Unix processes and threads

Henning Schulzrinne
Dept. of Computer Science
Columbia University

2-May-02 Advanced Programming
Spring 2002

Unix processes and threads

= Process model
= creation
= properties
= owners and groups
= Threads
= threads vs. processes
= synchronization

2-May-02 Advanced Programming
Spring 2002

What's a process?

= Fundamental to almost all operating
systems

= = program in execution

= address space, usually separate

= program counter, stack pointer,
hardware registers

= simple computer: one program, never
stops

2-May-02 Advanced Programming
Spring 2002

What's a process?

= timesharing system: alternate between
processes, interrupted by OS:
= run on CPU
= clock interrupt happens
= save process state
= registers (PC, SP, numeric)
= memory map
= memory (core image) > possibly swapped to disk
= > process table

= continue some other process

2-May-02 Advanced Programming
Spring 2002

Process relationships

= process tree structure: child processes
= inherit properties from parent
= processes can

= terminate

= request more (virtual) memory

= wait for a child process to terminate

= overlay program with different one

= send messages to other processes

2-May-02 Advanced Programming
Spring 2002

Processes

= Reality: each CPU can only run one
program at a time

= Fiction to user: many people getting
short (~10-100 ms) time slices
= pseudo-parallelism = multiprogramming
= modeled as sequential processes
= context switch

2-May-02 Advanced Programming
Spring 2002

Process creation

= Processes are created:

= system initialization

= by another process

= user request (from shell)

= batch job (timed, Unix at or cron)
= Foreground processes interact with user
= Background processes (daemons)

2-May-02 Advanced Programming
Spring 2002

Processes - example

bart:~> ps -ef

UID PID PPID C STIME TTY TIME CMD
root 0 0 0 mMar 317 0:17 sched
root 1 0 0 Mar317? 0:09 /etc/init -
root 2 0 0 mMar317? 0:00 pageout
root 3 0 0 mMar317? 54:35 fsflush
root 334 1 0 mMar317? 0:00 /usr/1ib/saf/sac -t 300
root 24695 1 0 19:38:45 console 0:00 /usr/1ib/saf/ttymon
root 132 1 0 mMar317? 1:57 /usr/local/sbin/sshd
root 178 1 0 mMar317? 0:01 /usr/sbin/inetd -s
daemon 929 1 0 mMar317? 0:00 /sbin/1pd
root 139 1 0 mMar317? 0:37 /usr/sbin/rpchind
root 119 1 0 mMar317? 0:06 /usr/sbin/in.rdisc -s
root 142 1 0 mMar317? 0:00 /usr/shin/keyserv
hgs 2009 2007 0 12:58:13 pts/16 0:00 -tcsh
daemon 182 1 0 mMar317? 0:00 /usr/1ib/nfs/statd
root 152 1 0 mMar317? 0:00 /yp/ypbind -broadcast
2-May-02 Advanced Programming
Spring 2002

Unix processes

= 0: process scheduler ("swapper")
system process

= 1: init process, invoked after bootstrap
—/sbin/init

2-May-02 Advanced Programming
Spring 2002

Processes - example

H =loix|
= task manager in FEEEE
Windows NT e |
I
Image Name [eo[cu] cUTme| Memusage| =
2000 and XP System Idle Process 0 9 920923 16K
= cooperative vs. wee, mmom omie v
H evntsve.exe 438792 00 0:00:00 96K
preemptive i Tos 0 ooese e
CmlUC exe 1520 00 0:00:09 2,432k =]
T
Processes: 56 [CPU Usage: 2% Mem Usage: 279504 | SS040CK
2-May-02 Advanced Programming
Spring 2002

Unix process creation:
forking

#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);

int v = 42;

if ((pid = fork()) < 0) {
perror("fork");
exit(D);

} else if (pid == 0) {
printf(“child %d of parent %d\n",

getpid(), getppid();

V++;

} else sleep(10);

2-May-02 Advanced Programming
Spring 2002

fork()

called once, returns twice
= child: returns 0
= parent: process [D of child process
both parent and child continue executing
after fork
child is clone of parent (copyl!
= copy-on-write: only copy page if child writes
all file descriptors are duplicated in child
= including file offset

= network servers: often child and parent close
unneeded file descriptors

2-May-02 Advanced Programming
Spring 2002

User identities

= Who we really are: real user CIgroup D
= taken from [dtc[Passwd file:
hgs:7C6u0:5815:92:H. Schulzrinne:/home/hgs:/bin/tcsh
= Check file access permissions: effective user
Ogroup D, supplementary group M
= supplementary [Ds via group membership:
/etc/group
= special bits for file: "when this file is executed, set
the effective [Ds to be the owner of the file" >
set-user-[D bit, set-group-D bit
= /usr/bin/passwd needs to access password files

2-May-02 Advanced Programming
Spring 2002

Aside: file permissions

S_IRUSR user-read
S_IWUSR user-write
S_IXUSR user-execute
S_IRGRP group-read
S_IWGRP group-write
S_IXGRP group-execute
S_IROTH other-read
S_IWOTH other-write
S_IXOTH other-execute

