
Himanshu Kumar
Yu Song
Columbia University
Fall 2007

P E R F O R M A N C E  A N A LY S I S  O F  W E B  P R O G R A M M I N G 
L A N G U A G E S

Abstract

Using a benchmark script that renders a table from an SQL database, the performance 
ofseveral different programming languages, such as Perl, ASP.Net, and PHP, is analyzed. 

Introduction

 As preparation, we configured Internet Information Services (IIS) on a Windows machine, 
installed SQL Server 2005 and MySQL server on it, and then installed the binaries for the 
programming languages.

The performance analysis consists of four test cases. Each language was scripted to run those 
four tests and the response time is analyzed and recorded using a benchmark tool. 

Server Configuration

Server Configuration

• HP Proliant Server
• Dual Intel Pentium 4 CPU 3.06 GHz
• 2.17 GB Ram, 3 GB Virtual Memory
• Dual Gigabit Ethernet Server Adapters
• Microsoft Windows XP Pro

We had two similarly configured servers for the project, we initially intended to install 
Windows and Linux on them so that we could divide the languages and SQL servers on the two 
servers. During development we ran into problems installing the software on linux, since most of 
the software needed to be recompiled before installation. For example, to add mySQL connection 
capabilities to Perl, we needed to recompile perl binaries with extra parameters that did not work 
so well with other options needed to add MSSQL connection capabilities. Similar problems were 
also encountered with installation of the Apache web server. We then found that all the software 
we needed could also be installed on the windows server without the need of recompilation or 
extensive configurations. All the software needed for the project could be installed to work with 
the IIS web server without any problems, while some of them were installed to work on the 
Apache Tomcat server.

Software Installation

• IIS 5.1

1



• .Net Framework 2.0
• Active Perl 5.8.8
• PHP 5.2.5
• Microsoft SQL Server 2005
• MySQL Server 5.0
• MySQL GUI Tools 5.0
• TortoiseSVN/Subversion 1.4.5
• Microsoft Visual Studio 2005
• Open Perl IDE 1.0.11
• MySQL connector 5.0.8.1
• MySQL ODBC 3.51 driver
• Microsoft SQL connection driver

Test Configuration

Database

MS SQL, mySQL and postgreSQL database servers were used in the testing. The database 
contained three tables, with 10,000 records each in two of the tables and 20,000 in the third table. 
An ASP.Net script was written to populate the tables with random data.

• Microsoft SQL Server 2005: The default setup was used without any changes to the security 
or performance

• mySQL 5.1.11: The default configuration was used, with MySQL GUI Tools 5.0 providing the 
front end for managing the databases.

Test Case Description # of Records
1
2

3

4

Print “Hello World<BR>” 10,000 times 10000
Student, professorInfo, personalInfo tables read from database and 
loaded into memory before rendering the web page

40000

Inner Join on Student and PersonalInfo tables and load the results into 
memory before rendering the database

10000

Table from #3, quicksort in code on "Name" column 10000

Database Table Layout
Student

Persona
lInfo
Profess
orInfo

ID Name (100 
Char)

Track (50 
Char)

AdvisorID 
(int)

ID Name (100 
Char)

Type (20 
Char)

Age (int) Address 
(200 Char)

Phone (10 
Char)

WebAddress 
(100 Char)

Email (50 
Char)

ID Department 
(50 Char)

Office 
(100 Char)

Hours (50 
Char)

Benchmarking tool

We tested many benchmarking tools available on a website [1] that lists numerous web site 
testing and performance analysis tools. Most of these tools were commercial software geared 
towards testing performance of websites to help developers optimize their sites. We decided 
against using these software due to their extreme complexity and somewhat irrelevant results. The 

2



tools were not easy to configure and sometimes returned unexpected results when tests were 
repeated multiple times, for example, returning less than a 10 ms interval for a page of size more 
than 30 MB that displayed 40,000 records on screen. So we developed a small application using 
Microsoft Visual Studio 2005 & Visual C# to request a webpage and measure the time taken for 
the request. The measurement was taken as the time between the HTTP request was made and 
the last byte of data received. The information gathered by the application is displayed on the 
application window as well as stored as a log file in the executable's directory.

