
Effectiveness of Social Networks in Building

Whitelists

Aditi Rajoriya
Department of Computer Science

Columbia University
ar2630@columbia.edu

December 22, 2008

Abstract

This project deals with the creation of whitelists for spam detection us-
ing social networks. Social networks are rich source of self-defined reliable
contacts. The goal was to capture these contacts from social networks and
analyze different sources of email. The first phase of the project involved
exploration of the OpenSocial API. The purpose of OpenSocial API is to
retrieve information from social websites. In second phase for the project,
we evaluated the effectiveness of this whitelist, which was on the basis of
friends and friends of friends information gained from the OpenSocial API.
Experiments were conducted with the OpenSocial API. Unfortunately, the
OpenSocial API did not allow us to access email addresses due to privacy
restrictions. So user interface features of social websites such as Orkut
and LinkedIn were used to gather email addresses of contacts and manual
classification was done to identify sources of emails. Social networks were
very useful in creating whitelist using the first degree friendship network
of a person.

Contents

1 Introduction 3

2 Background 3
2.1 Email whitelists . 3
2.2 Social networks . 3
2.3 OpenSocial . 4

2.3.1 Architecture . 4
2.4 Facebook API . 5
2.5 OpenSocial API vs Facebook API 5

3 System architecture 6
3.1 Extraction of whitelist using OpenSocial 6
3.2 Extraction of whitelist through user interface 7
3.3 IMAP retrieval . 7
3.4 Email classifier . 7

4 Limitations of OpenSocial 7
4.1 Optional Information . 7
4.2 Scalability Problems with Friends of friends 8
4.3 Privacy restriction . 8

5 Proposal for addition of API: Hashed email address 8
5.1 Proposal . 8
5.2 Discussions . 9

6 Evaluation 9
6.1 Manual Classification of Non Spam Emails 9

6.1.1 Mailing Lists . 9
6.1.2 Auto Lists . 10
6.1.3 Google Groups Contacts 10
6.1.4 Gmail Friends . 10
6.1.5 User Owned Domain Friends 10
6.1.6 Orkut Friends . 10
6.1.7 LinkedIn Friends . 11
6.1.8 Orkut Friends of Friends 11
6.1.9 Good Strangers . 11
6.1.10 Bad Strangers . 11

6.2 Results . 11
6.2.1 Legitimate Emails from Strangers 11
6.2.2 Non Legitimate Emails from Strangers 13
6.2.3 Sent Mail Stats . 13
6.2.4 Friends Stats . 13
6.2.5 Friends of Friends . 13

7 Conclusion 13

2

1 Introduction

The goal of this project is to make use of social networks in creating email
whitelists for spam detection. Social networks are a rich repository of a per-
son contacts. Moreover, these contacts are self-declared: a prospective contact
can enter a person’s social network only if they are explicitly approved by the
person. This makes them an extremely valuable source of reliable information
regarding trustworthy emails. In this project, our original intention was to mine
social networks for emails of contact and use them to categorize incoming email
automatically using the OpenSocial API [6]. Due to the absence of such a pro-
vision in the OpenSocial API Documentation [7], we filed a feature request [8]
for the addition of such an API via the OpenSocial IssueTracker [9]. We then
proceeded to extract contact lists via user interface features and used these lists
to manually classify email into meaningful categories. This classification was
designed to reveal the various sources of email that people may have and to
quantify the effect of including whitelists induced by a social network. Our
results for the one-hop social network indicate that social networks may be ben-
eficial sources of email whitelists. At the moment, second-degree contacts have
not yielded much incremental improvement.

2 Background

2.1 Email whitelists

An email whitelist is a list of email addresses which the user trusts and wishes
to receive email from. Emails from these addresses are regarded as safe for
their inbox and must not be sent to the trash folder. Whitelists help users
to avoid spam and unwanted emails. However, it is a significant challenge to
keep whitelists updated and it can be quite cumbersome to manually update
them with email addresses of people who you know personally. In this project,
the aim was to gather trustworthy contacts from the self-declared contacts that
exists on online social networks.

