set_svc_name, 103
rpc_gss_svc_max_data_length, 107
RPC_HDR preprocessing directive, 35
rpc_reg routine

current vs. previous release, 140
described, 13
using, 60, 62

__rpc_select_to_poll function, 85
RPC_SVC preprocessing directive, 35
RPC_SVC_MTMODE_GET library

routine, 122, 125
RPC_SVC_MTMODE_SET library routine, 122
RPC_SVC_THRCREATES_GET library

routine, 122
RPC_SVC_THRERRORS_GET library

routine, 122
RPC_SVC_THRMAX_GET library routine, 122
RPC_SVC_THRMAX_SET library routine, 122
RPC_SVC_THRTOTAL_GET library

routine, 122
RPC_TBL preprocessing directive, 35
RPC_XDR preprocessing directive, 35

Index-329

rpcb_getaddr routine, 15, 141
rpcb_getmaps routine, 141
rpcb_gettime routine, 141
rpcb_rmtcall routine, 141
rpcb_set routine

current vs. previous release, 141
described, 15, 76

rpcb_unset routine, 15, 141
rpcbind daemons

broadcast RPC and, 86
registering addresses with, 19

rpcbind routine, xv
address management functions, 141
broadcast RPC and, 228, 235
calling, 15
described, 11, 18, 19, 138, 141, 211, 227
listing mappings, 12, 231, 234
operation of, 233, 235
port number, 19, 233
portmap routine replaced by, 18, 277
protocol specification for, 227, 232
time service, 141, 211, 234
version 4, 235

RPCBPROC_BCAST procedure, 231, 235
RPCBPROC_CALLIT procedure, 19, 231, 234,

235
RPCBPROC_DUMP procedure, 231, 234
RPCBPROC_GETADDR procedure, 230, 233
RPCBPROC_GETADDRLIST procedure, 232,

235
RPCBPROC_GETSTAT procedure, 232, 235
RPCBPROC_GETTIME procedure, 211, 231,

234
RPCBPROC_GETVERSADDR procedure, 232,

235
RPCBPROC_INDIRECT procedure, 231, 232,

235
RPCBPROC_NULL procedure, 230, 233
RPCBPROC_SET procedure, 230, 233, 235
RPCBPROC_TADDR2UADDR procedure, 231,

232, 234
RPCBPROC_UADDR2TADDR procedure, 231,

232, 234
RPCBPROC_UNSET procedure, 230, 233, 235
rpcgen tool, 21, 56

64– vs. 32–bit systems, 54
add two numbers program, 268
advantages, 22

arguments, 26, 38, 40, 61, 62, 65, 226
authentication and, 49, 52, 94, 98
batched code example, 273, 276
broadcast call server response, 49, 50
C and

ANSI C compliance, 23, 36, 47
C-style mode, 22, 36, 38, 40, 226
preprocessing directives, 35, 36, 48, 50
SPARCompiler C++ 3.0

compatibility, 47
compilation modes, 22, 38, 40
complex data structure passing, 30, 34
converting local procedures to remote

procedures, 23, 29
cpp directive, 36
debugging, 49, 50, 55, 56
defaults

argument passing mode, 38 to 40
C preprocessor, 36
client time-out period, 51
compilation mode, 22
library selection, 47
MT-safety, 22, 40
output, 21
server exit interval, 51

define statements on command line, 48, 50
described, 21, 22
directory listing program, 30, 34, 263, 267
dispatch tables, 49, 52, 54
failure of remote procedure calls, 28
flags

listed, 36
-Sc (templates), 37
-i (xdr_inline count), 36
-A (MT Auto mode), 36, 46
-a (templates), 36, 37
-b (TS-RPC library), 36, 47
-i (xdr_inline count), 48
-M (MT-safe code), 36, 40
-N (C-style mode), 36, 38
-Sc (templates), 36
-Sm (templates), 36, 37
-Ss (templates), 36, 37

hand-coding vs., 61

Index-330 ONC+ Developer’s Guide ♦ , 1998

libraries
libnsl, 29, 31, 137, 139
selecting TI-RPC or TS-RPC

library, 23, 36, 47
MT (multithread) Auto mode, 22, 36, 46,

121, 125
MT (multithread)-safe code, 22, 36, 40, 46
naming remote procedure calls, 26
network types/transport selection, 48, 49
Newstyle (C-style) mode, 22, 36, 38, 40
optional output, 21
pointers, 26
port monitor support, 29, 49 to 51
preprocessing directives, 35, 36, 48, 50
print message program, 23, 29, 270, 273
programming techniques, 48, 56
socket functions and, 47
spray packets program, 268, 269
SunOS 5.x features, 22, 23
templates, 22, 36 to 38, 40
TI-RPC vs. TS-RPC, 138
TI-RPC vs. TS-RPC library selection, 23,

