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Unix processes and threads

= Process model
= creation
= properties
= owners and groups
= Threads
= threads vs. processes
= synchronization
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What's a process?

= Fundamental to almost all operating
systems

= = program in execution

= address space, usually separate

= program counter, stack pointer,
hardware registers

= simple computer: one program, never
stops
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What's a process?

= timesharing system: alternate between
processes, interrupted by OS:
= run on CPU
= clock interrupt happens
= save process state
= registers (PC, SP, numeric)
= memory map
= memory (core image) > possibly swapped to disk
= > process table

= continue some other process
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Process relationships

= process tree structure: child processes
= inherit properties from parent
= processes can

= terminate

= request more (virtual) memory

= wait for a child process to terminate

= overlay program with different one

= send messages to other processes
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Processes

= Reality: each CPU can only run one
program at a time

= Fiction to user: many people getting
short (~10-100 ms) time slices
= pseudo-parallelism = multiprogramming
= modeled as sequential processes
= context switch
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Process creation

= Processes are created:

= system initialization

= by another process

= user request (from shell)

= batch job (timed, Unix at or cron)
= Foreground processes interact with user
= Background processes (daemons)
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Processes - example

bart:~> ps -ef

UID PID PPID C  STIME TTY TIME CMD
root 0 0 0 mMar 317 0:17 sched
root 1 0 0 Mar317? 0:09 /etc/init -
root 2 0 0 mMar317? 0:00 pageout
root 3 0 0 mMar317? 54:35 fsflush
root 334 1 0 mMar317? 0:00 /usr/1ib/saf/sac -t 300
root 24695 1 0 19:38:45 console 0:00 /usr/1ib/saf/ttymon
root 132 1 0 mMar317? 1:57 /usr/local/sbin/sshd
root 178 1 0 mMar317? 0:01 /usr/sbin/inetd -s
daemon 929 1 0 mMar317? 0:00 /sbin/1pd
root 139 1 0 mMar317? 0:37 /usr/sbin/rpchind
root 119 1 0 mMar317? 0:06 /usr/sbin/in.rdisc -s
root 142 1 0 mMar317? 0:00 /usr/shin/keyserv
hgs 2009 2007 0 12:58:13 pts/16 0:00 -tcsh
daemon 182 1 0 mMar317? 0:00 /usr/1ib/nfs/statd
root 152 1 0 mMar317? 0:00 /yp/ypbind -broadcast
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Unix processes

= 0: process scheduler ("swapper")
system process

= 1: init process, invoked after bootstrap
—/sbin/init
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Processes - example
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= task manager in FEEEE
Windows NT e |
I
Image Name [ eo[cu] cUTme| Memusage| =
2000 and XP System Idle Process 0 9 920923 16K
= cooperative vs. wee,  mmom omie v
H evntsve.exe 438792 00 0:00:00 96K
preemptive i Tos 0 ooese e
CmlUC exe 1520 00 0:00:09 2,432k =]
T
Processes: 56 [CPU Usage: 2% Mem Usage: 279504 | SS040CK
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Unix process creation:
forking

#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);

int v = 42;

if ((pid = fork()) < 0) {
perror("fork");
exit(D);

} else if (pid == 0) {
printf(“child %d of parent %d\n",

getpid(), getppid();

V++;

} else sleep(10);
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fork()

called once, returns twice
= child: returns 0
= parent: process [D of child process
both parent and child continue executing
after fork
child is clone of parent (copyl!
= copy-on-write: only copy page if child writes
all file descriptors are duplicated in child
= including file offset

= network servers: often child and parent close
unneeded file descriptors
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User identities

= Who we really are: real user CIgroup D
= taken from [dtc[Passwd file:
hgs:7C6u0:5815:92:H. Schulzrinne:/home/hgs:/bin/tcsh
= Check file access permissions: effective user
Ogroup D, supplementary group M
= supplementary [Ds via group membership:
/etc/group
= special bits for file: "when this file is executed, set
the effective [Ds to be the owner of the file" >
set-user-[D bit, set-group-D bit
= /usr/bin/passwd needs to access password files
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Aside: file permissions