2.2 Social networks

Online communities like Orkut, Facebook and LinkedIn make it easy for people
to stay in contact with a diverse range of friends on a daily basis. These commu-
nities have information regarding users, their interests and activities. Members
can make friendship links between themselves and their friends thereby encod-
ing their social circle as a social network on the web. In that sense, a social
network is a graph of people and their links based on their friendships. Users
in an online community propose these friendship links by sending friendship
requests, and the link is created if their request is accepted. Thus, friendship
links are deliberately created by a user and therefore can be extremely reliable
indicators of friendship and trust.

3

Orkut, LinkedIn, My Space, FaceBook, Twitter, Friendster and Hi5 are
some of the more popular networks while several smaller websites like Ning
allow users to create smaller communities that share a common set of interests
or concerns. Web users have created a significant database of their friends and
contacts across all of these and many more online communities. Facebook claims
that they have more than 140 million active users[1] out of an estimated 360
million web users worldwide[4]. This is almost 40% of web users worldwide
and is growing rapidly. If we can utilize this massive database to create email
whitelist, we can potentially automate whitelist creation for a huge number of
people.

2.3 OpenSocial

OpenSocial is a set of common application programming interfaces for web-
based social network applications. It was started launched by Google and MyS-
pace [14]. Several online communities, like Orkut, LinkedIn, Friendster, have
joined the OpenSocial Foundation and are committed to making their applica-
tions accessible via OpenSocial APIs. These APIs help third party developers
to build engaging applications such as List the Friends, Give Gifts to Friends
and Poke a Friend.

2.3.1 Architecture

An OpenSocial application is a javascript program that runs inside an OpenSo-
cial container. The OpenSocial container provides a javascript API which maybe
accessed by OpenSocial applications. This container is essentially an embedded
javascript interpreter. An example of an OpenSocial container is a webpage run-
ning in a web browser that can run javascript. An application running inside a
webpage makes OpenSocial API calls through javascript. Google Desktop is a
standalone application that has an inbuilt javascript interpreter, and therefore
it can function as a OpenSocial container. One example of an OpenSocial ap-
plication that runs in Google Desktop is a Google Gadget. Google Gadgets are
standardized applets specified by XML files, that access OpenSocial APIs and
can run in any OpenSocial container, such as a webpage or Google Desktop.
The XML files are converted into executable javascript code by a gadget server
which is an OpenSocial container at the server side.

The architecture of OpenSocial is described by Figure 1. There is a some-
thing on the HTTP client and something on the Http server. The OpenSo-
cial application resides on the Client inside a OpenSocial container. Since the
OpenSocial javascript API can only be used at the client side, it needs some
kind of mechanism to communicate with the server. This communication over
the internet is done using the OpenSocial Restful protocol and OpenSocial RPC
protocol. An OpenSocial Restful API [10] can be thought of as a set of URLs
which respond to clients’ HTTP GET requests with various kinds of informa-
tion. It consists of a set of services provided by specific URLs. Each API is
capable of responding to requests with data in all of three different representa-

4

Figure 1: OpenSocial Architecture

tions: JSON, Atom Pub XML, and a custom Open Social XML. These three
data formats are provided in order to make the API easier to use for applica-
tions with different requirements. An OpenSocial RPC protocol [16] is used to
optimize the transfer of information, by batching queries and preserving state
between calls.

2.4 Facebook API

Facebook has its own API for building applications. The Facebook API allows
an application developer to add some social context to an application by pro-
viding access to profile and friend data. The Facebook API was present before
Open Social API. However, the main focus in this project was to use OpenSo-
cial because OpenSocial is a common platform used by several social networks.
OpenSocial works on the principle of build once and run everywhere. Their
are certain interesting differences in OpenSocial API and Facebook API. The
Facebook API provides a RESTful interface for making method calls over the
internet by sending HTTP GET or POST requests to Facebook servers. Nearly
any computer language can be used to communicate over HTTP with the REST
server. Unfortunately, Facebook also hides email addresses of friends and friends
of friends due to privacy and security issues.

2.5 OpenSocial API vs Facebook API

OpenSocial applications can be both client side and server side. These typi-
cally require a high competence in HTML and especially in Javascript. The
applications can also be server side but this does not seem to be a predominant

5

Figure 2: System Architecture

mechanism of application serving as yet. OpenSocial mainly focuses to build
applets i.e small focused functionality. Open Source application run everywhere.

Facebook applications are all hosted on a web site. These typically require a
reasonable amount of server side development using a variety of languages. PHP
and Java client libraries are provided and supported by Facebook. Facebook
focuses on building applications. Facebook applications run only on Facebook.