36, 47
time server program, 35, 46, 267
time-out changes, 49, 51
tutorial, 23, 36
variable declarations and, 223
XDR routine generation, 30, 34, 35, 171
xdr_inline count, 36, 48

rpcgen tool, see client handles
handles and,,

rpcgen tool, see client handles\x0d
client handles and,,

rpcgen tool, see client programs\x0d
client programs and,,

rpcgen tool, see client stub routines
stub routines and,,

rpcgen tool, see client stub routines\x0d
client stub routines and,,

rpcgen tool, see server handles\x0d
server handles and,,

rpcgen tool, see server programs\x0d
server programs and,,

rpcgen tool, see server stub routines
server stub routines and,,

rpcinfo routine, 19, 20
rpcproc_t, see 64–bit system,
rpcprog_t, see 64–bit system,

RPCPROGVERSMISMATCH error, 112
RPCSEC_GSS security flavor, 98

associated files, 108
auth_destroy, 103
callbacks, 106
changing values, 103
cookies, 106
creating a context, 102
credentials, 105
destroying a context, 103
/etc/gss/qop file, 108
get list of mechanisms, 107
get list of QOPs, 107
getting maximum data size, 107
gsscred table, 108
gsscred utility, 108
list of routines, 100
meaning of “flavor”, 100
mechanism, 100
principal names, 103
QOP, 100
receiving credentials, 105
rpc_gss_get_mech_info, 107
rpc_gss_get_mechanisms, 107
rpc_gss_get_principal_name, 103
rpc_gss_getcred, 105
rpc_gss_max_data_length, 107
rpc_gss_seccreate, 102
rpc_gss_set_calback, 106
rpc_gss_set_defaults, 103
rpc_gss_set_svc_name, 103
rpc_gss_svc_max_data_length, 107
service

integrity, 99
privacy, 99

/rpcsvc directory, 204
rpcvers_t, see 64–bit system,
rprintmsg routine, 29
rq_clntcred field, 92
rq_cred field, 92
rstat program

multithreaded, 115, 120
run configuration-script keyword, 299
runwait configuration-script keyword, 299
rusers routine, 61
rusersDefault Para Font routine, 58

Index-331

S
SAC (service access controller)

described, 284, 287
key files, 291, 295, 309
log file, 310
message interface, 288, 290, 296, 309, 301,

307
_sacpipe file, 288, 296, 309
_sactab file, 291, 309
sac.h header file, 305, 307
sacadm command, 111, 284, 291, 293, 300
starting, 296, 297

sac.h header file, 305, 307
sacadm command, 111, 284, 291, 293, 300
_sacpipe file, 288, 296, 309
_sactab file, 291, 309
SAF (service access facility), xv, 283, 310

administrative interface, 290, 296, 300, 301
key files, 295
monitor-specific command, 294
pmadm command, 110, 111, 287, 292,

294, 300, 301
port monitor implementation

requirements, 295
port monitor responsibilities, 296
sacadm command, 111, 284, 291, 293,

294, 300
_pmtab file, 287, 292, 293, 296, 309
_sactab file, 291, 309
service interface, 294

configuration scripts, 297, 301
installing, 300, 301
language for writing, 298, 299
per-port monitor, 296 to 300
per-service, 287, 288, 295 to 301
per-system, 297, 300, 309
printing, 300, 301
replacing, 300, 301

directory structure, 310, 308
files used by, 287, 291 to 293, 295
logic diagram, 307, 308
message interface, 288, 290, 296, 309, 301,

307
overview, 283, 287
port monitor functions and, 285, 287, 296,

297

SAC (service access controller) and, 284,
287, 288, 290

sample code, 301, 307
terminating port monitors, 287, 296

sc_size field, 289, 290
searching NIS+ tables, 152
security, xv

mechanism, 100
NIS+, 149
QOP, 100
service, 99

security flavor
meaning, with RPCSEC_GSS, 100

authentication, xv
semantics

TI-RPC call, 11, 201
serializing, xv, 30, 34, 62, 65, 135, 136, 173, 174,

176, 177, 312
server handles, xv

creating
bottom level interface, 15, 78, 79
current vs. previous release, 140
expert level interface, 15, 76, 77
intermediate level interface, 14, 72
top level interface, 13, 14, 69, 70

destroying, current vs. previous
release, 140

low-level data structures for, 80
server programs

remote copy, 134, 135
rpcgen tool and

broadcast call response, 49, 50
C-style mode, 40
client authentication, 49, 52, 92, 93
complex data structure passing, 31, 32
debugging, 55, 56
directory listing service, 31, 32, 263,

