
1

Routing
from Kurose’s slides

Routing protocols

Goal: set routing tables for packet forwarding in hosts and routers, typically
based on some optimality criterion.

Questions:

� who determines entries?

� based on what information (hops, delay, cost, . . .) ?

� how often does it change (hop vs. delay)?

� where is routing information stored?

� algorithm used to compute routes?



2

Goals for routing algorithms

� scalability

� “safe” interconnection of different organizations

� adopt quickly to changes in topology

� avoid routing loops or at least terminate them quickly

� self-healing, robust

� efficient: can’t use 90% of bandwidth for routing info

� multiple metrics (QOS, price, politics, . . .) ➠ not yet

� routes should be (near) “optimal”

� can’t have all hosts/networks in single table ➠ hierarchical

Routing algorithms

� centralized vs. decentralized

– centralized: a central site computes and distributes routes or
information to compute routes

– decentralized: each router sees only local information

� static vs. adaptive

– static: routing tables change very slowly, often in response to
human intervention (German X.25)

– adaptive: routing tables change with traffic or topology

� intra-domain vs. inter-domain

– intra-domain: one administration ➠ fewer rules, changes?, not
smaller

– inter-domain: between administrations (autonomous systems) ➠
security, larger geographic reach



3

Internet Routing

� inter-domain: BGP, about 3,000 AS, 97,000 networks,

� about 32,000 active routes in Merit routing arbiter (� Internet Routing
Registry)

Link state (LS) routing

� each node knows cost associated with each of its outgoing links:

– queueing delay on link, instantaneous or time-averaged

– bandwidth of link

– cost ($): leased line vs. dial-up

– notion of desirability

– simply one “hop” per link

� quasi-centralized: link costs periodically broadcast to all routers

� least-cost path from source to all other nodes ➠ Dijkstra’s shortest-path
algorithm

� used in OSPF (+ ISO IS-IS)



4

Dijkstra’s algorithm

N : set of all nodes to which we know shortest path; initially empty.

d(v) : distance (cost) of known least cost path from source to v

c(i; j) : cost of link from node i to j; c(i; j) =1 if not directly connected

p(v) : predecessor node (closest neighbor of v) along shortest path from
source to v

After k steps, we know shortest path to nearest k neighbors from source.

Find known nearest neighbor and see if we can reach others from that
neighbor by a shorter route than previously. Using nearest ensures that there
can be no shorter path.

Dijkstra’s algorithm

1. Initialization
N = fAg
for all nodes v:

if v adjacent to A
then d(v) = c(A; v)
else d(v) =1

2. loop
find node w not in set N such that d(w) is smallest
add w into N

update d(v) for all v not in N :
d(v) = minfd(v); d(w) + c(w; v)g

until all nodes are in N



5

Example of Dijkstra’s algorithm

1

2

3

2 5

2

1

5

13

E

F

D

B

A

C

Example of Dijkstra’s algorithm

distance from A to .. .
step N d(B); p(B) d(C); p(C) d(D); p(D) d(E); p(E) d(F ); p(F )

0 A 2,A 5,A 1,A 1;� 1;�

1 AD 2,A 4,D 2,D 1;�

2 ADE 2,A 3,E 4,E

3 ADEB 3,E 4,E

4 ADEBC 4,E

5 ADEBCF

� example (step 1): d(C)! d(D) + c(D;C) = 1 + 3 < 5

� for each column, last entry gives immediate neighbor along least-cost
path to/from A, and cost to that destination

� worst case running time: O(n2) per source node: n steps, n� 1
comparisons



6

Example of Dijkstra’s algorithm (reordered)

distance from A to .. .
step N d(B); p(B) d(C); p(C) d(D); p(D) d(E); p(E) d(F ); p(F )

0 A 2,A 5,A 1,A 1;� 1;�

1 AD 2,A 4,D 2,D 1;�

2 ADB 3,E 2,D 4,E

3 ADBE 3,E 4,E

4 ADBEC 4,E

5 ADBECF

➠ no change
➠ exercise: use asymmetric weights

Distance vector (DV) routing

� asynchronous, iterative distributed computation

– computation step

– exchange of routing information step

A

B C

E

1

2

2

7

1

8

D

E’s view:



7

destination cost from E to destination via

D
E() A B D

A 1 14 5

B 7 8 5

C 6 9 4

D 4 11 2

Distance table:

� per-node table with cost to all other nodes via each neighbor

� DE(A;B) gives cost from E to A, via link to B

� here, DE(A;B) = 14

� distance table immediately gives routing table:

– minimum cost to each destination (row) is smallest value in row

– column containing minimum value gives outgoing link for routing
to that destination

Distributed, asynchronous shortest path algorithm

� based on Bellman-Ford algoritm

� used in many routing protocols: BGP, ISO IDRP, Novell IPX, RIP

� run by each node

� exchange (node,distance) information with network neighbor only

� find

– least cost path to every other node

– next (neighboring) node on least cost path to destination ➠ not
complete path



8

DV algorithm (at node X):

1. initialization:
for all adjacent nodes (column) v:

D(�; v) =1
D(v; v) = c(X; v)

2. loop
execute distributed topology update procedure

until hell freezes over

Topology update algorithm

At node X:

1. wait until X sees link cost change to Y, or receives message from
neighbor

2. if c(X;Y ) changes by � (cost to neighbor has changed):
change all column-Y entries in distance table by �
if this changes cost of best path to Z, inform neighbors

