Programming Tools

Henning Schulzrinne
Dept. of Computer Science
Columbia University

9-Mar-02 Advanced Programming
Spring 2002

What are tools for?

Creating code modules
= compiler
Creating program from modules
= linker
Compiling groups of programs (dependencies)
= Debugging code
= tracer, debugger, code checker

Compiler

= Convert source code to object modules
= .0: external references not yet resolved
$ nm

u printf
0000000000000000 t
0000000000000000 d
0000000000000000 b
0000000000000000 r
0000000000000000 ?
0000000000000000 a *ABS*
0000000000000000 T ¢
0000000000000000 a const.c
0000000000000048 T main

9Mar-02 Advanced Programming
Spring 2002

= Profiling and optimization

= Documentation: derive from code

= Coordination and “memory”

= Testing

= User installation

= User feedback

9-Mar-02 Advanced Programming

Spring 2002

Linker

= Combine .0 and .so into single a.out
executable module

.so/.dll: dynamically loaded at run-time
= see “dl”
$ 1dd a.out

1ibc.so.1 => /usr/1ib/Tibc.so0.1
1ibd1.s0.1 => /usr/1ib/1ibd1.s0.1
/usr/platform/SuNw,ultra-5_10/1ib/1ibc_psr.so.1

9Mar-02 Advanced Programming
Spring 2002

Creating a static library

= static library for linking: libsomething.a
= create .o files: gcc — helper.c
= ar rlv libsomething.a *.0
= ranlib libsomething.a
= use library as gcc —L/your/dir —Isomething

9-Mar-02 Advanced Programming
Spring 2002

Creating a dynamic library

Details differ for each platform
= gcc -shared -fPIC -0 Tibhelper.so *.0

= use same as for static (-l/ibrary)
* also LD_LIBRARY_PATH

9-Mar-02 Advanced Programming
Spring 2002

Testing

= Every module and functionality needs to
have an (automated) test

= Regression testing: change -> test old
functionality

= Easy for simple functions
= Screen input/output?
= Complicated “test harness”

9-Mar-02 Advanced Programming 7
Spring 2002

Program tracing

user program

- user space
PNt | ibraries

- B
operating system
kernel

write()

9-Mar-02 Advanced Programming
Spring 2002

kernel memory space

Program tracing

= Simple debugging: find out what system calls
a program is using

= truss on Solaris, strace on Linux

does not require access to source code

does not show stdio calls, but can use

-u Tibc

-f: follow children

-p: attach to existing process (e.g., truss —p
27878 to see what process is doing when
doing certain action)

9-Mar-02 Advanced Programming 9
Spring 2002

truss example

$ truss a.out

execve("a.out”, OxFFBEF6FC, OXFFBEF704) argc = 1
mmap(0x00000000, 8192, PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE |MAP_ANON, -1, 0) = OXFF3A0000
resolvepath("/usr/1ib/1d.so0.1", "/usr/1ib/1d.so0.1", 1023) = 16
open("/var/1d/1d.config", O_RDONLY) Err#2 ENOENT
open("/opt/cucstcl/T1ib/Tibc.so.1", O_RDONLY) Err#2 ENOENT
open("/opt/cucstcl8.3/1ib//1ibc.so.1", O_RDONLY) Err#2 ENOENT
open("/usr/openwin/1ib/1ibc.so.1", O_RDONLY) Err#2 ENOENT
open(”/usr/local/1ib/1ibc.so.1", O_RDONLY) Err#2 ENOENT

0

joct1(1, TCGETA, OXFFBEF45C)

Hello world

write(l, "He 110 wo r 1d\n", 12)
11seek (0, 0, SEEK_CUR)

_exit(0)

12
19444

9Mar-02 Advanced Programming
Spring 2002

10

strace

= similar to truss, for Linux

= -T for timing

= § strace -t -T cat foo
14:26:59 open("foo", O_RDONLY|O_LARGEFILE) = 3 <0.000712>

14:26:59 fstat(3, {st_mode=S_IFREG|0644, st_size=6, ...}) = 0
<0.000005>

14:26:59 brk(0x8057000) = 0x8057000 <0.000011>

14:26:59 read(3, "hello\n", 32768) = 6 <0.000010>

14:26:59 write(l, "hello\n", 6hello

) = 6 <0.000015>

14:26:59 read(3, "", 32768) = 0 <0.000005>

14:26:59 close(3)

0 <0.000010>
14:26:59 _exit(0) ?

