
1

The Transmission Control Protocol

Dorgham Sisalem
GMD Fokus, Berlin

sisalem@fokus.gmd.de

TU Berlin, WS 1995/96

c
1995, Sisalem

What are transmission protocols needed for?

Addressing: application to application addressing

Reliable delivery: the receiver application should receive the same data
stream the source puts on the net

Segment order maintenance: data segments should reach the application
in the same order they left the sender

Flow control: the data sending speed should adapt itself to the receivers
speed

Congestion control: the transmission speed can not be faster than the
speed of the slowest link traversed on the connections path

Segmentation: data is sent in segments that provide the highest throughout.

2

Transmission Control Protocol

� TCP is connection oriented and full duplex.

� The maximum segment size (MSS)is set during connection
establishment.

� Reliability is achieved using acknowledgments, round trip delay
estimations and data retransmission.

� TCP uses a variable window mechanism for flow control.

� Congestion control and avoidance is reached using slow start and
congestion avoidance schemes.

TCP Header

U

G

A
C
K

P
S
H

R

0 16 31

32-bit sequence number

16-bit source port number 16-bit destination port number

32-bit acknowledgment number (next byte expected)

16-bit urgent pointer16-bit TCP Checksum

options (if any)

data (if any)

length

R
S
T

S
Y
N

F
I
N

4-bit header reserved
(6 bits) 16-bit window size

20 bytes

� The most common option is the maximum segment size option.

3

Connection Establishment and Termination

� Connection establishment is done with a three way handshake

segment 1

tao lupus

0.0
SYN 141:141(0) <mss 1024>

segment 2

ACK 182
0.002402 (0.0024)

0.007224 (0.0048) segment 3

segment 44.155441 (4.1482) FIN 142:142(0) ACK 182

4.156747 (0.0013)

segment 5

segment 6

FIN 182:182(0) ACK 143

ACK 142

SYN 181:181(0) <mss 1024>

ACK 143

ACK 183
4.158144 (0.0014)

4.180662 (0.0225) segment 7

� Each side can just close its transmission side resulting in a half close.

Connection Establishment

� tao sends a SYN segment with an initial sequence number (ISN) and
and the maximum segment size (MSS) it is willing to receive.

� lupus replies with a SYN segment acknowledging ISN and announcing
its MSS.

� MSS can be at the most as large as the interface segment size minus 40
bytes.

SLIP lupus

SYN <mss 1460>

SYN <mss 256>

home
MTU=296

ethernet

MTU=1500

tao

4

Connection Establishment

C
lie

nt

Se
rv

er

so
ck

et
()

bi
nd

()

lis
te

n(
)

ac
ce

pt

re
ad

()

w
ri

te

so
ck

et
()

co
nn

ec
t(

)

w
ri

te
()

re
ad

()

bl
oc

ks
 u

nt
il

co
nn

ec
tio

n
fr

om
 c

lie
nt

co
nn

ec
tio

n
es

ta
bl

is
hm

en
t

da
ta

 r
eq

ue
st

pr
oc

es
s

re
qu

es
t

da
ta

 r
ep

ly

Connection Termination

� A sender terminates its part of the connection by sending a FIN
segment.

� After acknowledging the FIN the receiver can still send data on its part
of the connection (half close).

� A connection can be aborted with a RST segment.

5

Interactive Data Transfer

� Data received from the application is usually sent in segments of MSS.

� In the case of interactive applications -rlogin, telnet- the sender can
force the delivery of small packets using the PSH (push) flag.

� With delayed acknowledgments the receiver delays sending the
acknowledgments until it has some data to send or a 200 ms timer
expires.

client

0.0

0.015

0.03

delayed
ack Ack 2

PSH 1:2(1) ack1 (echo char)

PSH 0:1(1) ack1 (char)

server

PSH 0:1(1) ack1 (char)

ack1

PSH 0:1(1) ack 2 (echo char)

ack 2

0.0

0.01

0.016
0.015

client server

Interactive Data Transfer

� Sending a lot of small segments can add congestion to a wide area
network.

� Nagle Algorithm: a sender can at most have one outstanding small
segment, that has not yet been acknowledged.

