bash

Henning Schulzrinne
Department of Computer Science
Columbia University

7-Apr-02 Advanced Programming
Spring 2002

Shells

= Each OS has one, but different levels of
sophistication
= Windows Command Prompt
= sh — original /bin/sh
= bash — Bourne-Again Shell, derived from sh
= ksh — Korn shell = superset of sh

= csh — shell with C-like syntax
= tcsh — improved version of csh

7-Apr-02 Advanced Programming
Spring 2002

sh, bash - the first
"scripting” language
= shell = macro processor that executes
commands
= invokes Unix commands and has its
own set of commands
= full programming language
= sources of input:
= from terminal

= files with sh commands can become
commands (=/ C, Java)

7-Apr-02 Advanced Programming
Spring 2002

sh

= Shell is just another program:
while (1) {
read line from terminal;
parse into words;
substitute variables;
execute commands (execv or

(ba)sh

both synchronous and asynchronous
execution
= synchronous: wait for completion
= in parallel with shell
control stdin, stdout, stderr
set environment for processes (using
inheritance between processes)
set default directory
builtins:
= cd, break, continue, exec, ...
= convenience: history, getopts, ki1, pwd

7-Apr-02 Advanced Programming
Spring 2002

builtin);
}
7-Apr-02 Advanced Programming
Spring 2002
sh
= Language:
= variables
= flow-control constructs
= functions
7-Apr-02 Advanced Programming

Spring 2002

(ba)sh operation

1. read input from file, from —c command
line string or terminal

2. break input into words and operators;
alias expansion

simple and compound commands

shell expansions (variables, glob, ...)
perform redirections

execute command

optionally wait for command to complete

Nouhsw

7-Apr-02 Advanced Programming 7
Spring 2002

Quoting and comments

= 'something’: preserve literally

= "something”: allow $ variable expansion
= $'C-escaped”: e.g., $"\@’

= # comment

7-Apr-02 Advanced Programming 8
Spring 2002

Simple commands and
pipelines
= Simple command = sequence of words
= first word defines command
= can combine with &&, ||, ;, etc.
= Pipeline = sequence of command |
command | ...

= each command reads previous command
output

7-Apr-02 Advanced Programming 9
Spring 2002

List of commands

= cmdl; cmd2; ...: execute sequentially
= cmdl & : execute asynchronously

= cmdl && cmd?2 ...: execute cmd?2 if
cmd1 has exit(0)

= cmdl || cmd2 : execute cmd2 only if
cmd1 has non-zero exit status

7-Apr-02 Advanced Programming 10
Spring 2002

Variables and expressions

Variables are placeholders for the value
shell does variable substitution

= $var or ${var} is value of variable

= assignment with var=value

= no space before or after!
= Also, Tet “x = 17” or let “b = b + 10”7

= uninitialized variables have no value

= variables are untyped, interpreted based on
context

7-Apr-02 Advanced Programming 11
Spring 2002

Environment variables

Shell variables are generally not visible to
programs

Environment = list of name/value pairs
passed to sub-processes

All environment variables are also shell
variables, but not vice versa

Make variables visible to processes with
export, as in

export foo

export foo=17

Show with env

7-Apr-02 Advanced Programming 12
Spring 2002

Shell variables

= ${M} = shell Mth parameter
= $$ = process ID
= $? = exit status
= standard environment variables include:
= HOME = home directory
= PATH = list of directories to search
= TERM = type of terminal (vt100, ...)
= TZ = timezone (e.g., US/Eastern)

7-Apr-02 Advanced Programming 13
Spring 2002

Looping constructs

= Similar to C/Java constructs, but with
commands:

= until fest-commands, do consequent-
commands, done

= while fest-commands; do consequent-
commands, done

= for name [in words ...]; do commands;
done

= also on separate lines
= break and continue controls loop

7-Apr-02 Advanced Programming 14
Spring 2002

while example

sh: if

if test-commands, then
consequent-commands;
[elif more-test-command's, then
more-consequents;]
[else alternate-consequents;)
fi

7-Apr-02 Advanced Programming 16
Spring 2002

= shell style = C style
i=0)
=0
while [$i -1t 10 1; do vf,ﬂh ()()1. <10
echo "i=$i" do
((i=$i+1)) echo "i=$i"
done ((+4)
done
7-Apr-02 Advanced Programming 15
Spring 2002
Functions

= Very limited support for functions:
function useless() {
echo "First $1”
echo "second $2"
echo "Third $3"
echo "Fourth $4“
}

useless a b c

7-Apr-02 Advanced Programming 17
Spring 2002

Scripts

= Binaries and scripts are treated the
same

= Make executable (chmod u+x) and add
#! /usr/local/gnu/bin/bash

= More generically:
#1/usr/bin/env bash

= Also,
. script
source script

7-Apr-02 Advanced Programming 18
Spring 2002

Expansion

= Biggest difference to traditional languages
= shell substitutes and executes
= mix variables and code
= run-time code generation

= For bash:
= brace expansion
= tilde expansion
= parameter and variable expansion
= command substitution
= arithmetic expansion
= word splitting
= filename expansion

7-Apr-02 Advanced Programming
Spring 2002

19

Brace expansion

= Expand comma-separated list of strings
into separate words:
bash$ echo a{d,c,b}e
ade ace abe

= Useful for generating list of filenames:

mkdir
/usr/Tocal/{old,new,dist,bugs}

7-Apr-02 Advanced Programming 20
Spring 2002

Tilde expansion

= ~ expands to $HOME

" eg.,
~/foo = /usr/home/foo
~hgs/src > /home/hgs/src

7-Apr-02 Advanced Programming
Spring 2002

21

Command substitution

= Replace $(command) or “command” by
stdout of executing command

= Can use to execute content of
variables:

Filename expansion

= Any word containing *?([is considered
a pattern

= * matches any string
= ? matches any single character

= [...] matches any of the enclosed
characters

7-Apr-02 Advanced Programming
Spring 2002

23

x=ls
echo 'Is’
= Danger!
7-Apr-02 Advsn;;j‘ :gﬂ;%roa;nmmg 22
Redirections

stdin, stdout and stderr may be redirected
< redirects stdin (0) from file

> redirects stdout (1) to file

= >> appends stdout to file

&> redirects stderr (2)

" << magic
here-document
magic
7-Apr-02 Advanced Programming 24

Spring 2002