9-Mar-02 Advanced Programming 11
Spring 2002

Memory utilization: top

= Show top consumers of CPU and
memory

Toad averages: 0.42, 0.22, 0.16 14:17:35

274 processes: 269 sleeping, 1 zombie, 3 stopped, 1 on cpu
CPU states: B1.3% idle, 5.2% user, 13.4% kernel, 0.1% iowait, 0.0% swap
Memory: 512M real, 98M free, 345M swap in use, 318M swap free

PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND

144 root 1 53 03384k 1728k sleep 33.3H 3.67% ypserv
11011 hgs 1 48 0 2776k 2248k sleep 0:00 0.57% tcsh
11040 hgs 1 55 01800k 1352k cpu/0 0:00 0.39% top

281 root 1 58 0 4240k 2720k sleep 313:03 0.38% amd
10933 kbutler 1 58 0 11 8376k sleep 0:00 0.17% lisp
1817 yjho 1 58 0 8968k 7528k sleep 0:39 0.10% emacs
13955 yjho 1 58 0 8496k 7200k sleep 2:47 0.09% emacs

9-Mar-02 Advanced Programming
Spring 2002

12

Debugging

= Interact with program while running
= step-by-step execution
= instruction
= source line
= procedure
= inspect current state
= call stack
= global variables
= local variables

9-Mar-02 Advanced Programming
Spring 2002

13

Debugging

= Requires compiler support:
= generate mapping from PC to source line
= symbol table for variable names

= Steps:

$ gcc -g -0 Toop Toop.c

$ gdb Toop

(gdb) break main

(gdb) run foo

Starting program: src/test/loop

Breakpoint 1, main (argc=2, argv=Oxffbef6ac) at Toop.c:5
5 for (i =0; i < 10; i++) {

9-Mar-02 Advanced Programming 14
Spring 2002

gdb

(gdb) n

6 printf("i=%d\n", i);

(gdb) where

#0 Toop (i=1) at Toop.c:4

#1 0x105ec in main (argc=2, argv=0xffbef6a4) at Toop.c:ll
(gdb) p i

$1=0

(gdb) break 9

Breakpoint 2 at 0x105e4: file loop.c, Tine 9.
(gdb) cont

Continuing.

i=0

i=1

Breakpoint 2, main (argc=1, argv=Oxffbef6ac) at loop.c:9
9 return 0;

9Mar-02 Advanced Programming
Spring 2002

15

gdb hints

= Make sure your source file is around
and doesn’t get modified

= Does not work (well) across threads
= Can be used to debug core dumps:

$ gdb a.out core
#0 0x10604 in main (argc=1, argv=0xffbef6fc) at loop.c:14
*s ="\0';

(gdb) print i
$1=10
9-Mar-02 Advanced Programming 16

Spring 2002

gdb - execution

run arg |run program

call f(a,b) |call function in program

step NV step NVtimes into functions

next N |step Ntimes over functions

up vV select stack frame that called current
one
down NV |select stack frame called by current
one
9-Mar-02 Advanced Programming 17

Spring 2002

gdb - break points

break main.c:12 |set break point

break foo set break at function

clear main.c:12 |delete breakpoint

info break show breakpoints
delete 1 delete break point 1
display x display variable at each
step
9-Mar-02 Advanced Programming 18
Spring 2002

Graphical interface: DDD

o

 Breakgant |, man (gE-TSTITIE, a0 60p T

9-Mar-02 Advanced Programming 19
Spring 2002

Installation

= Traditional:

= tar (archive) file

= compile

= distribute binaries, documentation, etc.
= InstallShield

Building programs

= Programs consist of many modules

= Dependencies:

= if one file changes, one or more others
need to change

= ,c depends on .h -> re-compile

= ,0 depends on .c -> re-compile

= executable depends on .0's -> link
= |library depends on .o -> archive

= recursivel]

= Linux RPM
= Solaris pkg
9-Mar-02 Advanced Programming 20
Spring 2002
make

= make maintains dependency graphs
= based on modification times

= Makefile as default name
* make [-f makefile] [target]