265
MT Auto mode, 46
MT-safety, 22, 45, 46
network type/transport selection, 48,

49
overview, 23, 29

simplified interface, 60
transient RPC program, 114

server stub routines, xv

Index-332 ONC+ Developer’s Guide ♦ , 1998

rpcgen tool and, 21, 23, 29
ANSI C-compliant, 47
MT Auto mode, 46
MT-safe, 22, 42, 43
preprocessing directive, 35

server templates
rpcgen tool, 22, 36, 37, 40

server transport handle, 80
servers, xv

authentication and, 92 to 96
batched, 90, 91, 273, 275
caching, 79
crashes, 201, 212
defined, 312
dispatch tables, 49, 52, 54
exit interval, rpcgen tool and, 50, 51
multiple versions, 111, 112
multithreaded

Auto mode, 22, 36, 46, 120, 121, 125
overview, 115, 120, 121
safety, 22, 42, 43, 45, 46, 57, 120, 311
unsafe routines, 120
User mode, 120, 121, 125, 128, 132

NIS+, 148, 150, 154
poll routine and, 84, 86
port monitors and, 109, 111
transaction IDs and, 201

service, 99
service access controller, , see SAC (service

access controller)\x0d,
service access facility, , see SAF (service access

facility)\x0d,
service transport handle (SVCXPRT), 109, 121
service-dispatch routine

authentication and, 92, 93
setnetconfig routine, 75
signed integers

XDR language, 239
simple declarations

RPC language, 222
simplified interface routines (RPC), 13, 58, 65

client, 59, 60
hand-coded registration routine, 61
MT safety of, 57
overview, 13, 58
server, 60
XDR conversion, 62, 65

single-threaded mode

as default, 120
poll routine and, 84, 86

sixty-four-bit system, see 64–bit system,
socket functions, , see TS-RPC

(transport-specific remote
procedure call)\x0d,

SPARCompiler C++ 3.0
rpcgen tool and, 47

spray.x (spray packets) program, 268, 269
standard interface routines (RPC), 13, 16, 66

bottom level routines, 15, 77, 79
expert level routines, 14, 73, 77
intermediate level routines, 14, 70
low-level data structures, 79
MT safety of, 57
server caching, 79
top level routines, 13, 28, 66, 70

standards
ANSI C standard, rpcgen tool and, 23, 36,

47
naming standard, 211
record-marking standard, 208
RPC, 10, 208
XDR canonical standard, 175

statistics, , see information reporting\x0d,
status reporting, , see information

reporting\x0d,
stream transports, xv

defined, 312
STREAMS modules

port monitor configuration and, 299, 300
streams, , see XDR (external data

representation), streams\x0d,
string declarations

RPC language, 25, 227
XDR language, 245, 246

string representation, xv
XDR routines, 65, 182, 183

structure declarations, xv
RPC language, 31, 224
XDR language, 247, 253, 254

stub routines, , see client stub routines,
Sun RPC, , see TI-RPC (transport-independent

remote procedure call)\x0d,
SunOS 5.x

rpcgen tool features, 22, 23
_svc suffix, 47

Index-333

_svc.c suffix, 29
svc_create routine

current vs. previous release, 140
described, 14, 70

svc_destroy routine, 140
svc_dg_create routine

current vs. previous release, 140
described, 15, 81
using, 79

svc_dg_enablecache routine, 79
svc_done routine, 120, 125
svc_fd_create routine, 109, 140
svc_freeargs routine, 136
svc_getargs routine

described, 136
MT performance and, 122, 128

svc_getcaller routine, 140
svc_getreqpoll routine, 85, 120
svc_getreqset routine, 84, 120
svc_getrpccaller routine, 140
svc_pollset routine, 85
svc_raw_create routine, 81, 84, 140
svc_reg routine

current vs. previous release, 140
described, 15
port monitors and, 109

svc_register routine, 140
svc_run routine

bypassing, 84
described, 60, 70
multithreaded RPC servers and, 120
poll routine and, 84 to 86

