
Himanshu Kumar
Columbia University
Fall 2007

P E R F O R M A N C E A N A LY S I S O F W E B P R O G R A M M I N G
L A N G U A G E S

Abstract

Using a benchmark script that renders a table from an SQL database, the performance of
several different programming languages, Perl, ASP.Net, and PHP, and database engines are
analyzed.

Introduction

 We first configured Internet Information Services (IIS) on a Windows machine, installed
SQL Server 2005 and MySQL server on it, and then installed the binaries for the programming
languages.

The performance analysis consists of four test cases. Each language was scripted to run these
four tests. The response time is analyzed and recorded using a benchmark tool.

Server Configuration

Server Configuration

Two HP Proliant Servers with Dual Intel Pentium 4 CPU (3.06 GHz), 2.17 GB Ram, 3 GB
Virtual Memory and dual Gigabit Ethernet Server Adapters were used as the test servers.
Microsoft Windows XP Pro and ubuntu were installed on the servers.

We had two similarly configured servers for the project. We initially intended to install
Windows and Linux on them so that we could divide the languages and SQL servers on the two
servers. During development we ran into problems installing the software on Linux, since most
of the software needed to be recompiled before installation. For example, to add mySQL
connection capabilities to Perl, we needed to recompile perl binaries with extra parameters that
did not work so well with other options needed to add MSSQL connection capabilities. Similar
problems were also encountered with installation of the Apache web server. We, then found that
all the software we needed could also be installed on the Windows server without the need for
recompilation or extensive configurations. All the software needed for the project could be
installed to work with the IIS web server without any problems, while some of them could also
be installed to work on the Apache Tomcat server.

1

Software Installation

We installed Microsoft IIS 5.1 as the web server, along with Perl 5.2.5, Active Perl 5.8.8
and .Net Framework 2.0 for the language support. Microsoft SQL Server 2005 and mySQL
Server 5.0 were installed as the database servers. To support these database servers, most
languages needed separate drivers to be installed, this includes MySQL connector 5.0.8.1,
MySQL ODBC 3.51 driver and Microsoft SQL connection driver. We also used Microsoft SQL
Server Manager and MySQL GUI Tools 5.0 for SQL server management, and various software
development IDE including Microsoft Visual Studio 2005, Open Perl IDE 1.0.11 and Eclipse.
TortoiseSVN/Subversion 1.4.5 was extensively used for version control.

Test Configuration

Database

MS SQL, mySQL and postgreSQL database servers were used in the testing. The database
contained three tables, with 10,000 records each in two of the tables and 20,000 in the third table.
An ASP.Net script was written to populate the tables with random data.

Microsoft SQL Server 2005: The default setup was used without any changes to the security
or performance.

mySQL 5.1.11: The default configuration was used, with MySQL GUI Tools 5.0 providing
the front end for managing the databases.

Test Case Description # of Records
1
2

3

4

Print “Hello World
” 10,000 times 10,000
Student, professorInfo, personalInfo tables read from database and loaded into
memory before rendering the web page

40,000

Inner Join on Student and PersonalInfo tables and load the results into
memory before rendering the database

10,000

Table from #3, Quicksort in code on "Name" column 10,000

Database Table Layout
Student

PersonalI
nfo
Professor
Info

ID Name (100
Char)

Track (50
Char)

AdvisorID
(int)

ID Name (100
Char)

Type (20
Char)

Age (int) Address (200
Char)

Phone (10
Char)

WebAddress
(100 Char)

Email (50
Char)

ID Department
(50 Char)

Office (100
Char)

Hours (50
Char)

2

Benchmarking tool

We tested many benchmarking tools available on a website [1] that lists numerous web site
testing and performance analysis tools. Most of these tools were commercial software geared
towards testing performance of websites to help developers optimize their sites. We decided
against using these software due to their extreme complexity and somewhat irrelevant results.
The tools were not easy to configure and sometimes returned unexpected results when tests were
repeated multiple times. One such instance is of returning less than a 10 ms interval for a page of
size more than 30 MB that displayed 40,000 records on screen. So we developed a small
application using Microsoft Visual Studio 2005 and Visual C# to request a webpage and measure
the time taken for the request. The measurement was taken as the time between the HTTP
request was made and the last byte of data received. The information gathered by the application
is displayed on the application window as well as stored as a log file in the executable's directory.