= if node newer than child, remake child

target ...: dependency
command
command
9-Mar-02 Advanced Programming 22
Spring 2002

9-Mar-02 Advanced Programming 21
Spring 2002
make
all: hello clean
clean:
rm -f *.0

helper.o: helper.c
OBJ = helper.o \
hello.o
hello: $(0BJ)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $(0BJ)

9-Mar-02 Advanced Programming 23
Spring 2002

make variables

$@ |name of current target

$7 |list of dependencies newer than target

$< |name of dependency file

$* |base name of current target

$% |for libraries, the name of member

= implicit rules, e.g., a .cfile into .0
.C.0.:
$(cc) $(CFLAGS) $<

9-Mar-02 Advanced Programming 24
Spring 2002

make depend

depend: $(CFILES) $(HFILES)
$(CC) $(CFLAGS) -M $(CFILES) > .state
works for GNU make and BSD make

#if 0

include .state

#endif

#include “.state”

9-Mar-02 Advanced Programming 25

Spring 2002

make depend - alternative

= can also use makedepend program
= appends and replaces rules after

DO NOT DELETE
" eg.,

SRCS = filel.c file2.c ...

CFLAGS = -0 -DHACK -I../foobar -xyz

depend:
makedepend -- $(CFLAGS) -- $(SRCS)

9-Mar-02 Advanced Programming 26
Spring 2002

make environment

= Environment variables (PATH, HOME,
USER, etc.) are available as $ (PATH),
etc.

= [Iso passed to commands invoked

= Can create new variables (gmake):
export FOOBAR = foobar

9-Mar-02 Advanced Programming 27
Spring 2002

User feedback - bug
tracking
= [litomatically capture system crash
information
= non-technical users
= privacy?
= e.g., Netscape Talkback
= User and developer bug tracking
= make sure bugs get fixed
= estimate how close to done

9-Mar-02 Advanced Programming 28
Spring 2002

Bug tracking

= [Lgzilla

9-Mar-02 Advanced Programming 29
Spring 2002

Development models

= Integrated Development Environment
(IDE)
= integrate code editor, compiler, build
environment, debugger

= graphical tool

= single or multiple languages

= [dsualStudio, [Areator, [orte, ...
= Unix model

= individual tools, command-line

9-Mar-02 Advanced Programming 30
Spring 2002

Source code management

= problem: lots of people working on the same
project
= source code (C, Perl, ...)
= documentation
= specification (protocol specs)
= mostly on different areas
= versions
= released — maintenance only
= stable — about to be released, production use
= development, beta
= different hardware and [F versions

9-Mar-02 Advanced Programming 31
Spring 2002

CVS: overview

version control system

see also RCS or SCCS

collection of directories, one for each module
release control

concurrent revisions: “optimistic”

= network-aware

single master copy ([e2pository”) Olocal
(developer) copies
see http://www.cs.columbia.edu/~hgs/cvs

9-Mar-02 Advanced Programming 32
Spring 2002

What cvs isn't/doesn't...

= build system

= project management

= talking to your friends

= change control:
= all changes are isolated vs. single logical change
= bug fix tracking
= track change verification

= testing program (regression testing)

work flow or process model

9-Mar-02 Advanced Programming 33
Spring 2002

cvs: setting up a repository

1. create directory (e.g.) cvsroot ->
environment variable or —-d
2. cvs -d /usr/local/cvsroot init
[l creates CVSROOT directory for maintenance
files
cvsroot
CVSROOT
history, loginfo, modules, passwd,
testcvs
hello.c,v
Makefile.c,v

9-Mar-02 Advanced Programming 34
Spring 2002

cvs: adding a module to a
repository
Source files in src/testcvs
1. setenv CCBSRLCIO [O'src/cvsroot/ or

cvs -d :pserver:alice@tune.cs.columbia.edu:/u/kon/hgs/src/cvsroot login

2. cd testcvs to your working directory

3. cvs import rdir vendortag releasetag.
create rdir under $CCBRICLT/ repository
from current directory, with tag vendortag
for branch, tag releasetag for release
(generally, “start”); creates branch 1.1.1
with cvsroot/testcvs/hello.c,v

9-Mar-02 Advanced Programming 35
Spring 2002

cvs: adding a module

$ cvs -t import -m “sample program” testcvs sample
start
N testcvs/hello.c
No conflicts created by this import
1. [dld module name to cvsroot/CCSRCI/modules
testcvs testcvs
something directory/something_else
2. use cvs checkout if you can

$ cvs checkout CVSROOT/modules

$ cd cvsrooT

$ vi modules

$ cvs commit modules

$cd..

