Performance Measurement Tools for
SIP Server

Samit Jain
Columbia University, New York
s12195(@cs.columbia.edu




TABLE OF CONTENTS

| N 20 1 Y N N 3
2. INTRODUGCTION . . ttttt ettt ettt et ettt ettt ettt ettt s ettt eeeaanteseeeeeeeaninnseeeeeenns 4
3. PERFORMANCE ISSUES . . et tttttttttttttttttt ettt ettt ettt ettt ettt ettt eeeeeeeeeeeeeeeeeeeeeeeen .6
4, ARCHITECTURE . .1 uttttttt ettt ettt ettt ettt et eat e et eeeeeattseeeeeeeanansneeeeeeanns 10
5. MEASUREMENTS AND RESULTS . .t tttttttttttttttttttttteeteeteeeeeeeeeeeeeeeeeeeeeeeeeeens 12
6. FUTURE WORK .. uuttttttt ettt ettt ettt ettt et et te et eeeeeantteeeeeeeeiaansseeeeeens 19
. REFERENCES ..ttt ittt ettt ettt ettt ettt et ettt ettt ettt ettt ettt eeeteeeeeeeeeeeeeeess 20
A. PROGRAM DOCUMENTATION ... ttuuutttetttteetseeeeeeteansseeeeeeeanusseeeeeeeannns 21
S 2 0N 1 0 S TP 22




Abstract

Columbia InterNet Extensible Multimedia Architecture (CINEMA) is a set of SIP-based
Internet multimedia servers for creating Internet telephony and multimedia system. It
consists of a number of components such as SIP proxy, redirect and registrar server, SIP
presence server, SIP multimedia conferencing server. This system needs to be
appropriately dimensioned and provisioned for different types of workloads and
requirements. SIPstone defines a basic set of metrics for evaluating and benchmarking
SIP proxy, redirect and registrar servers and attempts to measure the request handling
capacity of a SIP server or a cluster of SIP servers.

The main goal of this project is to extend the SIPstone set of tools for testing SIP server
with different transport protocols — TCP, UDP, and TLS, with or without authentication,
and SIP presence server performance measurement. Presence server testing is defined in
SIMPLEstone and includes SUBSCRIBE-NOTIFY and PUBLISH-NOTIFY tests. The
report is organized into following sections:

1) Introduction

2) Performance Issues

3) Architecture

4) Types of Tests

5) Program Documentation
6) Results

7) Future Work

8) References



Introduction

Before we look at the details of the benchmarking and testing mechanisms, it is necessary
to review the SIP servers and their operations.

The SIP server (sipd) [3] or server under test (SUT) as referred by in this report, is a
redirect, forking' proxy, and registration server that provides name mapping, user
location and scripting services”. It also allows users to register their current location with
the server. The SIP location or registration servers maintain the locations where users
could be reached.

The server currently understands the ACK, BYE, CANCEL, INVITE, OPTIONS and
REGISTER requests. Invitations and registrations are authenticated using digest
authentication. The details of individual SIP methods can be found in [4]. The list of
audio/video algorithms supported and the transport addresses to receive them, are
described using Session Description Protocol [5], carried as the body of SIP requests and
responses.

Presence server (pa) [6] is a separate server that allows users to subscribe to each other’s
presence and receive presence notification. The users (watchers) subscribe to presence
information of others (presentities) using SIP SUBSCRIBE and receive notification about
changes in state via SIP NOTIFY messages. Presence information can be published to the
presence server using SIP PUBLISH message. The subscriber can specify watcher filters
to enable filtering the events for which it wants to receive notifications or filtering the
content of notifications. The notification is delivered to the watcher in the form of a
flexible XML-based presence document [6], which is created by the presence server
depending on the composition policy and privacy filters. Subscriptions, publications and
notifications are authenticated using standard SIP authentication mechanisms [4].

The main objective of the benchmark suite is to measure the request handling capacity of
the server for different types of SIP requests and configuration settings. The current
implementation performs tests using a pre-configured workload as specified in the
configuration file, which is flexible enough to allow us to exercise a breadth of system
components, such as concurrent initiation of calls, call intervals, transport protocol,
connection types, authentication, etc. Different types of requests and settings will differ
in the impact they have on the server processing capacity and the network bandwidth,
ultimately affecting the request handling capacity of the server. For example, a PUBLISH
request entails a much higher load on the server and network as compared to an INVITE
request, since the former depends not only on the user population and request rate, but
also o? the number of subscribers, composition policy, privacy filters, and subscriber
filters”.

1Forking is currently not being tested since it is hard to predict behavior of common forking proxies.
2Programmable scripts are currently not being tested since services vary for different applications.
*Performance testing of different composition policies is not implemented.



The benchmarking tool has some limitations. The results obtained can be severely
dependent on the specific characteristics of the test-bed and test-environment. It may not
be possible to derive results of general validity, but our main goal is to estimate the
relative performance of different test configurations.

Some of the objectives of the benchmark suite are:
1. Characterizing server performance for dimensioning and provisioning
2. The system should allow maximum configuration with simplicity
3. Repeatability of test results

Note that the benchmark suite cannot be used to test server functionality, or evaluate
protocol compliance and robustness.

Some of the results obtained from our tests with different configurations can be
summarized in the following table.

REGISTER INVITE
UDP 2000 1400
TCP 1200 800
TLS 720 400

Table 1: Performance in terms of request handling capacity (req/sec)

There has been considerable work being done currently and which has been done in the
past on SIPstone and SIP performance measurements. [1] describes the original SIPstone
specification. [2] is ongoing work on performance testing the presence server. [§]
describes failover and load sharing in SIP telephony.

