
Data synchronization for XML-DOM based collaborative applications

Advised by:
Dr. Henning Schulzrinne, Department of Computer Science,
Columbia University,
M/S 0401, 1214 Amsterdam Avenue
New York, NY 10027-7003
USA

Submitted by:
Govindakrishnan Kannan, Department of Computer Science,
University Of Kentucky,
Lexington, KY - 40508
USA.
e-mail: gkann2@cs.uky.edu

1. Abstract

The project provides a pragmatic solution to synchronize XML-data between
applications that are collaborative in nature. This solution is intended for the
applications that model data internally, in a Document Object Model (DOM).

2. Introduction

The basic requirement of the project is to demonstrate the synchronization of data
between collaborative applications like shared-editors, shared-whiteboard, etc. that
model their data internally as Document Object Model(DOM). Given that, the
solution must capture operations normally performed on the DOM easily and
suitably convey across to the peer collaborating application. Also the solution
maintains a state – by doing a "book-keeping" of all actions related to a particular
DOM node, in a session. The state may also be used for synchronizing another
collaborating peer that either recovers from a crash (OR) has joined a session later.

3. Related work

Some existing tools that perform the XML differences and resolve them were
studied. In particular the format of the XML files, that’s generated by the “diff” part,
was studied. Two of the tools that gave me better ideas were the MS XML Diff and
patch tool, and the Delta toolset.

In particular, I learnt how the tools highlight the differences between XML
documents; this lead me to think how a “diff” format for collaborative applications
could be specified – for example a particular “node” may frequently be re-
organized within the application’s DOM, its attribute set may be changed
continuously, etc. Since the solution is intended for collaborative applications where
the changes (the differences of a shared-board, say) are to be transmitted quickly,
efficiently I have modeled the diff internally as a DOM, with specific elements just
enough to convey the changes appropriately. I have discussed the same in detail in
the following sections.

4. Background

The XML-DOM, which forms the basis of the project, is a way of representing the
hierarchical structure of documents. As the W3C puts it – “It’s an API for valid
HTML and well-formed XML documents. It defines the logical structure of a
document and the way a document is accessed and manipulated. “.

5. Architecture

I have modeled the solution mainly having the following modules:
1) A “difference “generating module:
 1.1) this is the module that’s delegated with the responsibility of
 maintaining the state of whatever operations that have been
 performed on the DOM.
 1.2) Using this “book-keeping” functionality above, the changes are
 suitably formatted as XML message(s), ready to be dispatched to the
 peer.

 2) A “change resolver” module:
 This is the corresponding complimentary module that’s delegated
 with the responsibility of executing the operations that have
 been communicated through the XML message(s).

3) A demonstrative usage of these modules, with a simple collaborative
 drawing program.
 3.1) the modules 1) and 2) are suitably interfaced to a third-party
 standalone drawing program (“HotSpot”) – that has been modified

 from scratch to simulate collaborative behavior. This is done using
 TCP/IP sockets at both the sending and receiving ends.

So the entire solution can be picturized as follows:

I would like to emphasize that the modules do not have any knowledge of the under-
lying model of a collaborating application – for example it’s possible that the
application has a central server that takes care of routing the messages appropriately
to other peers in the collaborating group.

6. Implementation details

1. Programming language and APIs

 The entire programming has been done in Java (J2SE 1.4.2 beta) – since
J2SE 1.4.1, the JAXP (Java APIs for XML Processing) is bundled with the SDK.
The external libraries used are the Apache–Xerces2 APIs that provide the support of
DOM event handling, upon which the solution almost exclusively relies on. The
“HotSpot” drawing program has also been programmed in Java - whose
functionality is extended to simulate the collaborative behavior - has been slightly
modified to do away with the deprecated APIs it uses. Network programming is
done using Java Socket API.

