autoconf

Jonathan Lennox
Department of Computer Science
Columbia University

18-Apr-02 Advanced Programming
Spring 2002

Software portability

= Many software products need to run on
lots of platforms
= Unix, Windows, (old) Macintosh, VMS, ...

= Varieties of Unix: Linux, Solaris, SunOS 4.x,
Free/Net/OpenBSD, MacOS X (Darwin),
Tru64, AIX, HP/UX, SVR4, SCO, Minix, ...,

= Open-source software especially needs
to be portable
= Create a developer community

18-Apr-02 Advanced Programming 2
Spring 2002

Historical Practice (1)

= Ignore the problem

= 1982: “All the world’s a VAX” (running BSD
4.2)

= 1992: “All the world’s a Sun” (running
SunOS 4.x)

= 2002: “All the world’s Linux” (on an x86)
= This is great, for as long as it’s true...

18-Apr-02 Advanced Programming 3

Spring 2002

Historical Practice (2)

= Sea of platform-specific #ifdef’s

#ifdef __linux__
linux_specific_code()

#elif defined(__sun__) && defined(__svr4__) /* Solaris */
solaris_specific_code()

#else

#error “What system is this?”

#endif

= This only works for platforms you've
already ported your code to

= Can quickly become unmanageable

18-Apr-02 Advanced Programming 4
Spring 2002

Historical Practice (3)

= Makefile documents -D flags, -L flags, etc., to
pass to compiler for specific systems or
compilation options

= User modifies the program’s Makefile by
hand, in a text editor

= Works okay for very small projects; runs into
problems very quickly

= Error-prone; users often forget to specify
flags, mis-type them, or give the wrong ones

= Porting to a new platform is very difficult

18-Apr-02 Advanced Programming 5

Spring 2002

Historical Practice (4)

= Variant of (3): interactive scripts to set all the
options
= Run a shell script. It asks you lots of questions

like “does this system support the argle(3)
function with extended frobnitz? (y/n):”

= Shell script automatically creates your make file

= Very bad for inexperienced software builders

= Not (easily) possible to build software non-
interactively

= With good per-system defaults, this can work,
however. (Perl’s build system works like this.)

18-Apr-02 Advanced Programming 6
Spring 2002

Solution: autoconf

= ‘configure’ script

= Automatically checks the characteristics of

the build system
= Programs, libraries, header files, system calls

= Generates a Makefile from a programmer-
supplied template

= Generates a config.h file defining compiler
and system characteristics

Autoconf file flows:
Developer

configure.in autoconf configure
aclocal.m4
acsitemd atoheader config.h.in
18-Apr-02 Advanced Programming 8

Spring 2002

Autoconf philosophy

= Check features, not systems
= “Does this system support select() or poll()?”
= Not, “Is this BSD or SysV"?
= Where possible, check features directly
= For example, try to compile a program that
invokes a function. See if it compiles/links/runs
(depending on the feature)
= This isn't always possible — e.g., “what kind of
audio drivers does this OS use?”

18-Apr-02 Advanced Programming 10
Spring 2002

18-Apr-02 Advanced Programming 7
Spring 2002
.
Autoconf file flows:
Builder
./configure; make
Makefile.in Makefile
. . o make
configure—— config.status <,
config.h.in config.h
config.cache config.log
18-Apr-02 Advanced Programming 9
Spring 2002
T . I . .
ypical configure.in
dnl Process this file with autoconf to produce a configure script.
ACINIT([littleserver], [1.0])
AC_CONFI G_SRCDI R(1i ttleserver.c)
AC_CONFI G_FI LES(Makef i | e)
AC_CONFI G_HEADERS(conf i g. h)
dnl Checks for prograns
AC_PROG CC
dnl Checks for libraries
AC_CHECK_LI B(nsl, get host byaddr)
AC_CHECK_LI B(socket, bind)
dnl Checks for header files
AC_HEADER_STDC
AC_CHECK_HEADERS(i nits. h sys/time.h unistd.h crypt.h string.h stdlib.h)
AC_HEADER_TI ME
dnl Checks for typedefs, structures, and compiler characteristics.
AC C
AC_TYPE_SI GNAL
dnl Checks for library functions
AC_CHECK_FUNCS(sel ect socket strftime strtol)
AC_REPLACE_FUNCS(strerror strdup)
AC_OUTPUT
18-Apr-02 Advanced Programming 11

