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Abstract

This memorandum is a revision of RFC 1889 in preparation for advancement from Proposed Standard
to Draft Standard status. Readers are encouraged to use the PostScript form of this draft to see where
changes from RFC 1889 are marked by change bars.

This memorandum describes RTP, the real-time transport protocol. RTP provides end-to-end net-
work transport functions suitable for applications transmitting real-time data, such as audio, video or
simulation data, over multicast or unicast network services. RTP does not address resource reservation
and does not guarantee quality-of-service for real-time services. The data transport is augmented by a
control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast
networks, and to provide minimal control and identification functionality. RTP and RTCP are designed
to be independent of the underlying transport and network layers. The protocol supports the use of
RTP-level translators and mixers.

This specification is a product of the Audio/Video Transport working group within the Internet Engi-
neering Task Force. Comments are solicited and should be addressed to the working group’s mailing list at
rem-conf@es.net  and/or the authors.
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Resolution of Open Issues

[Note to the RFC Editor: This section is to be deleted when this draft is published as an RFC but is shown
here for reference during the Last Call. The first paragraph of the Abstract is also to be deleted.]

Readers are directed to Appendix B, Changes from RFC 1889, for a listing of the changes that have been
made in this draft. The changes are marked with change bars in the PostScript form of this draft.

Changes in this draft from the previous one were a clarification of some wording in Section 6.3.2 and
the addition of a discussion of congestion control in Section 10 with references in Sections 6 and 13.

The revisions in this draft are intended to be complete for Working Group last call; the open issues from
previous drafts have been addressed:

¢ A fudge factor has been added to the RTCP unconditional reconsideration algorithm to compensate
for the fact that it settles to a steady state bandwidth that is below the desired level.

e As agreed at the Chicago IETF, the conditional and hybrid reconsideration schemes have been re-
moved in favor of unconditional reconsideration.

e The SSRC sampling algorithm has been extracted to a separate draft as agreed at the Chicago IETF.
That draft describes the “bin” mechanism that avoids a temporary underestimate in group size when
the group size is decreasing.

e The “reverse reconsideration” algorithm does not prevent the group size estimate from incorrectly
dropping to zero for a short time when most participants of a large session leave at once but some
remain. This has just been noted as only a secondary concern.

e Scaling of the minimum RTCP interval inversely proportional to the session bandwidth parameter has
been added, but only in the direction of smaller intervals for higher bandwidth. Scaling to longer in-
tervals for low bandwidths would cause a problem because this is an optional step. Some participants
might be timed out prematurely if they scaled to a longer interval while others kept the nominal 5
seconds. The benefit of scaling longer was not considered great in any case.

e No change was specified for the jitter computation for media with several packets with the same
timestamp. There is not a clear answer as to what should be done, or that any change would make a
significant improvement.

e As proposed without objection at the Los Angeles IETF, definition of additional SDES items such
as PHOTO URL and NICKNAME will be deferred to subsequent registration through IANA since
that method has been established. This is in the spirit of minimizing changes to the protocol in the
transition from Proposed to Draft.

e Nothing was added about allowing a translator to add its own random offsets to the sequence number
and timestamp fields because it would likely cause more trouble than good.
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e It was decided that it is not necessary for the length of a compound RTCP packet containing informa-
tion about N sources (usually from a mixer that aggregates RTCP) to be divided by N before adding
it into the average length since the smoothing of the estimator is sufficient.

1 Introduction

This memorandum specifies the real-time transport protocol (RTP), which provides end-to-end delivery ser-
vices for data with real-time characteristics, such as interactive audio and video. Those services include pay-
load type identification, sequence numbering, timestamping and delivery monitoring. Applications typically
run RTP on top of UDP to make use of its multiplexing and checksum services; both protocols contribute
parts of the transport protocol functionality. However, RTP may be used with other suitable underlying
network or transport protocols (see Section 11). RTP supports data transfer to multiple destinations using
multicast distribution if provided by the underlying network.

Note that RTP itself does not provide any mechanism to ensure timely delivery or provide other quality-
of-service guarantees, but relies on lower-layer services to do so. Ihdbgsarantee delivery or prevent
out-of-order delivery, nor does it assume that the underlying network is reliable and delivers packets in
sequence. The sequence numbers included in RTP allow the receiver to reconstruct the sender’s packet
sequence, but sequence numbers might also be used to determine the proper location of a packet, for example
in video decoding, without necessarily decoding packets in sequence.

While RTP is primarily designed to satisfy the needs of multi-participant multimedia conferences, it
is not limited to that particular application. Storage of continuous data, interactive distributed simulation,
active badge, and control and measurement applications may also find RTP applicable.

This document defines RTP, consisting of two closely-linked parts:

o the real-time transport protocol (RTP), to carry data that has real-time properties.

¢ the RTP control protocol (RTCP), to monitor the quality of service and to convey information about
the participants in an on-going session. The latter aspect of RTCP may be sulfficient for “loosely con-
trolled” sessions, i.e., where there is no explicit membership control and set-up, but it is not necessar-
ily intended to support all of an application’s control communication requirements. This functionality
may be fully or partially subsumed by a separate session control protocol, which is beyond the scope
of this document.

RTP represents a new style of protocol following the principles of application level framing and inte-
grated layer processing proposed by Clark and Tennenhouse [1]. That is, RTP is intended to be malleable
to provide the information required by a particular application and will often be integrated into the appli-
cation processing rather than being implemented as a separate layer. RTP is a protocol framework that is
deliberately not complete. This document specifies those functions expected to be common across all the
applications for which RTP would be appropriate. Unlike conventional protocols in which additional func-
tions might be accommodated by making the protocol more general or by adding an option mechanism that
would require parsing, RTP is intended to be tailored through modifications and/or additions to the headers
as needed. Examples are given in Sections 5.3 and 6.4.3.

Therefore, in addition to this document, a complete specification of RTP for a particular application will
require one or more companion documents (see Section 13):
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e a profile specification document, which defines a set of payload type codes and their mapping to
payload formats (e.g., media encodings). A profile may also define extensions or modifications to
RTP that are specific to a particular class of applications. Typically an application will operate under
only one profile. A profile for audio and video data may be found in the companion RFC 1890
(updated by Internet-Dratéiraft-ietf-avt-profile-new [2)).

e payload formaspecification documents, which define how a particular payload, such as an audio or
video encoding, is to be carried in RTP.

A discussion of real-time services and algorithms for their implementation as well as background dis-
cussion on some of the RTP design decisions can be found in [3].

1.1 Terminology

The key words MUST”, “MUST NOT’, “REQUIRED’, “SHALL", “SHALL NOT", “SHOULD", “SHOULD
NOT", “RECOMMENDED', “MAY”, and “OPTIONAL" in this document are to be interpreted as described
in RFC 2119 [4] and indicate requirement levels for compliant RTP implementations.

2 RTP Use Scenarios

The following sections describe some aspects of the use of RTP. The examples were chosen to illustrate the
basic operation of applications using RTP, not to limit what RTP may be used for. In these examples, RTP
is carried on top of IP and UDP, and follows the conventions established by the profile for audio and video
specified in the companion RFC 1890 (updated by Internet-Draft-ietf-avt-profile-new ).

2.1 Simple Multicast Audio Conference

A working group of the IETF meets to discuss the latest protocol draft, using the IP multicast services of the
Internet for voice communications. Through some allocation mechanism the working group chair obtains a
multicast group address and pair of ports. One port is used for audio data, and the other is used for control
(RTCP) packets. This address and port information is distributed to the intended participants. If privacy
is desired, the data and control packets may be encrypted as specified in Section 9.1, in which case an
encryption key must also be generated and distributed. The exact details of these allocation and distribution
mechanisms are beyond the scope of RTP.

The audio conferencing application used by each conference participant sends audio data in small chunks
of, say, 20 ms duration. Each chunk of audio data is preceded by an RTP header; RTP header and data are
in turn contained in a UDP packet. The RTP header indicates what type of audio encoding (such as PCM,
ADPCM or LPC) is contained in each packet so that senders can change the encoding during a conference,
for example, to accommodate a new participant that is connected through a low-bandwidth link or react to
indications of network congestion.

The Internet, like other packet networks, occasionally loses and reorders packets and delays them by
variable amounts of time. To cope with these impairments, the RTP header contains timing information and
a sequence number that allow the receivers to reconstruct the timing produced by the source, so that in this
example, chunks of audio are contiguously played out the speaker every 20 ms. This timing reconstruction
is performed separately for each source of RTP packets in the conference. The sequence number can also
be used by the receiver to estimate how many packets are being lost.
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Since members of the working group join and leave during the conference, it is useful to know who is
participating at any moment and how well they are receiving the audio data. For that purpose, each instance
of the audio application in the conference periodically multicasts a reception report plus the name of its user
on the RTCP (control) port. The reception report indicates how well the current speaker is being received
and may be used to control adaptive encodings. In addition to the user name, other identifying information
may also be included subject to control bandwidth limits. A site sends the RTCP BYE packet (Section 6.6)
when it leaves the conference.

2.2 Audio and Video Conference

If both audio and video media are used in a conference, they are transmitted as sep&atessions

That is, separate RTP and RTCP packets are transmitteshfiblr medium using two different UDP port

pairs and/or multicast addresses. There is no direct coupling at the RTP level between the audio and video
sessions, except that a user participating in both sessions should use the same distinguished (canonical)
name in the RTCP packets for both so that the sessions can be associated.

One moativation for this separation is to allow some participants in the conference to receive only one
medium if they choose. Further explanation is given in Section 5.2. Despite the separation, synchronized
playback of a source’s audio and video can be achieved using timing information carried in the RTCP packets
for both sessions.

2.3 Mixers and Translators

So far, we have assumed that all sites want to receive media data in the same format. However, this may not
always be appropriate. Consider the case where participants in one area are connected through a low-speed
link to the majority of the conference participants who enjoy high-speed network access. Instead of forcing
everyone to use a lower-bandwidth, reduced-quality audio encoding, an RTP-level relay caikedmay

be placed near the low-bandwidth area. This mixer resynchronizes incoming audio packets to reconstruct
the constant 20 ms spacing generated by the sender, mixes these reconstructed audio streams into a single
stream, translates the audio encoding to a lower-bandwidth one and forwards the lower-bandwidth packet
stream across the low-speed link. These packets might be unicast to a single recipient or multicast on a
different address to multiple recipients. The RTP header includes a means for mixers to identify the sources
that contributed to a mixed packet so that correct talker indication can be provided at the receivers.

Some of the intended participants in the audio conference may be connected with high bandwidth links
but might not be directly reachable via IP hicast. For example, they might be behind an application-level
firewall that will not let any IP packets pass. For these sites, mixing may not be necessary, in which case
another type of RTP-level relay calledranslatormay be used. Two translators are installed, one on either
side of the firewall, with the outside one funneling all multicast paclestsived through a secure connection
to the translator inside the firewall. The translator inside the firewall sends them again as multicast packets
to a multicast group restricted to the site’s internal network.

Mixers and translators may be designed for a variety of purposes. An example is a video mixer that
scales the images of individual people in separate video streams and composites them into one video stream
to simulate a group scene. Other examples of translation include the connection of a group of hosts speaking
only IP/UDP to a group of hosts that understand only ST-II, or the packet-by-packet encoding translation
of video streams from individual sources without resynchronization or mixing. Details of the operation of
mixers and translators are given in Section 7.
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2.4 Layered Encodings

Multimedia applications should be able to adjust the transmission rate to match the capacityeoéiherr
or to adapt to network congestion. Many implementations place the responsibility of rate-adaptivity at
the source. This does not work well with multicast transmission because of the conflicting bandwidth re-
guirements of heterogeneous receivers. The result is often a least-common denominator scenario, where the
smallest pipe in the network mesh dictates the quality and fidelity of the overall live multimedia “broadcast”.
Instead, responsibility for rate-adaptation can lzepll at the receivers by combining a layered encoding
with a layered transmission system. In the context of RTP over IP multicast, the source can stripe the
progressive layers of a hierarchically represented signal across multiple RTP seasionarried on its own
multicast group. Receivers can then adapt to network heterogeneity and control their reception bandwidth
by joining only the appropriate subset of the multicast groups.
Details of the use of RTP with layered encodings are given in Sections 6.3.9, 8.3 and 11.

3 Definitions

RTP payload: The data transported by RTP in a packet, for example audio samples or compressed video
data. The payload format and interpretation are beyond the scope of this document.

RTP packet: A data packet consisting of the fixed RTP header, a possibly empty list of contributing sources
(see below), and the payload data. Some underlying protocols may require an encapsulation of the
RTP packet to be defined. Typically one packet of the underlying protocol contains a single RTP
packet, but several RTP packetay be contained if permitted by the encapsulation method (see
Section 11).

RTCP packet: A control packet consisting of a fixed header part similar to that of RTP data packets, fol-
lowed by structured elements that vary depending upon the RTCP packet type. The formats are defined
in Section 6. Typically, multiple RTCP packets are sent together as a compound RTCP packet in a
single packet of the underlying protocol; this is enabled by the length field in the fixed header of each
RTCP packet.

Port: The “abstraction that transport protocols use to distinguish among multiple destinations within a
given host computer. TCP/IP protocols identify ports using small positive integers.” [5] The transport
selectors (TSEL) used by the OSI transport layer are equivalent to ports. RTP depends upon the lower-
layer protocol to provide some mechanism such as ports to multiplex the RTP and RTCP packets of a
session.

Transport address: The combination of a network address and port that identifies a transport-level end-
point, for example an IP address and a UDP port. Packets are transmitted from a source transport
address to a destination transport address.

RTP media type: An RTP media type is the collection of payload types which can be carried within a
single RTP session. The RTP Profile assigns RTP media types to RTP payload types.

RTP session: The association among a set of participants communicating with RTP. For each participant,
the session is defined by a particular pair of destination transport addresses (one network address
plus a port pair for RTP and RTCP). The destination transport address pair may be common for all
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participants, as in the case of IP multicast, or may be different for each, as in the case of individual
unicast network addresses and port pairdn a multimedia sessioreach medium is carried in a
separate RTP session with its own RTCP packets. The multiple RTP sessions are distinguished by
different port number pairs and/or different multicast addresses.

Synchronization source (SSRC):The source of a stream of RTP packets, identified by a 32-bit numeric
SSRC identifier carried in the RTP header so as not to be dependent upon the network address. All
packets from a synchronization source form part of the same timing and sequence number space,
S0 a receiver groups packets by synchronization source for playback. Examples of synchronization
sources include the sender of a stream of packets derived from a signal source such as a microphone
or a camera, or an RTP mixer (see below). A synchronization source may change its data format,
e.g., audio encoding, over time. The SSRC identifier is a randomly chosen value meant to be globally
unique within a particular RTP session (see Section 8). A participant need not use the same SSRC
identifier for all the RTP sessions in a multimedia session; the binding of the SSRC identifiers is
provided through RTCP (see Section 6.5.1). If a participant generates multiple streams in one RTP
session, for example from separate video cameras,ash be identified as a different SSRC.

Contributing source (CSRC): A source of a stream of RTP packets that has contributed to the combined
stream produced by an RTP mixer (see below). The mixer inserts a list of the SSRC identifiers of the
sources that contributed to the generation of a particular packet into the RTP header of that packet.
Thislistis called the CSRC list. An example application is audio conferencing where a mixer indicates
all the talkers whose speech was combined to produce the outgoing packet, allowing the receiver to
indicate the current talker, even though all the audio packets contain the same SSRC identifier (that of
the mixer).

End system: An application that generates the content to be sent in RTP packets and/or consumes the
content of received RTP packets. An end system can act as one or more synchronization sources in a
particular RTP session, but typically only one.

Mixer: An intermediate system that receives RTP packets from one or more sources, possibly changes the
data format, combines the packets in some manner and then forwards a new RTP packet. Since the
timing among multiple input sources will not generally be synchronized, the mixer will make timing
adjustments among the streams and generate its own timing for the combined stream. Thus, all data
packets originating from a mixer will be identified as having the mixer as their synchronization source.

Translator: An intermediate system that forwards RTP packets with their synchronization source identifier
intact. Examples of translators include devices that convert encodings without mixing, replicators
from multicast to unicast, and application-level filters in firewalls.

Monitor: An application that receives RTCP packets sent by participants in an RTP session, in particular
the reception reports, and estimates the currenlitgua service for distribution monitoring, fault
diagnosis and long-term statistics. The monitor function is likely to be built into the application(s)
participating in the session, but may also be a separate application that does not otherwise participate
and does not send or receive the RTP data packets (since they are on a separate port). These are called
third-party monitors. It is also acceptable for a third-party monitor to receive the RTP data packets
but not send RTCP packets or otherwise be counted in the session.
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Non-RTP means: Protocols and mechanisms that may be needed in addition to RTP to provide a usable
service. In particular, for multimedia conferences, a control protocol may distribute multicast ad-
dresses and keys for encryption, negotiate the encryption algorithm to be used, and define dynamic
mappings between RTP payload type values and the payload formats they represent for formats that
do not have a predefined payload type value. Examples of such protocols include the Session Initia-
tion Protocol (SIP) (RFC 2543 [6]), H.323 [7] and applications using SDP (RFC 2327 [8]), such as
RTSP (RFC 2326 [9]). For simple applications, electronic mail or a conference database may also be
used. The specification of such protocols and mechanisms is outside the scope of this document.

4 Byte Order, Alignment, and Time Format

All integer fields are carried in network byte order, that is, most significant byte (octet) first. This byte
order is commonly known as big-endian. The transmission order is described in detail in [10, Appendix A].
Unless otherwise noted, numeric constants are in decimal (base 10).

All header data is aligned to its natural length, i.e., 16-bit fields are aligned on even offsets, 32-bit fields
are aligned at offsets divisible by four, etc. Octets designated as padding have the value zero.

Wallclock time (absolute date arntime) is represented using the timestamp format of the Network Time
Protocol (NTP), which is in seconds relative to Oh UTC on 1 January 1900 [11]. The full resolution NTP
timestamp is a 64-bit unsigned fixed-point number with the integer part in the first 32 bits and the fractional
part in the last 32 bits. In some fields where a more compact representation is appropriate, only the middle
32 bits are used; that is, the low 16 bits of the integer part and the high 16 bits of the fractional part. The
high 16 bits of the integer part must be determined independently.

An implementation is not required to run the Network Time Protocol in order to use RTP. Other time
sources, or none at all, may be used (see the description of the NTP timestamp field in Section 6.4.1).
However, running NTP may be useful for synchronizing streams transmitted from separate hosts.

The NTP timestamp will wrap around to zero some time in the year 2036, but for RTP purposes, only
differences between pairs of NTP timestamps are used. So long as the pairs of timestamps can be assumed
to be within 68 years of each other, using modulo arithmetic for subtractions and comparisons makes the
wraparound irrelevant.