$ cvs release -d CVSROOT # only if no Tonger needed

You have [0] altered files in this repository.
Are you sure you want to release (and delete) directory
‘CVSROOT’ :
9-Mar-02 Advanced Programming 36
Spring 2002

cvs: adding a user

1. ypcat passwd | fgrep alice
2. add user entry to CVSROOT/passwd
alice:J21GHe7813d5Y:hgs

[] add entry to 1oginfo to generate
email

testcvs /usr/ucb/Mail -s “%s” alice bob

9-Mar-02 Advanced Programming

Spring 2002

37

Cvs: using a repository

= [$ a developer, login if on remote
server:

cvs -d
ipserver:alice:secret@tune.cs.columbia.edu:/u/kon/hgs/src/cvsroo
t login

= [hly needed once — stored in
$HOME/ . cvspass

9-Mar-02 Advanced Programming 38

Spring 2002

CVs: using a repository

= Check out the source code files from
repository:
cvs checkout testcvs

cvs checkout: updating testcvs
U testcvs/hello.c

1s R

Ccvs/ Makefile hello.c
Cvs:
Entries Repository Root

9-Mar-02 Advanced Programming 39

Spring 2002

cvs: committing changes

= create or edit a file
= add file if new

$ cvs add makefile
cvs add: scheduling file ‘Makefile’ for addition
cvs add: use ‘cvs commit’ to add this file permanently

9-Mar-02 Advanced Programming 40

Spring 2002

cvs: committing changes

= commit changes (all files based on
modification date):

$ cvs commit
Checking in hello.c;

/home/hgs/src/cvsroot/testcvs/hello.c,v <-- hello.c
new revision: 1.6; previous revision: 1.5
done
9-Mar-02 Advanced Programming 41
Spring 2002

cvs: catching up

= No notification beyond email.
= [ways update before editing

$ cvs update

cvs update: updating .

M hello.c
= merges changes, may produce conflicts
= output:

U file updated: file not in working directory
or no local changes
M file modified, merged
C file conflict detected, marked by >>> ... [(ITTJ
? file stray file in working directory
9-Mar-02 Advanced Programming 42

Spring 2002

cvs: deleting files

= delete first, then remove from C[$

$ rm notes.txt

$ cvs remove notes.txt

cvs remove: scheduling “notes.txt' for removal

cvs remove: use 'cvs commit' to remove this file permanently
Removing notes.txt;
/home/hgs/src/cvsroot/testcvs/notes.txt,v <-- notes.txt
new revision: delete; previous revision: 1.2

done

= shortcut: cvs remove -f notes.txt
= ends up in [itic, i.e., can be restored

9-Mar-02 Advanced Programming 43
Spring 2002

cvs: viewing differences

= Difference between checked out and

working copy:
$ cvs diff hello.c
Index: hello.c

RCS file: /home/hgs/src/cvsroot/testcvs/hello.c,v
retrieving revision 1.6

diff -r1.6 hello.c

3la32

> printf("John Doe\n");

9-Mar-02 Advanced Programming 44
Spring 2002

CVS: revisions

= each revision increases rightmost number by
one: 1.1, 1.2, ...

= more than one period -> branches
= versions of file = C[5 revisions

= (released) versions of software = C[$
releases

= new file gets highest first digit
= cvs commit -r 2.0: makes all revisions to 2.0
= cvs update -a goes to latest

9-Mar-02 Advanced Programming 45
Spring 2002

Ccvs: revision tagging

= Use cvs tag to tag revisions (software
release)

$ cvs tag rel-0 hello.c
T hello.c
$ cvs status -v hello.c

File: hello.c Status: Up-to-date

working revision: 2.1 Thu Feb 21 20:46:56 2002

Repository revision: 2.1 /home/hgs/src/cvsroot/testcvs/hello.c,v
sticky Tag: (none)
sticky pate: (none)
sticky options: (none)

