Software Models

Henning Schulzrinne

19-Feb-02 Advanced Programming
Spring 2002

Introduction

= Non-technical interlude...
= Many more type of software than before:
= commercial projects
= contract
= shareware
= open source
= Influences:
= commercial needs
= IP protection & licensing
= documentation
= support

19-Feb-02 Advanced Programming
Spring 2002

Commercial

= Classical model, but many variations
= Internal vs. for sale
= e.g., Columbia SSOL vs. PeopleSoft
= One time vs. retail
= only run one (or few copies)
= custom programming
= missile control
= retail aka “shrink wrap”, but also download or
“ship and enable”
= games: cartridges
= embedded - OS, peripheral, cell phones, industrial
contral, ...

19-Feb-02 Advanced Programming 3
Spring 2002

Commercial software

= Many different licenses:

= single computer (Microsoft XP)

= multiple computers by same owner (e.g.,
laptop and home) — common for consumer
software

= IP address (servers)

= floating license—"no more than 3
simultaneous users” (CAD and SE tools)

= single network (e.g., within Columbia) —
site license

19-Feb-02 Advanced Programming 4
Spring 2002

Contract

= Consulting — individually or through
consulting houses, e.g.,
ArthurAndersen, EDS or Wipro (India)

= “Work for hire” — output belongs to
customer (GRA vs. undergraduate!)

= Usually, specific to customer

= Often, outside of core competency of
client (e.g., gov't, hospital, ...)

= Billed by project or by hour

19-Feb-02 Advanced Programming 5
Spring 2002

Shareware

= not = open source
= can freely download binaries

= usually low-cost, limited functionality
items (e.g., create buttons for web
pages)

= “crippleware”: limited functionality
(can't save work) or time limit on usage

= mostly Mac and Windows

19-Feb-02 Advanced Programming
Spring 2002

Open source

WWW.opensource.org
= Free redistribution
= Source code

= distribute either unobfuscated source code
or binaries

= Derived works
= same license as original code

= Integrity of author’s source code
= allow distribution of modified code

19-Feb-02 Advanced Programming 7
Spring 2002

Open Source

= No discrimination against persons or groups
= No discrimination against fields of endeavor
= commercial use, non-military use
= Not specific to product
= not just if part of some distribution
= Must not restrict other software
= can't require other software to be open-source

19-Feb-02 Advanced Programming 8
Spring 2002

Open Source

= Examples of open-source licenses:
= GNU General Public License
= modifications are also GPL
= GNU Library (Lesser) Public License
= allow linking into non-GPL code
= BSD license
= least restrictive — allow commercial use
= Artistic license
= force new naming for modifications

19-Feb-02 Advanced Programming 9
Spring 2002

Almost open-source

= Lots of programs that are free and/or

provide source code, but:

= don't allow modification (TeX)

= non-commercial or educational use only

= limited to particular hardware

= may be patent-encumbered (e.g., audio
codecs)

= only for customer (e.g., in case supplier
goes bankrupt)

19-Feb-02 Advanced Programming 10
Spring 2002

Example: BSD license

Copyright (c) <YEAR>, <OWNER>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

= Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

= Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

= Neither the name of the <ORGANIZATION> nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, ...

19-Feb-02 Advanced Programming 11
Spring 2002

Open source arguments

= “The Cathedral and the Bazaar” (Eric
Raymond)
= Social arguments
= knowledge dissemination
= avoid wasted effort (“doing it anyway”)
= cf. pro bono by lawyers
= skill strengthening and visibility (academics)
= Technical arguments
= quality
= security
= standards-compliance
19-Feu.02te5ting on manyAﬁmmammmg 12

Spring 2002

Cathedral and the Bazaar

1. Every good work of software starts by
scratching a developer's personal itch.

2. Good programmers know what to write.
Great ones know what to rewrite (and
reuse).

3. " "Plan to throw one away; you will,
anyhow." (Fred Brooks, ™ “The Mythical
Man-Month", Chapter 11)

4. If you have the right attitude, interesting
problems will find you.

19-Feb-02 Advanced Programming 13
Spring 2002

Cathedral and the Bazaar

5. When you lose interest in a program, your last duty to it is to
hand it off to a competent successor.

6. Treating your users as co-developers is your least-hassle
route to rapid code improvement and effective debugging.

7. Release early. Release often. And listen to your customers.

8. Given a large enough beta-tester and co-developer base,
almost every problem will be characterized quickly and the fix
obvious to someone.

9. Smart data structures and dumb code works a lot better than
the other way around.

10. If you treat your beta-testers as if they're your most valuable
resource, they will respond by becoming your most valuable
resource.

19-Feb-02 Advanced Programming 14
Spring 2002

Cathedral and the Bazaar

11. The next best thing to having good ideas is recognizing
good ideas from your users. Sometimes the latter is better.

12. Often, the most striking and innovative solutions come from
realizing that your concept of the problem was wrong.

13. "'Perfection (in design) is achieved not when there is
nothing more to add, but rather when there is nothing more
to take away."

14. Any tool should be useful in the expected way, but a truly
great tool lends itself to uses you never expected.

15. When writing gateway software of any kind, take pains to
disturb the data stream as little as possible.

16. When your language is nowhere near Turing-complete,
syntactic sugar can be your friend.

17. A security system is only as secure as its secret. Beware of
pseudo-secrets.

19-Feb-02 Advanced Programming 15
Spring 2002

Open source successes

= TeX (not quite open-source)
= gcc compiler and tools

= Linux and *BSD (FreeBSD, OpenBSD,
NetBSD) operating systems

= Apache web server

= sendmail mail transport agent (MTA)

= gimp bitmap graphics tool

= Tcl, Perl, Python language
implementations

19-Feb-02 Advanced Programming 16
Spring 2002

Open source - problems

= Ideal: small group of authors write code,
thousands contribute bug fixes (not just bug
reports!) and enhancements
= Need large community of technical users
= less likely to work well for recipe management or
kid's games
= more forgiving of lack of documentation or clean
install
= can integrate different tools
= if not, author becomes tech support

19-Feb-02 Advanced Programming 17
Spring 2002

Open source - problems

= Thus, works less well for specialized
programs with small user base (hundreds) —
get mostly complaints

= Mostly individuals moon-lighting or paid by
unrelated company (e.g., Linus Torvalds)

= Business model uncertain:
= packaging (Red Hat)
= tech support contract (MySQL)
= free with hardware (IBM)
= grants and donations

19-Feb-02 Advanced Programming 18
Spring 2002

Which model is "right"?

= Commercial needs:

= size of customer base

= who pays?
Intellectual property issues

= are there patents?

= does employer rely on IPR (trade or sell)?
Documentation

= how much documentation is needed to make the
program useful?

= How much support is needed?
= open-source support: mean vs. variance

19-Feb-02 Advanced Programming 19
Spring 2002

"Levels” of programming

Programmable applications

= add macro to Excel
Code generators

= generate UI code from “wizard”
Application embedding

= new UI for IE or Mozilla
Web scripting

= no UI in normal sense
“Classical” application

= Java, C

= use mostly OS and UI APIs

19-Feb-02 Advanced Programming 20

Spring 2002

“Levels” of programming

= Device drivers and OS kernel

= embedded systems
= specialty OS (e.g., VxWorks) or no OS\
= often, lower-end processors
= no virtual memory
= no cache
= limited memory space
= special operations (e.g., DSP MAC)
= Specialty programming:
= language compilers

19-Feb-02 Advanced Programming 2
Spring 2002