2-May-02 Advan;:: rl:’gr(;g&a;nmmg

Process identifiers

pid_t getpid(void) process identifier

S: ng getpgid(pid_t | process group

pid_t getppid(void); parent PD

uid_t getuid(void); real user [

uid_t geteuid(void); effective user [D

gid_t getgid(void); real group D

gid_t getegid(void); | effective group M

2-May-02 Advanced Programming
Spring 2002

Process properties inherited

= user and group ids = signal masks

= process group id = close-on-exec flag
= controlling terminal = environment
= setuid flag = shared memory
= current working = resource limits
directory
= root directory
(chroot)
= file creation mask
2-May-02 Advanced Programming
Spring 2002

Differences parent-child

= Return value of fork ()

= process [Ds and parent process [Ds
= accounting information

= file locks

= pending alarms

2-May-02 Advanced Programming
Spring 2002

Waiting for a child to

terminate
= asynchronous event
= S[IICHD signal

= process can block waiting for child
termination
pid = fork(Q;

if (wait(&status) != pid) {
something's wrong

}

2-May-02 Advanced Programming
Spring 2002

Waiting for a child to

terminate

pid_t waitpid(pid_t p7d, int
*statloc, int options)

pid=-1 any child process
piaD specific process
pid=0 any child with some process group id
pid D any child with PID = abs(pid)
2-May-02 Advanced Programming
Spring 2002

Race conditions

= race = shared data (Joutcome depends
on order that processes run

= e.g., parent or child runs firstC]
waiting for parentto terminate

= generally, need some signaling
mechanism
= signals
= stream pipes

2-May-02 Advanced Programming
Spring 2002

exec: running another
program
= replace current process by new
program
= text, data, heap, stack

int execl(const char *path, char *arg, ...);

int execle(const char *path, const char *arg0,
/* (char *) 0, char *const envp[] */);

int execv(const char *path, char *const arg[]);

int execvp(char *file, char *const argv[]);

f7 7e: [@bsolutelfath or one of the PLTH entries

2-May-02 Advanced Programming
Spring 2002

exec example

char *env_init[] = {"USER=unknown", "PATH=/tmp",
NULL};

int main(void) {
pid_t pid;
if ((pid = fork()) < 0) perror("fork error");
else if (pid == 0) {
if (execle("echoall", "echoall", "myargl",
"MY ARG2", NULL, env_init) < 0)
perror("exec");

if (waitpid(pid, NULL, 0) < 0) perror("wait error");
printf("child done\n");
exit(0);

2-May-02 Advanced Programming
Spring 2002

system: execute command

#include <stdlib.h>

int system(const char *string);

= invokes command string from program
= e.gd., system("date > file");

= handled by shell ([srBinKsh)

= never call from setuid programs

2-May-02 Advanced Programming
Spring 2002

Threads

process: address space [Isingle thread of control
= sometimes want multiple threads of control (flow) in
same address space
quasi-parallel
= threads separate resource grouping Cexecution
thread: program counter, registers, stack
also called lightweight processes
multithreading: avoid blocking when waiting for
resources

= multiple services running in parallel
state: running, blocked, ready, terminated

2-May-02 Advanced Programming
Spring 2002

Why threads?

= Parallel execution

= Shared resources = faster
communication without serialization

= easier to create and destroy than
processes (100x)

= useful if some are [ID-bound = overlap
computation and 0D

= easy porting to multiple CPUs

2-May-02 Advanced Programming
Spring 2002

Thread variants

= POSIX (pthreads)
= Sun threads (mostly obsolete)
= [dva threads

2-May-02 Advanced Programming
Spring 2002

Creating a thread

int pthread_create(pthread_t *t7d, const
pthread_attr_t *, void *(*func) (void
*), void *arg);

= start function func with argument arg in
new thread

= return 0 if ok, [D if not

= careful with arg argument

2-May-02 Advanced Programming
Spring 2002

Network server example

[dts of little requests (hundreds to thousands
a second)

simple model: new thread for each request >
doesnitiscale (memory, creation overhead)

dispatcher reads incoming requests

picks idle worker thread and sends it
message with pointer to request

if thread blocks, another one works on
another request

limit number of threads

2-May-02 Advanced Programming
Spring 2002

Worker thread

while (1) O
wait for work([Cbuf)d
look in cache
if not in cache
read page from disk
return page
O

2-May-02 Advanced Programming
Spring 2002

Leaving a thread

= threads can return value, but typically
NULL

= just return from function (return void
*)

= main process exits = Kkill all threads

= pthread_exit(void *status)

2-May-02 Advanced Programming
Spring 2002

Thread synchronization

= mutual exclusion, locks: mutex

= protect shared or global data structures
= synchronization: condition variables
= semaphores

2-May-02 Advanced Programming
Spring 2002