Existing Tags:

ap2002 (branch: 2.0.2)
rel-0 (revision: 1.2)
start (revision: 1.1.1.1)
sample (branch: 1.1.1)
9-Mar-02 Advanced Programming 46
Spring 2002

cvs: branches

= released (stable) vs. development
(unstable, main branch) version

= branch on revision tree for released
version

cvs tag -b rel-1-fix
cvs rtag -b rel-1 rel-1-fixes testcvs

9-Mar-02 Advanced Programming 47
Spring 2002

cvs: history

= cvs annotate hello.c

Annotations for hello.c
FRRRR R R AR

1.1 (hgs 08-sep-99): int main(int argc, char *argv[1)

1.1 (hgs 08-sep-99): {

1.5 " (hgs 21-Feb-02): /* this is the classical hello world output
x

1.1 (hgs 08-sep-99): printf("hello world!\n");

1.6 (hgs 21-Feb-02): printf("Henning Schulzrinne\n");

2.0 (hgs 21-Feb-02): printf(“John Doe\n");

1.2 (hgs 08-sep-99) :

2.1 (hgs 21-Feb-02): exit(0);

1.1 (hgs 08-5ep-99): }

9-Mar-02 Advanced Programming 48

Spring 2002

cvs: notifications

= Cvs status reports status

File: hello.c Status: Up-to-date

working revision: 2.1 Thu Feb 21 20:46:56 2002
Repository revision: 2.1
/home/hgs/src/cvsroot/testcvs/hello.c,v

Sticky Tag: (none)
sticky Date: (none)
Sticky Options: (none)

= watch certain files for modifications:
$ cvs watch on hello.c
-> cvs edit hello.c needed
$ cvs watch off hello.c

9-Mar-02 Advanced Programming 49
Spring 2002

cvs notifications

= cvs watch add

= cvs watchers : list people watching
$ cvs watchers

hello.c hgs edit unedit commit
= cvs editors: current list of editors
$ cvs editors

hello.c hgs Thu Feb 21 21:00:56 2002 GMT bart.cs.columbia.edu /tmp/testcvs

9-Mar-02 Advanced Programming 50
Spring 2002

Other source-code
management systems

= I[M [GsualCge for [Ava:

= IDE with a compiler, debugger, etc. and
CLS built in

= Microsoft [lsual SourceSafe

= library system, i.e., only one user can
check out a specific file at any given time

9-Mar-02 Advanced Programming 51
Spring 2002

Which file is this?

= find out in binary which version was used
= Log

= static char *id="“@(#) $1d$”
becomes on checkout

static char *id="@(#) $Id: hello.c,v 2.1 2002/02/21 20:46:56 hgs Exp $";

= ident hello or what hello

hello:
$1d: hello.c,v 2.1 2002/02/21 20:46:56 hgs Exp $
sunos 5.8 Generic February 2000
9-Mar-02 Advanced Programming 52

Spring 2002

RPM - RedHat Linux package
manager

= [¢tivities for an application:
= Installation — on different architectures
= Updates
= Inventory: what's installed
= Un-install
= Each Unix architecture seems to have
one: Solaris pkg, RPM (www.rpm.org),

9-Mar-02 Advanced Programming 53
Spring 2002

RPM

= Package label, e.g., perl-CI001m-4:
= software name
= software version
= package release
= Package-wide information
= date and time built
= description of contents
= total size of all files
= grouping information
= digital signature

9-Mar-02 Advanced Programming 54
Spring 2002

RPM

= Per-file information:
= name of file and where to install it
= file permissions
= owner and group specification
= MD[CIchecksum
= file content

9-Mar-02 Advanced Programming 55
Spring 2002

Using rpm

= rpm =i install package, check for
dependencies

= rpm —e erase package
= rpm —U upgrade package
= rpm —q query packages (e.g., -a = all)

9-Mar-02 Advanced Programming 56
Spring 2002

rpm-q

Name : telnet Relocations: (not relocateable)
Vversion :0.17 Vendor: Red Hat, Inc.

Release 8.1 Build pate: wed Aug 15 15:08:03 2001
Install date: Fri Feb 8 16:50:03 2002 Build Host: stripples.devel.redhat.com

Group : Applications/Internet Source RPM: telnet-0.17-18.1.src.rpm
size : 88104 License: BSD

packager : Red Hat, Inc. <http://bugzilla.redhat.com/bugzilla>

Summary : The client program for the telnet remote login protocol.