� All data arriving at TCP from the application are queued until the
currently outstanding segment is acknowledged.

6

Flow Control in TCP

� TCP uses a sliding window mechanism to adjust the senders
transmission speed to that of the receiver.

� The sliding window permits the sending of multiple segments before
waiting for an acknowledgment.

� Ack segments indicate the last correctly received byte and the number
of bytes the receiver is still willing to accept.

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

win start end of outstanding
data

win end
ack 1

Flow Control in TCP

� Ack segments indicate the last correctly received byte and the number
of bytes the receiver is still willing to accept.

2

SYN 141:141(0) <mss 1024> WIN 4096

SYN 181:181(0) <mss 1024>

ACK 142 WIN 3072

1

4

6

7

5

3

8 3073:4097 (1024) ACK 1, WIN 4096

ACK 3073, WIN 2049

2049:3073 (1024) ACK 1, WIN 4096

1025:2049 (1024) ACK 1, WIN 4096

1:1025 (1024) ACK 1, WIN 4096

ACK 1, WIN 4096

tao
lupus

7

Acknowledgments and Retransmission

� A TCP receiver always acknowledges the last correctly received byte.

� After sending a segment the sender starts a timer.

� If the timer expires before receiving an acknowledgment for the sent
segment the segment is considered lost and must be retransmitted.

� The timeout value is calculated dynamically according to the measured
round trip times (RTT).

Err = RTT �A A = smoothed RTT

A = A+ gErr gain g = 1=8

D = D + h (jErrj �D) D = smoothed mean deviation

RTO = A+ 4D

Round-Trip Time Measurement

� TCP implementations use a 500-ms clock for time measurements and
timeout determination.

� Only one measurement is done at a time.

� At the start of a measurement a counter is set to 0 and is then
incremented every time the 500-ms TCP timer is invoked and the
number of the sent segment is remembered.

� Only after acknowledging the sent segment can a new measurement
start.

� After a retransmission the timeout value is not updated until an
acknowledgment for a segment arrives that was not retransmitted
(Karns’s algorithm).

8

Round-Trip Time Measurement

� As the 500-ms timer is used for determining the RTT the values used
for updating the timeout value might differ up to �500 ms from the
actual value.

tao lupus

1:257(256) ACK 10.0 1

2RTT=1.5 s
ACK 257

257:513 (256) ACK 1

513:769 (256) ACK 1
3
4

ACK 513

ACK 769

RTT=0.5 s

1.062

1.063

1.081

1.87

6

5

Congestion Control in TCP

� A connection’s rate is determined as transmission window/round trip
time.

� When the sum of the connection rates over a link is higher than the
link’s rate segments can be dropped.

� TCP uses packet drops and timeouts as congestion indication.

Receiver

Router 1 Router 2

Router 4

910

13

15161718

ack 8

ack 6ack 5ack 4

ack 2ack 1

14 12 11

ack 7

ack 3

Router 3

Sender 5kbyte/sec

(Bottleneck)1kbyte/sec

9

Slow Start and Congestion Avoidance

� To avoid congestion in advance, the sender must adapt its transmission
window to the available link bandwidth.

� On connection establishment TCP uses a window of the size of 1 MSS
Congestion Window.

� The congestion window is increased by 1 MSS for each acknowledged
segment.

� At any time the sender has has a transmission window of

transmission window = min (advertised window, congestion window)

Slow Start and Congestion Avoidance

� With the slow start scheme the congestion window is exponentially
increased.

� This can quickly congest the network and cause packet drops.

� After a timeout the congestion window is set again to 1 MSS.

� Slow start is reused but only until the congestion window reaches half
of its value before the timeout.

� Afterwards the congestion window is increased only by 1/congestion
window for each acknowledged segment (congestion avoidance).

10

Fast Retransmission and Fast Recovery

� Using only timeouts as loss indication leads to long idle periods.

� With the fast retransmission scheme the receiver acknowledges each
out of order segment with an ack of the last correctly received segment.

� Receiving 3 duplicate acks triggers at the source the retransmission of
the last acked segment.

� In the older TCP versions the same actions taken after a timeout are
used in this case as well.

� in TCP versions using fast recovery the congestion window is only
reduced by half after each loss.