Testing procedure

The web server was restarted before the tests, and no extra services or applications were
allowed to run during the test apart from important system services. Each test case was
conducted five times using the order described below, while the test system was connected to
university network using an ethernet cable to minimize the network delays.

Another test was later added to determine if the test results were linear in nature when the
lengths of these tests were varied. The new tests added two more tests for each test case where a
limit was placed on the number of records returned by the database. These limits were set to 50%
and 25% of the records returned by the test scripts.

Performance for cached and uncached pages was measured and analyzed separately. Cold
tests were performed by restarting the web server and the database server before measuring the
performance in the test cases. The Hot tests were performed immediately after the Cold tests,
thus caching by the web server and the database server would be seen in these results.

Caching

One problem faced was some type of caching taking place, when a web page is requested
multiple times in sequence. The caching was being done by the IIS server when the same web
page was requested by the same host. To avoid this, we used two strategies:

• Add a dummy parameter to the query string for the pages, and set its value to be different
for each request. For example: test.aspx?n=1000, test.aspx?n=1001

• Perform the tests in a predetermined sequence to avoid caching on the database side or the
web server side. The order chosen was: Test1, Test3, Test2, Test4. This order avoided having
tests 3 and 4 next to each other since both tests requested the same query from the database.

3

Test Observations

The test cases originally consisted of displaying the data received from the database in test
#2. #3 and #4 to the client. However, due to the difference in printing speeds for the languages,
these test results were skewed in favor of the language with the fastest printing speeds. So it was
decided to remove the print statements to be able to accurately compare the database transaction
speeds of the languages.

To find out if caching played a role in the performance of the languages, Cold and Hot
scenarios were added to the test plan. Cold tests were performed by restarting the web server and
the database server before measuring the performance. The Hot tests were performed
immediately after the Cold tests, thus caching by the web server and the database server would
result in improved performance of the languages.

Test Results

Raw Data - For all Test cases

ASP MSSQL ASP mySQL Perl MSSQL Perl mySQL PHP MSSQL PHP mySQL

Test 1

Test 2

Test 3

Test 4

1.33 0.13 0.19
1.22 0.19 0.17
1.28 0.11 0.20

1.68 2.35 1.62 1.62 1.62 0.90
1.40 2.32 1.47 1.63 1.66 0.89
1.43 2.26 1.46 1.69 1.70 0.89
1.21 1.93 0.97 0.90 0.79 0.58
1.30 2.02 0.92 0.78 0.80 0.50
1.28 1.88 0.88 0.83 0.80 0.40
1.30 2.05 4.07 3.74 1.23 0.97
1.30 2.03 3.85 3.76 1.28 0.99
1.34 1.94 3.83 3.75 1.20 1.01

ASP MSSQL ASP mySQL Perl MSSQL Perl mySQL PHP MSSQL PHP mySQL

Printing Test 0.38 0.09 0.14
0.40 0.07 0.13
0.29 0.06 0.13
0.28 0.10 0.14
0.43 0.16 0.12
0.43 0.10 0.12
0.24 0.08 0.16
0.38 0.06 0.12
0.41 0.07 0.14

Cold Scenario: Performance in Seconds

4

ASP MSSQL ASP mySQL Perl MSSQL Perl mySQL PHP MSSQL PHP mySQL

Select
Command
Test

Join Table
Test

QuickSort
Test

0.35 0.52 1.35 1.36 1.44 0.61

0.35 0.54 1.35 1.37 1.54 0.57
0.37 0.53 1.35 1.38 1.53 0.58
0.36 0.53 1.35 1.36 1.57 0.60
0.38 0.52 1.36 1.36 1.48 0.56
0.38 0.53 1.33 1.35 1.49 0.58
0.36 0.52 1.36 1.38 1.44 0.58
0.36 0.50 1.37 1.40 1.44 0.56
0.37 0.52 1.36 1.39 1.46 0.58
0.14 0.23 0.63 0.61 0.73 0.27