3 System architecture

The system architecture for this project includes four major modules. Each of
the module has been described in detail below. Basically the IMAP module and
Extraction of whitelist modules integrate with the Email classifier module to
give the statistics. All these modules are return using Java language.

3.1 Extraction of whitelist using OpenSocial

A whitelist of social friends is retrieved from social websites such as Orkut and
LinkedIn. OpenSocial provides access to the profile information of users so I
created a javascript application that makes requests for a user and user’s friends.
This program is hosted on the Orkut Sandbox[11] and is known by the name List
My Friends. Next, I created another application to get a list of friends and their
email addresses. This is application is called list of Friends Name and Emails
and is also available via the Orkut Sandbox [12]. This application returns null
values for email addresses. This gave me an inkling that perhaps the OpenSocial
API restricted access to email addresses of users. Discussions of this issue on
the OpenSocial API mail group confirmed whether that OpenSocial does not

6

allow access to email addresses. The links to the discussion are available online
[2], [15], [3].

3.2 Extraction of whitelist through user interface

Since the OpenSocial API did not allow us to retrieve email addresses and gen-
erate whitelists automatically, we thought of using the user interface provided
within social networking applications for evaluation purposes. Applications pro-
vide a user interface to allow to save their contacts and import them into any
other application, such as a mail client. I wrote a module to parse this file and
to extract all the individual email addresses of my contacts.

3.3 IMAP retrieval

The main purpose of this module was to retrieve non spam emails and parse the
email header’s to and from fields. This module uses the JavaMail API[5]. This
API provides the framework for sending and retrieving electronic messages. It
provides access to the session object which is used to create a Store object.
object. This object provides connectivity to the mail server and also a mecha-
nism for accessing stored email. Through this object we can access mail folders,
which can further be used to retrieve the messages that they contain.

This module processes the header of the emails in the Inbox and extracts
the to and from fields and outputs a list of addresses from which mails in the
inbox originate or end up.

3.4 Email classifier

The main purpose of this module is to classify the non spam emails and generate
the statistics. It calculates the percentage of messages a person receives from his
social friends and friends of friends on social network. This module also calculate
the number of messages a person send to his friends from social networks. Both
these statistics help us to evaluate the contribution of social networks in building
whitelists.

4 Limitations of OpenSocial

4.1 Optional Information

Online communities give the user the option to control disclosure of profile infor-
mation. The user can exercise this choice by refusing to enter any information
by leaving that text-box empty. They can also restrict access to their profile
of specific profile information by allowing only their friends, or the friends of
their friends, to view it. Some users do restrict access to their personal email
addresses, and we were not able to include those users in this study.

7

4.2 Scalability Problems with Friends of friends

Opensocial does not provide access to information of users two hops away from
the user in question. Henceforth, these users will be known as friends of friends
(FOF). The OpenSocial People and Friends API has a proposal that will provide
information about friends of friends information but this API has not been
released yet.

We considered using friends at higher than 2 degrees of separation as well.
There were many discussions over the google groups with the basic import that
this information might actually be of limited use. The main argument was
that when we travel to all people at 6 degrees of separation from the user in
question, we expect to have included a large fraction, if not all, of the entire
social graph. This will cause an exponential explosion that can even result in
the destruction of database server of the social website. Therefore, even if the
proposal for an addition to the People and Friends API gets passed, there is a
some doubt that some containers will choose not to support accessing friends of
friends information. Moreover, there is very high computational cost to support
friends of friends of friends.

Another factor is the fact that social websites continuously discover and
suggest potential friends through mutual friends. As a result, many users end
up making a direct link to most people who could be two-hops away in the real
world.

4.3 Privacy restriction

Opensocial has email address as a field in its specification. Unfortunately, it’s
use is currently restricted due to concerns of privacy violation. This was con-
firmed by a message post at the OpenSocial application development group.
Links of the communication with the OpenSocial developer are present in the
appendix. Also, OpenSocial does not provide access to other contact related
information such as home address, phone number, zip code etc.

