
1

The Transmission Control Protocol

Dorgham Sisalem
GMD Fokus, Berlin

sisalem@fokus.gmd.de

TU Berlin, WS 1995/96

c
1995, Sisalem

What are transmission protocols needed for?

Addressing: application to application addressing

Reliable delivery: the receiver application should receive the same data
stream the source puts on the net

Segment order maintenance: data segments should reach the application
in the same order they left the sender

Flow control: the data sending speed should adapt itself to the receivers
speed

Congestion control: the transmission speed can not be faster than the
speed of the slowest link traversed on the connections path

Segmentation: data is sent in segments that provide the highest throughout.
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Transmission Control Protocol

� TCP is connection oriented and full duplex.

� The maximum segment size (MSS)is set during connection
establishment.

� Reliability is achieved using acknowledgments, round trip delay
estimations and data retransmission.

� TCP uses a variable window mechanism for flow control.

� Congestion control and avoidance is reached using slow start and
congestion avoidance schemes.
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� The most common option is the maximum segment size option.
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Connection Establishment and Termination

� Connection establishment is done with a three way handshake

segment 1

tao lupus

0.0
SYN 141:141(0) <mss 1024>

segment 2

ACK 182
0.002402 (0.0024)

0.007224 (0.0048) segment 3

segment 44.155441 (4.1482) FIN 142:142(0) ACK 182

4.156747 (0.0013)

segment 5

segment 6

FIN 182:182(0) ACK 143

ACK 142

SYN 181:181(0) <mss 1024>

ACK 143

ACK 183
4.158144 (0.0014)

4.180662 (0.0225) segment 7

� Each side can just close its transmission side resulting in a half close.

Connection Establishment

� tao sends a SYN segment with an initial sequence number (ISN) and
and the maximum segment size (MSS) it is willing to receive.

� lupus replies with a SYN segment acknowledging ISN and announcing
its MSS.

� MSS can be at the most as large as the interface segment size minus 40
bytes.

SLIP lupus

SYN <mss 1460>

SYN <mss 256>

home
MTU=296

ethernet

MTU=1500

tao
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Connection Establishment
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Connection Termination

� A sender terminates its part of the connection by sending a FIN
segment.

� After acknowledging the FIN the receiver can still send data on its part
of the connection (half close).

� A connection can be aborted with a RST segment.
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Interactive Data Transfer

� Data received from the application is usually sent in segments of MSS.

� In the case of interactive applications -rlogin, telnet- the sender can
force the delivery of small packets using the PSH (push) flag.

� With delayed acknowledgments the receiver delays sending the
acknowledgments until it has some data to send or a 200 ms timer
expires.

client 

0.0

0.015

0.03

delayed
ack Ack 2

PSH 1:2(1) ack1 (echo char)

PSH 0:1(1) ack1 (char)

server

PSH 0:1(1) ack1 (char)

ack1 

PSH 0:1(1) ack 2 (echo char)

ack 2

0.0

0.01

0.016
0.015

client server

Interactive Data Transfer

� Sending a lot of small segments can add congestion to a wide area
network.

� Nagle Algorithm: a sender can at most have one outstanding small
segment, that has not yet been acknowledged.

� All data arriving at TCP from the application are queued until the
currently outstanding segment is acknowledged.
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Flow Control in TCP

� TCP uses a sliding window mechanism to adjust the senders
transmission speed to that of the receiver.

� The sliding window permits the sending of multiple segments before
waiting for an acknowledgment.

� Ack segments indicate the last correctly received byte and the number
of bytes the receiver is still willing to accept.

1  2  3  4  5  6  7  8  9  10 11

1  2  3  4  5  6  7  8  9  10 11

win start end of outstanding
data

win end
ack 1

Flow Control in TCP

� Ack segments indicate the last correctly received byte and the number
of bytes the receiver is still willing to accept.

2

SYN 141:141(0) <mss 1024> WIN 4096

SYN 181:181(0) <mss 1024>

ACK 142 WIN 3072

1

4

6

7

5

3

8 3073:4097 (1024) ACK 1, WIN 4096

ACK 3073, WIN 2049

2049:3073 (1024) ACK 1, WIN 4096

1025:2049 (1024) ACK 1, WIN 4096

1:1025 (1024) ACK 1, WIN 4096

ACK 1, WIN 4096

tao
lupus
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Acknowledgments and Retransmission

� A TCP receiver always acknowledges the last correctly received byte.

� After sending a segment the sender starts a timer.

� If the timer expires before receiving an acknowledgment for the sent
segment the segment is considered lost and must be retransmitted.

� The timeout value is calculated dynamically according to the measured
round trip times (RTT).

Err = RTT �A A = smoothed RTT

A = A+ gErr gain g = 1=8

D = D + h (jErrj �D) D = smoothed mean deviation

RTO = A+ 4D

Round-Trip Time Measurement

� TCP implementations use a 500-ms clock for time measurements and
timeout determination.

