sed and awk

Henning Schulzrinne
Dept. of Computer Science
Columbia University

7-Apr-02 Advanced Programming
Spring 2002

sed: string replacement

= Line-oriented tool for pattern matching
and replacement (stream editor)

= Not really a programming language (cf.
awk)

= E.g., apply same change to lots of
source files

= Filter, i.e., does not modify input file

7-Apr-02 Advanced Programming
Spring 2002

sed description

= pattern a text > add to output

= address s /regex/replacement/

= address d > delete line

= delete lines 1-10: sed -e '1,10d°

= delete comments: sed -e '/A#/d°

= print only matching: sed -n -e
'/regexp/p

= convert Unix to DOS: sed -e
's/$/\r/"' myunix.txt > mydos.txt

7-Apr-02 Advanced Programming
Spring 2002

awk

= Special-purpose language for line-oriented
pattern processing
= pattern {action}
= action =
= if (conditional) statement else statement
= while (conditional) statement
= break
= continue
= variable=expression
= print expression-list

7-Apr-02 Advanced Programming
Spring 2002

awk

Patterns = boolean combinations of regular
expressions and relational expressions
= awk —f program < input > output
Also delimiter-separated fields:
BEGIN {FS=c}
= Examples:
= Print lines longer than 72 characters:
length > 72
= print first two fields in opposite order
{ print $2,$1 }

7-Apr-02 Advanced Programming
Spring 2002

awk examples

= Add up first column, print sum and
average

{s+=$1}

END {print “sum is”, s, “average is”, s/NR}
= Print all lines between start/stop words:
/[start/,/stop/

= Print all lines whose first field differs
from previous one:

$1 I= prev {print; prev = $1}

7-Apr-02 Advanced Programming
Spring 2002

awk applications

= Unix file processing, e.g., as part of a
pipe

= avoid read loop in shells, Perl

= more intuitive syntax than shell scripts

= best limited to line-at-a-time processing

7-Apr-02 Advanced Programming
Spring 2002