svc_sendreply routine, 70
svc_tli_create routine

current vs. previous release, 140
described, 15, 76
using, 76, 77, 109

svc_tp_create routine, 14, 140
svc_udp_bufcreate routine, 140
svc_unreg routine, 15, 140
svc_unregister routine, 140
svc_vc_create routine

current vs. previous release, 140
described, 16, 81
using, 79

svcerr_systemerr routine, 94
svcfd_create routine, 140
svctag file, 292, 293, 296, 297, 309

svcudp_create routine, 76, 77, 140
SVCXPRT service transport handle, 109, 121
svrerr_weakauth routine, 94
synchronization, , see time

synchronization\x0d,
syntax

RPC language, 220, 221, 255
XDR language, 253

_sysconfig file, 297, 300, 309

T
tables (NIS+)

access functions, 151, 152
administration commands, 150
overview, 148, 149
sample programs, 162, 164

/tag directory, , see /pmtag directory\x0d,
TCP (transport control protocol), xv

nettype parameter for, 17
porting TCP applications from TS-RPC to

TI-RPC, 137
portmap port number for, 280
portmap sequence for, 278
RPC protocol and, 200
rpcbind port number for, 19, 233
server crashes and, 201

tcp transport type, 17
TCP/IP protocol, , see TCP (transport control

protocol)\x0d,
TCP/IP streams

XDR, 192, 193, 208
templates

rpcgen tool, 22, 36 to 38, 40
terminating port monitors, 287, 296
testing

NIS+ groups, 153
programs using low-level raw RPC, 81, 84

thr_create routine, 125
thread library

thread, 116
thread.h file, 125
threads, , see MT Auto mode,
TI-RPC (transport-independent remote

procedure call), xv
address lookup services, 15, 18, 19
address reporting, 20

Index-334 ONC+ Developer’s Guide ♦ , 1998

address translation, 18, 19, 138
call semantics, 11
data representation, 12
described, 4, 9, 10
identifying remote procedures, 12, 201,

202, 204
information reporting, 20, 114
interface routines, 12, 16, 57, 79

bottom level, 15, 77, 79
caching servers, 79
expert level, 14, 73, 77
intermediate level, 14, 70
low-level data structures, 79
overview, 12, 16, 57, 58, 66
simplified, 13, 58, 65, 66
standard, 13, 16, 66
top level, 13, 28, 66, 70

library selection, rpcgen tool and, 23, 36,
47

name-to-address translation, 18, 19, 138
network selection, 16
protocol, xv, 199, 208

authentication and, 202, 203
binding and rendezvous

independence and, 11, 201
identifying procedures, 12, 201, 202,

204
in XDR language, 205, 208
overview, 199, 201
record-marking standard, 208
transport protocols and semantics

and, 11, 200
version number, 202

raw, testing programs using low-level, 81,
84

transient RPC program numbers, 114, 115,
203

transport selection, 17
transport types, 16, 17

TI-RPC (transport-independent remote
procedure call), see
arguments\x0d

parameter passing,,
TI-RPC (transport-independent remote

procedure call), see porting
TS-RPC to TI-RPC\x0d

TS-RPC and,,

TI-RPC (transport-independent remote
procedure call), see rpcbind
routine\x0d

address registration,,
rpcgen tool, xv
time

obtaining current, 141, 211, 234
ping program, 219, 220

time server program, 35, 46, 267
time service

intermediate level client for, 70, 72
intermediate level server for, 72
rpcbind routine, 141, 211, 234
top level client for, 67, 69
top level server for, 69, 70

time synchronization
AUTH_DES authentication, 95, 212
AUTH_KERB authentication, 97, 218
NIS+, 155

time-out periods
rpcgen tool and, 49, 51

time.x program, 35, 46, 267
time_prog routine, 70
timed client creation

intermediate level interface, 14, 71
top level interface, 14, 68

timestamps, , see time synchronization\x0d,
TLI (transport-level interface), , see expert

level interface routines\x0d,
TLI file descriptors

passing open, 73, 76
top level interface routines (RPC), 13, 28, 66, 70

client, 28, 66, 69
overview, 13, 66
server, 69, 70

transaction IDs, 12, 201
transaction log functions (NIS+), 151, 155
transient program numbers, 114, 115, 203
translating, , see converting\x0d,
transport