Schulzrinne/Casner/Frederick/Jacobson Expires January 14, 2001 [Page 10]



INTERNET-DRAFT draft-ietf-avt-rtp-new-08.ps July 14, 2000

5 RTP Data Transfer Protocol

5.1 RTP Fixed Header Fields
The RTP header has the following format:

0 1 2 3
01234567890123456789012345678901
S e S S I S  n pTit SR T S e e
[V=2|P|X] CC |M| PT | sequence number |
S e S S I S  n pTit SR T S e e
| timestamp |
S e S S I S  n pTit SR T S e e
| synchronization source (SSRC) identifier |
+=+=+=t+=+=t+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=t=+=+=+=+=+=+=+=+=+=+=+=+
| contributing source (CSRC) identifiers |
| |

S e S S I S  n pTit SR T S e e
The first twelve octets are present in every RTP packet, while the list of CSRC identifiers is present only
when inserted by a mixer. The fields have the following meaning:

version (V): 2 bits
This field identifies the version of RTP. The version defined by this specification is two (2). (The value
1 is used by the first draft version of RTP and the value 0 is used by the protocol initially implemented
in the “vat” audio tool.)

padding (P): 1 bit
If the padding bit is set, the packet contains one or more additional padding octets at the end which
are not part of the payload. The last octet of the padding contains a count of how many padding octets
should be ignored, including itself. Padding may be needed by some encryption algorithms with
fixed block sizes or for carrying several RTP packets in a lower-layer protocol data unit.

extension (X): 1 bit
If the extension bit is set, the fixed headessT be followed by exactly one header extension, with a
format defined in Section 5.3.1.

CSRC count (CC): 4 bits
The CSRC count contains the number of CSRC identifiers that follow the fixed header.

marker (M): 1 bit
The interpretation of the marker is defined by a profile. It is intended to allow significant events such
as frame boundaries to be marked in the packet stream. A pkofitedefine additional marker bits
or specify that there is no marker bit by changing the number of bits in the payload type field (see
Section 5.3).

payload type (PT): 7 bits

This field identifies the format of the RTP payload and determines its interpretation by the appli-
cation. A profilemAay specify a default static mapping of payload type codes to payload formats.
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Additional payload type codaegAy be defined dynamically through non-RTP means (see Section 3).
A set of default mappings for audio and video is specified in the companion RFC 1890 (updated by
Internet-Draftdraft-ietf-avt-profile-new [2]). An RTP sourcemAYy change the payload

type during a session, but this fiedthouLd NOT be usedfor multiplexing separate media streams
(see Section 5.2).

A receivermusT ignore packets with payload types that it does not understand.

sequence number: 16 bits
The sequence number increments by one for each RTP data packet sent, and may be used by the
receiver to detect packet loss and to restore packet sequenceitidieatue of the sequence number
SHOULD be random (unpredictable) to make known-plaintext attacks on encryption more difficult,
even if the source itself does not encrypt according to the method in Sectioheéxause the packets
may flow through a translator that does. Techniques for choosing unpredictable numbers are discussed
in[12].

timestamp: 32 bits
The timestamp reflects the sampling instant of the first octet in the RTP data packet. The sampling
instantMusT be derived from a clock that increments monotonically and linearly in time to allow syn-
chronization and jitter calculations (see Section 6.4.1). The resolution of themloek be sufficient
for the desired synchronization accuracy and for measuring packet gittima(one tick per video
frame is typically not sufficient). The clock frequency is dependent on the format of data carried as
payload and is specified statically in the profile or payload format specification that defines the format,
or MAY be specified dynamically for payload formats defined through non-RTP means. If RTP pack-
ets are generated periodically, the nominal sampling instant as determined from the sampling clock
is to be used, not a reading of the system clock. As an example, for fixed-rate audio the timestamp
clock would likely increment by one for each sampling period. If an audio application reads blocks
covering 160 sampling periods from the input device, the timestamp would be increased by 160 for
each such block, regardless of whether the block is trétesiin a packet or dropped as silent.

The initial value of the timestamgHoOULD be random, as for the sequence number. Several consec-
utive RTP packets willhave equal timestamps if they are (logically) generated at once, e.g., belong
to the same video frame. Consecutive RTP packeis contain timestamps that are not monotonic

if the data is not transmitted in the order it was sampled, as in the case of MPEG interpolated video
frames. (The sequence numbers of the packets as transmitted will still be monotonic.)

SSRC: 32 bits
The SSRC field identifies the synchronization source. This idensfieruLd be chosen randomly,
with the intent that no two synchronization sources within the same RTP session will have the same
SSRC identifier. An example algorithm for generating a random identifier is presented in Appendix A.6.
Although the probability of multiple sources choosing the same identifier is low, all RTP implementa-
tions must be prepared to detect and resolve collisions. Section 8 describes the probability of collision
along with a mechanism for resolving collisions and detecting RTP-level forwarding loops based on
the uniqueness of the SSRC identifier. If a source changes its source transport address, it must also
choose a new SSRC identifier to avoid being interpreted as a looped source (see Section 8.2).

CSRCl list: 0to 15 items, 32 bits each
The CSRC listidentifies the contributing sources for the payload contained in this packet. The number
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of identifiers is given by the CC field. If there are more than 15 contributing sources, only 15 can be
identified. CSRC identifiers are inserted by mixers (see Section dsihg the SSRC identifiers of
contributing sources. For example, for audio packets the SSRC identifiers of all sources that were
mixed together to create a packet are listed, allowing correct talker indication at the receiver.

5.2 Multiplexing RTP Sessions

For efficient protocol processing, the number of multiplexing points should be minimized, as described in
the integrated layer processing design principle [1]. In RTP, multiplexing is provided by the destination
transport address (network address and port number) which define an RTP session. For example, in a
teleconference composed of audio and video media encoded separately, each sweolium be carried
in a separate RTP session with its own destination transport address.

Separate audio and video streastOULD NOT be carried in a single RTP session and demultiplexed
based on the payload type or SSRC fields. Interleaving packets with different RTP tgpdi®but using
the same SSRC would introduce several problems:

1. If, say, two audio streams shared the same RTP session and the same SSRC value, and one were to
change encodings and thus acquire a different RTP payload type, there would be no general way of
identifying which stream had changed encodings.

2. An SSRC is defined to identify a single timing and sequence number space. Interleattiptemu
payload types would require different timing spaces if the media clock rates differ and would require
different sequence number spaces to tell which payload type suffered packet loss.

3. The RTCP sender and receiver reports (see Section 6.4) can only describe one timing and sequence
number space per SSRC and do not carry a payload type field.

4. An RTP mixer would not be able to combine interleaved streams of incompatible media into one
stream.

5. Carrying multiple media in one RTP session precludes: the use of different network paths or network
resource allocations if appropriate; reception of a subset of the media if desired, for example just
audio if video would exceed the available bandwidth; and receiver implementations that use sepa-
rate processes for the different media, whereas using separate RTP sessions permits either single- or
multiple-process implementations.

Using a different SSRC for each medium but sending them in the same RTP session would avoid the
first three problems but not the last two.
5.3 Profile-Specific Modifications to the RTP Header

The existing RTP data packet header is believed to be complete for the set of functions required in common
across all the application classes that RTP might support. However, in keeping with the ALF design princi-
ple, the heademAy be tailored through modifications or additions defined in a profile specification while
still allowing profile-independent monitoring and recording tools to function.

e The marker bit and payload type field carry profile-specific information, but they are allocated in the
fixed header since many applications are expected to need them and might otherwise have to add
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another 32-bit word just to hold them. The octet containing these fieddsbe redefined by a profile

to suit different requirements, for example with a more or fewer marker bits. If there are any marker
bits, onesHouLD be located in the most significant bit of the octet since profile-independent monitors
may be able to observe a correlation between packet loss patterns and the marker bit.

e Additional information that is required for a particular payload format, such as a video encoding,
SHOULD be carried in the payload section of the packet. This might be in a header that is always
present at the start of the payload section, or might be indicated by a reserved value in the data
pattern.

e If a particular class of applications needs additional functionality independent of payload format,
the profile under which those applications opes#uLD define additional fixed fields to follow
immediately after the SSRC field of the existing fixed header. Those applications will be able to
quickly and directly access the atidnal fields while profile-independent monitors or recorders can
still process the RTP packets by interpreting only the first twelve octets.

If it turns out that additional functionality is needed in common across all profiles, then a new version
of RTP should be defined to make a permanent change to the fixed header.

5.3.1 RTP Header Extension

An extension mechanism is provided to allow individual implementations to experiment with new payload-
format-independent functions that require additional information to be carried in the RTP data packet header.
This mechanism is designed so that the header extension may be ignored by other interoperating implemen-
tations that have not been extended.

Note that this header extension is intended only for limited use. Most potential uses of this mechanism
would be better done another way, using the methods described in the previous section. For example, a
profile-specific extension to the fixed header is less expensive to process because it isitiohabndr in
a variable location. Additional information required for a particular payload fosaatuLD NOT use this
header extension, bsHoOULD be carried in the payload section of the packet.

0 1 2 3
01234567890123456789012345678901
B T o
| defined by profile | length |
B T o
| header extension |

If the X bitin the RTP header is one, a variable-length header extensism be appended to the RTP
header, following the CSRC listif present. The header extension contains a 16-bit length field that counts the
number of 32-bit words in the extension, excluding the four-octet extension header (therefore zero is a valid
length). Only a single extension care appended to the RTP data header. To allow multiple interoperating
implementations to each experiment independently with different header extensions, or to allow a particular
implementation to experiment with more than one type of header extension, the first 16 bits of the header
extension are left open for distinguishing identifiers or parameters. The format of these 16 bits is to be
defined by the profile specification under which the implementations are operating. This RTP specification
does not define any header extensions itself.
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6 RTP Control Protocol — RTCP

The RTP control protocol (RTCP) is based on the periodic transmission of control packets to all participants
in the session, using the same distribution mechanism as the data packets. The underlyingypustocol
provide multiplexing of the data and control packets, for example using separate port numbers with UDP.
RTCP performs four functions:

1. The primary function is to provide feedback on the quality of the data distribution. This is an integral
part of the RTP’s role as a transport protocol and is related to the flow and congestion control functions
of other transport protocols (see Section 10 on the requirement for congestion coftrelffeedback
may be directly useful for control of adaptive encodings [13, 14], but experiments with IP multicasting
have shown that it is also critical to get feedback from the receivers to diagnose faults in the distribu-
tion. Sending reception feedback reports to all participants allows one who is observing problems to
evaluate whether those problems are local or global. With a distribution mechanism like IP multicast,
it is also possible for an entity such as a network service provider who is not otherwise involved in
the session to receive the feedback information and act as a third-party monitor to diagnose network
problems. This feedback function is performed by the RTCP sender and receiver reports, described
below in Section 6.4.

2. RTCP carries a persistent transport-level identifier for an RTP source calledribaical nameor
CNAME, Section 6.5.1. Since the SSRC identifier may change if a conflict is discovered or a program
is restarted, receivers require the CNAME to keep track of each participant. Receivers may also
require the CNAME to associate multiple data streams from a given participant in a set of related RTP
sessions, for example to synchronize audio and video. Inter-media synchronization also requires the
NTP and RTP timestamps included in RTCP packets by data senders.

3. The first two functions require that all participants send RTCP packets, therefore the rate must be
controlled in order for RTP to scale up to a large number of participants. By having each participant
send its control packets to all the others, each can independently observe the number of participants.
This number is used to calculate the rate at which the packets are sent, as explained in Section 6.2.

4. A fourth,oPTIONAL function is to convey minimal session control information, for example partic-
ipant identification to be displayed in the user interface. This is most likely to be useful in “loosely
controlled” sessions where participants enter and leave without membership control or parameter ne-
gotiation. RTCP serves as a convenient channel to reach all the participants, but it is not necessarily
expected to support all the control communication requirements of an application. A higher-level
session control protocol, which is beyond the scope of this document, may be needed.

Functions 1-3sHOULD be used in all environments, but particularly in the IP multicast environment.
RTP application designersHouLD avoid mechanisms that can only work in unicast mode and will not
scale to larger numbers. Transmission of RTiA& be controlled separately for senders and receivers, as
described in Section 6.2, for cases such as unidirectional links where feedback from receivers is not possible.

6.1 RTCP Packet Format

This specification defines several RTCP packet types to carry a variety of control information:
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SR: Sender report, for transmission and reception statistics from participants that are active senders

RR: Receiver report, for reception statistics from participants that are not active senders and in combination
with SR for active senders reporting on more than 31 sources

SDES: Source description items, including CNAME
BYE: Indicates end of participation
APP: Application specific functions

Each RTCP packet begins with a fixed part similar to that of RTP data packets, followed by structured
elements thatay be of variable length according to the packet typenusT end on a 32-bit boundary.
The alignment requirement and a length field in the fixed part of each packet are included to make RTCP
packets “stackable”. Multiple RTCP packets cére concatenated without any intervening separators to
form acompound RTCP packéhat is sent in a single packet of the lower layer protocol, for example
UDP. There is no explicit count of individual RTCP packets in the compound packet since the lower layer
protocols are expected to provide an overall length to determine the end of the compound packet.

Each individual RTCP packet in the compound packet may be processed independently with no require-
ments upon the order or combination of packets. However, in order to perform the functions of the protocol,
the following constraints are imposed:

e Reception statistics (in SR or RR) should be sent as often as bandwidth constraints will allow to
maximize the resolution of the statistics, therefore each periodically titteenhacompound RTCP
packetmusT include a report packet.

e New receivers need to receive the CNAME for a source as soon as possible to identify the source and
to begin associating media for purposes such as lip-sync, so each compound RTCRipackatso
include the SDES CNAME.

e The number of packet types that may appear first in the compound packet neéeéslitoited to
increase the number of constant bits in the first word and the probabilitycossfully validating
RTCP packets against misaddressed RTP data packets or other unrelated packets.

Thus, all RTCP packetausT be sent in a compound packet of at least two individual packets, with the
following format:

Encryption prefix: If and only if the compound packet is to be encrypted according to the method in
Section 9.1, iMusT be prefixed by a random 32-bit quantity redrawn for every compound packet
transmitted. If padding is required for the encryptionmitST be added to the last packet of the
compound packet.

SR or RR: The first RTCP packet in the compound packetsT always be a report packet to facilitate
header validation as described in Appendix A.2. This is true even if no data has been sent or received,
in which case an empty RRUST be sent, and even if the only other RTCP packet in the compound
packetis a BYE.

Additional RRs: If the number of sources for which reception statistics are being reported exceeds 31, the
number that will fit into one SR or RR packet, then additional RR packetsuLD follow the initial
report packet.
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SDES: An SDES packet containing a CNAME iterusT be included in each compound RTCP packet.
Other source description itemsay optionally be included if required by a particular application,
subject to bandwidth constraints (see Section 6.3.9).

BYE or APP: Other RTCP packet types, including those yet to be defimed, follow in any order, except
that BYESHOULD be the last packet sent with a given SSRC/CSRC. Packet typesappear more
than once.

It is RECOMMENDED that translators and mixersombine individual RTCP packets from the multiple
sources they are forwarding into one compound packet whenever feasible in order to amortize the packet
overhead (see Section 7). An example RTCP compound packet as might be produced by a mixer is shown
in Fig. 1. If the overall length of a compound packet would exceed the maximum transmission unit (MTU)
of the network path, isHOULD be segmented into multiple shorter compound packets to be transmitted in
separate packets of the underlying protocol. Note that each of the compound pac&gtbegin with an
SR or RR packet.

An implementationsHOULD ignore incoming RTCP packets with types unknown to it. Additional
RTCP packet types may be registered with the Internet Assigned Numbers Authority (IANA) as described
in Section 14.

if encrypted: random 32-bit integer
je————  packet ————— =}« packet ——————— =« packet—»

chunk chunk
receiver reports item item item item

. o pore 5 0 09
compound packet
UDP packet

N =)

A
vy

Figure 1: Example of an RTCP compound packet

6.2 RTCP Transmission Interval

RTP is designed to allow an application to scale automatically over session sizes ranging from a few partic-
ipants to thousands. For example, in an audio conference the data traffic is inherently self-liectungd

only one or two people will speak at a time, so with multicast distribution the data rate on any given link
remains relatively constant independent of the number of participants. However, the control traffic is not
self-limiting. If the reception reports from each participant were sent at a constant rate, the control traffic
would grow linearly with the number of participants. Therefore, the rate must be scaled down by dynami-
cally calculating the interval between RTCP packet transmissions.

For each session, it is assumed that the data traffic is subject to an aggregate limit called the “session
bandwidth” to be divided among the participants. This bandwidth might be reserved and the limit enforced
by the network. If there is no reservation, there may be other constraints, depending on the environment,
that establish the “reasonable” maximum for the session to use, and that would be the session bandwidth.
The session bandwidth may be chosen based or some cagir@ri knowledge of the available network
bandwidth for the session. It is somewhat independent of the media encoding, but the encoding choice may
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be limited by the session bandwidth. Often, the session bandwidth is the sum of the nominal bandwidths
of the senders expected to be concurrently active. For teleconference audio, this number would typically be
one sender’s bandwidth. For layered encodings, each layer is a separate RTP session with its own session
bandwidth parameter.

The session bandwidth parameter is expected to be supplied by a session management application when
it invokes a media application, but media applicationy set a default based on the single-sender data
bandwidth for the encoding selected for the session. The applicatgnalso enforce bandwidth limits
based on multicast scope rules or other criteria. All participsitsT use the same value for the session
bandwidth so that the same RTCP interval will be calculated.

Bandwidth calculations for control and data traffic include lower-layer transport and network protocols
(e.g., UDP and IP) since that is what the resource reservation system would need to know. The application
can also be expected to know which of these protocols are in use. Link level headers are not included in the
calculation since the packet will be encapsulated with different link level headers as it travels.

The control traffic should be limited to a small and known fraction of the session bandwidth: small so
that the primary function of the transport protocol to carry data is not impaired; known so that the control
traffic can be included in the bandwidth specification given to a resource reservation protocol, and so that
each participant can independently calculate its share REGOMMENDED that the fraction of the session
bandwidth allocated to RTCP be fixed at 5%. It is akgcOMMENDED that 1/4 of the RTCP bandwidth
be dedicated to participants that are sending data so that in sessions with a large number of receivers but a
small number of senders, newly joining participants will more quickly receive the CNAME for the sending
sites. When the proportion of senders is greater than 1/4 of the participants, the senders get their proportion
of the full RTCP bandwidth. While the values of these and other constants in the interval calculation are
not critical, all participants in the sessieusT use the same values so the same interval will be calculated.
Therefore, these constargsoULD be fixed for a particular profile.

A profile MAY specify that the control traffic bandwidth may be a separate parameter of the session
rather than a strict percentage of the session bandwidth. Using a separate parameter allows rate-adaptive
applications to set an RTCP bandwidth consistent with a “typical” data bandwidth that is lower than the
maximum bandwidth specified by the session bandwidth parameter.

The profilemAy further specify that the control traffic bandwidth may be divided into two separate ses-
sion parameters for those participants which are active data senders and those which are not. Following the
recommendation that 1/4 of the RTCP bandwidth be dedicated to data senders;theMENDED default
values for these two parameters would be 1.25% and 3.75%, respectively. When the proportion of senders
is greater than 1/4 of the participants, the senders get their proportion of the sum of these parameters. Using
two parameters allows RTCP reception reports to be turned off entirely for a particular sessitimigyttse
RTCP bandwidth for non-data-senders to zero while keeping the RTCP bandwidth for data senders non-zero
so that sender reports can still be sent for inter-media synchronization. This may be appropriate for systems
operating on unidirectional links or for sessions that don't require feedback on the quaétegption.