Description :
Telnet is a popular protocol for logging into remote systems over the
Internet. The telnet package provides a command Tine telnet client.

Install the telnet package if you want to telnet to remote machines.

This version has support for IPV6.

9-Mar-02 Advanced Programming 57
Spring 2002

RPM

= http://www.redhat.com/docs/books/ma
x-rpm/

= but: current version (4.0) is a bit
different

9-Mar-02 Advanced Programming 58
Spring 2002

Building your own rpm

= Either in /usr/src/redhat or create your
own:
= [VILD
= RPMS/ill®: *.i(I6.rpm
= SCURCES: *.tgz
= SPECS: build specification
= SRPMS: source RPMS, (.src.rpm)

9-Mar-02 Advanced Programming 59
Spring 2002

Building your own rpm: spec

#
spec file for hello world app
#

Summary: hello world

Name: hello

version: 1.0

Release: 1

Copyright: GPL

Group: Applications/Test

Source: http://www.cs.columbia.edu/IRT/software/
URL: http://www.cs.columbia.edu/IRT/software/
Distribution: Columbia university

vendor: IRT

Packager: Henning Schulzrinne <hgs@cs.columbia.edu>
Buildroot: /home/hgs/src/rpm

%description
The world's most famous C program.

9-Mar-02 Advanced Programming 60
Spring 2002

10

Building your own rpm: spec

%prep
rm -rf $RPM_BUILD_DIR/hello-1.0
zcat $RPM_SOURCE_DIR/hello-1.0.tgz | tar -xvf -

%build
make

%install
make ROOT="$RPM_BUILD_ROOT" install

%files

%doc README
/usr/local/bin/hello
/usr/local/man/manl/hello.1

%clean

9-Mar-02 Advanced Programming 61
Spring 2002

Building your own rpm

= create [J.rpmmacros

%_topdir /home/hgs/src/test/rpm
= cd /home/hgs/src/test/rpm/SPECS
= rpm -ba --buildroot /home/hgs/tmp hello-1.0.spec

= creates binary and source RPM

9-Mar-02 Advanced Programming 62
Spring 2002

Memory leaks and overruns

= see

http://www.cs.colorado.edu/homes/zorn/publicChtml/MallocDebug. html
= faphical tool: purify
= Simple library: ElectricCénce

= catches

= overruns a malloc() boundary
= touch (read, write) memory released by free()

= places inaccessible (M) memory page
after each allocation

= only for debugging (memory hog)

9-Mar-02 Advanced Programming 63
Spring 2002

ElectricFence

= gcc -g test.c -L/home/hgs/sun5/1ib -lefence -o
test
#include <stdio.h>
#include <malloc.h>
#include <string.h>
int main(int argc, char *argv([])
{
char *s = malloc(5);
strcpy(s, "A very long string™);
return 0;

}

= use gdb:
Program received signal SIGSEGV, Segmentation fault.
0xff2b2f94 in strcpy () from /usr/1ib/libc.so.1

(gdb) up
#1 Ox10adc in main (argc=1, argv=0xffbef684) at test.c:10
10 strepy(s, "A very long string”);
9-Mar-02 Advanced Programming 64

Spring 2002

dmalloc - memory leaks

$ dmalloc -1 logfile -i 100 high
setenv DMALLOC_OPTIONS
debug=0x4f47d03,inter=100, Tog=logfile
= create file
#ifdef DMALLOC
#include "dmalloc.h"
#endif
= link: gcc -g -DDMALLOC dmalloc.c -L/home/hgs/sun5/1ib/ -
T1dmalloc -o dm
= run program

9-Mar-02 Advanced Programming 65
Spring 2002

dmalloc output

1014925598: 1: omalloc version '4.8.2' from 'http://dnalloc. com/"
10149255 Flags = 0x4f47503, Togfile 'logfile’

10149255 final external space: 0 bytes (0 blocks)

10149255 op 10 allocations:

10149255 total-size count in-use-size count source

10149255 10 1 10 1 dwalloc.c:8

10149255 10 1 10 1 Total of 1

10149255 unping not-freed pointers changed since 0:

10149255 not freed: '0x680081s1' (10 bytes) from 'dmalloc.c:8'