0.14 0.26 0.63 0.57 0.69 0.35
0.16 0.20 0.62 0.58 0.64 0.27
0.15 0.19 0.64 0.57 0.63 0.27
0.15 0.21 0.62 0.57 0.63 0.26
0.15 0.21 0.69 0.59 0.63 0.26
0.15 0.19 0.63 0.57 0.64 0.28
0.15 0.20 0.63 0.57 0.63 0.27
0.15 0.21 0.62 0.56 0.63 0.26
0.17 0.22 3.69 3.47 1.07 0.76

0.16 0.23 3.71 3.50 1.11 0.75
0.17 0.27 3.70 3.54 1.12 0.75
0.17 0.22 3.73 3.53 1.08 0.75
0.17 0.27 3.71 3.50 1.06 0.75
0.17 0.23 3.69 3.49 1.06 0.75
0.18 0.23 3.67 4.31 1.05 0.75
0.16 0.22 3.70 3.56 1.07 0.74
0.18 0.27 3.67 3.53 1.05 0.76

Averages - For all Test Cases

ASP MSSQL ASP mySQL Perl MSSQL Perl mySQL PHP MSSQL PHP mySQL
Printing Test
Select Command
Test
Join Table Test
QuickSort Test

1.28 0.14 0.19
1.51 2.31 1.52 1.65 1.66 0.89

1.26 1.95 0.92 0.84 0.80 0.49
1.31 2.01 3.91 3.75 1.24 0.99

Hot Scenario: Performance in Seconds

Cold Scenario: Performance in Seconds

5

HOT AVG ASP MSSQL ASP mySQL Perl MSSQL Perl mySQL PHP MSSQL PHP mySQL
Printing Test
Select Command
Test
Join Table Test
QuickSort Test

0.36 0.09 0.13
0.36 0.52 1.35 1.37 1.49 0.58

0.15 0.21 0.63 0.58 0.65 0.28
0.17 0.24 3.69 3.60 1.08 0.75

Raw Data - Linearity Test

100% 50% 25%
ASP - MSSQL
Select Command Test
Join Table Test
QuickSort Test

ASP - MySQL
Select Command Test
Join Table Test
QuickSort Test

Perl - MSSQL
Select Command Test
Join Table Test
QuickSort Test

Perl - MySQL
Select Command Test
Join Table Test
QuickSort Test

PHP - MSSQL
Select Command Test
Join Table Test
QuickSort Test

PHP - MySQL
Select Command Test
Join Table Test
QuickSort Test

0.44 0.20 0.11
0.18 0.10 0.05
0.19 0.11 0.05

0.55 0.20 0.12
0.22 0.08 0.05
0.27 0.09 0.06

1.42 0.90 0.63
0.71 0.57 0.48
3.81 1.91 1.08

1.40 0.82 0.54
0.61 0.41 0.31
3.69 1.80 0.93

1.55 0.91 0.60
0.64 0.45 0.41
1.18 0.67 0.53

0.59 0.33 0.18
0.29 0.14 0.12
0.79 0.42 0.20

Hot Scenario: Performance in Seconds

Performance in Seconds

6

Test Summary

ASP.NET Perl PHP
Printing Test

Select Command Test
Join Table Test
QuickSort Test

Select Command Test
Join Table Test
QuickSort Test

7,827 6,977 53,571
MSSQL

26,566 26,339 24,067
7,909 10,819 12,537
7,608 2,556 8,080

MySQL
17,294 24,262 44,726
5,139 11,938 20,270
4,978 2,670 10,091

ASP.NET Perl PHP
Printing Test

Select Command Test
Join Table Test
QuickSort Test

Select Command Test
Join Table Test
QuickSort Test

27,778 113,924 75,000
MSSQL

109,756 29,535 26,850
67,164 15,762 15,382
58,824 2,709 9,298

MySQL
76,433 29,124 68,966
47,368 17,341 36,145
41,667 2,778 13,296

Cold Scenario: Performance in Records/Second

Hot Scenario: Performance in Records/Seconds

7

Test 1: Printing Test

For the cold web server scenario, PHP was the fastest of the three languages, faster than ASP
by 85% and faster than PHP by 87%.

