
Performance Analysis of Web Programming
Languages
Himanshu Kumar
Columbia University
New York, NY USA
hk2409@columbia.edu

Abstract
Using a benchmark script that renders a table from an SQL database, the performance of
several different programming languages, such as Perl, ASP.Net, and PHP, is analyzed.

Introduction
As preparation, we configured Internet Information Services (IIS) on a Windows machine,
installed SQL Server 2005 and MySQL server on it, and then installed the binaries for the
programming languages.

The performance analysis consists of four test cases. Each language was scripted to run those
four tests and the response time is analyzed and recorded using a benchmark tool.

Related Work
Yu Song was working on the performance analysis of the languages Python, Java, Tcl and Ruby.
The test cases were coordinated so as to be able to directly compare the test results. The
benchmarking tool was also used in both the tests for consistency.

Configuration

Server Configuration

HP Proliant Server
Dual Intel Pentium 4 CPU 3.06 GHz
2.17 GB Ram, 3 GB Virtual Memory
Dual Gigabit Ethernet Server Adapters
Microsoft Windows XP Pro

Software Installation

IIS 5.1
.Net Framework 2.0
Active Perl 5.8.8
PHP 5.2.5
Microsoft SQL Server 2005

MySQL Server 5.0
MySQL GUI Tools 5.0
TortoiseSVN/Subversion 1.4.5
Microsoft Visual Studio 2005
Open Perl IDE 1.0.11
MySQL connector 5.0.8.1
MySQL ODBC 3.51 driver
Microsoft SQL connection driver

Project Source Code
ASP.Net C# Source

Contains one set of scripts. Query strings for the two databases: sql=mysql &
sql=mssql
dbEntry.aspx: Script used to populate the databases with random data. The number
of records added to the tables can be set in the script.

Benchmark application source
Visual Studio 2005 Project (C#)
Compiled executable inside the archive:
/WebPageResponseTime/bin/Release/WebPageResponseTime.exe

Perl Source
Contains two sets of scripts, one each for the two databases

PHP Source
Contains two sets of scripts, one each for the two databases

Results
PDF
CSV Archive

Test Configuration

Database

Two databases were used in the testing. The database contained three tables, with 10,000
records each in two of the tables and 20,000 in the third table. An ASP.Net script was written to
populate the tables with random data.

Microsoft SQL Server 2005: The default setup was used without any changes to the security
or performance
mySQL 5.1.11: The default configuration was used, with MySQL GUI Tools 5.0 providing
the front end for managing the databases.

Database Table Layout

Student ID Name
(100 Char)

Track
(50
Char)

AdvisorID
(int)

PersonalInfo ID Name
(100 Char)

Type
(20

Age
(int)

Address
(200

Phone
(10

WebAddress
(100 Char)

Email
(50

Char) Char) Char) Char)

ProfessorInfo ID Department
(50 Char)

Office
(100
Char)

Hours
(50 Char)

Test cases

Test
Case Description # of

Records
1 Print "Hello World
" 10,000 times 10000

2 Student, professorInfo, personalInfo tables read from database and
loaded into memory before rendering the web page 40000

3 Inner Join on Student and PersonalInfo tables and load the results into
memory before rendering the database 10000

4 Table from #3, quicksort in code on "Name" column 10000

Benchmarking tool

We tested many benchmarking tools available on a website [1] that lists numerous web site
testing and performance analysis tools. Most of these tools were commercial software geared
towards testing performance of websites to help developers optimize their sites. We decided
against using these software due to their extreme complexity and somewhat irrelevant results.
The tools were not easy to configure and sometimes returned unexpected results when tests
were repeated multiple times, for example, returning less than a 10 ms interval for a page of
size more than 30 MB that displayed 40,000 records on screen. So we developed a small
application using Microsoft Visual Studio 2005 & Visual C# to request a webpage and measure
the time taken for the request. The measurement was taken as the time between the HTTP
request was made and the last byte of data received. The information gathered by the
application is displayed on the application window as well as stored as a log file in the
executable's directory.

Testing procedure

The web server was restarted before the tests, and no extra services or applications were
allowed to run during the test apart from important system services. Each test case was
conducted five times using the order described below, while the test system was connected to
university network using an ethernet cable to minimize the network delays.

Another test was later added to determine if the test results were linear in nature when the
length of these tests were varied. The new tests added two more tests for each test case where
a limit was placed on the number of records returned by the database. These limits were set to
50% and 25% of the records returned by the test scripts.

Caching

One problem faced was some type of caching taking place, probably caching by the IIS server,

when a web page is requested multiple times in sequence. To avoid this we used two
strategies:

Add a dummy parameter to the query string for the pages, and set its value to be
different for each request. For example: test.aspx?n=1000, test.aspx?n=1001
Perform the tests in a predetermined sequence to avoid caching on the database side or
the web server side. The order chosen was: Test1, Test3, Test2, Test4. This order
avoided having tests 3 and 4 next to each other since both tests requested the same
query from the database.