Congestion Example

� Both source and receiver have buffers up to 8192 bytes.

� The router has a buffer of 2128 bytes.

� The link has a bandwidth of 2128 bytes/sec.

� MSS=1024.

� The configuration has a round trip delay of 1 sec.

Receiver

Router
2 kbytes/sec

Sender

RTT=1 sec

10 Mbits/sec

Ethernet SLIP link

11

Congestion Example: Slow Start
0:

10
25

 (
10

24
)

A
C

K
 1

1
se

gm
en

t 3
w

in
=1

02
4

A
C

K
 1

02
5

2
w

in
=2

04
8

, W
IN

 8
19

2
se

gm
en

t 4

2.
00

01
se

gm
en

t 5
10

25
:2

04
9

(1
02

4)
 A

C
K

 1

20
49

:3
07

3
(1

02
4)

 A
C

K
 1

2.
00

02
se

gm
en

t 6

W
IN

 8
19

2
A

C
K

 3
07

3,
 W

IN
 8

19
2

A
C

K
 2

04
9,

se

gm
en

t 7
w

in
=3

07
2

3.
00

1

w
in

=4
09

6
4.

00
03

se
gm

en
t 8

se
gm

en
t 1

0

se
gm

en
t 1

2

51
21

:6
14

5
(1

02
4)

 A
C

K
 1

61
45

:7
16

9
(1

02
4)

 A
C

K
 1

se
gm

en
t 1

1

 4
09

7:
51

21
(1

02
4)

 A
C

K
 1

4.
50

04

5.
50

05

6.
50

06

30
73

:4
09

7
(1

02
4)

 A
C

K
 1

se
gm

en
t 9

4.
00

03

ta
o

lu
pu

s
tim

e

92
17

:1
02

41
 (

10
24

)
A

C
K

 1

10
24

1:
11

26
5

(1
02

4)
 A

C
K

 1

se
gm

en
t 1

5

se
gm

en
t 1

6

se
gm

en
t 1

8

W
IN

 8
19

2

W
IN

 8
19

2
A

C
K

 7
16

9,

se
gm

en
t 1

3

se
gm

en
t 1

4
w

in
=8

19
2

W
IN

 8
19

2

W
IN

 8
19

2

se
gm

en
t 1

3

se
gm

en
t 1

4
w

in
=5

12
1

5.
00

04

5.
50

06

6.
50

04

7.
50

06

w
in

=6
14

4

w
in

=7
16

8

8.
00

07

8.
50

08

8.
50

09

A
C

K
 5

12
1,

A
C

K
 4

09
7,

A
C

K
 6

14
5,

71
69

:8
19

3
(1

02
4)

 A
C

K
 1

Congestion Example: Fast Retransmission

10
.5

03
se

gm
en

t 2
4ta

o
lu

pu
s

tim
e

se
gm

en
t 2

0

se
gm

en
t 1

9
11

26
5:

12
28

9
(1

02
4)

 A
C

K
 1

12
28

9:
13

31
3

(1
02

4)
 A

C
K

 1
8.

50
1

8.
50

11

W
IN

 5
12

0

9.
00

01

10
.0

02

9.
00

01

W
IN

 7
16

8

W
IN

 6
14

4
10

.0
00

1

11
.0

02

12
28

9:
13

31
3

(1
02

4)
 A

C
K

 1

se
gm

en
t 2

1

se
gm

en
t 2

2

se
gm

en
t 2

3

se
gm

en
t 2

5

se
gm

en
t 2

6

se
gm

en
t 2

7

se
gm

en
t 2

8
11

.5
01

11
.5

01

A
C

K
 1

22
89

,
W

IN
 8

19
2

13
31

3:
14

33
7

(1
02

4)
 A

C
K

 1

14
33

7:
15

36
1

(1
02

4)
 A

C
K

 1
15

36
1:

16
38

5
(1

02
4)