The calculated interval between transmissions of compound RTCP patkets D also have a lower
bound to avoid having bursts of packets exceed the allowed bandwidth when the number of participants is
small and the traffic isn’t smoothed according to the law of large numbers. It also keeps the report interval
from becoming too small during transient outages like a network partition such that adaptation is delayed
when the partition heals. At application startup, a degdaypuLb be imposed before the first compound
RTCP packet is sent to allow time for RTCP packets to be received from other participants so the report
interval will converge to the correct value more quickly. This delay be set to half the minimum interval
to allow quicker notification that the new participant is present. RE€EOMMENDED value for a fixed
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minimum interval is 5 seconds.
An implementatiorMAY scale the minimum RTCP interval to a smaller value inversely proportional to
the session bandwidth parameter with the following limitations:

For multicast sessions, only active data sengens use the reduced minimum value to calculate the
interval for transmission of compound RTCP packets.

For unicast sessions, the reduced valug be used by participants that are not active data senders as
well, and the delay before sending the initial compound RTCP packetbe zero.

For all sessions, the fixed minimussiouLD be used when calculating the participant timeout interval
(see Section 6.3.5) so that implementations which do not use the reduced value for transmitting RTCP
packets are not timed out by other participants prematurely.

TheRECOMMENDED value for the reduced minimum in seconds is 360 divided by the session band-
width in kilobits/second. This minimum is smaller than 5 seconds for bandwidths greater than 72
kb/s.

The algorithm described in Section 6.3 arppendix A.7 was designed to meet the goals outlined
in this section. It calculates the interval between sending compound RTCP packets to divide the allowed
control traffic bandwidth among the participants. This allows an application to provide fast response for
small sessions where, for example, identification of all participants is important, yet automatically adapt to
large sessions. The algorithm incorporates the following characteristics:

The calculated interval between RTCP packets scales linearly with the number of members in the
group. It is this linear factor which allows for a constant amount of control traffic when summed
across all members.

The interval between RTCP packets is varied randomly over the range [0.5,1.5] times the calculated
interval to avoid unintended synchronization of all participants [15]. The first RTCP packet sent after
joining a session is also delayed by a random variation of half the minimum RTCP interval.

A dynamic estimate of the average compound RTCP packet size is calculated, including all those
received and sent, to automatically adapt to changes in the amount of control information carried.

Since the calculated interval is dependent on the number of observed group members, there may be
undesirable startup effects when a new user joins an existing session, or many users simultaneously
join a new session. These new users will initially have incorrect estimates of the group membership,
and thus their RTCP transmission interval will be too short. This problem can be significant if many
users join the session simultaneously. To deal with this, an algorithm called “timer reconsideration” is
employed. This algorithm implements a simple back-off mechanism which causes users to hold back
RTCP packet transmission if the group sizes are increasing.

When users leave a session, either with a BYE or by timeout, the group membership decreases, and
thus the calculated interval should decrease. A “reverse reconsideration” algorithm is used to allow
members to more quickly reduce their intervals in response to group membership decreases.
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e BYE packets are given different treatment than other RTCP packets. When a user leaves a group,
and wishes to send a BYE packet, it may do so before its next scheduled RTCP packet. However,
transmission of BYE'’s follows a back-off algorithm which avoids floods of BYE packets should a
large number of members simultaneously leave the session.

This algorithm may be used for sessions in which all participants are allowed to send. In that case,
the session bandwidth parameter is the product of the individual sender’'s bandwidth times the number of
participants, and the RTCP bandwidth is 5% of that.

Details of the algorithm’s operation are given in the sections that follow. Appendix A.7 gives an example
implementation.

6.2.1 Maintaining the number of session members

Calculation of the RTCP packet interval depends upon an estimate of the number of sites participating in the
session. New sites are added to the count when they are heard, and an entry for@ach be created in a

table indexed by the SSRC or CSRC identifier (see Section 8.2) to keep track of them. Newvexvtrizs
considered not valid until multiple packets carrying the new SSRC have beeived (see Appendix A.1),

or until an SDES RTCP packet containing a CNAME for that SSRC has been receiEutriesMAY

be deleted from the table when an RTCP BYE packet with the corresponding SSRC identifier is received,
except that some straggler data packets might arrive after the BYE and cause the entry to be recreated.
Instead, the entrgHouLD be marked as having received a BYE and then deleted after an appropriate delay.

A participantMAY mark another site inactive, or delete it if not yet valid, if no RTP or RTCP packet
has been received for a small number of RTCP report intervalsBG®MMENDED). This provides some
robustness against packet loss. All sites must have the same value for this multiplier and must calculate
roughly the same value for the RTCP report interval in order for this timeout to work properly. Therefore,
this multipliersHouLD be fixed for a particular profile.

For sessions with a very large number of participants, it may be impractical to maintain a table to store
the SSRC identifier and state information for all of them. An implementaiian use SSRC sampling,
as described in [16], to reduce the storage requirements. An implemeniatonse any other algorithm
with similar performance. A key requirement is that any algorithm considese@LD NOT substantially
underestimate the group size, althoughAlr overestimate.

6.3 RTCP Packet Send and Receive Rules

The rules for how to send, and what to do when receiving an RTCP packet @ireedinere. An imple-
mentation that allows operation in a multicast environment or a multipoint unicast enviromumsnimeet
the requirements in Section 6.2. Such an implementation use the algorithm defined in this section
to meet those requirements, @Ay use some other algorithm so long as it provides equivalent or better
performance. An implementation which is constrained to two-party unicast opestiouLD still use
randomization of the RTCP transmission interval to avoid unintended synchronization of multiple instances
operating in the same environment, bty omit the “timer reconsideration” and “reverse reconsideration”
algorithms in Sections 6.3.3, 6.3.6 and 6.3.7.

To execute these rules, a session participant must maintain several pieces of state:

tp: the last time an RTCP packet was transmitted;
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tc: the current time;

tn: the next scheduled transmission time of an RTCP packet;

pmembers: the estimated number of session members at the time tn was last recomputed;
members: the most current estimate for the number of session members;

senders: the most current estimate for the number of senders in the session;

ricp _bw: The target RTCP bandwidth, i.e., the total bandwidth that will be used for RTCP packets by
all members of this session, in octets per second. This will be a specified fraction of the “session
bandwidth” parameter supplied to the application at startup.

we_sent: Flag thatis true if the application has sent data since the 2nd previous RTCP report was transmit-
ted.

avg.rtcp _size: The average compound RTCP packet size, in octets, over all RTCP packets sent and received
by this participant.

initial: Flag thatis true if the application has not yet sent an RTCP packet.

Many of these rules make use of the “calculated interval” between packet transmissions. This interval is
described in the following section.

6.3.1 Computing the RTCP transmission interval

To maintain scalability, the average interval between packets from a session participant should scale with
the group size. This interval is called the calculated interval. It is obtained by combining a number of the
pieces of state described above. The calculated interval T is then determined as follows:

1. If there are any senders (sender®) in the session, but the number of senders is less than 25% of
the membership (members), the interval depends on whether the participant is a sender or not (based
on the value of wesent). If the participant is a sender (went true), the constant C is set to the
average RTCP packet size (amgp_size) divided by 25% of the RTCP bandwidth (rtbv), and the
constant n is set to the number of senders. Ifsgat is not true, the constant C is set to the average
RTCP packet size divided by 75% of the RTCP bandwidth. The constant n is set to the number of
receivers (members senders). If the number of senders is greater than 25%, senders and receivers
are treated together. The constant C is set to the total RTCP bandwidth and n is set to the total number
of members.

2. Ifthe participant has not yet sent an RTCP packet (the variable initial is true), the constant Tmin is set
to 2.5 seconds, else it is set to 5 seconds.

3. The deterministic calculated interval Td is set to max(Tmin, n*C).

4. The calculated interval T is set to a number uniformly distributed between 0.5 and 1.5 times the
deterministic calculated interval.
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5. The resulting value of T is divided by— 3/2 = 1.21828 to compensate for the fact that the timer
reconsideration algorithm converges to a value of the RTCP bandwidth below the intended average.

This procedure results in an interval which is random, but which, on average, gives at least 25% of the
RTCP bandwidth to senders and the rest to receivers. If the sendetigutemaore than one quarter of the
membership, this procedure splits the bandwidth equally among all participants, on average.

6.3.2 Initialization

Upon joining the session, the participantinitializestp to 0, tc to 0, senders to 0, pmembers to 1, membersto 1,
we_sent to false, rtcpw to the specified fraction of the session bandwidth, initial to true, andtapgsize
to the probable size of the first RTCP packet that the application will later construct. The calculated interval
T is then computed, and the first packet is scheduled for time tn = T. This means that a transmission timer
is set which expires at time T. Note that an applicatity use any desired approach for implementing this
timer.

The participant adds its own SSRC to the member table.

6.3.3 Receiving an RTP or non-BYE RTCP packet

When an RTP or RTCP packet is received from a participant whose SSRC is not in the member table, the
SSRC is added to the table, and the value for members is updated once the participant has been validated as
described in Section 6.2.1. The same processing occurs for each CSRC in a validated RTP packet.

When an RTP packet is received from a participant whose SSRC is not in the sender table, the SSRC is
added to the table, and the value for senders is updated.

For each compound RTCP packet received, the value ofrtaypgsize is updated: avgcp.size =
(1/16)*packetsize + (15/16)* avgtcp_size, where packedize is the size of the RTCP packet just received.

6.3.4 Receiving an RTCP BYE packet

Except as described in Section 6.3.7 for the case when an RTCP BYE is to be transmittedgékited

packet is an RTCP BYE packet, the SSRC is checked against the member table. If present, the entry is

removed from the table, and the value for members is updated. The SSRC is then checked against the

sender table. If present, the entry is removed from the table, and the value for senders is updated.
Furthermore, to make the transmission rate of RTCP packets more adaptive to changes in group mem-

bership, the following “reverse reconsideration” algoritbmouLD be executed when a BYE packet is

received that reduces members to a value less than pmembers:

e The value for tn is updated according to the following formula: tn = tc + (members/pmembers)(tn -
tc).

e The value for tp is updated according the following formula: tp = tc - (members/pmembers)(tc - tp).
e The next RTCP packet is rescheduled for transmission at time tn, which is now earlier.

e The value of pmembers is set equal to members.

This algorithm does not prevent the group size estimate from incorrectly dropping to zero for a short
time due to premature timeouts when most participants of a large session leave at once but some remain. The
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algorithm does make the estimate return to the correct value more rapidly. This situation is unusual enough
and the consequences are sufficiently harmless that this problem is deemed only a secondary concern.

6.3.5 Timing Out an SSRC

At occassional intervals, the participamtsT check to see if any of the other participants time out. To do
this, the participant computes the deterministic (without the randomization factor) calculated interval Td for
a receiver, that is, with weent false. Any other session member who has not sent an RTP or RTCP packet
since time tc - MTd (M is the timeout multiplier, and defaults to 5) is timed out. This means that its SSRC
is removed from the member list, and members is updated. A similar check is performed on the sender list.
Any member on the sender list who has not sent an RTP packet since time tc - 2T (within the last two RTCP
report intervals) is removed from the sender list, and senders is updated.

If any members time out, the reverse reconsideration algorithm described in SectioaH6oR14D be
performed.

The participanmusT perform this check at least once per RTCP transmission interval.

6.3.6 Expiration of transmission timer
When the packet transmission timer expires, the participant performs the following operations:

e The transmission interval T is computed as described in Section 6.3.1, including the randomization
factor.

e Iftp + T is less than or equal to tc, an RTCP packet is transmitted. tp is set to tc, then another value
for T is calculated as in the previous step and tn is set to tc + T. The transmission timer is set to expire
again at time tn. If tp + T is greater than tc, tn is set to tp + T. No RTCP packet is transmitted. The
transmission timer is set to expire at time tn.

e pmembers is set to members.

If an RTCP packet is transmitted, the value of initial is set to FALSE. Furthermore, the value of
avg rtcp.size is updated: avgcp.size = (1/16)*packesize + (15/16)* avgtcp_size, where packedize
is the size of the RTCP packet just transmitted.

6.3.7 Transmitting a BYE packet

When a participant wishes to leave a session, a BYE packet is transmitted to inform the other participants of
the event. In order to avoid a flood of BYE packets when many participants leave the system, a participant
MUST execute the following algorithm if the number of members is more than 50 when the participant
chooses to leave. This algorithm usurps the normal role of the members variable to count BYE packets
instead:

e When the participant decides to leave the system, tp is reset to tc, the current time, members and
pmembers are initialized to 1, initial is set to 1, went is set to false, senders is set to 0, and
avg rtcp.size is set to the size of the BYE packet. The calculated interval T is computed. The BYE
packet is then scheduled for time tn =tc + T.
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¢ Everytime a BYE packet from another participantis received, members is incremented by 1 regardless
of whether that participant exists in the member table or not, and when SSRC sampling is in use,
regardless of whether or not the BYE SSRC would be included in the sample. members is NOT
incremented when other RTCP packets or RTP packets are received, but only for BYE packets.

e Transmission of the BYE packet then follows the rules for transmitting a regular RTCP packet, as
above.

This allows BYE packets to be sent right away, yet controls their total bandwidth usage. In the worst
case, this could cause RTCP control packets to use twice the bandwidth as normal (10%) — 5% for non
BYE RTCP packets and 5% for BYE.

A participant that does not want to wait for the above mechanism to allow transmission of a BYE packet
MAY leave the group without sending a BYE at all. That participant will eventually be timed out by the
other group members.

If the group size estimate members is less than 50 when the participant decides to leave, the participant
MAY send a BYE packet immediately. Alternatively, the participant choose to execute the above BYE
backoff algorithm.

In either case, a participant which never sent an RTP or RTCP psicket NOT send a BYE packet
when they leave the group.

6.3.8 Updating wesent

The variable wesent contains true if the participant has sent an RTP packet recently, false otherwise. This
determination is made by using the same mechanisms as for managing the set of other participants listed in
the senders table. If the participant sends an RTP packet whesemids false, it adds itself to the sender

table and sets weent to true. The reverse reconsideration algorithm described in SectiorsB@UD be
performed to possibly reduce the delay before sending an SR packet. Every time another RTP packet is sent,
the time of transmission of that packet is maintained in the table. The normal sender timeout algorithm is
then applied to the participant— if an RTP packet has not been transmitted since time tc - 2T, the participant
removes itself from the sender table, decrements the sender count, and_setst iefalse.

6.3.9 Allocation of source description bandwidth

This specification defines several source description (SDES) items in addition to the mandatory CNAME
item, such as NAME (personal name) and EMAIL (email address). It also provides a means to define
new application-specific RTCP packet types. Applications should exercise caution in allocating control
bandwidth to this additional information because it will slow down the rate at which reception reports and
CNAME are sent, thus impairing the performance of the protocol. RESOMMENDED that no more than
20% of the RTCP bandwidth allocated to a single participant be used to carry the additional information.
Furthermore, it imotintended that all SDES items wilbe included in every application. Those that are
includedsHouLD be assigned a fraction of the bandwidth according to thiityu Rather than estimate
these fractions dynamically, itis recommended that the percentages be translated statically into report inter-
val counts based on the typical length of an item.

For example, an application may be designed to send only CNAME, NAME and EMAIL and not any
others. NAME might be given much higher priority than EMAIL because the NAME would be displayed
continuously in the application’s user interface, whereas EMAIL would be displayed only when requested.
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At every RTCP interval, an RR packet and an SDES packet with the CNAME item would be sent. For a
small session operating at the minimum interval, that would be every 5 seconds on the average. Every third
interval (15 seconds), one extra item would be included in the SDES packet. Seven out of eight times this
would be the NAME item, and every eighth time (2 minutes) it would be the EMAIL item.

When multiple applications operate in concert using cross-application binding through a common
CNAME for each participant, for example in a ftimedia conference composed of an RTP session for
each medium, the adttbnal SDES informatiorMAY be sent in only one RTP session. The other sessions
would carry only the CNAME item. In particular, this approach should be applied to the multiple sessions
of a layered encoding scheme (see Section 2.4).

6.4 Sender and Receiver Reports

RTP receivers provide reception djtyxafeedback using RTCP report packets which may take one of two
forms depending upon whether or not the receiver is also a sender. The only difference between the sender
report (SR) and receiver report (RR) forms, besides the packet type code, is that the sender report includes
a 20-byte sender information section for use by active senders. The SR is issued if a site has sent any data
packets during the interval since issuing the last report or the previous one, otherwise the RR is issued.

Both the SR and RR forms include zero or more reception report blocks, one for each of the synchro-
nization sources from which this receiver has received RTP data packets since the last report. Reports are
not issued for contributing sources listed in the CSRC list. Each reception report block provides statistics
about the data received from the particular source indicated in that block. Since a maximum of 31 reception
report blocks will fit in an SR or RR packet, additional RR packets be stacked after the initial SR or
RR packet as needed to contain the reception reports for all sources heard during the interval since the last
report.

The next sections define the formats of the two reports, how they may be extended in a profile-specific
manner if an application requires additional feedback information, and how the reports may be used. Details
of reception reporting by translators and mixers is given in Section 7.
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6.4.1 SR: Sender report RTCP packet

0 1 2 3
01234567890123456789012345678901
T U O T O T O T o S T e o s St
[V=2|P| RC | PT=SR=200 | length | header
T U O T O T O T o S T e o s St
| SSRC of sender |
R i o e e e e e e e o e e e e e Y e e e e e e e e
| NTP timestamp, most significant word | sender
B o T L e o e e S et e e Al 1010}
| NTP timestamp, least significant word |
e T I T N e S T O o o S e T e e
| RTP timestamp |
e T I T N e S T O o o S e T e e
| sender’'s packet count |
i U TR S T O T T S T e e
| sender’'s octet count |
I i e e e e e e i o e e e e e e s e el el e e

| SSRC_1 (SSRC of first source) | report
e S L e o S L e e e = T 0] 10101 ¢
| fraction lost | cumulative number of packets lost | 1

B e o e St S S S
| extended highest sequence number received |
B e o e St S S S
| interarrival jitter |
B e o e St S S S
| last SR (LSR) |
B e o e St S S S
| delay since last SR (DLSR) |
+=+=t+=+=+=t+=+=+=t+=+=+=t+=+=+=+=+=+=+=t+=+=t+=+=+=t+=+=+=+=+=+=+=+=+=+
| SSRC_2 (SSRC of second source) | report
e S L e o S o L e e e = T 0110101 ¢
: : 2
+=+=t+=+=+=t+=+=+=t+=+=+=t+=+=+=+=+=+=+=t+=+=t+=+=+=t+=+=+=+=+=+=+=+=+=+
| profile-specific extensions |
B e o e St S S S

The sender report packet consists of three sections, possibly followed by a fourth profile-specific ex-
tension section if defined. The first section, the header, is 8 octets long. The fields have the following
meaning:

version (V): 2 bits
Identifies the version of RTP, which is the same in RTCP packets as in RTP data packets. The version
defined by this specification is two (2).

padding (P): 1 bit
If the padding bit is set, this individual RTCP packet contains some additional padding octets at the
end which are not part of the control information but are included in the length field. The last octet
of the padding is a count of how many padding octets should be ignored, including itself (it will be a
multiple of four). Padding may be needed by some encryption algorithms with fixed block sizes. In
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a compound RTCP packet, padding is only required on one individual packet because the compound
packet is encrypted as a whole for the method in Section 9.1. Thus, paddsmonly be added to

the last individual packet, and if padding is added to that packet, the paddimg &itbe set only on

that packet. This convention aids the header validity checks described in Appendix A.2 and allows
detection of packets from some early implementations that incorrectly set the padding bit on the first
individual packet and add padding to the last individual packet.

reception report count (RC): 5 bits
The number of reception report blocks contained in this packet. A value of zero is valid.

packet type (PT): 8 bits
Contains the constant 200 to identify this as an RTCP SR packet.

length: 16 bits
The length of this RTCP packet in 32-bit words minus one, including the header and any padding. (The
offset of one makes zero a valid length and avoids a possible infinite loop in scanning a compound
RTCP packet, while counting 32-bit words avoids a validity check for a multiple of 4.)