For the hot web server scenario, Perl is the fastest of the three languages in the printing test
where the line "Hello World
" is printed onto the webpage. It had a 75% performance
advantage over ASP.Net and 34% over PHP.

0

37,500

75,000

112,500

150,000

ASP.Net Perl PHP

75,000

113,924

27,778

53,571

6,9777,827

Test 1: Printing Test

Ro
ws

/S
ec

on
d

Cold Scenario Hot Scenario

8

Test 2: Select Commands Test

For the cold web server scenario, ASP.Net is the fastest of the three languages for MSSQL,
but the performance difference was very small. PHP was fastest when accessing mySQL, it was
faster than ASP by 61% and Perl by 46%.

PHP was faster by 46% when accessing mySQL as compared to accessing MSSQL. ASP.Net
was in turn faster by 35% as compared to the mySQL database when accessing the Microsoft
SQL database.

0

12,500

25,000

37,500

50,000

MSSQL mySQL
ASP.Net Perl PHP ASP.Net Perl PHP

44,726

24,067 24,26226,339

17,294

26,566

Test 2: Select Commands Test (Cold Scenario)

Ro
ws

/S
ec

on
d

9

For the hot web server scenario, ASP.Net is the fastest of the three languages in the test
where three SELECT commands are sent to the SQL database and 40,000 records in total are
returned to the script. ASP.Net was faster than Perl by 73% and PHP by 77% when accessing MS
SQL and by 62% and 10% respectively when accessing mySQL.

PHP was faster by 61% when accessing mySQL as compared to accessing MSSQL. ASP.Net
was in turn faster by 30% when accessing the Microsoft SQL database as compared to the
mySQL database.

0

27,500

55,000

82,500

110,000

MSSQL mySQL
ASP.Net Perl PHP ASP.Net Perl PHP

68,966

26,850 29,12429,535

76,433

109,756Test 2: Select Commands Test (Hot Scenario)
Ro

ws
/S

ec
on

d

10

Test 3: Join Tables Test

For the cold web server scenario, PHP is the fastest of the three languages in this test where
two tables are merged using a JOIN command in the SQL database and 10,000 records are
returned to the script. PHP was faster than ASP by 37% and Perl by 14% when accessing MS
SQL and by 75% and 41% respectively when accessing mySQL.

PHP was faster by 38% when accessing mySQL as compared to accessing MSSQL. ASP.Net
was in turn faster by 35% when accessing the Microsoft SQL database as compared to the
mySQL database.

0

7,500

15,000

22,500

30,000

MSSQL mySQL
ASP Perl PHP ASP Perl PHP

20,270

12,537 11,93810,819

5,139
7,909

Test 3: Join Tables Test (Cold Scenario)

Ro
ws

/S
ec

on
d

11

For the hot web server scenario, ASP.Net is the fastest of the three languages in this test. Two
tables are merged using a JOIN command in the SQL database and 10,000 records are returned
to the script. ASP.Net was faster than Perl by 77% and PHP by 78% when accessing MS SQL
and by 64% and 24% respectively when accessing mySQL.

PHP was faster by 57% when accessing mySQL as compared to accessing MSSQL. ASP.Net
was in turn faster by 29% when accessing the Microsoft SQL database as compared to the
mySQL database.

0

17,500

35,000

52,500

70,000

MSSQL mySQL
ASP Perl PHP ASP Perl PHP

36,145

15,382 17,34115,762

47,368

67,164
Test 3: Join Tables Test (Hot Scenario)

Ro
ws

/S
ec

on
d

12

Test 4: Quicksort Test

For the cold web server scenario, PHP is the fastest of the three languages in this test. PHP
was faster than ASP by just 6% and Perl by 68% when accessing MS SQL and by 51% and 74%
respectively when accessing mySQL.