defined, 312
transport addresses (netbuf addresses), 234
transport handles

defined, 312
server, 80
SVCXPRT service, 109, 121
XDR routines requiring, 66, 68

Index-335

transport protocols, xv
RPC protocol and, 200

UDP (user datagram protocol), xv
transport selection

RPC, 17
rpcgen tool, 48, 49

transport types, xv
described, 16, 17
interfaces and, 66
rpcgen tool and, 48, 49

connectionless transports, xv
transport-independent remote procedure call, ,

see TI-RPC
(transport-independent
remote procedure call)\x0d,

transport-level interface (TLI) routines, , see
expert level interface
routines\x0d,

transport-level interface file descriptors
passing open, 73, 76

transport-specific remote procedure call, , see
TS-RPC (transport-specific
remote procedure call)\x0d,

trees, 251
TS-RPC (transport-specific remote procedure

call)
library selection, rpcgen tool and, 36, 47

TS-RPC (transport-specific remote procedure
call), see porting TS-RPC to
TI-RPC\x0d

porting to TI-RPC,,
ttyadm command, 287
ttymon port monitor, 287
tutorials

rpcgen tool, 23, 36
type definitions

RPC language, 222
XDR language, 249, 250, 253

U
UDP (user datagram protocol), xv

broadcast RPC and, 86
client creation routines for, 73, 76, 78
nettype parameter for, 17
porting UDP applications from TS-RPC to

TI-RPC, 137
portmap port number for, 280

RCP protocol and, 200
rpcbind port number for, 19, 233
server creation routines for, 76 to 79

udp transport type, 17
UDP/IP protocol, , see UDP (user datagram

protocol)\x0d,
ulimit command, 299
umask command, 299
unions

declarations
RPC language, 31, 225
XDR language, 248, 250, 253

XDR code samples, 187, 189
universal addresses, 18, 233, 234, 277, 312
unregistering, xv

current vs. previous release, 140
portmap routine, 281
rpcbind routine, 19, 230, 233
rpcinfo routine, 20

unsigned hyper integers
XDR language, 241

unsigned integers
XDR language, 239

user datagram protocol, , see UDP (user
datagram protocol)\x0d,

User MT mode, 120, 121, 125, 132
user’s bind address

passing, 76
users

number of
on a network, 93, 94
on a remote host, 58

/usr/include/rpcsvc directory, 204
/usr/share/lib directory, 34
utmp entries

creating, 286, 293, 296

V
/var/saf/_log file, 310
/var/saf/ directory, 288, 292, 310
variable declarations, 223
variable-length array declarations, xv

RPC language, 223
XDR language, 247

variable-length opaque data, xv
XDR language, 244, 245

Index-336 ONC+ Developer’s Guide ♦ , 1998

verifiers
AUTH_DES, 211, 212, 214
AUTH_KERB, 97, 98, 217, 218
AUTH_SYS, 209, 210
described, 202, 203

version numbers, xv
assigning, 111
changing, 111
described, 12, 111, 202
error conditions, 202
message protocol, 202
multiple client versions, 112, 114
multiple server versions, 111, 112
port monitors, 293, 294
registration of, 111

version numbers, see portmap routine
mapping,,

versions, xv
version-lists

RPC language, 221
versions, xv

library functions, compatibility of current
vs. previous release, 139, 141

RPC language, 221
visible transport type, 16
void arguments, 226
void declarations

RPC language, 227
XDR language, 249

W
window of credentials

AUTH_DES authentication, 95, 213
AUTH_KERB authentication, 97, 217
defined, 212
window verifiers, 212

X
x_base field, 194
x_destroy macro, 194
x_getbytes routine, 194
x_getint routine, 195
x_getint32 routine, 195
x_getlong routine, 195
x_getpostn macro, 194
x_handy field, 194

x_inline routine, 194
x_op field, 194
x_private field, 194
x_public field, 194
x_putbytes routine, 194
x_putint routine, 195
x_putint32 routine, 195
x_putlong routine, 195
x_setpostn macro, 194
.x suffix, 31
XDR (external data representation), xv, 171,

198
block size, 238
canonical standard, 175
converting from (deserializing), 62, 65, 70,