Testing procedure

The web server was restarted before the tests, and no extra services or applications were 
allowed to run during the test apart from important system services. Each test case was conducted 
five times using the order described below, while the test system was connected to university 
network using an ethernet cable to minimize the network delays.

Another test was later added to determine if the test results were linear in nature when the 
length of these tests were varied. The new tests added two more tests for each test case where a 
limit was placed on the number of records returned by the database. These limits were set to 50% 
and 25% of the records returned by the test scripts.

Caching

One problem faced was some type of caching taking place, probably caching by the IIS server, 
when a web page is requested multiple times in sequence. To avoid this we used two strategies:

• Add a dummy parameter to the query string for the pages, and set its value to be different 
for each request. For example: test.aspx?n=1000, test.aspx?n=1001

• Perform the tests in a predetermined sequence to avoid caching on the database side or the 
web server side. The order chosen was: Test1, Test3, Test2, Test4. This order avoided having tests 3 
and 4 next to each other since both tests requested the same query from the database.

 Test Observations

The test cases originally consisted of printing the data received from the database in test #2. 
#3 and #4. But due to the difference in printing speeds for the languages, these test results were 
skewed in favor of the language with the fastest printing speeds. So it was decided to remove the 
print statements to be able to accurately compare the database transaction speeds of the 
languages.

The test results show that Perl was the fastest displaying large amount of text that was not 
pulled from a database, while PHP was the second placed language. In the database access and 
quick-sort tests, ASP.Net was the fastest with PHP coming in second place consistently. In the two 
SQL databases used for testing, MS SQL performed better when accessed from ASP.Net, while 
mySQL performed better when accessed from PHP. The performance difference in ASP.Net might 
be a result of the maturity of the custom connection drivers for the two databases used by 
ASP.Net. The difference in performance in PHP could lie in the use of an ADODB driver used by 
PHP to connect to the MSSQL database due to the absence of a custom MSSQL driver for PHP, 

3



while it used the mySQL connection driver for accessing the MySQL database. Perl performed 
equally well accessing both the databases.

4



Project Technical Details

Benchmarking Tool

The benchmarking tool was 
written in Visual C# as a 
windows application. It’s front 
end consisted of a text box to 
enter the web address of the 
web page to be tested, another 
text box to enter the number of 
times to request the web page, a 
button to start the test, and a 
couple of output text boxes to 
display the results. It also saves 
the results into a text log file as 
comma separated values so that 
it can be opened in a 
spreadsheet application for 
analysis.

The core code of the 
benchmark tool is shown below. 
It records the start time before 
creating an HTTP web request 
for the web page in question, and 
loops through the data that is 
received from the server in 8KB 
chunks. The end time of the 
request is recorded after the last byte of data is received which is displayed by the application and 
logged in a comma separated text file.

 byte[] buf = new byte[8192];
 start = DateTime.Now;
 // prepare the web page we will be asking for
 HttpWebRequest request = (HttpWebRequest)
     WebRequest.Create(args);

 // execute the request
 HttpWebResponse response = (HttpWebResponse)
     request.GetResponse();

 // we will read data via the response stream
 Stream resStream = response.GetResponseStream();

 do
 {
     // fill the buffer with data
     count = resStream.Read(buf, 0, buf.Length);
     if(size == 0)
         responseT = DateTime.Now;

5



     size += count/1024;

     // make sure we read some data
     if (count != 0)     {
         // translate from bytes to ASCII text
         tempString = Encoding.ASCII.GetString(buf, 0, count);
         // continue building the string
         sb.Append(tempString);
     }
 }
 while (count > 0); // any more data to read?
 end = DateTime.Now;

ASP.Net

Working with ASP.Net was easy due to the easy installation process to install Visual Studio, 
which installed IIS by default with ASP.Net. Using the IIS Manager, the folder containing the ASP.Net 
scripts was setup as a website, and the external IP address of the system was assigned to IIS to 
allow remote systems to view the webpages rendered by the server. MySQL connector 5.0.8.1 was 
used to connect to the mySQL database, while the installation contained a default driver to 
connect to the MSSQL database.