PHP was faster by 20% when accessing mySQL as compared to accessing MSSQL. ASP.Net
was in turn faster by 35% when accessing the Microsoft SQL database as compared to the
mySQL database, similar to tests 2 and 3 above.

0

2,750

5,500

8,250

11,000

MSSQL mySQL
ASP Perl PHP ASP Perl PHP

10,091

8,080

2,6702,556

4,978

7,608

Test 4: Quicksort Test (Cold Scenario)

Ro
ws

/S
ec

on
d

13

For the hot web server scenario, ASP.Net is the fastest of the three languages in this test. Two
tables are merged using a JOIN command in the SQL database and 10,000 records are returned
to the script. ASP.Net was faster than Perl by 95% and PHP by 84% when accessing MS SQL
and by 93% and 68% respectively when accessing mySQL.

PHP was faster by 30% when accessing mySQL as compared to accessing MSSQL. ASP.Net
was in turn faster by 29% when accessing the Microsoft SQL database as compared to the
mySQL database.

0

15,000

30,000

45,000

60,000

MSSQL mySQL
ASP Perl PHP ASP Perl PHP

13,296
9,298

2,7782,709

41,667

58,824
Test 4: Quicksort Test (Hot Scenario)

Ro
ws

/S
ec

on
d

14

Verification of test cases

Another set of measurements were taken to determine if the results of the tests were linear
with varying lengths of the data-sets returned by the two databases. The graphs below show the
linear nature of the test results when the tests were run for 50% and 25% of the records retrieved
from the database.

Time taken in seconds to retrieve the data from the databases

15

Conclusion

For the cold web server case, PHP was the fastest in displaying large amount of text that was
not pulled from a database, while ASP.Net was the second placed language. In the database
access and quick-sort tests, PHP was the fastest with ASP.Net and Perl sharing the second places.
In the two SQL databases used for testing, MS SQL always performed better when accessed
from ASP.Net, while mySQL performed better when accessed from PHP. There was no definitive
difference in performance between the two databases when using Perl.

For the hot web server case, the test results show that Perl was the fastest displaying large
amount of text that was not pulled from a database, while PHP was the second placed language.
In the database access and quick-sort tests, ASP.Net was the fastest with PHP coming in second
place consistently. In the two SQL databases used for testing, MS SQL performed better when
accessed from ASP.Net, while mySQL performed better when accessed from PHP. The
performance difference in ASP.Net might be a result of the maturity of the custom connection
drivers for the two databases used by ASP.Net. The difference in performance in PHP could lie in
the use of an ADODB driver used by PHP to connect to the MSSQL database due to the absence
of a custom MSSQL driver for PHP, while it used the mySQL connection driver for accessing the
MySQL database. Perl performed equally well accessing both the databases.

When comparing the hot and cold test scenarios, caching improved the performance of
ASP.Net by the highest margin, PHP had a lower performance gain while Perl appeared to be
unaffected.

16

Project Technical Details

Benchmarking Tool

The benchmarking tool was
written in Visual C# as a
Windows application. It’s front
end consisted of a text box to
enter the web address of the web
page to be tested, another text
box to enter the number of times
to request the web page, a
button to start the test, and a
couple of output text boxes to
display the results. It also saves
the results into a text log file as
comma separated values so that
it can be opened in a spreadsheet
application for analysis.

The core code of the
benchmark tool is shown below.
It records the start time before
creating an HTTP web request
for the web page in question,
and loops through the data that
is received from the server in
8KB chunks. The end time of the request is recorded after the last byte of data is received which
is displayed by the application and logged in a comma separated text file.

 byte[] buf = new byte[8192];
 start = DateTime.Now;
 // prepare the web page we will be asking for
 HttpWebRequest request = (HttpWebRequest) WebRequest.Create(args);

 // execute the request
 HttpWebResponse response = (HttpWebResponse) request.GetResponse();

 // we will read data via the response stream
 Stream resStream = response.GetResponseStream();

 do
 {
 // fill the buffer with data
 count = resStream.Read(buf, 0, buf.Length);
 if(size == 0)
 responseT = DateTime.Now;
 size += count/1024;