SSRC: 32 bits
The synchronization source identifier for the originator of this SR packet.

The second section, the sender information, is 20 octets long and is present in every sender report packet.
It summarizes the data transmissions from this sender. The fields have the following meaning:

NTP timestamp: 64 bits
Indicates the wallclock time (see Section #hen this report was sent so that it may be used in
combination with timestamps returned in reception reports from other receivers to measure round-
trip propagation to those receivers. Receivers should expect that the measurement accuracy of the
timestamp may be limited to far less than the resolution of the NTP timestamp. The measurement
uncertainty of the timestamp is not indicated as it may not be known. On a system that has no
notion of wallclock time but does have some system-specific clock such as “system uptime”, a sender
MAY use that clock as a reference to calculate relative NTP timestamps. It is important to choose a
commonly used clock so that if separate implementations are used to produce the individual streams
of a multimedia session, all implementations will use the same clock. Until the year 2036, relative and
absolute timestamps will differ in the high bit so (invalid) comparisons will show a large difference;
by then one hopes relative timestamps will no longer be needédsender that has no notion of
wallclock or elapsed timeiAY set the NTP timestamp to zero.

RTP timestamp: 32 bits
Corresponds to the same time as the NTP timestamp (above), but in the same units and with the same
random offset as the RTP timestamps in data packets. This correspondence may be used for intra- and
inter-media synchronization for sources whose NTP timestamps are synchronized, and may be used
by media-independent receivers to estimate the nominal RTP clock frequency. Note that in most cases
this timestamp will not be equal to the RTP timestamp in any adjacent data packet. Rataer, iie
calculated from the corresponding NTP timestamp using the relationship between the RTP timestamp
counter and real time as maintained by periodically checking the wallclock time at a sampling instant.
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sender’s packet count: 32 bits
The total number of RTP data packets transmitted by the sender since starting transmission up until
the time this SR packet was generated. The cewiuLD be reset if the sender changes its SSRC
identifier.

sender’s octet count: 32 bits
The total number of payload octets (i.e., not including header or padding) transmitted in RTP data
packets by the sender since starting transmission up until the time this SR packet was generated. The
countsHoULD be reset if the sender changes its SSRC identifier. This field can be used to estimate
the average payload data rate.

The third section contains zero or more reception report blocks depending on the number of other sources
heard by this sender since the last report. Each reception report block conveys statistics on the reception of
RTP packets from a single synchronization source. Recesra)LD NOT carry over statistics when a
source changes its SSRC identifier due to a collision. These statistics are:

SSRCn (source identifier): 32 bits
The SSRC identifier of the source to which the information in this reception report block pertains.

fraction lost: 8 bits
The fraction of RTP data packets from source SSRIGst since the previous SR or RR packet was
sent, expressed as a fixed point number with the binary point at the left edge of the field. (That
is equivalent to taking the integer part after multiplying the loss fraction by 256.) This fraction is
defined to be the number of packets lost divided by the number of packets expected, as defined in
the next paragraph. An implementation is shown in Appendix A.3. If the loss is negative due to
duplicates, the fraction lost is set to zero. Note that a receiver cannot tell whether any packets were
lost after the last one received, and that there will be no reception report block issued for a source if
all packets from that source sent during the last reporting interval have been lost.

cumulative number of packets lost: 24 bits
The total number of RTP data packets from source S®RIGat have been lost since the beginning of
reception. This number is defined to be the number of packets expected less the number of packets ac-
tually received, where the number of packets received includes any which are late or duplicates. Thus
packets that arrive late am@tcounted as lost, and the loss may be negative if there are duplicates. The
number of packets expected is defined to be the extended last sequence number received, as defined
next, less the initial sequence numbeceived. This may be calculated as shown in Appendix A.3.

extended highest sequence number receive®?2 bits
The low 16 bits contain the highest sequence number received in an RTP data packet from source
SSRCn, and the most significant 16 bits extend that sequence number with the corresponding count
of sequence number cycles, which may be maintained according to the algorithm in Appendix A.1.
Note that different receivers within the same session will generate different extensions to the sequence
number if their start times differ significantly.

interarrival jitter: 32 bits
An estimate of the statistical variance of the RTP data packet interarrival time, measured in timestamp
units and expressed as an unsigned integer. The interarrivaljjigetefined to be the mean deviation

Schulzrinne/Casner/Frederick/Jacobson Expires January 14, 2001 [Page 28]



INTERNET-DRAFT draft-ietf-avt-rtp-new-08.ps July 14, 2000

(smoothed absolute value) of the differenbein packet spacing at the receiver compared to the
sender for a pair of packets. As shown in the equation below, this is equivalent to the difference in the
“relative transit time” for the two packets; the relative transit time is the difference between a packet’s
RTP timestamp and the receiver’s clock at the time of arrival, measured in the same units.

If S; is the RTP timestamp from packétand R; is the time of arrival in RTP timestamp units for
packet:, then for two packetsandj, D may be expressed as

D(i,j) = (R; — Ry) — (S; — Si) = (R; = 5) — (R — Si)

The interarrival jittersHoUuLD be calculated continuously as each data packist received from
source SSRQ@, using this differencé for that packet and the previous packet 1 in order of
arrival (not necessarily in sequence), according to the formula

J=J_1+ (|D(l -1, Z)| — J,'_l)/16

Whenever a reception report is issued, the current valdei@sampled.

The jitter calculatiomusT conform to the formula specified here in orderibow profile-independent
monitors to make valid interpretations of reports coming from different implementations. This algo-
rithm is the optimal first-order estimator and the gain paramet#é gives a good noise reduction
ratio while maintaining a reasonable rate of convergence [17, Section 11.5-11.12, Fig. 11.6]. A
sample implementation is shown in Appendix A.8.

last SR timestamp (LSR): 32 bits
The middle 32 bits out of 64 in the NTP timestamp (as explained in Section 4) received as part of the
most recent RTCP sender report (SR) packet from source SERho SR has been received yet,
the field is set to zero.

delay since last SR (DLSR): 32 bits
The delay, expressed in units bf65536 seconds, between receiving the last SR packet from source
SSRCn and sending this reception report block. If no SR packet has been received yet frorm$SRC
the DLSR field is set to zero.

Let SSRCr denote the receiver issuing this receiver report. Source SSB& compute the round-
trip propagation delay to SSR€Dby recording the timel when this reception report block is received.
It calculates the total round-trip timé—LSR using the last SR timestamp (LSR) field, and then sub-
tracting this field to leave the round-trip propagation delay4s (SR — DLSR). This is illustrated

in Fig. 2.

This may be used as an approximate measure of distance to cluster receivers, although some links
have very asymmetric delays.
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[10 Nov 2001 11:33:25.125] [10 Nov 2001 11:33:36.5]
n SR(n) A=0xb710:8000 (46864.500 s)

ntp_sec =0xb44db705
ntp_frac=0x20000000
(3024992016.125 s)

dIsr=0x0005.4000 ( 5.250 s)
Isr =0xb705:2000 (46853.125 s)

r RR(n)

Y

[<—DLSR—=
(5.25 s)

A 0xb710:8000 (46864.500 s)
DLSR -0x0005:4000 ( 5.250 s)
LSR —0xb705:2000 (46853.125 s)

delay Ox 6:2000 ( 6.1255s)

Figure 2: Example for round-trip time computation

6.4.2 RR: Receiver report RTCP packet

0 1 2 3
01234567890123456789012345678901
T U O T O T O T o S T e o s St
[V=2|P| RC | PT=RR=201 | length | header
T U O T O T O T o S T e o s St
| SSRC of packet sender |
R i o e e e e e e e o e e e e e Y e e e e e e e e

| SSRC_1 (SSRC of first source) | report
+-t -ttt -ttt -ttt -ttt bt +-+-+-+-+-+  Dblock
| fraction lost | cumulative number of packets lost [ 1

e T I T N e S T O o o S e T e e
| extended highest sequence number received |
e T I T N e S T O o o S e T e e
| interarrival jitter |
i U TR S T O T T S T e e
| last SR (LSR) |
i U TR S T O T T S T e e
| delay since last SR (DLSR) |
+=+=t+=+=+=t+=+=+=t+=+=+=+=+=+=+=+=+=+=t+=+=t+=+=+=t+=+=+=+=+=+=+=+=+=+
| SSRC_2 (SSRC of second source) | report
e S L R o S o L e e e = T 0110101 ¢
: : 2
+=+=t+=+=+=t+=+=+=t+=+=+=t+=+=+=t+=+=+=+=t+=+=t+=+=+=t+=+=+=+=+=+=+=+=+=+
| profile-specific extensions |
i U TR S T O T T S T e e

The format of the receiver report (RR) packet is the same as that of the SR packet except that the packet

Schulzrinne/Casner/Frederick/Jacobson Expires January 14, 2001 [Page 30]



INTERNET-DRAFT draft-ietf-avt-rtp-new-08.ps July 14, 2000

type field contains the constant 201 and the five words of sender information are omitted (these are the NTP
and RTP timestamps and sender’s packet and octet counts). The remaining fields have the same meaning as
for the SR packet.

An empty RR packet (RC = )usT be put at the head of a compound RTCP packet when there is no
data transmission or reception to report.

6.4.3 Extending the sender and receiver reports

A profile sHouLD define profile-specific extensions to the sender report and receiver report if there is addi-
tional information that needs tbe reported regularly about the sender or receivers. This methodLD
be used in preference to defining another RTCP packet type because it requires less overhead:

o fewer octets in the packet (ho RTCP header or SSRC field);

e simpler and faster parsing because applications running under that profile would be programmed to
always expect the extension fields in the directly accessible location after the reception reports.

The extension is a fourth section in the sender- or receiver-report packet which comes at the end after the
reception report blocks, if any. If adtbnal sender information is required, then for sender reports it would

be included first in the extension section, but for receiver reports it would not be prefeinformation

about receivers is to be included, that datsouLd be structured as an array of blocks parallel to the
existing array of reception report blocks; that is, the number of blocks would be indicated by the RC field.

6.4.4 Analyzing sender and receiver reports

Itis expected that reception ditg feedback will be useful not only for the sender but also for oteeeivers

and third-party monitors. The sender may modify its transmissions based on the feedback; receivers can
determine whether problems are local, regional or global; network managers may use profile-independent
monitors that receive only the RTCP packets and not the corresponding RTP data packets to evaluate the
performance of their networks for multicast distribution.

Cumulative counts are used in both the sender information and receiver report blocks so that differences
may be calculated between any two reports to make measurements over both short and long time periods,
and to provide resilience against the loss of a report. The difference between the last two esporesircan
be used to estimate the recent lifyaf the distribution. The NTP timestamp is included so that rates may be
calculated from these differences over the interval between two reports. Since that timestamp is independent
of the clock rate for the data encoding, it is possible to implement encoding- and profile-independent quality
monitors.

An example calculation is the packet loss rate over the interval between two reception reports. The
difference in the cumulative number of packets lost gives the number lost during that interval. The difference
in the extended last sequence numbers received gives the number of packets expected during the interval.
The ratio of these two is the packet loss fraction over the interval. This ratio should equal the fraction lost
field if the two reports are consecutive, but otherwise it nmet. The loss rate per second can be obtained
by dividing the loss fraction by the difference in NTP timestamps, expressed in seconds. The number of
packets received is the number of packets expected minus the number lost. The number of packets expected
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may also be used to judge the statistical validity of any loss estimates. For example, 1 out of 5 packets lost
has a lower significance than 200 out of 1000.

From the sender information, a third-party monitor can calculate the average payload data rate and the
average packet rate over an interval without receiving the data. Taking the ratio of the two gives the average
payload size. If it can be assumed that packet loss is independent of packet size, then the number of packets
received by a particular receiver times the average payload size (or the corresponding packet size) gives the
apparent throughput available to that receiver.

In addition to the cumulative counts which allow long-term packet loss measurements using differences
between reports, the fraction lost field provides a short-term measurement from a single report. This be-
comes more important as the size of a session scales up enough that reception state information might not be
kept for all receivers or the interval between reports becomes long enough that only one report might have
been received from a particular receiver.

The interarrival jitter field provides a second short-term measure of network congestion. Packet loss
tracks persistent congestion while the jitter measure tracks transient congestion. The jitter measure may
indicate congestion before it leads to packet loss. Since the interarrival jitter field is only a snapshot of the
jitter at the time of a report, it may beenessary to analyze a number of reports from one receiver over time
or from multiple eceivers, e.g., within a single network.

6.5 SDES: Source description RTCP packet

0 1 2 3
01234567890123456789012345678901
e T S S S S U S S S R S S

[V=2|P| SC | PT=SDES=202 | length | header
+=t+=+=+=t+=t=+=+=+=t=t=+=+=t=+=+=+=t=+=t=+=+=t=t=t=+=+=+=+=+=+=+=+

| SSRC/CSRC_1 | chunk
S o S L S T s S S L e e T s 1

| SDES items |

L—:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:|+
| SSRC/CSRC_2 | chunk
S e S L e T T N e o ST S SR R S 2

| SDES items |

| . I

I i e e e e e e i o e e e e e e s e el el e e

The SDES packet is a three-level structure composed of a header and zero or more chunks, each of
of which is composed of items describing the source identified in that chunk. The items are described
individually in subsequent sections.

version (V), padding (P), length:
As described for the SR packet (see Section 6.4.1).

packet type (PT): 8 bits
Contains the constant 202 to identify this as an RTCP SDES packet.

source count (SC): 5 bits
The number of SSRC/CSRC chunks contained in this SDES packet. A value of zero is valid but
useless.
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Each chunk consists of an SSRC/CSRC identifier followed by a list of zero or more items, which carry
information about the SSRC/CSRC. Each chunk starts on a 32-bit boundary. Each item consists of an 8-bit
type field, an 8-bit octet count describing the length of the text (thus, not including this two-octet header),
and the text itself. Note that the text can be no longer than 255 octets, but this is consistent with the need to
limit RTCP bandwidth consumption.

The text is encoded according to the UTF-8 encoding specified in RFC 2279 [18]. US-ASCII is a subset
of this encoding and requires no additional encoding. The presence of multi-octet encodings is indicated by
setting the most significant bit of a character to a value of one.

Items are contiguous, i.e., items are not individually padded to a 32-bit boundary. Text is not null
terminated because someltimoctet encodings include null octets. The list of itemgach chunkusT be
terminated by one or more null octets, the first of which is interpreted as an item type of zero to denote the
end of the list. No length octet follows the null item type octet, but additional null optessr be included
if needed to pad until the next 32-bit boundary. Note that this padding is separate from that indicated by the
P bitin the RTCP headerA chunk with zero items (four null octets) is valid but useless.

End systems send one SDES packet containing their own source identifier (the same as the SSRC in the
fixed RTP header). A mixer sends one SDES packet containing a chunk for each contributing source from
which itis receiving SDES information, or rtiple complete SDES packets in the format above if there are
more than 31 such sources (see Section 7).

The SDES items currently defined are described in the next sections. Only the CNAME item is manda-
tory. Some items shown here may be useful only for particular profiles, but the item types are all assigned
from one common space to promote shared use and to simplify profile-independent applications. Additional
items may be defined in a profile by registering the type numbers with IANA as described in Section 14.

6.5.1 CNAME: Canonical end-point identifier SDES item

0 1 2 3
01234567890123456789012345678901
T U O T O T O T o S T e o s St
| CNAME=1 | length | user and domain name
T U O T O T O T o S T e o s St

The CNAME identifier has the following properties:

e Because the randomly allocated SSRC identifier may change if a conflict is discovered or if a program
is restarted, the CNAME itemiusT be includedto provide the binding from the SSRC identifier to
an identifier for the source that remains constant.

e Likethe SSRC identifier, the CNAME identifisHOULD also be unique among all participants within
one RTP session.

e To provide a binding across multiple media tools used by one participant in a set of related RTP
sessions, the CNAMEHoOULD be fixed for that participant.

¢ To facilitate third-party monitoring, the CNAMBHOULD be suitable for either a program or a person
to locate the source.

Therefore, the CNAMESHOULD be derived algorithmically and not entered manually, when possible.
To meet these requirements, the following formaiouLD be used unless a profile specifies an alternate
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syntax or semantics. The CNAME itesHouLD have the format “user@host”, or “host” if a user name

is not available as on single-user systems. For both formats, “host” is either the fully qualified domain
name of the host from which the real-time data originates, formatted according to the rules specified in RFC
1034 [19], RFC 1035 [20] and Section 2.1 of RFC 1123 [21]; or the standard ASCII representation of the
host’s numeric address on the interface used for the RTP communication. For example, the standard ASCII
representation of an IP Version 4 address is “dotted decimal”, also known as dotted quad. Other address
types are expected to have ASCII representations that are mutually unique. The fully qualified domain
name is more convenient for a human observer and may avoid the need to send a NAME item in addition,
but it may be difficult or impossible to obtain reliably in some operating environments. Applications that
may be run in such environmergsiouLD use the ASCII representation of the address instead.

Examples are “doe@sleepy.megacorp.com” or “doe@192.0.2.89” for a multi-user system. On a system
with no user name, examples would be “sleepy.megacorp.com” or “192.0.2.89".

The user nameHOULD be in a form that a program such as “finger” or “talk” could use, i.e., it typically
is the login name rather than the personal name. The host name is not necessarily identical to the one in the
participant’s electronic mail address.

This syntax will not provide unique identifiers for each source if an application permits a user to generate
multiple sources from one host. Such an application would have to rely on the SSRC to further identify the
source, or the profile for that application would have to specify additional syntax for the CNAME identifier.

If each application creates its CNAME independently, the ltesyCNAMES may not be identical as
would be required to provide a binding across multiple media tools belonging to one participant in a set of
related RTP sessions. If cross-media binding is required, it may be necessary for the CNAME of each tool
to be externally configured with the same value by a coordination tool.

Application writers should be aware that private network address assignments such as the Net-10 assign-
ment proposed in RFC 1597 [22] may create network addresses that are not globally unique. This would
lead to non-unique CNAMEs if hosts with private addresses and no direct IP connectivity to the public In-
ternet have their RTP packets forwarded to the public Internet through an RTP-level translator. (See also
RFC 1627 [23].) To handle this case, applicatioms provide a means to configure a unigue CNAME, but
the burden is on the translator to translate CNAMESs from private addresses to public addresses if necessary
to keep private addresses from being exposed.