Spring 2002

Typical configure run

$./configure
creating cache ./config. cache
checking for gec... gee

checking whet her the C conpiler (gcc) works... yes
checking whet her the C conpiler (gcc) is a cross-conpiler... no
checking whet her we are using GW C... yes

checking whet her gcc accepts -g... yes

checking for gethostbyaddr in -Insl... yes

checking for bind in -Isocket... yes

checking how to run the C preprocessor... gcc -E
checking for ANSI C header files... yes
checking for limts.h. .. yes

checking for sys/tine h.. yes

checking for unistd.h... yes

checking for crypt.h... yes

checking for string.h. .. yes

checking for stdlib h .. yes

checking whether time h and sys/time.h may both be included... yes
checking for working const... yes

checking return type of signal handiers... void
checking for select... yes

checking for socket... yes

checking for stritime .. yes

checking for strtol... yes

checking for strerror... yes

checking for strdu yes
updating cache ./config. cache
creating ./ config. status
creating Makefile

creating config.h

18-Apr-02 Advanced Programming 12
Spring 2002

configure.in structure

= AC_INIT (package, version, [bug-report-address])
= start configure.in
= AC_CONFIG_SRCDIR (unique-file-in-source-dir)
= uniquely identify source directory
= AC_CONFIG_FILES (7ile..., [cmds], [init-cmds])
= create files from templates (e.g. Makefile)
= AC_CONFIG_HEADERS (header ..., [cmds], [init-
cmds])
= create header files (e.g. config.h)
= AC_OUTPUT
= output all the generated files

18-Apr-02 Advanced Programming 13
Spring 2002

configure.in: program checks

= Autoconf can check if the build system
has certain programs

= AC_PROG_AWK

= Sets output variable AWK to mawk, gawk,
nawk, or awk

= AC_PROG_LEX / AC_PROG_YACC
= Find lex (flex) or yacc (byacc, bison)

18-Apr-02 Advanced Programming 14
Spring 2002

configure.in: compiler checks

= Autoconf can find the compiler and check its
characteristics
= AC_PROG_CC, AC_PROG_CXX
= Find the C or C++ compiler
= AC_PROG_C_STDC
= Check if the C compiler is ANSI C, after trying various
compiler options to make it do so.
= AC_C_CONST
= Check if the C compiler supports ‘const’.
= If not, #define const to the empty string, so you can use
it anyway.
= AC_C_BIGENDIAN

= Check if the system is “big-endian”; i.e., stores integers
most-signiﬁcant-b\yte first. arrgﬁs\r.garc is big-endian; x86 is
'Advanced Programmihg 15

BAP0Z jittle-endian.) Sring 290

configure.in: library checks

= Autoconf can determine whether certain
libraries are available

= AC_CHECK_LIB(/ibrary, function)
= Check whether the library can be linked (as
-llibrary), and then whether the function can be
found inside it.
= Once a library is found, it’s linked in by default
for future calls to AC_CHECK_LIB, so you can
have one library depend on another.

18-Apr-02 Advanced Programming 16
Spring 2002

configure.in: header checks

= Autoconf can check whether certain
header files are available
= AC_CHECK_HEADER
= Check whether a header file is available
= AC_HEADER_STDC
= Check whether the system header files conform
with ANSI C. (Not the same as
AC_PROG_C _STDC, or__STDC_!)
= AC_HEADER_TIME
= Check whether <time.h> and <sys/time.h>
can both be included

18-Apr-02 Advanced Programming 17
Spring 2002

configure.in: type checks

= Autoconf can check characteristics of
structures and types in the compilation
environment

= Type checking code #includes all detected
header files checked so far
= AC_CHECK_MEMBER(aggregate.member)
= Check whether the given aggregate (struct or union) is
defined, and if so, whether it contains the given member
= AC_CHECK_TYPE(#ype)
= Check whether the compiler knows about a specific type
= AC_TYPE_SIZE_T
= Check whether the compiler knows about the type
size_t; if not, typedef it to ‘unsigned’.

