Internet Engineering Task Force Michael F. Speer Audio-Video Transport Working Group Don Hoffman draft-ietf-avt-cellb-profile-02.txt Sun Microsystems, Inc. November 11, 1994 Expires: 5/31/94 RTP Encapsulation of CellB Video Encoding Status of this Memo This document is an Internet Draft. Internet Drafts are working documents of the Internet Engineering Task Force (IETF), its Areas, and its Working Groups. Note that other groups may also distribute working documents as Internet Drafts. Internet Drafts are draft documents valid for a maximum of six months. Internet Drafts may be updated, replaced, or obsoleted by other documents at any time. It is not appropriate to use Internet Drafts as reference material or to cite them other than as a ``working draft'' or ``work in progress.'' Please check the I-D abstract listing contained in each Internet Draft directory to learn the current status of this or any other Internet Draft. Distribution of this document is unlimited. Abstract This note describes a packetization scheme for the CellB video encoding using RTP. This document is meant for implementors of video applications that use RTP and CellB. draft-ietf-avt-cellb-profile-02.txt [Page 1] INTERNET-DRAFT CellB Profile November 1994 1 Introduction The Cell image compression algorithm is a variable bit-rate video coding scheme. It provides "high" quality, low bit-rate image compression at low computational cost. The bytestream that is produced by the Cell encoder consists of instructional codes and information about the compressed image. For futher information on Cell compression technology, refer to [1]. Currently, there are two versions of the Cell compression technology: CellA and CellB. CellA is primarily designed for the encoding of stored video intended for local display, and will not be discussed in this memo. CellB, derived from CellA, has been optimized for network-based video applications. It is computationally symmetric in both encode and decode. CellB utilizes a fixed colormap and vector quantization techniques in the YUV color space to achieve compression. 2 Structure of the CellB Video Stream The CellB bytestream consists of cell codes, skip codes and quantization-table specific codes. These are now described. 2.1 CellB Cell Code Cell codes are 4 bytes in length, and describe a 4x4 pixel cell. There are two possible luminance (Y) levels for each cell, but only one pair of chrominance (UV) values. The CellB cell code is shown below: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0 M M M M M M M M M M M M M M M|U V U V U V U V|Y Y Y Y Y Y Y Y| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 4x4 Bitmask U/V Code Y/Y Code The first two bytes of the cell code are a bitmask. Each bit in the mask represents a pixel in a 16-pixel cell. Bit 0 represents the value of the upper right-hand pixel of the cell, and subsequent bits represent the pixels in row-major order. If a pixel's bit is s