6.5.2 NAME: User name SDES item

0 1 2 3

01234567890123456789012345678901
T U O T O T O T o S T e o s St
| NAME=2 | length | common name of source
T U O T O T O T o S T e o s St

This is the real name used to describe the source, e.g., “John Doe, Bit Recycler, Megacorp”. It may be

in any form desired by the user. For applications such as conferencing, this form of name may be the most
desirable for display in participant lists, and therefore might be sent most frequently of those items other
than CNAME. ProfilesvAy establish such priorities. The NAME value is expected to remain constant at
least for the duration of a sessionskouLD NOT be relied upon to be unique among all participants in the
session.
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6.5.3 EMAIL: Electronic mail address SDES item

0 1 2 3
01234567890123456789012345678901
T U O T O T O T o S T e o s St
| EMAIL=3 | length | email address of source
T U O T O T O T o S T e o s St

The email address is formatted according to RFC 822 [24], for example, “John.Doe@megacorp.com”.
The EMAIL value is expected to remain constant for the duration of a session.

6.5.4 PHONE: Phone number SDES item

0 1 2 3
01234567890123456789012345678901
T U O T O T O T o S T e o s St
| PHONE=4 | length | phone number of source
T U O T O T O T o S T e o s St

The phone numbesHoOULD be formatted with the plus sign replacing the international access code. For
example, “+1 908 555 1212” for a number in the United States.

6.5.5 LOC: Geographic user location SDES item

0 1 2 3

01234567890123456789012345678901
T U O T O T O T o S T e o s St
| LOC=5 | length | geographic location of site
T U O T O T O T o S T e o s St

Depending on the application, different degrees of detail are appropriate for this item. For conference

applications, a string like “Murray Hill, New Jersey” may be sufficient, while, for an active badge system,
strings like “Room 2A244, AT&T BL MH” might be appropriate. The degree of detail is left to the imple-
mentation and/or user, but format and contea¥ be prescribed by a profile. The LOC value is expected
to remain constant for the duration of a session, except for mobile hosts.

6.5.6 TOOL: Application or tool name SDES item

0 1 2 3
01234567890123456789012345678901
T U O T O T O T o S T e o s St
| TOOL=6 | length | name/version of source appl. ...
T U O T O T O T o S T e o s St

A string giving the name and possibly version of the application generating the stream, e.g., “videotool
1.2”. This information may be useful for debugging purposes and is similar to the Mailer or Mail-System-
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Version SMTP headers. The TOOL value is expected to remain constant for the duration of the session.

6.5.7 NOTE: Notice/status SDES item

0 1 2 3
01234567890123456789012345678901
T U O T O T O T o S T e o s St
| NOTE=7 | length | note about the source
T U O T O T O T o S T e o s St

The following semantics are suggested for this item, but these or other semanticse explicitly
defined by a profile. The NOTE item is intended for transient messages describing the current state of the
source, e.g., “on the phone, can'’t talk”. Or, during a seminar, this item might be used to convey the title of
the talk. It should be used only to carry exceptional informationsmduLd NOT be included routinely
by all participants because this would slow down the rate at which reception reports and CNAME are sent,
thus impairing the performance of the protocol. In particulasHouLD NOT be included as an itemin a
user’s configuration file nor automatically generated as in a quote-of-the-day.

Since the NOTE item may be important to display while it is active, the rate at which other non-CNAME
items such as NAME are transmitted might be reduced so that the NOTE item can take that part of the
RTCP bandwidth. When the transient message becomes inactive, the NOT&HtambD continue to be
transmitted a few times at the same repetition rate but with a string of length zero to sigredehers.
However, receiversHOULD also consider the NOTE item inactive if it is not received for a smaltiple
of the repetition rate, or perhaps 20-30 RTCP intervals.

6.5.8 PRIV: Private extensions SDES item

0 1 2 3
01234567890123456789012345678901
e s e St SO S S S ST S ST SO RS S

| PRIV=8 | length | prefix length | prefix string...
s e e L s Ea e e e R
| value string

B R e s

This item is used to define experimental or application-specific SDES extensions. The item contains
a prefix consisting of a length-string pair, followed by the value string filling the remainder of the item
and carrying the desired information. The prefix length field is 8 bits long. The prefix string is a name
chosen by the person defining the PRIV item to be unique with respect to other PRIV items this application
might receive. The application creator might choose to use the application name plustemalglibtype
identification if needed. Alternatively, it BECOMMENDED that others choose a name based on the entity
they represent, then coordinate the use of the name within that entity.

Note that the prefix consumes some space within the item’s total length of 255 octets, so the prefix
should be kept as short as possible. This facility and the constrained RTCP bangwddibp NOT be
overloaded; it is not intended to satisfy all the control communication requirements of all applications.
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SDES PRIV prefixes will not be registered by IANA. If some form of the PRIV item proves to be of
general utility, itSHOULD instead be assigned a regular SDES item type registered with IANA so that no
prefix is required. This simplifies use and increases transmission efficiency.

6.6 BYE: Goodbye RTCP packet

0 1 2 3
01234567890123456789012345678901
e T S S S S U S S S R S S

[V=2|P| SC | PT=BYE=203 | length |
e T S S S S U S S S R S S
| SSRC/CSRC |

e T S S S S U S S S R S S

= R e e S e = R R e e R e R =t
| length | reason for leaving ... (opt)
L e e O S S ST S e eSS

The BYE packet indicates that one or more sources are no longer active.

version (V), padding (P), length:
As described for the SR packet (see Section 6.4.1).

packet type (PT): 8 bits
Contains the constant 203 to identify this as an RTCP BYE packet.

source count (SC): 5 bits
The number of SSRC/CSRC identifiers included in this BYE packet. A count value of zero is valid,
but useless.

The rules for when a BYE packet should be sent are specified in Sections 6.3.7 and 8.2.

Ifa BYE packet s received by a mixer, the mixe@touLD forward the BYE packet with the SSRC/CSRC
identifier(s) unchanged. If a mixer shuts dowrsHtouLD send a BYE packet listing all contributing sources
it handles, as well as its own SSRC identifier. Optionally, the BYE paaketinclude an 8-bit octet count
followed by that many octets of text indicating the reason for leaving, e.g., “camera malfunction” or “RTP
loop detected”. The string has the same encoding as that described for SDES. If the string fills the packet
to the next 32-bit boundary, the string is not null terminated. If not, the BYE packst be padded with
null octets to the next 32-bit boundary. This padding is separate from that indicated by the P bitin the RTCP
header.
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6.7 APP: Application-defined RTCP packet

0 1 2 3
01234567890123456789012345678901
T U O T O T O T o S T e o s St
[V=2|P| subtype | PT=APP=204 | length |
T U O T O T O T o S T e o s St
| SSRC/CSRC |
T U O T O T O T o S T e o s St
| name (ASCII) |
e T I T N e S T O o o S e T e e
| application-dependent data
e T I T N e S T O o o S e T e e

The APP packet is intended for experimental use as new applications and new features are developed,
without requiring packet type value registration. APP packets with unrecognized samesD be ignored.
After testing and if wider use is justified, it BEECOMMENDED that each APP packet be redefined without

the subtype and name fields and registered with IANging an RTCP packet type.

version (V), padding (P), length:
As described for the SR packet (see Section 6.4.1).

subtype: 5 bits
May be used as a subtype to allow a set of APP packets to be defined under one unique name, or for
any application-dependent data.

packet type (PT): 8 bits
Contains the constant 204 to identify this as an RTCP APP packet.

name: 4 octets
A name chosen by the person defining the set of APP packets to be unique with respect to other APP
packets this application might receive. The application creator might choose to use the application
name, and then coordinate the allocation of subtype values to others who want to define new packet
types for the application. Alternatively, it ®ECOMMENDED that others choose a name based on the
entity they represent, then coordinate the use of the name within that entity. The name is interpreted
as a sequence of four ASCII characters, with uppercase and lowercase characters treated as distinct.

application-dependent data: variable length
Application-dependent data may or may not appear in an APP packet. It is interpreted by the applica-
tion and not RTP itself. InusT be a multiple of 32 bits long.

7 RTP Translators and Mixers

In additionto end systems, RTP supports the notion of “translators” and “mixers”, which could be considered

as “intermediate systems” at the RTP level. Although this support adds some complexity to the protocol,

the need for these functions has been clearly established by experiments with multicast audio and video
applications in the Internet. Example uses of translators and mixers given in Section 2.3 stem from the
presence of firewalls and low bandwidth connections, both of which are likely to remain.
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7.1 General Description

An RTP translator/mixer connects two or more transport-level “clouds”. Typically, each cloud is defined
by a common network and transport protocol (e.g., IP/UDP) plus a multicast address and transport level
destination port or a pair of unicast addresses and pofidetwork-level protocol translators, such as IP
version 4 to IP version 6, may be present within a cloud invisibly to RTP.) One system may serve as a
translator or mixer for a number of RTP sessions, but each is considered a logically sepiate en

In order to avoid creating a loop when a translator or mixer is installed, the following mues be
observed:

e Each of the clouds connected by translators and mixers participating in one RTP sessiangither
be distinct from all the others in at least one of these parameters (protocol, address, parT dye
isolated at the network level from the others.

e A derivative of the first rule is that themeusT NOT be multiple translators or mixers connected in
parallel unless by some arrangement they partition the set of sources to be forwarded.

Similarly, all RTP end systems that can communicate through one or more RTP translators or mixers
share the same SSRC space, that is, the SSRC identifiszs be unique among all these end systems.
Section 8.2 describes the collision resolution algorithm by which SSRC identifiers are kept unique and
loops are detected.

There may be many varieties of translators and mixers designed for different purposes and applications.
Some examples are to add or remove encryption, change the encoding of the data or the underlying proto-
cols, or replicate between a multicast address and one or more unicast addresses. The distinction between
translators and mixers is that a translator passes through the data streams from different sources separately,
whereas a mixer combines them to form one new stream:

Translator: Forwards RTP packets with their SSRC identifier intact; this makes it possible for receivers to
identify individual sources even though packets from all the sources pass through the same translator
and carry the translator’s network source address. Some kinds of translators will pass through the data
untouched, but othemgAay change the encoding of the data and thus the RTP data payload type and
timestamp. If multiple data packets are re-encoded into one, or vice versa, a tramslatoassign
new sequence numbers to the outgoing packets. Losses in the incoming packet stream may induce
corresponding gaps in the outgoing sequence numbers. Receivers cannot detect the presence of a
translator unless they know by some other means what payload type or transport address was used by
the original source.

Mixer: Receives streams of RTP data packets from one or more sources, possibly changes the data for-
mat, combines the streams in some manner and then forwards the combined stream. Since the timing
among multiple input sources will not generally be synchronized, the mixer will make timing adjust-
ments among the streams and generate its own timing for the combined stream, so it is the synchro-
nization source. Thus, all data packets forwarded by a mixesT be marked with the mixer's own
SSRC identifier. In order to preserve the identity of the original sources contributing to the mixed
packet, the mixesHOULD insert their SSRC identifiers into the CSRC identifier list following the
fixed RTP header of the packet. A mixer that is also itself a contributing source for some packet
SHouULD explicitly include its own SSRC identifier in the CSRC list for that packet.

For some applications, WAy be acceptable for a mixer not to identify sources in the CSRC list.
However, this introduces the danger that loops involving those sources could not be detected.
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The advantage of a mixer over a translator for applications like audio is that the output bandwidth is
limited to that of one source even when multiple sources are active on the input side. This may be important
for low-bandwidth links. The disadvantage is that receivers on the output side don't have any control over
which sources are passed through or muted, unless some mechanism is implemented for remote control of
the mixer. The regeneration of synchronization information by mixers also means that receivers can't do
inter-media synchronization of the original streams. A multi-media mixer could do it.

end system
E1 E6
E1:17 E6:15
trandlator E6:15
V1 L M1:48(1,17) ~/\ M1:48(1,17) M1:48(1,17) =
mixer /TI\ E4:47 / T2\ E4:47
I M3:89(64,45
E2:1 E4:47
Eo £4 M3: 89(64,45)
o f) Legend:
E3 : : = M3 >
E3:64 ( >M2.12(64) ¢ source: SSRC (CSRC,...)
E5:45
E5

Figure 3: Sample RTP network with end systems, mixers and translators

A collection of mixers and translators is shown in Figure 3 to illustrate their effect on SSRC and CSRC
identifiers. In the figure, end systems are shown as rectangles (named E), translators as triangles (named T)
and mixers as ovals (named M). The notation “M1: 48(1,17)” designates a packet originating a mixer M1,
identified with M1’s (random) SSRC value of 48 and two CSRC identifiers, 1 and 17, copied from the SSRC
identifiers of packets from E1 and E2.

7.2 RTCP Processing in Translators

In addition to forwarding data packets, perhaps modified, translators and mixemsalso process RTCP
packets. In many cases, they will take apart the compound RTCP packets received from end systems to
aggregate SDES information and to modify the SR or RR packets. Retransmission of this information may
be triggered by the packet arrival or by the RTCP interval timer of the translator or mixer itself.

A translator that does not modify the data packets, for example one that just replicates between a mul-
ticast address and a unicast address; simply forward RTCP packets unmodified as well. A translator
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that transforms the payload in some waysT make corresponding transformations in the SR and RR
information so that it still reflects the characteristics of the data andeiteption qulity. These transla-
torsmMusT NOT simply forward RTCP packets. In general, a translatoduLD NOT aggregate SR and RR
packets from different sources into one packet since that would reduce the accuracy of the propagation delay
measurements based on the LSR and DLSR fields.

SR sender information: A translator does not generate its own sender information, but forwards the SR
packets received from one cloud to the others. The SSRC is left intact but the sender information
MUsT be modified if required by the translation. If a translator changes the data encodgg it
change the “sender’s byte count” field. If it also combines several data packets into one output packet,
it MUST change the “sender’s packet count” field. If it changes the timestamp frequemysit
change the “RTP timestamp” field in the SR packet.

SR/RR reception report blocks: A translator forwards reception reports received from one cloud to the
others. Note that these flow in the direction opposite to the data. The SSRC is left intact. If a
translator combines several data packets into one output packet, and therefore changes the sequence
numbers, itMUST make the inverse manipulation for the packet loss fields and the “extended last
sequence number” field. This may be complex. In the extreme case, there may be no meaningful
way to translate the reception reports, so the transhator pass on no reception report at all or a
synthetic report based on its own reception. The general rule is to do what makes sense for a particular
translation.

A translator does not require an SSRC identifier of its own,Noa choose to allocate one for the
purpose of sending reports about what it has received. These would be sent to all the connected clouds,
each corresponding to the translation of the data stream as sent to that cloud, since reception reports
are normally multicast to all participants.

SDES: Translators typically forward without change the SDES information they receive from one cloud
to the others, butay, for example, decide to filter non-CNAME SDES information if bandwidth is
limited. The CNAMEsmUST be forwarded to allow SSRC identifier collision detection to work. A
translator that generates its own RR packetsT send SDES CNAME information about itself to
the same clouds that it sends those RR packets.

BYE: Translators forward BYE packets unchanged. A translator that is about to cease forwarding packets
SHouLD send a BYE packet to each connected cloud containing all the SSRC identifiers that were
previously being forwarded to that cloud, including the translator's own SSRC identifier if it sent
reports of its own.

APP: Translators forward APP packets unchanged.

7.3 RTCP Processing in Mixers

Since a mixer generates a new data stream of its own, it does not pass through SR or RR packets at all and
instead generates new information for both sides.

SR sender information: A mixer does not pass through sender information from the sources it mixes be-
cause the characteristics of the source streams are lost in the mix. As a synchronization source, the
mixer SHOULD generate its own SR packets with sender information about the mixed data stream and
sendthem in the same direction as the mixed stream.
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SR/RR reception report blocks: A mixer generates its own reception reports for sources in each cloud and
sends them out only to the same cloudvitsT NOT send these reception reports to the other clouds
andMmusT NOT forward reception reports from one cloud to the others because the sources would not
be SSRCs there (only CSRCs).

SDES: Mixers typically forward without change the SDES information they receive from one cloud to
the others, bumay, for example, decide to filter non-CNAME SDES information if bandwidth is
limited. The CNAMEsmUST be forwarded to allow SSRC identifier collision detection to work. (An
identifier in a CSRC list generated by a mixer might collide with an SSRC identifier generated by an
end system.) A mixemusT send SDES CNAME information about itself to the same clouds that it
sends SR or RR packets.

Since mixers do not forward SR or RR packets, they will typically be extracting SDES packets from

a compound RTCP packet. To minimize overhead, chunks from the SDES pagketse aggre-

gated into a single SDES packet which is then stacked on an SR or RR packet originating from the
mixer. A mixer which aggregates SDES packets will use more RTCP bandwidth than an individual
source because the compound packets will be longer, but that is appropriate since the mixer represents
multiple sources. Similarly, a mixer which passes through SDES packets as thegeived will be
transmitting RTCP packets at higher than the single source rate, but again that is correct since the
packets come from multiple sourcesThe RTCP packet rate may be different on each side of the
mixer.

A mixer that does not insert CSRC identifieaay also refrain from forwarding SDES CNAMESs. In
this case, the SSRC identifier spaces in the two clouds are independent. As mentioned earlier, this
mode of operation creates a danger that loops can't be detected.

BYE: Mixers musT forward BYE packets. A mixer that is about to cease forwarding packetsiLD
send a BYE packet to each connected cloud containing all the SSRC identifiers that were previously
being forwarded to that cloud, including the mixer's own SSRC identifier if it sent reports of its own.

APP: The treatment of APP packets by mixers is application-specific.

7.4 Cascaded Mixers

An RTP session may involve a collection of mixers and translators as shown in Figure 3. If two mixers are
cascaded, such as M2 and M3 in the figure, packets received by a mixer may already have been mixed and
may include a CSRC list with multiple identifiers. The second mi&eouLD build the CSRC list for the
outgoing packet using the CSRC identifiers from already-mixed input packets and the SSRC identifiers from
unmixed input packets. This is shown in the output arc from mixer M3 labeled M3:89(64,45) in the figure.
As in the case of mixers that are not cascaded, if the resulting CSRC list has more than 15 identifiers, the
remainder cannot be included.

8 SSRC Identifier Allocation and Use

The SSRC identifier carried in the RTP header and in various fields of RTCP packets is a random 32-bit
number that is required to be globally unique within an RTP session. It is crucial that the number be chosen
with care in order that participants on the same network or starting at the same time are not likely to choose
the same number.
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It is not sufficient to use the local network address (such as an IPv4 address) for the identifier because
the address may not be unique. Since RTP translators and mixers enable interoperation among multiple
networks with different address spaces, the allocation patterns for addresses within two spaces might result
in a much higher rate of collision than would occur with random allocation. Multiple sources running on
one host would also conflict.

It is also not sufficient to obtain an SSRC identifier simply by calliagdom() without carefully
initializing the state. An example of how to generate a random identifier is presented in Appendix A.6.