135, 136, 176, 177, 311
converting to (serializing), 30, 34, 62, 65,

135, 136, 173, 174, 176, 177,
312

cost of conversion, 175
described, 4, 171, 174, 237
direction determination for operations, 191
direction independence of routines, 176
file data structure in, 254
graphic box notation, 238
library, xv, 176, 177
linked lists, 195, 198, 251
memory allocation with, 135, 136
optimizing routines, 191
primitive routines, 62, 65, 176, 177, 193

arrays, 183, 186, 187
byte arrays, 183
constructed (compound) data type

filters, 65, 182
discriminated unions, 187, 189
enumeration filters, 181
fixed-length arrays, 187
floating point filters, 62, 181
memory requirements, 178, 180, 182
no-data routine, 181
nonfilter, 190
number filters, 62, 64, 180
opaque data, 186
overview, 177
pointers, 189, 190
strings, 65, 182, 183
unions, 187, 189

Index-337

remote copy (two-way XDR) routine, 132,
135

rpcgen tool and, 30, 34, 35, 171
streams

accessing, 191
creation by RPC system, 176
implementing new instances of, 193,

195
interface to, 193, 195
memory, 192
nonfilter primitives for, 190
record (TCP/IP), 192, 193, 208
standard I/O, 191

transport handles and, 66, 68
XDR (external data representation), see XDR

language\x0d
protocol,,

XDR language, 238, 254
arrays, 246, 247, 253
AUTH_DES authentication protocol

in, 212, 215
booleans, 240
comments, 251
constants, 249, 251, 253
counted byte strings, 245, 246
declarations, 238, 251
discriminated unions, 248, 250, 253
enumerations, 240
file data structure described in, 254
fixed-length arrays, 246
fixed-length opaque data, 244
floating point, 242, 243
hyper integers, 241
identifiers, 251
integers, 173, 174, 239, 241
keywords, 253
opaque data, 244, 245
optional-data unions, 250
overview, 237, 238, 313
quadruple-precision floating point, 243
RPC language vs., 219, 220, 255
RPC message protocol in, 205, 208
signed integers, 239
specification for, 251, 254
strings, 245, 246
structures, 247, 253, 254
syntax, 253, 254
type definitions, 249, 250, 253

unions, 248, 250, 253
unsigned hyper integers, 241
unsigned integers, 239
variable-length arrays, 247
variable-length opaque data, 244, 245
voids, 249

xdr_ prefix, 31
xdr_array routine, 183, 186, 189
xdr_bool routine, 62
xdr_bytes routine, 65, 183
xdr_char routine, 62, 180
xdr_chararr routines, 135, 136
xdr_cnd routine, 185
XDR_DECODE operation, 182
xdr_destroy routine, 190
xdr_double routine, 62, 181
xdr_element routine, 184
XDR_ENCODE operation, 182
xdr_enum routine, 62
xdr_float routine, 62, 181
XDR_FREE operation, 182
xdr_free routine, 34, 43
xdr_getpos routine, 190
xdr_gnumbers routine, 177, 195, 198
xdr_history routine, 185
xdr_hyper routine, 62
xdr_inline count, 36, 48
xdr_int routine, 62, 173, 174, 176, 180
xdr_int16 routine, 62
xdr_int32 routine, 62
xdr_int64 routine, 62
xdr_int8 routine, 62
xdr_long routine, 62
xdr_netobj routine, 62, 186
xdr_opaque routine, 186
xdr_party routine, 184
xdr_pgn routine, 189
xdr_pointer routine, 190, 196 to 198
xdr_quadruple routine, 62
xdr_rcp routine, 132, 135, 143
xdr_reference routine, 65, 189, 190, 198
xdr_setpos routine, 190
xdr_short routine, 62
xdr_simple routine, 63, 65
xdr_sizeof routine, 178, 180
xdr_string routine, 63, 65, 182, 185, 186
xdr_type(object) notation, 97

Index-338 ONC+ Developer’s Guide ♦ , 1998

xdr_u_char routine, 62, 180
xdr_u_int routine, 62, 180
xdr_u_long routine, 62
xdr_u_short routine, 62
xdr_union routine, 187, 189
xdr_varintarr routine, 64
xdr_vector routine, 65, 187
xdr_void routine, 62, 181
xdr_wrapstring routine, 62, 185, 186
xdrmem_create routine, 192
xdrrec_create routine, 192
xdrrec_endofrecord routine, 193

xdrrec_eof routine, 193
xdrrec_skiprecord routine, 193
xdrs-x_op field, 191
xdrstdio_create routine, 176, 191
xp_fd field, 81
xp_ltaddr field, 81
xp_netid field, 81
xp_rtaddr field, 81
xp_tp field, 81
xprt_register routine, 140
xprt_unregister routine, 140

Index-339