The following code was used in the test #1 to print “Hello World”.
for (int i = 0; i < count; i++)
        Response.Write((i+1).ToString("000000") + ". Hello 
world<BR>");

The following code was used to connect to the MSSQL database. It reads the connection string 
defined in the Web.config file, connects to the database and executes the SQL command and 
returns a data reader object that is used to read the results of the command. The connection to 
the database is automatically closed when the data has been read:

SqlConnection conn = new 
SqlConnection(ConfigurationManager.ConnectionStrings["StudentDBCo
nnectionString"].ConnectionString);
SqlCommand cmd = new SqlCommand("select * from Student", conn);
conn.Open();
dr = cmd.ExecuteReader(CommandBehavior.CloseConnection);
while (dr.Read())
{
     String s = "";
     for (int i = 0; i < dr.FieldCount; i++)
         s += dr[i] + ", ";
     x++;
}

The mySQL .Net connector can be used in a very similar fashion as shown above. The class 
names are also similar, with an addition of “My” to the start of the above class names:

MySqlDataReader dr;
MySqlConnection myConnection = new 
MySqlConnection(ConfigurationManager.ConnectionStrings["mySQLStud
entDBConnectionString"].ConnectionString);
MySqlCommand cmd = .....

6



The following function was written to quick-sort the table retrieved from the database. A new 
class was written that would take a 2D array as a parameter and return the sorted array:

l_hold = left;
r_hold = right;
pivot = a[left];

while (left < right)
{
    while ((a[right][columnIndex].CompareTo(pivot[columnIndex]) 
>= 0) && (left < right))
        right--;

    if (left != right) {
        a[left] = a[right];
        left++;
    }
    while ((a[left][columnIndex].CompareTo(pivot[columnIndex]) <= 
0) && (left < right))
        left++;
    if (left != right)    {
        a[right] = a[left];
        right--;
    }
}
a[left] = pivot;
int piv = left;
left = l_hold;
right = r_hold;
if (left < piv)
    q_sort(left, piv - 1);
if (right > piv)
    q_sort(piv + 1, right);

Perl

The following code was used for test #1 to print the static string onto the web page:
for $i(1..10000){
 print "Hello World<BR>"; # Print the item 
}

To connect to the MS SQL database, the following code was used. The connection string is 
defined first:

$connectionInfo="dbi:ODBC:driver={SQL Server};server=
$host;database=StudentDB;";

Next the connection is established to the database using an ODBC database connector:
$dbh = DBI->connect($connectionInfo,$userid,$passwd)|| die "Got 
error $DBI::errstr when connecting to $dsn\n";

Next the query is executed and prepared to be accessed by binding variables to the 
corresponding columns in the database tables:

$query = "SELECT * FROM Student";
$sth = $dbh->prepare($query);
$sth->execute();
# assign fields to variables
$sth->bind_columns(\$ID, \$Name, \$Track, \$Advisor);

7



Then a 2 dimensional array is initialized and the data read from the tables is pushed into the 
array:

my @AoA = ([]);
$n=0;
while($sth->fetch()) {
   #print "<tr><td>$ID<td>$Name<td>$Track<td>$Advisor\n";
   $n = $n + 1;
   @a = [$ID, $Name, $Track, $Advisor];
   push @AoA, @a;
}

Finally the number of records read is printed to the web page and the connection to the 
database is closed.

print "$n<BR>\n";
$sth->finish();

To access the mySQL database, only the connection string is changed to use the mySQL 
connector that was installed as a module through the Perl setup application:

$connectionInfo="dbi:mysql:$db;$host";

The following subroutine was written to perform the quicksort operation on the 2D array read 
from the database in the Test #4:

sub qsort {
  @_ or return ();
  if($#_ == 0){
    return (); }
  my @p = shift;
  my @less = ([]);
  my @rest = ([]);
   foreach (@_) { @a=@$_;
      if (@a[0] < @p[0])  {
        push @less, @a;    }
      else                {
        push @rest, @a;    }
   }
   my @t1 = qsort(@less);
   push @t1,@p;
   my @t2 = qsort(@rest);
   foreach (@t2) { @a=@$t;
      push @t1, @a;
   }  
  (@t1);
}

PHP

The following code was used for printing the “Hello World” statement onto the webpage:
while ($i < $num) {
 printf("%06s. Hello world<BR>\n",   $i+1); 
 $i++;
}

To connect to MS SQL, a COM object is created for ADO DB connector:
$conn = new COM ("ADODB.Connection")  or die("Cannot start ADO");

8



Next the connection string is defined and the connection is opened:
$connStr = "PROVIDER=SQLOLEDB;SERVER=".$myServer.";UID=".
$myUser.";PWD=".$myPass.";DATABASE=".$myDB;
  $conn->open($connStr);

Next the query is executed, and an array is created that holds all the columns returned by the 
database:

$rs = $conn->execute($query);
$num_columns = $rs->Fields->Count();
for ($i=0; $i < $num_columns; $i++) {
    $fld[$i] = $rs->Fields($i);
}

Finally looping through the data returned by the database, and the data is compiled together 
into a row which is added to an array.

while (!$rs->EOF) { //carry on looping through while there are 
records
    $row=array();
    for ($i=0; $i < $num_columns; $i++) 
        $row[]=$fld[$i]->value;
    $array[]=$row;
    $rs->MoveNext(); //move on to the next record
}

For connecting to the mySQL database, the default connection driver was used:
mysql_select_db("StudentDB") or die(mysql_error());

The connection is established and read into a variable. A 2D array is then populated from the 
result data set and the variable holding the data set is emptied out from memory.

$result=mysql_query($query);
mysql_close();
while ($row = mysql_fetch_array($result, MYSQL_ASSOC))
    $array[]=$row;
mysql_free_result($result);

The following function was used to quicksort the 2D array read from the database:
function quicksort($seq)
{
        if(!count($seq)) return $seq;        
        $k = $seq[0][1];
        $x = $y = array();        
        for($i=1; $i<count($seq); $i++)        {
                if($seq[$i][1] <= $k)
                        $x[] = $seq[$i];
                else
                        $y[] = $seq[$i];
        }        
        return array_merge(quicksort($x), array($seq[0]), 
quicksort($y));
}

There was a known bug in the mySQL connector that comes with the PHP installation, where 
the connection threads would not exit cleanly, leaving an exception that was displayed on the web 
pages rendered by PHP. This resulted in a large delay being added to the end of the page. To fix this 

9



problem an older version of the libmysql.dll, we used version 5.2.1 instead of the default version 
5.2.5 that was installed.

MySQL

MySQL GUI Tools 5.0 was used as a front end for the mySQL installation. It was a windows 
application which can be used to configure all the aspects of the mySQL installation, along with 
create and manage the databases and tables defined on the server. The mySQL installation was 
easy to setup, and it was set to run as a service and start up with windows. 

The SQL commands used in the test cases are:

Test #2: 
SELECT * FROM Student
SELECT * FROM PersonalInfo
SELECT * FROM ProfessorInfo

Test #3 and #4:
SELECT     Student_1.ID, Student_1.Name, Student_1.Track, 
PersonalInfo_1.Age, PersonalInfo_1.Address, PersonalInfo_1.Phone, 
PersonalInfo_1.Email, PersonalInfo_1.WebAddress FROM         
Student AS Student_1 INNER JOIN PersonalInfo AS PersonalInfo_1 ON 
Student_1.ID = PersonalInfo_1.TypeID WHERE     
(PersonalInfo_1.Type = 'student')

Modified command for use in testing linearity of the test results, “limit 2500” is added to the 
SQL command, for example:

SELECT * FROM Student limit 2500

MSSQL

Microsoft SQL Server 2005 was installed on the server, which installed SQL Server 
Management Studio as the front end used to manage all the aspects of the server. The tables and 
user permissions were defined using this tool.