8.1 Probability of Collision

Since the identifiers are chosen randomly, it is possible that two or more sources will choose the same num-
ber. Collision occurs with the highest probability when all sources are started simultaneously, for example
when triggered automatically by some session management evéais ifhe number of sources aridthe

length of the identifier (here, 32 bits), the probability that two sources independently pick the same value
can be approximated for largeé [25, p. 33] asl — e~V /2" For N = 1000, the probability is roughly

1074,

The typical collision probability is much lower than the worst-case above. When one new source joins
an RTP session in which all the other sources already have unique identifiers, the probability of collision is
just the fraction of numbers used out of the space. AgaiN, i$ the number of sources afdthe length of
the identifier, the probability of collision i37/2". For N = 1000, the probability is roughly - 1077,

The probability of collision is further reduced by the opportunity for a new sourcedeive packets
from other participants before sending its first packet (either data or control). If the new source keeps track
of the other participants (by SSRC identifier), then before transmitting its first packet the new source can
verify that its identifier does not conflict with any that have been received, or else choose again.

8.2 Collision Resolution and Loop Detection

Although the probability of SSRC identifier collision is low, all RTP implementatimnsT be prepared
to detect collisions and take the appropriate actions to resolve them. If a source discovers at any time that
another source is using the same SSRC identifier as its ownydgtr send an RTCP BYE packet for the
old identifier and choose another random one. (As explained below, this step is taken only once in case of
a loop.) If a receiver discovers that two other sources adiding, it MAY keep the packets from one
and discard the packets from the other when this can be detected by different source transport addresses or
CNAMEs. The two sources are expected to resolve the collision so that the situation doesn't last.

Because the random SSRC identifiers are kept globally unique for each RTP session, they can also be
used to detect loops that may be introduced by mixers or translators. A loop causes duplication of data and
control information, either unmodified or possibly mixed, as in the following examples:

e Atranslator may incorrectly forward a packet to the same multicast group from which it has received
the packet, either directly or through a chain of translators. In that case, the same packet appears
several times, originating from different network sources.

e Two translators incorrectly set up in parallel, i.e., with the same multicast groups on both sides, would
both forward packets from one multicast group to the other. Unidirectional translators would produce
two copies; bidirectional translators would form a loop.
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e A mixer can close a loop by sending to the same transport destination upon which it receives packets,
either directly or through another mixer or translator. In this case a source might show up both as an
SSRC on a data packet and a CSRC in a mixed data packet.

A source may discover that its own packets are being looped, or that packets from another source are
being looped (a third-party loop).

Both loops and collisions in the random selection of a source identifier result in packets arriving with
the same SSRC identifier but a different source transport address, which may be that of the end system
originating the packet or an intermediate system. Therefore, if a source changes its source transport address,
it MAY also choose a new SSRC identifier to avoid being interpreted as a looped source. (Thisusnot
because in some applications of RTP sources may be expected to change addresses during a session.) Note
that if a translator restarts and consequently changes the source transport address (e.g., changes the UDP
source port number) on which it forwards packets, then all those packets will appear to receivers to be looped
because the SSRC identifiers are applied by the original source and will not change. This problem can be
avoided by keeping the source transport addressed fixed across restarts, but in any case will be resolved after
a timeout at the receivers.

Loops or collisions occurring on the far side of a translator or mixer cannot be detected using the source
transport address if all copies of the packets go through the translator or mixer, however collisions may
still be detected when chunks from two RTCP SDES packets contain the same SSRC identifier but different
CNAMEs.

To detect and resolve these conflicts, an RTP implementatisT include an algorithm similar to the
one described below, though the implementatioxy choose a different policy for which packets from
colliding third-party sources are kept. The algorithm described bé¢pwres packets from a new source or
loop that collide with an established source. It resolves collisions with the participant’s own SSRC identifier
by sending an RTCP BYE for the old identifier and choosing a new one. However, when the collision was
induced by a loop of the participant’s own packets, the algorithm will choose a new identifier only once and
thereafter ignore packets from the looping source transport address. This is required to avoid a flood of BYE
packets.

This algorithm requires keeping a table indexed by the source identifier and containing the source trans-
port addresses from the first RTP packet and first RTCP packet received with that identifier, along with other
state for that source. Two source transport addresses are required since, for example, the UDP source port
numbers may be different on RTP and RTCP packets. However, it may be assumed that the network address
is the same in both source transport addresses.

Each SSRC or CSRC identifier received in an RTP or RTCP packet is looked up in the source identifier
table in order to process that data or control information. The source transport address from the packet is
compared to the corresponding source transport address in the table to detect a loop or collision if they don't
match. For control packets, each element with its own SSRC id, for example an SDES chunk, requires
a separate lookup. (The SSRC id in a reception report block is an exception because it identifies a source
heard by the reporter, and that SSRC id is unrelated to the source transport adddress of the RTCP packet sent
by the reporter.) If the SSRC or CSRC is not found, a new entry is created. These table entries are removed
when an RTCP BYE packet is received with the corresponding SSRC id and validated by a matching source
transport address, or after no packets have arrived for a relatively long time (see Section 6.2.1).

Note that if two sources on the same host are transmitting with the same source identifier at the time
a receiver begins operation, it would be possible that the first RTP packet received came from one of the
sources while the first RTCP packet received came from the other. This would cause the wrong RTCP
information to be associated with the RTP data, but this situation should be sufficiently rare and harmless
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that it may be disregarded.

In order to track loops of the participant’'s own data packets, the implementatism also keep a
separate list of source transport addresses (not identifiers) that have been found to be conflicting. As in the
source identifier table, two source transport addregses be kept to separately track conflicting RTP and
RTCP packets. Note that the conflicting address list should be short, usually empty. Each element in this list
stores the source addresses plus the time when the most iedtitting packet was received. An element
MAY be removed from the list when no conflicting packet has arrived from that source for a time on the
order of 10 RTCP report intervals (see Section 6.2).

For the algorithm as shown, it is assumed that the participant’'s own source identifier and state are in-
cluded in the source identifier table. The algorithm could be restructured to first make a separate comparison
against the participant’s own source identifier.

if (SSRC or CSRC identifier is not found in the source
identifier table) {
create a new entry storing the data or control source
transport address, the SSRC or CSRC id and other state;

}

/* Identifier is found in the table */

else if (table entry was created on receipt of a control packet
and this is the first data packet or vice versa) {
store the source transport address from this packet;
}
else if (source transport address from the packet does not match
the one saved in the table entry for this identifier) {

/* An identifier collision or a loop is indicated */

if (source identifier is not the participant's own) {

/* OPTIONAL error counter step */

if (source identifier is from an RTCP SDES chunk
containing a CNAME item that differs from the CNAME
in the table entry) {
count a third-party collision;

} else {
count a third-party loop;

}

abort processing of data packet or control element;

/* MAY choose a different policy to keep new source */

}

/* A collision or loop of the participant's own packets */

else if (source transport address is found in the list of
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conflicting data or control source transport
addresses) {

/* OPTIONAL error counter step */

if (source identifier is not from an RTCP SDES chunk
containing a CNAME item or CNAME is the
participant's own) {
count occurrence of own traffic looped;

}

mark current time in conflicting address list entry;

abort processing of data packet or control element;

}

/* New collision, change SSRC identifier */

else {

log occurrence of a collision;

create a new entry in the conflicting data or control
source transport address list and mark current time;

send an RTCP BYE packet with the old SSRC identifier;

choose a new SSRC identifier;

create a new entry in the source identifier table with
the old SSRC plus the source transport address from
the data or control packet being processed;

}

In this algorithm, packets from a newly conflicting source address will be ignored and packets from the
original source address will be kept. If no packets arrive from the original source for an extended period, the
table entry will be timed out and the new source will be able to take over. This might occur if the original
source detects the collision and moves to a new source identifier, but in the usual case an RTCP BYE packet
will be received from the original source to delete the state without having to wait for a timeout.

If the original source address was through a mixer (i.e., learned as a CSRC) and later the same source is
received directly, the receiver may be well advised to switch to the new source address unless other sources
in the mix would be lost. Furthermore, for applications such as telephony in which some sources such
as mobile entities may change addresses during the course of an RTP session, the RTP implementation
sHouLDb modify the collision detection algorithm tccept packets from the new source transport address.

To guard against flip-flopping between addresses if a genuine collision does occur, the algeiithnop
include some means to detect this case and avoid switching.

When a new SSRC identifier is chosen due to a collision, the candidate ideswi@ierD first be looked
up in the source identifier table to see if it was already in use by some other source. If so, another candidate
MUST be generated and the process repeated.

A loop of data packets to a multicast destination can cause severe network flooding. All mixers and
translatorsvusT implement a loop detection algorithm like the one here so that they can break loops. This
should limit the excess traffic to no more than one duplicate copy of the original traffic, which may allow the
session to continue so that the cause of the loop can be found and fixed. However, in extreme cases where

Schulzrinne/Casner/Frederick/Jacobson Expires January 14, 2001 [Page 46]



INTERNET-DRAFT draft-ietf-avt-rtp-new-08.ps July 14, 2000

a mixer or translator does not properly break the loop and high traffic levels result, it may be necessary
for end systems to cease tranging data or control packets entirely. This decision may depend upon the
application. An error conditioeBHOULD be indicated as appropriate. Transmissiay be attempted again
periodically after a long, random time (on the order of minutes).

8.3 Use with Layered Encodings

For layered encodings transmitted on separate RTP sessions (see Section 2.4), a single SSRC identifier
spacesHOULD be used across the sessions of all layers and the core (based#ayerd be used for SSRC
identifier allocation and collision resolution. When a source discovers that it has collided, it transmits an
RTCP BYE packet on only the base layer but changes the SSRC identifier to the new value in all layers.

9 Security

Lower layer protocols may eventually provide all the security services that may be desired for applications
of RTP, including authentication, integrity, and confidentiality. These services have been specified for IP in
[26]. Since the initial audio and video applications using RTP needed a confidentiality service before such
services were available for the IP layer, the confidentiality service described in the next section was defined
for use with RTP and RTCP. That description is included here to codify existing practice. New applications
of RTP MAY implement this RTP-specific confidentiality service for backward compatibility, and/or they
MAY implement IP layer security services. The overhead on the RTP protocol for this confidersialiige
is low, so the penalty will be minimal if this service is obsoleted by lower layer services in the future.

Alternatively, other services, other implementations of services and other algorithms may be defined
for RTP in the future if warranted. The selection presented here is meant to simplify implementation of
interoperable, secure applications and provide guidance to implementors. No claim is made that the methods
presented here are appropriate for a particular security need. A profile may specify which services and
algorithms should be offered by applications, and may provide guidance as to their appropriate use.

Key distribution and certificates are outside the scope of this document.

9.1 Confidentiality

Confidentiality means that only the intendexteiver(s) can decode the received packets; for others, the
packet contains no useful information. Confidentiality of the content is achieved by encryption.

When encryption of RTP or RTCP is desired, all the octets that will be encapsulated for transmission in
a single lower-layer packet are encrypted as a unit. For RTCP, a 32-bit random nuatoebe prepended
to the unit before encryption to deter known plaintext attacks. For RTP, no prefix is required because the
sequence number and timestamp fields are initialized with random offsets.

For RTCP, an implementatianAy split a compound RTCP packet into two lower-layer packets, one
to be encrypted and one to be sent in the clear. For example, SDES information might be encrypted while
reception reports were sent in the clear to accommodate third-party monitors that are not privy to the en-
cryption key. In this example, depicted in Fig. 4, the SDES informatiosT be appended to an RR packet
with no reports (and the random number) to satisfy the requirement that all compound RTCP packets begin
with an SR or RR packet.

The presence of encryption and the use of the correct key are confirmed by the receiver through header
or payload validity checks. Examples of such validity checks for RTP and RTCP headers are given in
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Figure 4: Encrypted and non-encrypted RTCP packets

Appendices A.1 and A.2.

To be consistent with existing practicte default encryption algorithm is the Data Encryption Standard
(DES) algorithm in cipher block chaining (CBC) mode, as described in Section 1.1 ofIREE [27],
except that padding to a multiple of 8 octets is indicated as described for the P bit in Section 5.1. The
initialization vector is zero écause random values are supplied in the RTP header or by the random prefix
for compound RTCP packets. For details on the use of CBC initialization vectors, see [28]. Implementations
that support encryptioaHouLD always supportthe DES algorithm in CBC mode as the default to maximize
interoperability. This method was choseschuse it has been demonstrated to be easy and practical to use
in experimental audio and video tools in operation on the Internet. Other encryption algoritkvmise
specified dynamically for a session by non-RTP means. RESOMMENDED that stronger encryption
algorithms such as Triple-DES be used in place of the default algorithm.

As an alternative to encryption at the IP level or at tREP level as described above, profilesy
define additional payload types for encrypted encodings. Those encodgirggsspecify how padding and
other aspects of the encryption are to be handled. This method allows encrypting only the data while leaving
the headers in the clear for applications where that is desired. It may be particularly useful for hardware
devices that will handle both decryption and decoding. It is also valuable for applications where link-level
compression of RTP and lower-layer headers is desired and confidentiality of the payload (but not addresses)
is sufficient since encryption of the headers precludes compression.

9.2 Authentication and Message Integrity

Authentication and message integrity services are not defined at the RTPslacel these services would
not be directly feasible without a key management infrastructure. It is expected that authentication and
integrity services will be provided by lower layer protocols.

10 Congestion Control
All transport protocols used on the Internet need to address congestion control in some way. RTP is not an

exception, but because the data transported over RTP is often inelastic (generated at a fixed or controlled
rate), the means to control congestion in RTP may be quite different from those for other transport protocols
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such as TCP. In one sense, inelasticity reduces the risk of congestion because the RTP stream will not
expand to consume all available bandwidth as a TCP stream can. However, inelasticity also means that the
RTP stream cannot arbitrarily reduce its load on the network to eliminate congestion when it occurs.

Since RTP may be used for a wide variety of applications in many different contexts, there is no single
congestion control mechanism that will work for all. Therefore, congestion cas#oULD be defined in
each RTP profile as appropriate. For some profiles, it may be sufficient to include an afiplistttement
restricting the use of that profile to environments where congestion is avoided by engineering. For other
profiles, specific methods such as data rate adaptation based on RTCP feedback may be required.

11 RTP over Network and Transport Protocols

This section describes issues specific to carrying RTP packets within particular network and transport proto-
cols. The following rules apply unless superseded by protocol-specific definitions outside this specification.

RTP relies on the underlying protocol(s) to provide demultiplexing of RTP data and RTCP control
streams. For UDP and similar protocols, REROULD use an even destination port number and the cor-
responding RTCP streasHOULD use the next higher (odd) destination port number. If an application is
supplied with an odd number for use as the destinafdi® port, itsSHoOULD replace this number with the
next lower (even) number.

In a unicast session, both participants need to identify a port pair for receiving RTP and RTCP packets.
Both participantasvay use the same port pair. A participantst NOT assume that the source port of
the incoming RTP or RTCP packet can be used as the destination port for outgoing RTP or RTCP packets.
When RTP data packets are being sent in both directions, each partisipamtsend RTCP SR packets
to the port that the other participant has specified for reception of RTCP. The RTCP SR packets combine
sender information for the outgoing data plus reception report information for the incoming data. If a side
is not actively sending data (see Section 6.4), an RTCP RR packet is sent instead.

It is RECOMMENDED that layered encoding applications (see Section 2.4) use a set of contiguous port
numbers. The port numbersusT be distinct because of a widespread deficiency in existing operating
systems that prevents use of the same port with multiple multicast addresses, and for unicast, there is only
one permissible address. Thus for layer n, the data portis P + 2n, and the control portis P + 2n + 1. When
IP multicast is used, the addressessT also be distinct because ftinast routing and group membership
are managed on an address granularity. However, allocation of contiguous IP multicast addresses cannot be
assumed because some groups may require different scopes and may therefore be allocated from different
address ranges.

The previous paragraph conflicts with the SDP specification, RFC 2327 [8], which says that it is illegal
for both multiple addresses and multiple ports to be specified in the same session desceigdioselihe
association of addresses with ports could be ambiguous. It is intended that this restriction will be relaxed in
a revision of RFC 2327 to allow an equal number of addresses and ports to be specified with a one-to-one
mapping implied.

RTP data packets contain no length field or other delineation, therefore RTP relies on the underlying
protocol(s) to provide a length indication. The maximum length of RTP packets is limited only by the
underlying protocols.

If RTP packets are to be carried in an underlying protocol that provides the abstraction of a continuous
octet stream rather than messages (packets), an encapsulation of the RTPypaskéts defined to provide
a framing mechanism. Framing is also needed if the underlying protocol may contain padding so that the
extent of the RTP payload cannot be determined. The framing mechanism is not defined here.
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A profile MAY specify a framing method to be used even when RTP is carried in protocols that do
provide framing in order to allow carrying several RTP packets in one lower-layer protocol data unit, such
as a UDP packet. Carrying several RTP packets in one network or transport packet reduces header overhead
and may simplify synchronization between different streams.

12 Summary of Protocol Constants

This section contains a summary listing of the constants defined in this specification.

The RTP payload type (PT) constants are defined in profiles rather than this document. However, the
octet of the RTP header which contains the marker bit(s) and payloaditype avoid the reserved values
200 and 201 (decimal) to distinguish RTP packets from the RTCP SR and RR packet types for the header
validation procedure described in Appendix A.1. For the standard definition of one marker bit and a 7-bit
payload type field as shown in this specification, this restriction means that payload types 72 and 73 are
reserved.

12.1 RTCP packettypes

abbrev. name value
SR sender report 200
RR receiver report 201
SDES  source description 202
BYE goodbye 203

APP application-defined 204

These type values were chosen in the range 200-204 for improved header validity checking of RTCP
packets compared to RTP packets or other unrelated packets. When the RTCP packet type field is compared
to the corresponding octet of the RTP header, this range corresponds to the marker bit being 1 (which it
usually is not in data packets) and to the high bit of the standard payload type field being 1 (since the
static payload types are typically defined in the low half). This range was also chosen to be some distance
numerically from 0 and 255 since all-zeros and all-ones are common data patterns.

Since all compound RTCP packeis'sT begin with SR or RR, these codes were chosen as an even/odd
pair to allow the RTCP validity check to test the maximum number of bits with mask and value.

Additional RTCP packet types may be registered through IANA (see Section 14).

12.2 SDES types

abbrev. name value
END end of SDES list 0
CNAME canonical name 1
NAME user name 2
EMAIL user’s electronic mail address 3
PHONE user's phone number 4
LOC geographic user location 5
TOOL name of application or tool 6
NOTE notice about the source 7
PRIV private extensions 8
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Additional SDES types may be registered through IANA (see Section 14).

13 RTP Profiles and Payload Format Specifications

A complete specification of RTP for a particular application will require one or more companion documents
of two types described here: profiles, and payload format specifications.

RTP may be used for a variety of applications with somewhat differing requirements. The flexibility to
adapt to those requirements is provided by allowing multiple choices in the main protocol specification, then
selecting the appropriate choices or defining extensions for a particular environment and class of applications
in a separat@rofile document. Typically an application will operate under only one profile in a particular
RTP session, so there is no explicit indication within the RTP protocol itself as to which profile is in use.

A profile for audio and video applications may be found in the companion RFC 1890 (updated by Internet-
Draft draft-ietf-avt-profile-new ). Profiles are typically titled “RTP Profile far..”.