 Application

Diff Patch

 Network communication

 DOM

 Application

Diff Patch

 Network communication

 DOM

2. The Java classes:
 A brief description of the following classes, that I have implemented are as
 follows:

a) DiffDomNode
 This is where all the changes invoked by DiffListener are
 performed. It does bulk of the maintenance of the internal DOM maintained
 for generating the changes to be transmitted.

b) DiffListener
 This class implements the MutationEventListener (a W3C Events
 specification) and identifies the type of operation and conveys them to the
 DiffDomNode class above.

c) DiifNodeInfo
This class encapsulates some useful information regarding the node that
 was affected by the application. It’s used by DiffListener and XMLDiff.

d) XMLDiff

 This is the entry-point to the “diff” module. It takes care of initializing
 custom- data structures, registering the event-listener (DiffListener) for the
 “Document” object handed down to it by the application. A Wrapper-
 function specifically for two DOM operations by name insertBefore (),
 replaceChild () is provided, which MUST be invoked if the application
 chooses to use these operations; the reason is outlined in the design
 alternatives below.

e) PatchListener
 This class implements the MutationEventListener (a W3C Events
 specification) and performs the application specific operations in response to
 the updates the DOM made by XMLPatch.

f) XMLPatch
 This is the entry-point to the “patch” module. It takes care of

 registering the event-listener (PatchListener) for the Document object
 handed down to it by the application. This class implements the SAX
 parsing module that parses the byte-stream sent by another peer. It updates
 the DOM object handed to it, that are subsequently tracked by PatchListener,
 and all application specific operations are to be performed here.

Apart from these classes, there are specific classes implemented for the sake of

simulating the collaborative behavior of the “HotSpot” application. I provide a
brief overview of the organization of the classes.

 Each of the above derived classes implement the corresponding shape.
1. HotSpot
 This is what helps to manipulate the geometric object – ellipse, line,
 rectangle.

2. HotSpotMgr
 The hotspots are managed by this class, whenever the hotpsot for the
 respective object changes (when resized, or moved).

3. WBDOMMgr
This class interfaces the diff and patch modules with the HotSpot
 Drawing program.

7. A brief description on how the “differences” are modeled

 I have modeled the "differences”, that are to be transmitted, internally as a DOM
(say diffDOM), and it is suitably updated by using a custom-data structure (a hash-
table whose key is the xpath expression of the “node” that was affected by the
application, captured using an event-listener as said above). The diffDOM is
updated every-time a “node” is "affected" in the DOM that the application maintains
internally, say appDOM. i.e.

1. Every-time a node is created, inserted/removed/replaced (OR) if its attributes
change, an event is fired - that's captured by a listener.

2. A book-keeping of these affected-nodes and the actions that "affected" them
is maintained using diffDOM and a custom data-structure.

Shape

Ellipse Shape

Rectangle
Shape Line Shape

(base class)

3. An optimized diffDOM is generated, that excludes certain operations. i.e. if a
sub-tree is created and later removed, two things are done:

a) Initially the nodes of this sub tree as they are inserted, due to the event-
listener, are stored in diffDOM.

b) Later all the nodes in this sub-tree are deleted from diffDOM. This is because
we don't need to send both the information like:

 "1) create the sub-tree" and "2) delete sub-tree".

 There are two possibilities how an application might use a DOM:

1. The application MIGHT use some standard XML file and manipulates the
DOM representation of it, in a session, so relying only on the event-model it’s
not possible to trace the actions that "affect" the appDOM. i.e. if as sub-tree
of such an appDOM is re-organized in a session, I won't already have a
"reference" to these nodes, just as I would have one, had they been created
dynamically?

2. Create a DOM afresh and manipulate it.

 I have considered both these cases. As suggested all nodes are identified by an
XPath-like path, as shown in the figures below. I observed the following advantages
of modeling the "differences", as DOM:

1. It can be serialized easily, when its time to transmit/announce the same.
2. Easy to manipulate, this by itself is an advantage of DOM.
3. Easy to maintain - all operations can be performed using the standard tree

operations provided by the DOM API.

7.1An example “diff” format

 diff

action-list

node

new =”xpath from
root” ref=”xpath
from root”

list of attribute-name
value pair

1. action-list

Contains the smallest number of actions that have been currently
performed on the node; i.e.-e:- insert/remove/replace/insert-before (till
now I see that at most only action will be recorded even though several
actions are performed as suggested earlier.)

2. A list of < name, value > pairs (if available) from the appDOM (an
attribute insertion/deletion/modification is not recorded as an action;
ONLY the latest set of attributes of that are "imported" directly from
the corresponding appDOM, into this node.)

3. Apart from that an attribute-list that specifies the XPath-like location of
this node are required: a) "new" - has the XPath-like location of this
node that's recently been created by the application. b) "ref" - has the
XPath-like location of a reference node. This is required to reconstruct
at the other end - it tells us where this nodes is inserted with reference
to the "parent-node" OR with reference to a "sibling-node”.