5 Proposal for addition of API: Hashed email
address

5.1 Proposal

Due to privacy limitations of OpenSocial API, it was not possible to get the
email addresses of friends from the social networks. This triggered a need to
outline a proposal to the Open Social Developers to generate hash code using
hashing algorithm SHA 1[13] for email addresses. The hash code approach will
allow developers to see only the hash code rather than the actual email address.
Further string matching operations can be performed using that hash code as a
substitute for email addresses. A feature request proposal [8] for incorporating

8

this hashing algorithm for the email addresses was proposed to the OpenSocial
Foundation via the OpenSocial IssueTracker.

5.2 Discussions

There are many ongoing discussions on the OpenSocial mailing lists regarding
this feature. People stated that initially that there were some arguments against
the hash coding algorithm. A strong consensus is required regarding which of
ShA-1, MD2 or MD4 should be used as the hashing algorithm. Another issue
is that some people think these hashes are not secure enough because they still
allow correlation across sites (site A and site B publish the same hash, so I can
tell it’s the same user on both places). In order to enable secure discovery, there
is a need to have site specific hash i.e a hash of the user’s email concatenated
with the requesting site’s URL. That way, if the site already has the raw email
address, they can re-compute the hash and verify the match, but they can’t
reuse the site-specific hash anywhere else. This is essentially what MicroID
does (hash of email and url can be safely published on a profile URL), but this
has yet to be widely adopted.

6 Evaluation

The main objective of the evaluation was to measure the effectiveness of social
networks in building whitelists i.e total number of emails a person receive from
his friends and friends of friends on social websites. Due API limitations, it
was not possible to retrieve user data from social websites. We decided to go
ahead and perform evaluation using the user interface option on social websites
to export contact information via csv files. The limitation of this approach is
that we were not able to perform calculations for the second degree of friends.
The second degree calculations were done manually by asking friends to export
their contact.csv files and email them to use for analysis.

1. Total Number of Non Spam Messages : 8531

2. Total Number of Spam Messages : 3683

6.1 Manual Classification of Non Spam Emails

The non spam emails were categorize manually in order to analyze the sources
of email addresses.

6.1.1 Mailing Lists

This category contains all mails directed towards mailing lists. The fact that
most of these email addresses contain the words list or listings aids the catego-
rization process. Examples: MailingList@exhedra.com, jobs-listings@linkedin.com.
Moreover, the sender header of such an email contains the list information and

9

list-related headers, such as the List-Id head, List-subscribe. This category was
rather significant in my inbox, since I have subscribed to 71 mailing lists.

6.1.2 Auto Lists

Lists All email addresses which contain any of the words ‘auto’, ‘auto-email’,‘auto-
confirm’,‘autoreply’,‘noreply’ or ‘support‘ in their From fields are binned into
this category. These emails are auto generated and are informational in nature.
Examples: autoreply@geowebnews.com, autoemail@noreply.buy.com. These lists
also contains the set of web related email addresses. Web related email addresses
are the addresses from the websites, where user had already gone before and left
his email address while creating an account for that website. They also contain
the transactional email addresses regarding confirmation of your payments and
recipt.

6.1.3 Google Groups Contacts

Email groups on popular services such as googlegroups and yahoogroups also
generate a huge number of emails. In such emails, the from field contains the
name of the sender, and the to field contains the email address of the group.
This category also generates a huge number of emails since people tend to
discuss issues of important to them. This category is different from mailing
lists in that mailing lists are usually used for one-way announcements, new
releases, newsletters. Email groups are frequently a channel for vigorous mutli-
way discussions.

6.1.4 Gmail Friends

This is the list of my contacts on Gmail. This list can also be created by
importing contacts from any of the social networks.

6.1.5 User Owned Domain Friends

People usually have one email address that is associated with an organization
such as their workplace or their university. As a consequence of their partici-
pation in the functions of their organization , they tend to have a huge amount
of communication with people with emails addresses within the domain. As a
student of Columbia University, several of my friends and collaborators are from
Columbia and for a lot of the university related communications occurs within
emails on that same domain. This category can also be broadly categorized as
the list of known legitimated domains such as IBM.

6.1.6 Orkut Friends

This is the list of email addresses from friends on Orkut. This list was retrieved
using the export feature of user interface.

10

6.1.7 LinkedIn Friends

This is the list of email addresses from friends on LinkedIn. This list was
retrieved using the export feature of user interface. Since I am not active on
this network, I have very few friends on this network.