The second type of companion document gagload formatpecification, which defines how a par-
ticular kind of payload data, such as H.261 encoded video, should be carried in RTP. These documents
are typically titled “RTP Payload Format for XYZ Audio/Video Encoding”. Payload formats may be useful
under multiple profiles and may therefore be defined independently of any particular profile. The profile
documents are then responsible for assigning a default mapping of that format to a payload type value if
needed.

Within this specification, the following items have been identified for possible definition within a profile,
but this list is not meant to be exhaustive:

RTP data header: The octet in the RTP data header that contains the marker bit and payload type field
MAY be redefined by a profile to suit different requirements, for example with more or fewer marker
bits (Section 5.3, p. 13).

Payload types: Assuming that a payload type field is included, the profile will usually define a set of
payload formats (e.g., media encodings) and a default static mapping of those formats to payload
type values. Some of the payload formats may be defined by reference to separate payload format
specifications. For each payload type defined, the pnafilsT specify the RTP timestamp clock rate
to be used (Section 5.1, p. 12).

RTP data header additions: Additional fieldsmAY be appended to the fixed RTP data header if some
additional functionality is required across the profile’s class of applications independent of payload
type (Section 5.3, p. 13).

RTP data header extensions:The contents of the first 16 bits of the RTP data header extension structure
MUST be defined if use of that mechanism is to be allowed under the profile for implementation-
specific extensions (Section 5.3.1, p. 14).

RTCP packet types: New application-class-specific RTCP packet typesr be defined and registered
with IANA.

RTCP report interval: A profile SHouLD specify that the values suggested in Section 6.2 for the constants
employed in the calculation of the RTCP report interval will be used. Those are the RTCP fraction
of session bandwidth, the minimum report interval, and the bandwidth split between senders and
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receivers. A profilenAy specify alternate values if they have been demonstrated to work in a scalable
manner.

SR/RR extension: An extension sectiomaAy be defined for the RTCP SR and RR packets if there is ad-
ditional information that should be reported regularly about the sender or receivers (Section 6.4.3,
p. 31).

SDES use: The profilemay specify the relative priorities for RTCP SDES items to be transmitted or ex-
cluded entirely (Section 6.3.9); an alternate syntax or semantics for the CNAME item (Section 6.5.1);
the format of the LOC item (Section 6.5.5); the semantics and use of the NOTE item (Section 6.5.7);
or new SDES item types to be registered with IANA.

Security: A profile MAY specify which security services and algorithms should be offered by applications,
andMAY provide guidance as to their appropriate use (Section 9, p. 47).

String-to-key mapping: A profile MAY specify how a user-provided password or pass phrase is mapped
into an encryption key.

Congestion: A profile sHouLD specify the congestion control behavior appropriate for that profile.

Underlying protocol: Use of a particular underlying network or transport layer protocol to carry RTP pack-
etsMAY be required.

Transport mapping: A mapping of RTP and RTCP to transport-level addresses, e.g., UDP ports, other
than the standard mapping defined in Section 11, p. 49 may be specified.

Encapsulation: An encapsulation of RTP packets may be defined to allow multiple RTP data packets to be
carried in one lower-layer packet or to provide framing over underlying protocols that do not already
do so (Section 11, p. 49).

Itis not expected that a new profile will be required for every application. Within one application class, it
would be better to extend an existing profile rather than make a new one in order to facilitate interoperation
among the applications since each will typically run under only one profile. Simple extensions such as
the definition of additional payload type values or RTCP packet types magdmmplished by registering
them through IANA and publishing their descriptions in an addendum to the profile or in a payload format
specification.

14 IANA Considerations

Additional RTCP packet types and SDES item types may be registered through the Internet Assigned Num-
bers Authority (IANA). Since these number spaces are small, allowing unconstrained registration of new
values would not be prudent. To facilitate review of requests and to promote shared use of new types among
multiple applications, requests for registration of new values must be documented in an RFC or other perma-
nent and readily available reference such as the product of another cooperative standards body (e.g., ITU-T).
Other requests may also be accepted, under the advice of a “designated expert.” (Contact the IANA for the
contact information of the current expert.)

RTP profile specificationsHOULD register with IANA a name for the profile in the form “RTP/xxx”,
where xxx is a short abbreviation of the profile title. These names are for use by higher-level control
protocols, such as the Session Description Protocol (SDP), RFC 2327 [8], to refer to transport methods.
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A Algorithms

We provide examples of C code for aspects of RTP sender and receiver algorithms. There may be other
implementation methods that are faster in particular operating environments or have other advantages. These
implementation notes are for informational purposes only and are meant to clarify the RTP specification.

The following definitions are used for all examples; for clarity and brevity, the structure definitions
are only valid for 32-bit big-endian (most significant octet first) architectures. Bit fields are assumed to
be packed tightly in big-endian bit order, with no additional padding. Modifications would be required to
construct a portable implementation.

/*

* rtp.h  -- RTP header file
*/

#include <sys/types.h>

/*

* The type definitions below are valid for 32-bit architectures and
* may have to be adjusted for 16- or 64-bit architectures.

*/

typedef unsigned char u_int8;

typedef unsigned short u_intl6;

typedef unsigned int  u_int32;

typedef short intl6;
/*

* Current protocol version.

*/

#define RTP_VERSION 2

#define RTP_SEQ_MOD (1<<16)

#define RTP_MAX_SDES 255 /* maximum text length for SDES */
typedef enum {

RTCP_SR = 200,

RTCP_RR = 201,

RTCP_SDES = 202,

RTCP_BYE = 203,

RTCP_APP = 204
} ricp_type_t;

typedef enum {
RTCP_SDES_END 0,
RTCP_SDES_CNAME = 1,
RTCP_SDES_NAME = 2,
RTCP_SDES_EMAIL = 3,
RTCP_SDES PHONE = 4,
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RTCP_SDES LOC = 5,
RTCP_SDES TOOL = 6,
RTCP_SDES NOTE = 7

RTCP_SDES PRIV = 8
} rtcp_sdes_type t;

/*
* RTP data header
*/
typedef struct {
unsigned int version:2;  /* protocol version */

unsigned int p:1; [* padding flag */
unsigned int x:1; [* header extension flag */
unsigned int cc:4; /* CSRC count */
unsigned int m:1; I* marker bit */
unsigned int pt.7; /* payload type */
unsigned int seq:16; [* sequence number */
u_int32 ts; [* timestamp */
u_int32 ssrc; /* synchronization source */
u_int32 csrc[1]; [* optional CSRC list */

} rtp_hdr_t;

/*

* RTCP common header word

*/

typedef struct {
unsigned int version:2;  /* protocol version */

unsigned int p:1; [* padding flag */

unsigned int count:5; [* varies by packet type */

unsigned int pt:8; f* RTCP packet type */

u_intl6 length; /* pkt len in words, w/o this word */

} rtcp_common_t;

/*

* Big-endian mask for version, padding bit and packet type pair
*/

#define RTCP_VALID_MASK (0xcO00 | 0x2000 | Oxfe)

#define RTCP_VALID VALUE ((RTP_VERSION << 14) | RTCP_SR)

/*

* Reception report block

*/

typedef struct {
u_int32 ssrc; /* data source being reported */
unsigned int fraction:8; /* fraction lost since last SR/RR */
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int lost:24;
u_int32 last_seq;
u_int32 jitter,;

u_int32 Isr;
u_int32 disr;

} rtcp_rr_t;

/*

* SDES item

*/

typedef struct {
u_int8 type;
u_int8 length;

char data[1];
} rtcp_sdes_item_t;

/*

* One RTCP packet
*/

typedef struct {

rtcp_common_t common;

union {

draft-ietf-avt-rtp-new-08.ps

f* cumul. no. pkts lost (signed!) */

/* extended last seq. no. received */
[* interarrival jitter */

[* last SR packet from this source */
/* delay since last SR packet */

/* type of item (rtcp_sdes_type t) */
/* length of item (in octets) */
/* text, not null-terminated */

/* common header */

/* sender report (SR) */

struct {
u_int32
u_int32
u_int32
u_int32
u_int32
u_int32

rtcp_rr_t rr[1];

}osn

SSIC; [* sender generating this report */
ntp_sec; /* NTP timestamp */

ntp_frac;

rtp_ts;  /* RTP timestamp */

psent; [* packets sent */

osent; [* octets sent */

/* variable-length list */

/* reception report (RR) */

struct {
u_int32

rtcp_rr_t rr[1];

}orm;

SSIC; [* receiver generating this report */

/* variable-length list */

/* source description (SDES) */
struct rtcp_sdes {

u_int32

SIC; [* first SSRC/CSRC */

rtcp_sdes_item_t item[1]; /* list of SDES items */

} sdes;

Schulzrinne/Casner/Frederick/Jacobson

Expires January 14, 2001

July 14, 2000

[Page 55]



INTERNET-DRAFT draft-ietf-avt-rtp-new-08.ps July 14, 2000

/* BYE */
struct {
u_int32 src[1]; /* list of sources */
[* can't express trailing text for reason */
} bye;
T
} ricp_t;

typedef struct rtcp_sdes rtcp_sdes t;

/*
* Per-source state information
*/
typedef struct {
u_intlé max_seq; /* highest seq. number seen */
u_int32 cycles; [* shifted count of seq. number cycles */
u_int32 base_seq; /* base seq number */
u_int32 bad_seq; /* last 'bad’ seq numbe r+ 1%
u_int32 probation; /* sequ. packets till source is valid */
u_int32 received,; /* packets received */
u_int32 expected_prior; /* packet expected at last interval */
u_int32 received_prior; /* packet received at last interval */
u_int32 transit; [* relative trans time for prev pkt */
u_int32 jitter,; [* estimated jitter */
r* ..
} source;

A.1 RTP Data Header Validity Checks

An RTP receiversHOULD check the validity of the RTP header on incoming packets since they might be
encrypted or might be from a different application that happens to be misaddressed. Similarly, if encryption
according to the method described in Sections%nabled, the header validity check is needed to verify
that incoming packets have been correctly decrypted, although a failure of the header validity check (e.g.,
unknown payload type) may not necessarily indicate decryption failure.

Only weak validity checks are possible on an RTP data packet from a source that has not been heard
before:

e RTP version field must equal 2.
e The payload type must be known, in particular it must not be equal to SR or RR.

o If the P bit is set, then the last octet of the packet must contain a valid octet count, in particular, less
than the total packet length minus the header size.

e The X bit must be zero if the profile does not specify that the header extension mechanism may be
used. Otherwise, the extension length field must be less than the total packet size minus the fixed
header length and padding.
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e The length of the packet must be consistent with CC and payload type (if payloads have a known
length).

The last three checks are somewhat complex and not always possible, leaving only the first two which
total just a few bits. If the SSRC identifier in the packet is one that has been received before, then the packet
is probably valid and checking if the sequence number is in the expected range provides further validation.
If the SSRC identifier has not been seen before, then data packets carrying that identifier may be considered
invalid until a small number of them arrive with consecutive sequence numbers. Those invalid paokets
be discarded or theyAy be stored and delivered once validation has been achieved if the resulting delay is
acceptable.

The routine update_seq shown below ensures that a source is declared valid only after
MIN_SEQUENTIALpackets have been received in sequence. It also validates the sequencesagmifer
a newly received packet and updates the sequence state for the packet’s source in the structuresto which
points.

When a new source is heard for the first time, that is, its SSRC identifier is not in the table (see Sec-
tion 8.2), and the per-source state is allocated fariprobation should be setto the number of sequen-
tial packets required before declaring a source valid (paranvitér SEQUENTIAL ands->max_seq
initialized toseg-1 . A non-zeros->probation marks the source as not yet valid so the state may be
discarded after a short timeout rather than a long one, as discussed in Section 6.2.1.

After a source is considered valid, the sequence number is considered valid if it is no more than
MAX_DROPQOUdhead ofs->max_seq nor more thanrMAX_MISORDERehind. If the new sequence
number is ahead ofmax_seq modulo the RTP sequence number range (16 bits), but is smaller than
max_seq, it has wrapped around and the (shifted) count of sequence number cycles is incremented. A
value of one is returned to indicate a valid sequence number.

Otherwise, the value zero is returned to indicate that the validation failed, and the bad sequence number
is stored. If the next packet received carries the next higher sequence number, it is considered the valid start
of a new packet sequence presumably caused by an extended dropout or a source restart. Since multiple
complete sequence number cycles may have been missed, the packet loss statistics are reset.

Typical values for the parameters are shown, based on a maximum misordering time of 2 seconds at
50 packets/second and a maximum dropout of 1 minute. The dropout pardmete DROPOUIHOULD
be a small fraction of the 16-bit sequence number space to give a reasonable probability that new sequence
numbers after a restart will not fall in the acceptable range for sequence numbers from before the restart.

void init_seq(source *s, u_intl6 seq)

{
s->base_seq = seq - 1,
s->max_seq = seq;
s->bad_seq = RTP_SEQ _MOD + 1,
s->cycles = 0;
s->received = 0;
s->received_prior = 0;
s->expected_prior = 0;
[* other initialization */

}

int update_seq(source *s, u_intl6 seq)
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u_intlé udelta = seq - s->max_seq;
const int MAX _DROPOUT = 3000;
const int MAX_MISORDER = 100;
const int MIN_SEQUENTIAL = 2;

/*
* Source is not valid until MIN_SEQUENTIAL packets with
* sequential sequence numbers have been received.
*/
if (s->probation) {
[* packet is in sequence */
if (seq == s->max_seq + 1) {
s->probation--;
s->max_seq = seq;
if (s->probation == 0) {
init_seq(s, seq);
s->received++;

return 1;
}
} else {
s->probation = MIN_SEQUENTIAL - 1;
s->max_seq = Seq;
}
return O;

} else if (udelta < MAX_DROPOUT) {
/* in order, with permissible gap */
if (seq < s->max_seq) {
/*
* Sequence number wrapped - count another 64K cycle.
*/
s->cycles += RTP_SEQ_MOD;
}
s->max_seq = seq;
} else if (udelta <= RTP_SEQ MOD - MAX_MISORDER) {
/* the sequence number made a very large jump */
if (seq == s->bad_seq) {
/*
* Two sequential packets -- assume that the other side
* restarted without telling us so just re-sync
* (i.e., pretend this was the first packet).
*/
init_seq(s, seq);
}

else {
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s->bad_seq = (seq + 1) & (RTP_SEQ_MOD-1);
return O;
}
} else {
/* duplicate or reordered packet */
}
s->received++;
return 1;
}

The validity check can be made stronger requiring more than two packets in sequence. The disadvan-
tages are that a larger number of initial packets will be discarded (or delayed in a gureligat high packet
loss rates could prevent validation. However, because the RTCP header validation is relatively strong, if an
RTCP packet is received from a source before the data packets, the count could be adjusted so that only
two packets are required in sequence. If initial data loss for a few seconds can be tolerated, an application
MAY choose to discard all data packets from a source until a valid RTCP packet has been received from that
source.

Depending on the application and encoding, algorithms may exploit additional knowledge about the
payload format for further validation. For payload types where the timestamp increment is the same for
all packets, the timestamp values can be predicted from the previous packet received from the same source
using the sequence number difference (assuming no change in payload type).

A strong “fast-path” check is possible since with high probability the first four octets in the header of a
newly received RTP data packet will be just the same as that of the previous packet from the same SSRC
except that the sequence number will have increased by one. Similarly, a single-entry cache may be used
for faster SSRC lookups in applications where data is typically received from one source at a time.

A.2 RTCP Header Validity Checks

The following checksHouLD be applied to RTCP packets.
e RTP version field must equal 2.
e The payload type field of the first RTCP packet in a compound packet must be equal to SR or RR.

e The padding bit (P) should be zero for the first packet of a compound RTCP packet because padding
should only be applied, if it is needed, to the last packet.

e The length fields of the individual RTCP packets must total to the overall length of the compound
RTCP packet as received. This is a fairly strong check.

The code fragment below performs all of these checks. The packet type is not checked for subsequent
packets since unknown packet types may be present and should be ignored.

u_int32 len; /* length of compound RTCP packet in words */
rtcp_t *r; [* RTCP header */
rtcp_t *end; /* end of compound RTCP packet */

if ((*(u_intl6 *)r & RTCP_VALID_MASK) != RTCP_VALID_VALUE) {
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/* something wrong with packet format */

}
end = (rtcp_t *)((u_int32 *)r + len);

do r = (rtcp_t *)((u_int32 *)r + r->common.length + 1);
while (r < end && r->common.version == 2);

if (r!= end) {
/* something wrong with packet format */

}

A.3 Determining the Number of RTP Packets Expected and Lost

In order to compute packet loss rates, the number of packets expected and actually received from each
source needs to be known, using per-source state information defisgdéh source referenced via

pointers in the code below. The nhumber of packets received is simply the count of packets as they arrive,
including any late or duplicate packets. The number of packets expected can be computed by the receiver
as the difference between the highest sequence number recsiw@tli_seq ) and the first sequence
number receivedst>base_seq ). Since the sequence number is only 16 bits and will wrap around, it is
necessary to extend the highest sequence number with the (shifted) count of sequence number wraparounds
(s->cycles ). Both the received packet count and the count of cycles are maintained the RTP header
validity check routine in Appendix A.1.

extended_max = s->cycles + s->max_seq;
expected = extended_max - s->base_seq + 1;

The number of packets lost is defined to be the number of packets expected less the number of packets
actually received:

lost = expected - s->received,;

Since this signed number is carried in 24 bitss#ouLD be clamped at Ox7fffff for positive loss or
0x800000 for negative loss rather than wrapping around.