The SQL commands used in the test cases are:

Test #2: 
SELECT * FROM Student
SELECT * FROM PersonalInfo
SELECT * FROM ProfessorInfo

Test #3 and #4:
SELECT     Student_1.ID, Student_1.Name, Student_1.Track, 
PersonalInfo_1.Age, PersonalInfo_1.Address, PersonalInfo_1.Phone, 
PersonalInfo_1.Email, PersonalInfo_1.WebAddress FROM         
Student AS Student_1 INNER JOIN PersonalInfo AS PersonalInfo_1 ON 
Student_1.ID = PersonalInfo_1.TypeID WHERE     
(PersonalInfo_1.Type = 'student')

Modified command for use in testing linearity of the test results, “top N” is inserted into the 
SQL command, for example:

10



SELECT top 2500 * FROM Student

11



Task List

Himanshu Kumar

• IIS installation & configuration
• Microsoft SQL Server 2005 installation
• MySQL database server installation
• Database connection drivers (ODBC, ADODB, MySQL, MS SQL)
• PHP installation
• Perl installation
• Version control installation (TortoiseSVN)
• Script to fill databases with randomized data
• Test and analyze data for PHP, Perl, and ASP. Net.
• Develop the Benchmarking Application

Yu Song

• Tomcat5.5 installation
• PostgreSQL server installation
• Database connection drivers (MySQL, MS SQL, PostgreSQL)
• Python installation
• Ruby installation
• Tcl installation
• JDK installation
• Test and analysis data on Ruby, Python, Tcl, and JSP.

References

   1. Rick Hower, "Web Site Test Tools and Site Management Tools", http://
www.softwareqatest.com/qatweb1.html

   2. Michael Gossland and Associates, "Perl Tutorial Course", http://www.gossland.com/course/
index.html

   3. Wikibooks, "Algorithm implementation/Sorting/Quicksort", http://en.wikibooks.org/wiki/
Transwiki:Quicksort_implementations

   4. Nik Silver, "Perl Tutorial: Start", http://www.comp.leeds.ac.uk/Perl/start.html
   5. "Perl DBI/DBD::ODBC Tutorial", http://www.easysoft.com/developer/languages/perl/ 

sql_server_unix_tutorial.html
   6. "Configuring and Testing a PERL Script with Internet Information Server", http://

support.microsoft.com/kb/q150629/

12

http://www.softwareqatest.com/qatweb1.html
http://www.softwareqatest.com/qatweb1.html
http://www.softwareqatest.com/qatweb1.html
http://www.softwareqatest.com/qatweb1.html
http://www.gossland.com/course/index.html
http://www.gossland.com/course/index.html
http://www.gossland.com/course/index.html
http://www.gossland.com/course/index.html
http://en.wikibooks.org/wiki/Transwiki:Quicksort_implementations
http://en.wikibooks.org/wiki/Transwiki:Quicksort_implementations
http://en.wikibooks.org/wiki/Transwiki:Quicksort_implementations
http://en.wikibooks.org/wiki/Transwiki:Quicksort_implementations
http://www.comp.leeds.ac.uk/Perl/start.html
http://www.comp.leeds.ac.uk/Perl/start.html
http://www.easysoft.com/developer/languages/perl/
http://www.easysoft.com/developer/languages/perl/
http://support.microsoft.com/kb/q150629/
http://support.microsoft.com/kb/q150629/
http://support.microsoft.com/kb/q150629/
http://support.microsoft.com/kb/q150629/