18-Apr-02 Advanced Programming 18
Spring 2002

configure.in: function checks

= Autoconf can check whether system
and library functions are available

= AC_CHECK_FUNCS(functions...)

= Check whether the given functions are
available

= AC_REPLACE_FUNCS(functions...)

= Check whether the given functions are
available, and if not, link in replacement code
re-implementing them

18-Apr-02 Advanced Programming 19
Spring 2002

Autoconf output: Makefile

= Some autoconf output is need by the Makefile, so is
defined as template substitutions
= Libraries, programs, search paths
= Developer must write Makefile.in: template Makefile
= QOther than template variables, looks exactly like a normal
Makefile
= Patterns in Makefile.in are substituted with results of
autoconf tests
= @CC@ - C compiler
= @AWK@ -> Awk executable
= @CFLAGS@ -> compiler flags
= @LIBS@ -> matched libraries

18-Apr-02 Advanced Programming 20
Spring 2002

Autoconf output: config.h

= Other autoconf output is needed by the
source code, so symbols are defined in
config.h.

= Source code #includes “config.h”, then
makes decisions based on the symbols
defined.

HAVE_SYS_TIME_H <sys/time.h> exists
WORDS_BIGENDIAN integers are big-endian
HAVE_SELECT select() was found
HAVE_STRUCT_PASSWD_PW_ | struct passwd has the
GECOS pw_gecos field.
18-Apr-02 Advanced Programming 21
Spring 2002

System-dependent tests

= Some things can't be checked automatically
= Things that only work as root
= Details of system object formats
= For these, autoconf provides system-
dependent checks
= Check the system type of either the build or
the host system

= Standard GNU naming system
= i686-unknown-linux-gnu
= sparc-sun-solaris
= Use shell pattern matching on these names

18-Apr-02 Advanced Programming 22
Spring 2002

Custom tests

= Sometimes you need to check for things
that autoconf doesn't already have tests
for

= You can write custom tests:

= AC_TRY_CPP, AC_TRY_COMPILE,
AC_TRY_LINK, AC_TRY_RUN
= Try to preprocess / compile / link / run a
specific fragment of C code.
= Specify actions to take if test succeeds or fails.

18-Apr-02 Advanced Programming 23
Spring 2002

Results of custom tests

= Custom tests need to be able to output their
results
= AC_DEFINE
= Define a C preprocessor symbol in config.h
= AC_SUBST
= Substitute a variable pattern into Makefile.in
= AC_CACHE_CHECK
= Cache a variable in config.cache for future configure runs
= AC_MSG_CHECKING / AC_MSG_RESULT

= Output messages telling the user that something’s being
checked

18-Apr-02 Advanced Programming 24
Spring 2002

Subtleties of custom tests

= Autoconf actually works by using the m4
macro processor to create a shell script

= So you can embed your own shell (/bin/sh)
code in your custom tests

= HOWEVER:

* You can't just write bash code and expect
everything to work!

= Since the point of the ./configure script is to run
anywhere, you need to write shell code that can
run on any Unix system’s shell.

= Lowest-common-denominator scripting

18-Apr-02 Advanced Programming 25
Spring 2002

Custom libraries of tests

= If you need to execute your own tests,
you can write autoconf functions
= AC_DEFUN defines new functions

= Custom functions can be embedded
into a custom file

= aclocal.m4: project-specific custom
functions

= acsite.m4: system-wide custom functions

18-Apr-02 Advanced Programming 26
Spring 2002

Other parts of the GNU
build environment

= automake
= Automates creation of Makefile.in.
= Automatically supports make clean, make install, building
outside the source directory, creating .tar.gz distributions,
etc.
= Good for simple projects; not very flexible for complex
projects
= libtool

= Creating shared libraries, and dynamically-loadable-libraries,
is wildly different on all the platforms that support them

= Libtool is a shell script that encapsulates the knowledge of
how to do this, how to set load paths automatically, and so
forth.

18-Apr-02 Advanced Programming 27
Spring 2002