The fraction of packets lost during the last reporting interval (since the previous SR or RR packet was
sent) is calculated from differences in the expected and received packet counts across the interval, where
expected_prior andreceived_prior are the values saved when the previous reception report was
generated:

expected_interval = expected - s->expected_prior;
s->expected_prior = expected,;

received_interval = s->received - s->received_prior;
s->received_prior = s->received,

lost_interval = expected_interval - received_interval;

if (expected_interval == 0 || lost_interval <= 0) fraction = 0;
else fraction = (lost_interval << 8) / expected_interval;
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This function builds one SDES chunk into buffercomposed ofargc items supplied in arrayg/pe
value andlength . Itreturns a pointer to next available location witlin

char *rtp_write_sdes(char *b, u_int32 src, int argc,

rtcp_sdes_type_t type[], char *value[],

int length[])

rtcp_sdes_t *s = (rtcp_sdes_t *)b;
rtcp_sdes_item_t *rsp;

int i

int len;

int pad;

/* SSRC header */
S->Src = SIC;
rsp = &s->item[0];

/* SDES items */

for i = 0; i < argc; i++) {
rsp->type = typel[i];
len = length[i];
if (len > RTP_MAX_SDES) {

/* invalid length, may want to take other action */

len = RTP_MAX_SDES;
}
rsp->length = len;
memcpy(rsp->data, value[i], len);

rsp = (rtcp_sdes_item_t *)&rsp->data[len];

}

[* terminate with end marker and pad to next 4-octet boundary */

len = ((char *) rsp) - b;

pad = 4 - (len & 0x3);

b = (char *) rsp;

while (pad--) *b++ = RTCP_SDES_END;

return b;
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A.5 Parsing RTCP SDES Packets

This function parses an SDES packet, calling functifimé_member()  to find a pointer to the infor-
mation for a session member given the SSRC identifierrarthber_sdes() to store the new SDES
information for that member. This function expects a pointer to the header of the RTCP packet.

void rtp_read_sdes(rtcp_t *r)

{
int count = r->common.count;
rtcp_sdes_t *sd = &r->r.sdes;
rtcp_sdes_item_t *rsp, *rspn;
rtcp_sdes_item_t *end = (rtcp_sdes_item_t *)
((u_int32 *)r + r->common.length + 1);
source *s;
while (--count >= 0) {
rsp = &sd->item[0];
if (rsp >= end) break;
s = find_member(sd->src);
for (; rsp->type; rsp = rspn ) {
rspn = (rtcp_sdes_item_t *)((char*)rsp+rsp->length+2);
if (rspn >= end) {
rsp = rspn;
break;
}
member_sdes(s, rsp->type, rsp->data, rsp->length);
}
sd = (rtcp_sdes_t *)
((u_int32 *)sd + (((char *)rsp - (char *)sd) >> 2)+1);
}
if (count >= 0) {
/* invalid packet format */
}
}

A.6 Generating a Random 32-bit Identifier

The following subroutine generates a random 32-bit identifier using the MD5 routines published in RFC
1321 [29]. The system routines may not be present on all operating systems, but they should serve as hints
as to what kinds of information may be used. Other system calls that may be appropriate include

e getdomainname()

e getrusage()
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“Live” video or audio samples are also a good source of random numbers, but care must be taken to avoid
using a turned-off microphone or blinded camera as a source [12].

Use of this or similar routine iIRECOMMENDED to generate the initial seed for the random number
generator producing the RTCP period (as shown in Appendix A.7), to generate the initial values for the
sequence number and timestamp, and to generate SSRC values. Since this routine is likely to be CPU-
intensive, its direct use to generate RTCP periods is inappropriate because pilgittatot an issue.

Note that this routine produces the same result on repeated calls until the value of the system clock changes
unless different values are supplied for tgpe argument.

/*

* Generate a random 32-bit quantity.

*/

#include <sys/types.h> /* u_long */
#include <sys/time.h> /* gettimeofday() */
#include <unistd.h> f* get..() *

#include <stdio.h> f* printf() */
#include <time.h> * clock() */
#include <sys/utsname.h> /* uname() */
#include "global.h" /* from RFC 1321 *
#include "md5.h" f* from RFC 1321 *

#define MD_CTX MD5 CTX
#define MDInit MD5lInit
#define MDUpdate MD5Update
#define MDFinal MD5Final

static u_long md_32(char *string, int length)
{
MD_CTX context;
union {
char  c[16];
u_long x[4];
} digest;
u_long r;
int i

MDInit (&context);
MDUpdate (&context, string, length);
MDFinal ((unsigned char *)&digest, &context);
r = 0;
for (i = 0; i < 3; i++) {
r "= digest.x[i];
}
return r;
} * md_32 */
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/*
* Return random unsigned 32-bit quantity. Use ’type’ argument if you
* need to generate several different values in close succession.
*/
u_int32 random32(int type)
{
struct {
int type;
struct timeval tv;
clock_t cpu;
pid_t pid;
u_long hid;
uid_t uid;
gid_t gid;
struct utsname name;

}s;

gettimeofday(&s.tv, 0);
uname(&s.name);

s.type = type;

s.cpu = clock();

s.pid getpid();

s.hid gethostid();
s.uid getuid();

s.gid getgid();

[* also: system uptime */

return md_32((char *)&s, sizeof(s));
} /* random32 */
A.7 Computing the RTCP Transmission Interval

The following functions implement the RTCP transmission and reception rules described in Section 6.2.
These rules are coded in several functions:

e rtcp _interval() computes the deterministic calculated interval, measured in seconds. The pa-
rameters are defined in Section 6.3.

e OnExpire() is called when the RTCP transmission timer expires.
e OnReceive() is called whenever an RTCP packet is received.

Both OnExpire() andOnReceive() haveevent e as an argument. This is the next scheduled
event for that participant, either an RTCP report or a BYE packet. It is assumed that the following functions
are available:
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e Schedule(time t, event e) schedules an event e to occur at time t. When time t arrives, the
funcion OnExpire is called with e as an argument.

e Reschedule(time t, event e) reschedules a previously scheduled event e for time t.
e SendRTCPReport(event e)  sends an RTCP report.
e SendBYEPacket(event e)  sends a BYE packet.

e TypeOfEvent(event e) returns EVENTBYE if the event being processed is for a BYE packet
to be sent, else it returns EVENREPORT.

e PacketType(p) returns PACKETRTCP.REPORT if packet p is an RTCP report (not BYE),
PACKET_BYE ifits a BYE RTCP packet, and PACKERTP if its a regular RTP data packet.

e ReceivedPacketSize() andSentPacketSize() return the size of the referenced packet in
octets.

e NewMember(p) returns a 1 if the participant who sent packet p is not currently in the member list,
0 otherwise. Note this function is not sufficient for a complete implementation because each CSRC
identifier in an RTP packet and each SSRC in a BYE packet should be processed.

e NewSender(p) returns a1 if the participant who sent packet p is not currently in the sender sublist
of the member list, O otherwise.

e AddMember() andRemoveMember() to add and remove participants from the member list.

e AddSender() andRemoveSender() to add and remove participants from the sender sublist of
the member list.

double rtcp_interval(int members,
int senders,
double rtcp_bw,
int we_sent,
double avg_rtcp_size,
int initial)

/*
* Minimum average time between RTCP packets from this site (in
* seconds). This time prevents the reports from ‘clumping’ when
* sessions are small and the law of large numbers isn’t helping
* to smooth out the traffic. It also keeps the report interval
* from becoming ridiculously small during transient outages like
* a network partition.
*/

double const RTCP_MIN_TIME = 5,

/*
* Fraction of the RTCP bandwidth to be shared among active
* senders. (This fraction was chosen so that in a typical
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* session with one or two active senders, the computed report

* time would be roughly equal to the minimum report time so that
* we don't unnecessarily slow down receiver reports.) The

* receiver fraction must be 1 - the sender fraction.

*/

double const RTCP_SENDER_BW_FRACTION = 0.25;

double const RTCP_RCVR_BW_FRACTION = (1-RTCP_SENDER_BW_FRACTION);
/*

/* To compensate for "unconditional reconsideration" converging to a
* value below the intended average.

*/

double const COMPENSATION = 2.71828 - 1.5;

double t; /* interval */

double rtcp_min_time = RTCP_MIN_TIME;

int n; /* no. of members for computation */
/*

* Very first call at application start-up uses half the min

* delay for quicker notification while still allowing some time
* before reporting for randomization and to learn about other
* sources so the report interval will converge to the correct
* interval more quickly.

*/

if (initial) {
rtcp_min_time /= 2;

}

/*

* If there were active senders, give them at least a minimum
* share of the RTCP bandwidth. Otherwise all participants share
* the RTCP bandwidth equally.
*/
n = members;
if (senders > 0 && senders < members * RTCP_SENDER_BW_FRACTION) {
if (we_sent) {
rtcp_bw *= RTCP_SENDER_BW_FRACTION;
n = senders;

} else {
rtcp_bw *= RTCP_RCVR_BW_FRACTION;
n -= senders;
}
}
/*
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* The effective number of sites times the average packet size is
* the total number of octets sent when each site sends a report.
* Dividing this by the effective bandwidth gives the time

* interval over which those packets must be sent in order to

* meet the bandwidth target, with a minimum enforced. In that
* time interval we send one report so this time is also our

* average time between reports.

t = avg_rtcp_size * n / rtcp_bw;
if (t < rtcp_min_time) t = rtcp_min_time;

/*
* To avoid traffic bursts from unintended synchronization with
* other sites, we then pick our actual next report interval as a
* random number uniformly distributed between 0.5*t and 1.5%.
*/

t =t * (drand48() + 0.5);

t =t / COMPENSATION;

return t;

}

void OnExpire(event e,
int members,
int senders,
double rtcp_bw,
int we_sent,
double *avg_rtcp_size,
int *initial,
time_tp tc,
time_tp *tp,
int *pmembers)

{

/* This function is responsible for deciding whether to send
* an RTCP report or BYE packet now, or to reschedule transmission.
* |t is also responsible for updating the pmembers, initial, tp,
* and avg_rtcp_size state variables. This function should be called
* upon expiration of the event timer used by Schedule(). */

double t; /* Interval */
double tn; /* Next transmit time */

/* In the case of a BYE, we use "unconditional reconsideration" to
* reschedule the transmission of the BYE if necessary */

if (TypeOfEvent(e) == EVENT_BYE) {
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t = rtcp_interval(members,

senders,
rtcp_bw,
we_sent,
*avg_rtcp_size,
*initial);
th = *tp + t;
if (tn <= tc) {
SendBYEPacket(e);
exit(1);
} else {

Schedule(tn, e);
}

} else if (TypeOfEvent(e) == EVENT_REPORT) {
t = rtcp_interval(members,

senders,
rtcp_bw,
we_sent,
*avg_rtcp_size,
*initial);

th = *tp + t;

if (tn <= tc) {

SendRTCPReport(e);

*avg_rtcp_size = (1./16.)*SentPacketSize(e) +
(15./16.)*(*avg_rtcp_size);
*p = tc;

/* We must redraw the interval. Don't reuse the
one computed above, since its not actually
distributed the same, as we are conditioned
on it being small enough to cause a packet to
be sent */

t = rtcp_interval(members,
senders,
rtcp_bw,
we_sent,
*avg_rtcp_size,
*initial);
Schedule(t+tc,e);

*initial = 0O;
} else {
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Schedule(tn, e);
}

*nmembers = members;

void OnReceive(packet p,
event e,
int *members,
int *pmembers,
int *senders,
double *avg_rtcp_size,
double *tp,
double tc,
double tn)

/* What we do depends on whether we have left the group, and
* are waiting to send a BYE (TypeOfEvent(e) == EVENT_BYE) or
* an RTCP report. p represents the packet that was just received. */

if (PacketType(p) == PACKET_RTCP_REPORT) {
if (NewMember(p) && (TypeOfEvent(e) == EVENT_REPORT)) {
AddMember(p);
*members += 1,
}
*avg_rtcp_size = (1./16.)*ReceivedPacketSize(p) +
(15./16.)*(*avg_rtcp_size);
} else if (PacketType(p) == PACKET_RTP) {
if (NewMember(p) && (TypeOfEvent(e) == EVENT_REPORT)) {
AddMember(p);
*members += 1,

}

if (NewSender(p) && (TypeOfEvent(e) == EVENT_REPORT)) {
AddSender(p);
*senders += 1;

}

} else if (PacketType(p) == PACKET_BYE) {
*avg_rtcp_size = (1./16.)*ReceivedPacketSize(p) +
(15./16.)*(*avg_rtcp_size);

if (TypeOfEvent(e) == EVENT_REPORT) ({
if (NewSender(p) == FALSE) {
RemoveSender(p);
*senders -= 1;
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}

if (NewMember(p) == FALSE) ({
RemoveMember(p);
*members -= 1,

}

if(*members < *pmembers) {
tn = tc + (((double) *members)/(*pmembers))*(tn - tc);
*p = tc - (((double) *members)/(*pmembers))*(tc - *tp);

/* Reschedule the next report for time tn */

Reschedule(tn, e);
*nmembers = *members;

}

} else if (TypeOfEvent(e) == EVENT_BYE) {
*members += 1;

}

A.8 Estimating the Interarrival Jitter

The code fragments below implement the algorithm given in Section 6.4.1 for calculating an estimate of the
statistical variance of the RTP data interarrival time to be inserted in the interarrival jitter fieddegition

reports. The inputs ane>ts , the timestamp from the incoming packet, ardval , the current time

in the same units. Here points to state for the source;>transit holds the relative transit time for

the previous packet, arsd>jitter holds the estimated jitter. The jitter field of theception report is
measured in timestamp units and expressed as an unsigned integer, but the jitter estimate is kept in a floating
point. As each data packet arrives, jitker estimate is updated:

int transit = arrival - r->ts;

int d = transit - s->transit;

s->transit = transit;

if d<0)d=-d

s->jitter += (1./16.) * ((double)d - s->jitter);

When a reception report block (to whiech points) is generated for this member, the current jitter
estimate is returned:

rr->jitter = (u_int32) s->jitter;
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Alternatively, the jitter estimate can be kept as an integer, but scaled to reduce round-off error. The
calculation is the same except for the last line:

s->jitter += d - ((s->jitter + 8) >> 4);

In this case, the estimate is sampled for the reception report as:

re->jitter = s->jitter >> 4;

B Changes from RFC 1889

Most of this RFC is identical to RFC 1889. The changes are listed below.

The algorithm for calculating the RTCP transmission interval specified in Sections 6.2 and 6.3 and
illustrated in Appendix A.7 is augmented to include “reconsideration” to minimize transmission over
the intended rate when many participants join a session simultaneously, and “reverse reconsideration”
to reduce the incidence and duration of false participant timeouts when the number of participants
drops rapidly. Reverse reconsideration is also used to possibly shorten the delay before sending RTCP
SR when transitioning from passive receiver to active sender mode.

Section 6.3.7 specifies new rules controlling when an RTCP BYE packet should be sent in order to
avoid a flood of packets when many participants leave a session simultaneously. Sections 7.2 and
7.3 specify that translators and mixers should send BYE packets for the sources they are no longer
forwarding.

Section 6.2.1 specifies that implementations may store only a sampling of the participants’ SSRC
identifiers to allow scaling to very large sessions. Algorithms are specified in RFC 2762 [16].

In Section 6.2 itis specified that RTCP sender and receiver bandwidthsto be set as separate parameters
of the session rather than a strict percentage of the session bandwidth, and may be set to zero. The
requirement that RTCP was mandatory for RTP sessions using IP multicast was relaxed.

Also in Section 6.2 it is specified that the minimum RTCP interval may be scaled to smaller values
for high bandwidth sessions, and that the initial RTCP delay may be set to zero for unicast sessions.

The requirement to retain state for inactive participants for a period long enough to span typical
network partitions was removed from Section 6.2.1. In a session where many participants join for a
brief time and fail to send BYE, this requirement would cause a significant overestimate of the number
of participants. The reconsideration algorithm added in this revision compensates for the large number
of new participants joining simultaneously when a patrtition heals.

Timing out a participant is to be based on inactivity for a number of RTCP report intervals calculated
using the receiver RTCP bandwidth fraction even for active senders.

Rule changes for layered encodings are defined in Sections 2.4, 6.3.9, 8.3 and 11. In the last of these,
it is noted that the address and port assignment rule conflicts with the SDP specification, RFC 2327
[8], but it is intended that this restriction will be relaxed in a revision of RFC 2327.

Schulzrinne/Casner/Frederick/Jacobson Expires January 14, 2001 [Page 71]



INTERNET-DRAFT draft-ietf-avt-rtp-new-08.ps July 14, 2000

A new Section 10 on congestion control was added.

In Section 8.2, the requirement that a new SSRC identifiesT be chosen whenever the source
transport address is changed has been relaxed to say that a new SSRC idextiflee chosen.
Correspondingly, it was clarified that an implementatioxy choose to keep packets from the new
source address rather than the existing source address when a collision occarsyand do so for
applications such as telephony in which some sources such as mobile entities may change addresses
during the course of an RTP session.

An indentation bug in the RFC 1889 printing of the pseudo-code for the collision detection and res-
olution algorithm in Section 8.2 has been corrected by translating the syntax to pseudo C language,
and the algorithm has been modified to remove the restriction that both RTP and RTCP must be sent
from the same source port number.

For unicast RTP sessions, distinct port pairs may be used for the two ends (Sections 3 and 7.1).

The description of the padding mechanism for RTCP packets was clarified and it is specified that
paddingmusT be applied to the last packet of a compound RTCP packet.

Clamping of number of packets lost in Section A.3 was corrected to use both positive and negative
limits.

It is specified that a receivesusT ignore packets with payload types it does not understand.

The specification of “relative” NTP timestamp in the RTCP SR section now defines these timestamps
to be based on the most common system-specific clock, such as system uptime, rather than on session
elapsed time which would not be the same for multiple applications started on the same machine at
different times.

The inconsequence of NTP timestamps wrapping around in the year 2036 is explained.

The policy for registration of RTCP packet types and SDES types was clarified in a new Section 14,
IANA Considerations. The suggestion that experimenters register the numbers they need and then
unregister those which prove to be unneeded has been removed in in favor of using APP and PRIV.
Registration of profile names was also specified.

The reference for the UTF-8 character set was changed from an X/Open Preliminary Specification to
be RFC 2279.

The last paragraph of the introduction in RFC 1889, which cautioned implementers to limit deploy-
ment in the Internet, was removed because it was deemed no longer relevant.

Small clarifications of the text have been made in several places, some in response to questions from
readers. In particular:

— A definition for “RTP media type” is given in Section 3 to allow the explanation of multiplexing
RTP sessions in Section 5.2 to be more clear regarding the multiplexing of multiple media.

— The definition for “non-RTP means” was expanded to include examples of other protocols con-
stituting non-RTP means.

— The description of the session bandwidth parameter is expanded in Section 6.2.
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— The method for terminating and padding a sequence of SDES items was clarified in Section 6.5.

— The Security section adds a formal reference to IPSEC now that it is available, and says that the
confidentiality method defined in this specification is primarily to codify existing practice. It is
RECOMMENDED that stronger encryption algorithms such as Triple-DES be used in place of the
default algorithm. It is also noted that payload-only encryption is hecessary to allow for header
compression.

— The convention for using even/odd port pairs in Section 11 was clarified to refer to destination
ports.

— A note was added in Appendix A.1 that packets may be saved during RTP header validation and
delivered upon success.

— Section 7.3 now explains that a mixer aggregating SDES packets uses more RTCP bandwidth
due to longer packets, and a mixer passing through RTCP naturally sends packets at higher than
the single source rate, but both behaviors are valid.

— Section 13 clarifies that an RTP application may use multiple profiles but typically only one in a
given session.

— The termaviusT, SHOULD, MAY, etc. are used as defined in RFC 2119.

C Security Considerations

RTP suffers from the same security liabilities as the underlying protocols. For example, an impostor can
fake source or destination network addresses, or change the header or payload. Within RTCP, the CNAME
and NAME information may be used to impersonate another participant. In addition, RTP may be sent
via IP multicast, which provides no direct means for a sender to know all the receivers of the data sent
and therefore no measure of privacy. Rightly or not, users may be more sensitive to privacy concerns with
audio and video communication than they have been with more traditional forms of network communication
[30]. Therefore, the use of security mechanisms with RTP is important. These mechanisms are discussed in
Section 9.

RTP-level translators or mixers may be used to allow RTP traffic to reach hosts behind firewalls. Ap-
propriate firewall security principles and practices, which are beyond the scope of this document, should be
followed in the design and installation of these devices and in the admission of RTP applications for use
behind the firewall.

D Full Copyright Statement

Copyright (C) The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implmentation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be madified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which case
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the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an “AS 1S” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
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