10149255 total-size count source

10149255 10 1 dmalloc.c:8

10149255 10 1 Total of 1

10149255 known memory: 1 pointer, 10 bytes

1014925598: 1: ending time = 1014925598, elapsed since start = 0:00:00

9-Mar-02 Advanced Programming 66
Spring 2002

11

profiling

= execution profile of call graph
= Example:

int innerint x) {
static int sum;
sum += x;
rewrn sun;

double outer(int y) {
int i
double x = 13
double sum = 0;
for (1 = 03 i < 10000; i+4) {
X *= 23 sum 4= innerCi + y);

}
rewrn sun;

int main(int argc, char *argv(])
{

int i;

profiling

" gcc —pg nested.c -0 nested

= change function invocation to do
logging (call _mcount)

= also, PC sampling (e.g., 100
times/second)

= generate a call graph

= gprof nested gmon.out

9-Mar-02 Advanced Programming 68
Spring 2002

for (i = 0; i < 1000; i#+) {outer(i);}
exit(®);
}
9-Mar-02 Advanced Programming 67
Spring 2002
.
gprof flat profile
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
59.50 2.88 2.88 internal_mcount
21.69 3.93 1.05 1000 1.05 1.92 outer
17.15 4.76 0.83 10000000 0.00 0.00 inner
0.83 4.80 0.04 1000 0.04 0.04 _Tlibc_write
0.83 4.84 0.04 _mcount
0.00 4.84 0.00 2000 0.00 0.00 _realbufend
0.00 4.84 0.00 2000 0.00 0.00 ferror_unlocked
0.00 4.84 0.00 1890 0.00 0.00 .mul
0.00 4.84 0.00 1000 0.00 0.04 _doprnt
0.00 4.84 0.00 1000 0.00 0.04 _xflsbuf
0.00 4.84 0.00 1000 0.00 0.00 memchr
0.00 4.84 0.00 1000 0.00 0.04 printf
9-Mar-02 Advanced Programming 69
Spring 2002

gprof call graph

= Time spent in function and its children

index % time self children called name
<spontaneous>
m 60.0 2.88 0.00 internal_mcount [1]
0.00 0.00 1/3 atexit [15]
— caller
1.05 0.87 1000/1000 wain [3]
21 40.0 105 0.87 1000 outer [2]
0.83 0.00 10000000/10000000 inner [5]
0.00 0.04 1000/1000 printf [6]
0.00 1.92 1/1 _start [4]
3 40.0 0.00 1.92 1 wain [3]
1.05 0.87 1000/1000 outer [2]
0.00 0.00 11 exit [19]
<spontaneous>
(O] 40.0 0.00 1.92 _start [4]
0.00 1.92 1/1 wain [3]
0.00 0.00 2/3 atexit [15]
0.83 0.00 10000000/10000000 outer [2]
51 17.3 0.83 0.00 10000000 inner [5]
9-Mar-02 Advanced Programming 70

Spring 2002

doc++

= documentation system for C/C[IJand
[dva
= generate LaTelIfor printing and HTML for
viewing
= hierarchically structured documentation

= automatic class graph generation ([@va
applets for HTML)

= cross references
= formatting (e.g., equations)

9-Mar-02 Advanced Programming
Spring 2002

71

doc++

= Special comments: /** */, [/

BB in¢ main (int arge, char *args)

This

Documentation

Thi i the famous "hello work! program, wihmeee comments than code

Rotuns

9-Mar-02 Advanced Programming 72
Spring 2002

12

doc++

/**

This is the famous "hello world" program, with more comments than code.

@author H.W. Programmer
@return 0 if no error
@param argc number of argument
@param argv command-1ine arguments
@returns
*/
#include <stdio.h>
int main(int argc, char *argv[]) {
printf("Hello World!");
return 0;

¥

9-Mar-02 Advanced Programming 73
Spring 2002

doc++

= docify to create minimal version
= doc[I1-d outdir hello.c

9-Mar-02 Advanced Programming
Spring 2002

74

Other tools useful to know

= configuration:
= autoconf: configuration files
= automake: make files
= code generation:
= indent (e.g., indent -kr -i2 hello.c):
automated indentation for C programs
= |ex, flex: lexical analyzers
= yacc, bison: compiler generator

9-Mar-02 Advanced Programming 75
Spring 2002

13