S_IRUSR user-read
S_IWUSR user-write
S_IXUSR user-execute
S_IRGRP group-read
S_IWGRP group-write
S_IXGRP group-execute
S_IROTH other-read
S_IWOTH other-write
S_IXOTH other-execute
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Process identifiers

pid_t getpid(void) process identifier

S: ng getpgid(pid_t | process group

pid_t getppid(void); parent PD

uid_t getuid(void); real user [

uid_t geteuid(void); effective user [D

gid_t getgid(void); real group D

gid_t getegid(void); | effective group M
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Process properties inherited

= user and group ids = signal masks

= process group id = close-on-exec flag
= controlling terminal = environment
= setuid flag = shared memory
= current working = resource limits
directory
= root directory
(chroot)
= file creation mask
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Differences parent-child

= Return value of fork ()

= process [Ds and parent process [Ds
= accounting information

= file locks

= pending alarms
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Waiting for a child to

terminate
= asynchronous event
= S[IICHD signal

= process can block waiting for child
termination
pid = fork(Q;

if (wait(&status) != pid) {
something's wrong

}
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Waiting for a child to

terminate

pid_t waitpid(pid_t p7d, int
*statloc, int options)

pid=-1 any child process
piaD specific process
pid=0 any child with some process group id
pid D any child with PID = abs(pid)
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Race conditions

= race = shared data (Joutcome depends
on order that processes run

= e.g., parent or child runs firstC]
waiting for parentto terminate

= generally, need some signaling
mechanism
= signals
= stream pipes
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exec: running another
program
= replace current process by new
program
= text, data, heap, stack

int execl(const char *path, char *arg, ...);

int execle(const char *path, const char *arg0,
/* (char *) 0, char *const envp[] */);

int execv(const char *path, char *const arg[]);

int execvp(char *file, char *const argv[]);

f7 7e: [@bsolutelfath or one of the PLTH entries
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exec example

char *env_init[] = {"USER=unknown", "PATH=/tmp",
NULL};

int main(void) {
pid_t pid;
if ((pid = fork()) < 0) perror("fork error");
else if (pid == 0) {
if (execle("echoall", "echoall", "myargl",
"MY ARG2", NULL, env_init) < 0)
perror("exec");

if (waitpid(pid, NULL, 0) < 0) perror("wait error");
printf("child done\n");
exit(0);
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system: execute command

#include <stdlib.h>

int system(const char *string);

= invokes command string from program
= e.gd., system("date > file");

= handled by shell ([srBinKsh)

= never call from setuid programs
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Threads

process: address space [Isingle thread of control
= sometimes want multiple threads of control (flow) in
same address space
quasi-parallel
= threads separate resource grouping Cexecution
thread: program counter, registers, stack
also called lightweight processes
multithreading: avoid blocking when waiting for
resources

= multiple services running in parallel
state: running, blocked, ready, terminated
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Why threads?

= Parallel execution

= Shared resources = faster
communication without serialization

= easier to create and destroy than
processes (100x)

= useful if some are [ID-bound = overlap
computation and 0D

= easy porting to multiple CPUs
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Thread variants

= POSIX (pthreads)
= Sun threads (mostly obsolete)
= [dva threads
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Creating a thread

int pthread_create(pthread_t *t7d, const
pthread_attr_t *, void *(*func) (void
*), void *arg);

= start function func with argument arg in
new thread

= return 0 if ok, [D if not

= careful with arg argument
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Network server example

[dts of little requests (hundreds to thousands
a second)

simple model: new thread for each request >
doesnitiscale (memory, creation overhead)

dispatcher reads incoming requests

picks idle worker thread and sends it
message with pointer to request

if thread blocks, another one works on
another request

limit number of threads
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Worker thread

while (1) O
wait for work([Cbuf)d
look in cache
if not in cache
read page from disk
return page
O
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Leaving a thread

= threads can return value, but typically
NULL

= just return from function (return void
*)

= main process exits = Kkill all threads

= pthread_exit(void *status)
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Thread synchronization

= mutual exclusion, locks: mutex

= protect shared or global data structures
= synchronization: condition variables
= semaphores
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