6.1.8 Orkut Friends of Friends

This is the list of email addressses from friends of friends on orkut. This list
was retrieved using the export feature of the user interface. This list was gath-
ered manually by asking people to send their contacts.csv. I was successful in
convincing only one person to give his csv. So the results are based on a single
friends of friends information. These results could have been much much better
if OpenSocial API supported the friends of friends information.

6.1.9 Good Strangers

This is the list of those email addresses who are not known initially but were
mailing for the first time. They had been in communication either through a
social gathering or mobile. But later they became friends on social networks.
The frequency of messages increased once I came to know the background in-
formation of the person. This category varies according to the different inboxes
of different users. In my case the contents of these email addresses gives the
background information about this person and his interests.

6.1.10 Bad Strangers

This is the list of unwanted email addresses of unknown people and domain. This
category has a single frequecy of email from each of the email addresses. That
means these emails were never successful in starting a two way communication.

6.2 Results

The results of categorization of email from my GMail Inbox into the bins de-
scribed above are as follows. The results are available in tabulated form in Table
1. A pie chart describing this data is shown in Figure 3.

6.2.1 Legitimate Emails from Strangers

1. Number of Legitimate Emails from Strangers = 483

2. Number of total Emails = 8531

3. Percentage of Legitimate Emails = 5.661 %

11

Table 1: Classification of 8525 non-spam emails
Category Number of Email Addresses Number of Messages Percentage
Mailing Lists 71 3544 41.55 %
Auto Lists 99 1041 12.20 %
Google Contacts 56 971 11.38 %
Gmail Friends 82 803 9.41 %
Bad Strangers 683 683 8.006 %
Orkut Friends 110 680 7.98 %
Good Strangers 277 483 5.661 %
User Owned Domain Friends 56 248 2.9 %
Orkut Friends of Friends 10 72 0.844 %
LinkedIn Friends 4 6 0.07 %
Total 1448 8531 100.00 %

Figure 3: Results of Email Categorization

12

6.2.2 Non Legitimate Emails from Strangers

1. Number of Non Legitimate Emails from Strangers = 683

2. Number of total Emails = 8531

3. Percentage of Non Legitimate Emails = 8.006 %

6.2.3 Sent Mail Stats

1. Messages sent to Orkut Friends = 56

2. Number of emails in sent mail folder Gmail Inbox = 219

3. Ratio of email messages from the orkut friends in Gmail Inbox to the total
number of sent email messages in Gmail Inbox = 56/219 = 25.5 %

6.2.4 Friends Stats

1. Number of Orkut Friends = 110

2. Number of Messages from these Friends = 680

3. Ratio of email messages from the orkut friends in Gmail Inbox to the total
number of email messages in Gmail Inbox = 680/8531 = 7.98 %

6.2.5 Friends of Friends

1. Total Number of Orkut Friends of Friends = 10

2. Total Number of Messages from these Friends of Friends = 72

3. The ratio of email messages from the orkut friends in Gmail Inbox to the
total number of email messages in Gmail Inbox = 72/8525 = 0.844 %

7 Conclusion

This project dug up important details and limitations of OpenSocial API that
cast doubt over its usefulness for whitelist creation. We set the ball rolling,
towards speedy resolution of these concerns by creating and submitting a pro-
posal for a hash code mechanism for email addresses. Secondly, the project
was successful in the identification and categorization of emails into meaning-
ful categories. We evaluated the improvement in whitelists created using social
networks at using friends one and two hops away. Our finding was that while
the first degree social network can be extremely useful for generating whitelists,
the effectiveness of the second degree network is not yet validated. Also those
emails were classified whose source was unknown initially.

13

References

[1] Facebook statistics.

[2] Google group open social thread.

[3] Google group open social thread.

[4] Internet world stats.

[5] Java mail api documentation.

[6] Opensocial api.

[7] Opensocial api specification.

[8] Opensocial feature request: Hash code for email addresses.

[9] Opensocial issuetracker.

[10] Opensocial rest protocol.

[11] Orkut friends.

[12] Orkut friends and emails addresses.

[13] Sha1 secure hash algorithm - version 1.0.

[14] Wikipedia article: Opensocial.

[15] http://www.mail-archive.com/opensocial api@googlegroups.com/msg03448.html.
Opensocial discussion group.

[16] http://www.opensocial.org/Technical-Resources/opensocial-spec-
v081/rpc protocol. Opensocial rpc protocol.

14