� Only one measurement is done at a time.

� At the start of a measurement a counter is set to 0 and is then
incremented every time the 500-ms TCP timer is invoked and the
number of the sent segment is remembered.

� Only after acknowledging the sent segment can a new measurement
start.

� After a retransmission the timeout value is not updated until an
acknowledgment for a segment arrives that was not retransmitted
(Karns’s algorithm).
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Round-Trip Time Measurement

� As the 500-ms timer is used for determining the RTT the values used
for updating the timeout value might differ up to �500 ms from the
actual value.

tao lupus

1:257(256) ACK 10.0 1

2RTT=1.5 s
ACK 257

257:513 (256) ACK 1

513:769 (256) ACK 1
3
4

ACK 513

ACK 769

RTT=0.5 s

1.062

1.063

1.081

1.87

6
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Congestion Control in TCP

� A connection’s rate is determined as transmission window/round trip
time.

� When the sum of the connection rates over a link is higher than the
link’s rate segments can be dropped.

� TCP uses packet drops and timeouts as congestion indication.

Receiver

Router 1 Router 2

Router 4

910

13

15161718

ack 8

ack 6ack 5ack 4

ack 2ack 1

14 12 11

ack 7

ack 3

Router 3

Sender 5kbyte/sec

(Bottleneck)1kbyte/sec 
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Slow Start and Congestion Avoidance

� To avoid congestion in advance, the sender must adapt its transmission
window to the available link bandwidth.

� On connection establishment TCP uses a window of the size of 1 MSS
Congestion Window.

� The congestion window is increased by 1 MSS for each acknowledged
segment.

� At any time the sender has has a transmission window of

transmission window = min (advertised window, congestion window)

Slow Start and Congestion Avoidance

� With the slow start scheme the congestion window is exponentially
increased.

� This can quickly congest the network and cause packet drops.

� After a timeout the congestion window is set again to 1 MSS.

� Slow start is reused but only until the congestion window reaches half
of its value before the timeout.

� Afterwards the congestion window is increased only by 1/congestion
window for each acknowledged segment (congestion avoidance).
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Fast Retransmission and Fast Recovery

� Using only timeouts as loss indication leads to long idle periods.

� With the fast retransmission scheme the receiver acknowledges each
out of order segment with an ack of the last correctly received segment.

� Receiving 3 duplicate acks triggers at the source the retransmission of
the last acked segment.

� In the older TCP versions the same actions taken after a timeout are
used in this case as well.

� in TCP versions using fast recovery the congestion window is only
reduced by half after each loss.

Congestion Example

� Both source and receiver have buffers up to 8192 bytes.

� The router has a buffer of 2128 bytes.

� The link has a bandwidth of 2128 bytes/sec.

� MSS=1024.

� The configuration has a round trip delay of 1 sec.

Receiver

Router
2 kbytes/sec

Sender

RTT=1 sec

10 Mbits/sec

Ethernet SLIP link
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Congestion Example: Slow Start
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Congestion Example: Fast Retransmission
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Congestion Example: Fast Retransmission
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Congestion Example: Fast Recovery
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Silly Window Syndrome and Probe Packets

� It is possible for the advertised window size to go to 0.

� After freeing some buffer, the receiver sends an update message with
the size of the available buffer.

� After receiving an ack with WIN=0 the sender starts a persist timer.

� On the expiration of the persist timer a small packet of 1 byte payload
is sent to see if a window update message got lost -such a packet is
called probe packet.

� To avoid sending small packets the receiver must not advertise small
segments, i.e., segments smaller than MSS (silly window syndrome).

TCP Future and Performance

� The capacity of a link is measured as

capacity = bandwidth*RTT

� The throughput of TCP is limited to

throughput =
max window size

RTT

� Using a window scale option improves performance on long fat pipes.

� Updating the RTO value every RTT leads to aliasing effects.

� More accurate timeout calculations can be reached using a time stamp
option
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T/TCP

� Lots of TCP transactions consist simply of a request to a server and a
reply to the client.

� This simple transaction require the sending of 10 segments.

� Due to the connection establishment and termination a simple
transaction requires at least two RTT times plus the processing time
required at the server.

T/TCP

� To distinguish between consecutive transactions a connection count
option is added to the header.

� To avoid unnecessary overhead a host might maintain a per-host cache
of the last seen timeout value, MSS, window size and the CC value.

� A client can combine the SYN, FIN, data request and the current CC
value in one segment.

� If the received CC value is larger than the cached CC the server can
combine the SYN, FIN, ACK of the sender’s SYN and the reply in one
segment.

� The client acks the server’s SYN and FIN in one segment.

� This minimal transactions reduces the time needed for the transaction
to a minimum of RTT plus the processing time at the server.