 // make sure we read some data

17

 if (count != 0) {
 // translate from bytes to ASCII text
 tempString = Encoding.ASCII.GetString(buf, 0, count);

 // continue building the string
 sb.Append(tempString);
 }
 }
 while (count > 0); // any more data to read?
 end = DateTime.Now;

ASP.Net

Working with ASP.Net was easy due to the easy installation process to install Visual Studio,
which installed IIS by default with ASP.Net. Using the IIS Manager, the folder containing the
ASP.Net scripts was setup as a website, and the external IP address of the system was assigned to
IIS to allow remote systems to view the webpages rendered by the server. MySQL connector
5.0.8.1 was used to connect to the mySQL database, while the installation contained a default
driver to connect to the MSSQL database.

The following code was used in the test #1 to print “Hello World”.
for (int i = 0; i < count; i++)
 Response.Write((i+1).ToString("000000") + ". Hello world
");

The following code was used to connect to the MSSQL database. It reads the connection
string defined in the Web.config file, connects to the database and executes the SQL command
and returns a data reader object that is used to read the results of the command. The connection
to the database is automatically closed when the data has been read:

SqlConnection conn = new
SqlConnection(ConfigurationManager.ConnectionStrings["StudentDBConnectio
nString"].ConnectionString);

SqlCommand cmd = new SqlCommand("select * from Student", conn);
conn.Open();
dr = cmd.ExecuteReader(CommandBehavior.CloseConnection);

while (dr.Read())
{
 String s = "";
 for (int i = 0; i < dr.FieldCount; i++)
 s += dr[i] + ", ";
 x++;
}

The mySQL .Net connector can be used in a very similar fashion as shown above. The class
names are also similar, with an addition of “My” to the start of the above class names:

MySqlDataReader dr;
MySqlConnection myConnection = new

MySqlConnection(ConfigurationManager.ConnectionStrings["mySQLStudentD
BConnectionString"].ConnectionString);

18

MySqlCommand cmd =

The following function was written to quick-sort the table retrieved from the database. A new
class was written that would take a 2D array as a parameter and return the sorted array:

l_hold = left;
r_hold = right;
pivot = a[left];

while (left < right)
{
 while ((a[right][columnIndex].CompareTo(pivot[columnIndex]) >= 0) && (left < right))
 right--;

 if (left != right) {
 a[left] = a[right];
 left++;
 }

 while ((a[left][columnIndex].CompareTo(pivot[columnIndex]) <= 0) && (left < right))
 left++;

 if (left != right) {
 a[right] = a[left];
 right--;
 }
}

a[left] = pivot;
int piv = left;
left = l_hold;
right = r_hold;

if (left < piv)
 q_sort(left, piv - 1);
if (right > piv)
 q_sort(piv + 1, right);

Perl

The following code was used for test #1 to print the static string onto the web page:
for $i(1..10000){
 print "Hello World
";
}

To connect to the MS SQL database, the following code was used. The connection string is
defined first:

$connectionInfo="dbi:ODBC:driver={SQL Server};server=$host;database=StudentDB;";

Next the connection is established to the database using an ODBC database connector:
$dbh = DBI->connect($connectionInfo,$userid,$passwd)|| die "Got error $DBI::errstr when connecting to

$dsn\n";

19

Next the query is executed and prepared to be accessed by binding variables to the
corresponding columns in the database tables:

$query = "SELECT * FROM Student";
$sth = $dbh->prepare($query);
$sth->execute();

assign fields to variables
$sth->bind_columns(\$ID, \$Name, \$Track, \$Advisor);

Then a two dimensional array is initialized and the data read from the tables is pushed into
the array:

my @AoA = ([]);
$n=0;
while($sth->fetch()) {
 #print "<tr><td>$ID<td>$Name<td>$Track<td>$Advisor\n";
 $n = $n + 1;
 @a = [$ID, $Name, $Track, $Advisor];
 push @AoA, @a;
}