3. if control message from W ➠ shortest path via W to some Z has
changed
DX(Z;W ) = c(X;W )+ new distance W to Z
if cost of best path to Z has changed, inform neighbors



9

Distance vector routing: example

X

Y

Z
7

12

via

D
X Y Z

Y 1 1

Z 1 1

➠

via

D
X Y Z

Y 1

Z 1

➠

via

D
X Y Z

Y

Z

D
Y X Z

X 1 1

Z 1 1

➠

D
Y X Z

X 1

Z 1

➠

D
Y X Z

X

Z

D
Z X Y

X 1 1

Y 1 1

➠

D
Y X Y

X 1

Y 1

➠

D
Z X Y

X

Y

Distance vector routing: recovery from link failure

� if link XY fails, X and Y set c(X;Y ) to 1 and run topology update
algorithm

� “good news travels fast, bad news travels slowly”

� looping:

– inconsistent routing tables: to A, D ! E, E ! D.

– loops disappear eventually

– performance degradation during looping

– out-of-order end-end delivery possible



10

Distance vector routing with link failures

A

B C

E

1

2

2

7

1

8

D

shortest path to A and next node; � : new shortest path

as seen from

B C D E

initially 6,C 5,D 3,E 1,A

AE # 6,C 5,D 3,E 5,D

step 1 6,C 5,D 7,E 5,D

step 2 6,C 7,B 7,E 9,D

step 3 7,A 7,B 9,C 9,D

step 4 7,A 8,B 9,C 11,D

step 5 7,A 8,B 10,C 11,D

step 6 7,A 8,B 10,C 12,D

Distance vector routing: split horizon algorithm

� change topology update algorithm to avoid count-to-infinity problem

� if A routes to Z via B, then A tells B that its distance to Z is1

� example A — B — Z: B will not route to Z via A if link BZ fails

� will not always avoid count-to-infinity problem



11

Distance vector routing: hold down algorithm

� when shortest path cost change:

– start “hold down” timer

– advertise new shortest path cost
as the new cost along previous shortest path route until timer expires:

C A B C
14 1

10

1 1

10

A B
AB changes
to cost = 14

B: my shortest path 
cost to A is 14

B: my shortest cost path
to A is 1

– will force large costs to propagate quickly

– will not always avoid count-to-infinity problem

Comparison of LS and DV algorithms

� “LS is better”: DV requires iteration with messages being exchanged at
each iteration

� “DV is better”: if link costs changes do not affect shortest paths, no
messages exchanged



12

Robustness of LS and DV algorithms

� what happens if router fails, misbehaves, or is sabotaged?

� link state could:

– report incorrect distance to all neighbors

– corrupt or lose any LS broadcast messages passing through it

– report incorrect neighbors

� distance vector could:

– advertise incorrect shortest distance to any/all destinations (“from
me, zero hops to everywhere”)

– report incorrect neighbors

Convergence of LS and DV algorithms

� want to keep network routes stable as often as possible

� distance vector:

– may iterate many times while converging

– can suffer from loops and oscillations

– cannot propagate new information from other routers until it
recomputes new routes

� link state

– requires one broadcast pro node

– can suffer from oscillations



13

RIP (Routing Information Protocol)

� RFC 1058 (1988)

� intra-domain only

� distance vector algorithm with split horizon

� metric: hop count (maximum 15 ➠ limited network size)

� distance vectors exchanged via UDP port 520 every 30 seconds

� routed daemon

� RIP-2 (RFC 1388, RFC 1387, 1993): subnet masks, route tag to
identify external routes, authentication

RIP-2 packet header

Command (1 or 2) Version (2) routing domain (AS)

route tagaddress family identifier (AFI)

IP address

subnet mask

next hop IP address

metric (0..15)

0 8 16 24 32

on
e 

pe
r 

de
st

in
at

io
n



14

OSPF

� open (= non-proprietary) shortest path first (RFC 1247, 1991)

� link state routing using Dijkstra’s algorithm

� reliable flooding with sequence numbers, aging

� two-level hierarchy: backbone and attached areas

� allows level-2 routers to send path cost to level-1 routers

� handles network partitioning (somehow...)

� uses IP packets to communicate

BGP

� inter-domain routing protocol

� uses TCP

� exchanges paths: list of transit AS, networks, properties



15

netstat: inspect routing table
netstat -r
routing tables
Destination Gateway Flags Refcnt Use Interface
localhost localhost UH 3 7013 lo0
default gmdbgate UG 0 107416 le0
gmd 129.26.216.231 U 0 19 qaa1
gmd-fokus atmos U 33 211181 le0
fokus-atm atmos U 1 561634 qaa0
bali.de atmos.bali.de U 0 1487638 fa0

netstat -rn
Routing tables
Destination Gateway Flags Refcnt Use Interface
127.0.0.1 127.0.0.1 UH 3 7521 lo0
default 192.35.149.248 UG 0 107452 le0
129.26.0.0 129.26.216.231 U 0 19 qaa1
192.35.149.0 192.35.149.117 U 35 215346 le0
193.175.134.0 193.175.134.117 U 1 561641 qaa0
194.94.246.0 194.94.246.65 U 0 1487639 fa0

Flags: U = up, G = gateway, D = redirect


