ANALOG AND DIGITAL VIDEO

Henning Schulzrinne
Columbia University
COMS 6181 - Spring 2015

with material from Mark Handley
Video & image sources

- VGA video (computer video output)
 - component video
 - R, G, B + H (horizontal sync), V (vertical sync)
- Analog video from cameras
 - NTSC or PAL coded color
 - composite or component video
- Digital images
 - scanners, copiers and fax machines
 - digital cameras
- Images = still pictures
- Video = motion pictures
Example: DVI connector

video only (no audio)
Example: HDMI connector

- fully digital signal
- audio
- video (similar to DVI)
- remote control signals
- no closed captioning
Analog TV: CRT

cathode
anode
phosphor-coated screen
conductive coating
shadow mask
TFT LCD
Analog TV
How many frames?

- Movies use 24 fps
 - Not scanned – just photographs
 - Flicker, with undersampling (stroboscopic) problems
 - dark environment \rightarrow less sensitivity to flicker

- TV
 - scanned
 - fairly bright environment
 - \rightarrow use *interlacing* to reduce flicker
Interlacing
Interlacing artifacts

motion

scene change
Composite video

horizontal retrace
vertical: 400-500 µs
Color
Color

metamerism: tristimulus values

additive
Subtractive color: printing

- yellow (complement of blue)
- magenta (complement of green)
- cyan (complement of red)
Color representation

- Luminance \((Y)\) = brightness
- Chrominance
- RGB (red, green, blue)
 - basic analog components
- \(Y P_b P_r (Y, B-Y, R-Y)\)
 - color space for component video
 - YUV
 - YCbCr
 - digital representation
Color mapping

- True color
 - RGB in 8 bits each (common) \rightarrow 16.7 million colors
 - RGB in 16 bits each \rightarrow 281 trillion
 - Eye: 10 million colors

- Indexed color
 - color table
 - 8 bit index \rightarrow RGB 24 bit
 - approximate using dithering
 - see “web safe colors”