Finally the number of records read is printed to the web page and the connection to the
database is closed.

print "$n
\n";
$sth->finish();

To access the mySQL database, only the connection string is changed to use the mySQL
connector that was installed as a module through the Perl setup application:

$connectionInfo="dbi:mysql:$db;$host";

The following subroutine was written to perform the Quicksort operation on the 2D array
read from the database in the Test #4:

sub qsort {
 @_ or return ();
 if($#_ == 0)
 return ();
 my @p = shift;
 my @less = ([]);
 my @rest = ([]);
 foreach (@_) {
 @a=@$_;

 if (@a[0] < @p[0])
 push @less, @a;
 else
 push @rest, @a;
 }

 my @t1 = qsort(@less);
 push @t1,@p;

 my @t2 = qsort(@rest);
 foreach (@t2) { @a=@$t;
 push @t1, @a;
 }

20

 (@t1);
}

PHP

The following code was used for printing the “Hello World” statement to the webpage:
for ($i=0; $i < $num; $i++) {
 printf("%06s. Hello world
\n", $i+1);
}

To connect to MS SQL, a COM object is created for ADO DB connector:
$conn = new COM ("ADODB.Connection") or die("Cannot start ADO");

Next, the connection string is defined and the connection is opened:
$connStr = "PROVIDER=SQLOLEDB;SERVER=".$myServer.";UID=".$myUser.";PWD=".

$myPass.";DATABASE=".$myDB;
 $conn->open($connStr);

The query is then executed, and an array is created that holds all the columns returned by the
database:

$rs = $conn->execute($query);
$num_columns = $rs->Fields->Count();

for ($i=0; $i < $num_columns; $i++) {
 $fld[$i] = $rs->Fields($i);
}

Finally looping through the data that is returned by the database, and the data is compiled
together into a row which is added to an array.

while (!$rs->EOF) { //carry on looping through while there are records
 $row=array();

 for ($i=0; $i < $num_columns; $i++)
 $row[]=$fld[$i]->value;

 $array[]=$row;
 $rs->MoveNext(); //move on to the next record
}

For connecting to the mySQL database, the default connection driver was used:
mysql_select_db("StudentDB") or die(mysql_error());

The connection is established and read into a variable. A 2D array is then populated from the
result data set and the variable holding the data set is emptied out from memory.

$result=mysql_query($query);
mysql_close();

while ($row = mysql_fetch_array($result, MYSQL_ASSOC))
 $array[]=$row;

mysql_free_result($result);

21

The following function was used to Quicksort the 2D array read from the database:
function quicksort($seq)
{
 if(!count($seq)) return $seq;
 $k = $seq[0][1];
 $x = $y = array();

 for($i=1; $i<count($seq); $i++) {
 if($seq[$i][1] <= $k)
 $x[] = $seq[$i];
 else
 $y[] = $seq[$i];
 }

 return array_merge(quicksort($x), array($seq[0]), quicksort($y));
}

There was a known bug in the mySQL connector that comes with the PHP installation, where
the connection threads would not exit cleanly. This left an exception that was displayed on the
web pages rendered by PHPthat resulted in a large delay being added to the end of the page. To
fix this problem an older version of the libmysql.dll, we used version 5.2.1 instead of the default
version 5.2.5 that was installed.

22

MySQL

MySQL GUI Tools 5.0 was used as a front end for the mySQL installation. It is a Windows
application which can be used to configure all the aspects of the mySQL installation, along with
creation and management of the databases and tables defined on the server. The mySQL
installation was easy to setup, and it was set to run as a service and start up with Windows.

The SQL commands used in the test cases are:

Test #2:
SELECT * FROM Student
SELECT * FROM PersonalInfo
SELECT * FROM ProfessorInfo

Test #3 and #4:
SELECT Student_1.ID, Student_1.Name, Student_1.Track, PersonalInfo_1.Age,

PersonalInfo_1.Address, PersonalInfo_1.Phone, PersonalInfo_1.Email,
PersonalInfo_1.WebAddress FROM Student AS Student_1 INNER JOIN
PersonalInfo AS PersonalInfo_1 ON Student_1.ID = PersonalInfo_1.TypeID
WHERE (PersonalInfo_1.Type = 'student')

A modified command is used in testing linearity of the test results, “limit N” is added to the
SQL command, for example:

SELECT * FROM Student limit 2500

MSSQL

Microsoft SQL Server 2005 was installed on the server, which installed SQL Server
Management Studio as the front end, used to manage all the aspects of the server. The tables and
user permissions were defined using this tool.