Test Results

Performance measured in
Rows/Second

ASP.NET Perl PHP
Test 1 23446 113636 61764

MSSQL
ASP PHP Perl

Test 2 27027 6976 6127
Test 3 63291 15625 14530
Test 4 54348 2664 8096

MSSQL
ASP PHP Perl

Test 2 19685 7186 17007
Test 3 46296 16611 34014
Test 4 39683 2745 12642

Test #1: Printing Test

Average Number of Rows displayed per second

Perl is the faster of the three languages in the printing test where the line "Hello World
" is
printed onto the webpage. It had a performance advantage of 79% over ASP.Net and 46% over
PHP.

Test #2: Select Commands Test

Average Number of Rows retrieved per second

ASP.Net is the faster of the three languages in the test where three SELECT commands are sent
to the SQL database and 40,000 records in total are returned to the script. ASP.Net was faster
than Perl by 74% and PHP by 77% when accessing MS SQL and by 63% & 13% respectively when

accessing mySQL.

PHP was faster by 63% when accessing mySQL as compared to accessing MSSQL. ASP.Net was in
turn faster by 27% when accessing the Microsoft SQL database as compared to the mySQL
database.

Test #3: Join Tables Test

Average Number of Rows retrieved per second

ASP.Net is the faster of the three languages in this test as well where two tables are merged
using a JOIN command in the SQL database and 10,000 records are returned to the script.
ASP.Net was faster than Perl by 75% and PHP by 77% when accessing MS SQL and by 64% &
26% respectively when accessing mySQL.

PHP was faster by 57% when accessing mySQL as compared to accessing MSSQL. ASP.Net was in
turn faster by 27% when accessing the Microsoft SQL database as compared to the mySQL
database.

These results were very similar to the Test 2 above apart from a slightly reduced performance
of PHP when accessing mySQL.

Test #4: Quicksort Test

Average Number of Rows retrieved per second

ASP.Net is the faster of the three languages in this test as well where two tables are merged
using a JOIN command in the SQL database and 10,000 records are returned to the script.
ASP.Net was faster than Perl by 95% and PHP by 85% when accessing MS SQL and by 93% &
68% respectively when accessing mySQL.

PHP was faster by 35% when accessing mySQL as compared to accessing MSSQL. ASP.Net was in
turn faster by 27% when accessing the Microsoft SQL database as compared to the mySQL
database, similar to test 2 & 3 above.

Verification of Test cases

Another set of measurements were taken to determine if the results of the tests were linear with
varying lengths of the data-sets returned by the two databases. The graphs below show the
linear nature of the test results when the tests were run for 50% and 25% of the records
retrieved from the database.

Time taken in seconds to retrieve the data from the databases

Conclusion
The test results show that Perl was the fastest displaying large amount of text that was not
pulled from a database, while PHP was the second placed language. In the database access
and quick-sort tests, ASP.Net was the fastest with PHP coming in second place consistently. In
the two SQL databases used for testing, MS SQL performed better when accessed from ASP.Net,
while mySQL performed better when accessed from PHP. The performance difference in
ASP.Net might be a result of the maturity of the custom connection drivers for the two databases
used by ASP.Net. The difference in performance in PHP could lie in the use of an ADODB driver
used by PHP to connect to the MSSQL database due to the absence of a custom MSSQL driver
for PHP, while it used the mySQL connection driver for accessing the MySQL database. Perl
performed equally well accessing both the databases.

Test Results Data

PDF
CSV Archive

Task List
Himanshu Kumar

IIS installation & configuration
Microsoft SQL Server 2005 installation
MySQL database server installation
Database connection drivers (ODBC, ADODB, MySQL, MS SQL)
PHP installation
Perl installation
Version control installation (TortoiseSVN)
Script to fill databases with randomized data
Test and analyze data for PHP, Perl, and ASP. Net.
Develop the Benchmarking Application

Yu Song
Tomcat5.5 installation
PostgreSQL server installation
Python installation
Ruby installation
Tcl installation
JDK installation
Test and analysis data on Ruby, Python, Tcl, and JSP.

References
Rick Hower, "Web Site Test Tools and Site Management Tools",
http://www.softwareqatest.com/qatweb1.html

1.

Michael Gossland and Associates, "Perl Tutorial Course",2.

http://www.gossland.com/course/index.html
Wikibooks, "Algorithm implementation/Sorting/Quicksort",
http://en.wikibooks.org/wiki/Transwiki:Quicksort_implementations

3.

Nik Silver, "Perl Tutorial: Start", http://www.comp.leeds.ac.uk/Perl/start.html4.
"Perl DBI/DBD::ODBC Tutorial", http://www.easysoft.com/developer/languages/perl/
sql_server_unix_tutorial.html

5.

"Configuring and Testing a PERL Script with Internet Information Server",
http://support.microsoft.com/kb/q150629/

6.