 A
C

K
 1

A
C

K
 1

22
89

,

A
C

K
 1

22
89

,

A
C

K
 1

22
89

,

12

Congestion Example: Fast Retransmission

ta
o

lu
pu

s
tim

e

W
IN

 8
19

2

W
IN

 8
19

2
A

C
K

 1
63

85
,

se
gm

en
t 2

9
12

.5
01

W
IN

 1
02

4

16
38

5:
17

40
9

(1
02

4)
 A

C
K

 1

A
C

K
 1

74
09

,

W
IN

 2
04

8

se
gm

en
t 3

0

se
gm

en
t 3

1

12
.5

01

13
.5

01

se
gm

en
t 3

2
14

.0
02

14
.5

03
se

gm
en

t 3
3

17
40

9:
18

43
3

(1
02

4)
 A

C
K

 1
18

43
3:

19
45

7
(1

02
4)

 A
C

K
 1

W
IN

 8
19

2

W
IN

 8
19

2

se
gm

en
t 3

4

se
gm

en
t 3

5
W

IN
 3

07
2

W
IN

 4
09

6

15
.0

04

15
.5

04

se
gm

en
t 3

6
16

.5
01

19
45

7:
20

48
1

(1
02

4)
 A

C
K

 1

se
gm

en
t 3

7
W

IN
 8

19
2

A
C

K
 2

04
81

,
17

.5
01

W
IN

 4
35

2

A
C

K
 1

84
33

,

A
C

K
 1

94
57

,

Congestion Example: Fast Recovery

ta
o

lu
pu

s
tim

e

W
IN

 8
19

2
A

C
K

 1
63

85
,

se
gm

en
t 2

9
12

.5
01

16
38

5:
17

40
9

(1
02

4)
 A

C
K

 1
se

gm
en

t 3
0

W
IN

 4
09

6

17
40

9:
18

43
3

(1
02

4)
 A

C
K

 1
se

gm
en

t 3
1

13
.0

02

12
.5

05

18
43

3:
19

45
7

(1
02

4)
 A

C
K

 1
se

gm
en

t 3
2

13
.5

03

se
gm

en
t 3

2

W
IN

 8
19

2
A

C
K

 1
74

09
,

13
.5

05
se

gm
en

t 3
3

W
IN

 4
35

2

W
IN

 8
19

2
se

gm
en

t 3
4

14
.0

04
W

IN
 4

59
3

14
.5

03
19

45
7:

20
48

1
(1

02
4)

 A
C

K
 1

A
C

K
 1

84
33

, W
IN

 8
19

2
15

.5
04

W
IN

 8
19

2
se

gm
en

t 3
5

W
IN

 4
82

1
A

C
K

 1
94

57
,

14
.5

04

A
C

K
 2

04
81

,
se

gm
en

t 3
6

W
IN

 5
03

8

13

Silly Window Syndrome and Probe Packets

� It is possible for the advertised window size to go to 0.

� After freeing some buffer, the receiver sends an update message with
the size of the available buffer.

� After receiving an ack with WIN=0 the sender starts a persist timer.

� On the expiration of the persist timer a small packet of 1 byte payload
is sent to see if a window update message got lost -such a packet is
called probe packet.

� To avoid sending small packets the receiver must not advertise small
segments, i.e., segments smaller than MSS (silly window syndrome).

TCP Future and Performance

� The capacity of a link is measured as

capacity = bandwidth*RTT

� The throughput of TCP is limited to

throughput =
max window size

RTT

� Using a window scale option improves performance on long fat pipes.

� Updating the RTO value every RTT leads to aliasing effects.

� More accurate timeout calculations can be reached using a time stamp
option

14

T/TCP

� Lots of TCP transactions consist simply of a request to a server and a
reply to the client.

� This simple transaction require the sending of 10 segments.

� Due to the connection establishment and termination a simple
transaction requires at least two RTT times plus the processing time
required at the server.

T/TCP

� To distinguish between consecutive transactions a connection count
option is added to the header.

� To avoid unnecessary overhead a host might maintain a per-host cache
of the last seen timeout value, MSS, window size and the CC value.

� A client can combine the SYN, FIN, data request and the current CC
value in one segment.

� If the received CC value is larger than the cached CC the server can
combine the SYN, FIN, ACK of the sender’s SYN and the reply in one
segment.

� The client acks the server’s SYN and FIN in one segment.

� This minimal transactions reduces the time needed for the transaction
to a minimum of RTT plus the processing time at the server.