The SQL commands used in the test cases are:

Test #2:
SELECT * FROM Student
SELECT * FROM PersonalInfo
SELECT * FROM ProfessorInfo

Test #3 and #4:
SELECT Student_1.ID, Student_1.Name, Student_1.Track, PersonalInfo_1.Age,

PersonalInfo_1.Address, PersonalInfo_1.Phone, PersonalInfo_1.Email,
PersonalInfo_1.WebAddress FROM Student AS Student_1 INNER JOIN
PersonalInfo AS PersonalInfo_1 ON Student_1.ID = PersonalInfo_1.TypeID
WHERE (PersonalInfo_1.Type = 'student')

A modified command is used in testing linearity of the test results, “top N” is inserted into
the SQL command, for example:

SELECT top 2500 * FROM Student

23

Task List

Installation and configuration of IIS web server, Microsoft SQL Server 2005 and MySQL
database server. Installation of database connection drivers for the SQL servers, including
ODBC, ADODB, MySQL and MS SQL connection drivers. .Net framework, Active PHP and
Perl installation, and configuration of IIS to serve PHP and Perl generated web pages. Setup and
configuration of version control through TortoiseSVN/Subversion. Write the ASP.Net script to
fill databases with randomized data. Test and analyze data for PHP, Perl, and ASP. Net. Develop
the Benchmarking Application.

References

1. Rick Hower, "Web Site Test Tools and Site Management Tools", http://
www.softwareqatest.com/qatweb1.html

2. Michael Gossland and Associates, "Perl Tutorial Course", http://www.gossland.com/
course/index.html

3. Wikibooks, "Algorithm implementation/Sorting/Quicksort", http://en.wikibooks.org/wiki/
Transwiki:Quicksort_implementations

4. Nik Silver, "Perl Tutorial: Start", http://www.comp.leeds.ac.uk/Perl/start.html

5. "Perl DBI/DBD::ODBC Tutorial", http://www.easysoft.com/developer/languages/perl/
sql_server_unix_tutorial.html

6. "Configuring and Testing a PERL Script with Internet Information Server", http://
support.microsoft.com/kb/q150629/

7. ”MySQL 5.0 Reference Manual”, http://dev.mysql.com/doc/refman/5.0/en/connector-j-
reference-configuration-properties.html

24

http://www.softwareqatest.com/qatweb1.html
http://www.softwareqatest.com/qatweb1.html
http://www.softwareqatest.com/qatweb1.html
http://www.softwareqatest.com/qatweb1.html
http://www.gossland.com/course/index.html
http://www.gossland.com/course/index.html
http://www.gossland.com/course/index.html
http://www.gossland.com/course/index.html
http://en.wikibooks.org/wiki/Transwiki:Quicksort_implementations
http://en.wikibooks.org/wiki/Transwiki:Quicksort_implementations
http://en.wikibooks.org/wiki/Transwiki:Quicksort_implementations
http://en.wikibooks.org/wiki/Transwiki:Quicksort_implementations
http://www.comp.leeds.ac.uk/Perl/start.html
http://www.comp.leeds.ac.uk/Perl/start.html
http://www.easysoft.com/developer/languages/perl/
http://www.easysoft.com/developer/languages/perl/
http://support.microsoft.com/kb/q150629/
http://support.microsoft.com/kb/q150629/
http://support.microsoft.com/kb/q150629/
http://support.microsoft.com/kb/q150629/
http://dev.mysql.com/doc/refman/5.0/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/refman/5.0/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/refman/5.0/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/refman/5.0/en/connector-j-reference-configuration-properties.html