The following elements appear within the “action-list”
1. node-insert –
 When a new node is inserted into the DOM
2. node-remove –
 When an existing node is deleted from DOM.
3. node-insertBefore –
 When an existing node is inserted before another node.
4. node-replace –
 When an existing node replaces another node.
5. attr-add, attr-modify, attr-delete

When an attribute is added, modified or deleted from a node.

7.2 An example of how the “diff” is generated initially.

The corresponding XML message:
<diff><ellipse new="/svg/ellipse[0]" ref="/svg"><action-list><node-insert/><attr-
add x="100" y="110" w="120" h="150"/></action-list></ellipse></diff>

7.3 An example of “diff”, when further changes occur during the course of a
 drawing session.

The corresponding XML message:

 diff

ellipse

new=”/svg/ellipse[0]”
ref=”/svg”

x=100 y=110 w=120
h=150

action-list

node-insert

attr-add

 diff

ellipse

new=”/svg/ellipse[1]”
ref=”/svg”

x=120 y=120 w=120
h=150

action-list

attr-modify

<diff><ellipse new="/svg/ellipse[1]" ref="/svg"><action-list><attr-modify x="120"
y="120" w="120" h="150"/></action-list></ellipse></diff>

8. Notes on custom-data structure
 The data-structure used in the XMLDiff, DiffListener, DiffDomNode classes
 deserves emphasis. Its basically a hash-table that can be potrayed as follows:

/svg/ellipse[0]

/svg/ellipse[1]

 diff

ellipse

new=”/svg/ellipse[1]”
ref=”/svg”

x=120 y=120 w=120
h=150

action-list

attr-modify

 diff

ellipse

new=”/svg/ellipse[0]”
ref=”/svg”

x=120 y=120 w=120
h=150

action-list

attr-modify

This is a hash-table with the

first depicting the “key” and
the second the value it
hashes to.

 The first entry is the key of the hash-table - the XPath expression of the location
of the target-node and the reference node. The value that will be looked up is the
reference to the Diff-DOM node as shown.

9. Typical flow of control in the demonstrative application:

a) The application hands over a Document object it uses to construct the
 DOM upon instantiating XMLDiff.
b) A server runs in a separate thread, and a client runs in the main thread, as
 a part of this application, instantiates XMLPatch.
c) Whatever drawing operations are performed on-screen are captured by
 the DiffListener object instantiated in (a) and appropriate XML-based
 message is constructed.
d) The XML-message in (c) is dispatched to another peer in a different
 machine thru’ the client.
e) The server gets the XML-message – the end of which is signified by
 closing the socket at the sending end – and hands it over to XMLPatch.
 Within it the XML-message is parsed using SAX - due to faster response
 less memory-intensive operations - and the DOM is updated corresponding
 to the actions specified in it.

10. Design Decision
 a) A wrapper function for replaceChild(), insertBefore() is included which must
 be invoked if the application were to use these. It’s more a design decision
 than a limitation; the reason is that I found it tough to decide an action based
 solely on the Event-model. For example replaceChild() removes the existing
 node and inserts a node designated, so it’s hard to determine if the application
 genuinely deleted a node and inserted some other node – though a clever
 mechanism could be used to infer. But the Wrapper performs exactly the
 same operation as the original, and it works fine.

11. Useful Enhancements
a) I started to design as a generic solution, but I need to have a broad
 understanding of several applications and commonly occurring scenarios.
 So I reckon that a good API would be a better solution.
b) Design decision (b) could be re-tooled, perhaps in a future release.

12. Acknowledgements
 I have referred the following sites:

1. www.w3c.org – DOM specifications
2. www.xml.apache.org – Apache’s Xerces2 APIs
3. http://www.javaworld.com/javaworld/jw-12-1996/jw-12-howto.html
 - The HotSpot drawing program, used for the demo purposes.
4. http://java.sun.com/webservices/docs/1.1/tutorial/doc/index.html
 - Sun’s Java-XML tutorial.
5. http://msdn.microsoft.com/library/default.asp?url=/library/en-
 us/dnxmlnet/html/xmldiff.asp

- Microsoft XML Diff and Patch tool.
6. http://www.deltaxml.com/

- The Delta XML compare, merger and synchronize tool.

http://www.w3c.org
http://www.xml.apache.org
http://www.javaworld.com/javaworld/jw-12-1996/jw-12-howto.html
http://java.sun.com/webservices/docs/1.1/tutorial/doc/index.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-
http://www.deltaxml.com/

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