In the next section, we discuss some of the performance issues related to SIP servers.



Performance Issues

1. User Population

The performance of a SIP proxy and registration server is directly dependent on the user
population. Most SIP methods such as for data update (REGISTER) and for data lookup
(INVITE) require database interactions and authentication lookups. There might also be
other database transactions for logging, etc., within the same SIP transaction processing.
This performance is likely to be dependent more on the back-end database server than on
the SIP server. The number of users can be specified in the configuration file and it is
likely that the user population is large, close to thousands of users.

This factor depends highly on the architecture of specific database system being
deployed. The current benchmark uses a MySQL backend server. Also different database
architectures have other implementation tradeoffs, which might affect its performance
and reliability under varying conditions.

The performance of presence server depends more on other factors such as request rate,
composition policies and size of filters, than on the user population, since it uses an in-
memory hash table to store users. But it is likely that the impact of user population on
performance of presence server will only increase with more users. Each call to presence
server also requires authentication lookup, storing or retrieving subscriptions, contacts
lookup, and other auxiliary transactions. Also the number of subscribers per presentity
has an impact on server performance.

In order to see the impact of user population on performance of SIP servers, a separate
test database should be created for new test run. Presently, we use a central database
system for all the tests. This prevents us from demonstrating the affect of user population
on performance for different number of users specified in the test configuration, e.g.,
10,000 vs. 100. As part of the future work, a separate test database instance should be
created for each new test run.

2. Request Rate

Request rate is defined as the number of requests sent to the server per second. The
performance of the SIP proxy server is directly related to the request rate. Each SIP
server has a threshold capacity beyond which the performance goes below optimal or
below an acceptable limit, which can be low success rate or high turn around time. This
can be configured in the test configuration file. We need to measure the transaction
duration for a request and ignore the call duration since SIP proxy servers only maintain
transaction state and not call state.

The request rate has significant impact on the performance of presence server. Since
processing involved for each request type PUBLISH or SUBSCRIBE is different; the
performance depends on the relative rate of each type of request, specifically,
subscription refresh rate and publication rate.



3. Request Type

The type of request affects the performance on SIP server. Each request type causes
different processing on the server and entails different load on the server and on the
network. For example, a REGISTER request causes the SIP server to a) authorize the
request, b) store the association in the database, and ¢) respond with 200 OK response.
On the other hand, for a PUBLISH request, the presence server needs to a) authorize the
request, b) retrieve subscribers from database, c) retrieve composition policy for the
presentity and filters for each subscriber, d) compose a presence document, ) for each
subscriber, apply privacy filters, f) for each subscriber, apply watcher filters, g) send 200
OK response to publisher, h) send NOTIFY to each subscriber. This clearly shows the
difference between the processing of REGISTER and PUBLISH request types. The
INVITE request has a different requirement as it causes the SIP proxy server to maintain
transaction state until it gets response from the callee.

In the benchmark, we test registrar, proxy and presence server separately, but it would be
interesting to test with a mixed load of these request types and measure the affect of
varying request rates between different request types in the same test. We could model
different systems such as for call center, mobile users, with varying invitation and
registration rates. This has been proposed in SIPstone draft [1] but not implemented. This
is useful to test the usage of a particular server implementation for a particular system
and helps provisioning system and network resources.

For presence server, the request handling capacity of the server depends on the
subscription refresh rate and publication rate. The latter has a bigger impact since
PUBLISH imposes more overhead on server and network. We measure the request
handling capacity for each of the message types in terms of successful SUBSCRIBE-
NOTIFY and PUBLISH-NOTIFY calls.

4. Transport Protocol

SIP operates independently of the underlying transport protocol, which might be TCP,
UDP, TLS, etc. However performance varies with different protocols. There is usually a
tradeoff between performance vs. reliability and security while selecting a transport
protocol. Ideally, we first select a transport protocol to use depending on system
requirements and then perform optimizations for that protocol. When packet loss is low
and the size of SIP messages is within maximum transmission unit (MTU), SIP over
UDP is most efficient since it does not require any flow control or connection. Otherwise,
we need to use TCP to guarantee message transmission reliability. When using TCP,
issues such as the ability of the server to handle a large number of open connections and
its use of persistent connections need to be considered. If we need to ensure
confidentiality, integrity and privacy, we need to use SIP over TLS. When using TLS, we
need to consider capability of server to handle large number of SSL sessions and TCP
connections. We can specify the transport protocol in the configuration file. The
performance measurement for different transport protocols and their comparison is shown
in section 5.



5. Connection Policy

When using UDP, we do not open connections on the server. Network packet losses do
not affect the server load directly, but cause retransmissions of requests, which can
increase server processing load and amplify network traffic. If the packets losses are
below 5%, we can use UDP to achieve good voice quality and acceptable call setup
delays. If the packet losses are much higher, then we should probably be using TCP.

When using TCP, issues such as the ability of the server to handle a large number of open
connections and its use of persistent connections need to be considered. We currently do
not have a good estimate as to the typical number of upstream servers reaching a high-
volume proxy server. If the number is low, almost all such servers will use persistent
connections, otherwise we might have to use a separate connection' for each new request.
When using persistent connections, we still get two connections between SIP proxies for
requests sent in each direction, since source port is ephemeral and connections accepted
at the transport layer cannot be reused for reverse connections. If this leads to potential
scaling and performance problems, we could reuse connections opened in either direction
as proposed in [7]%

When we need to use TLS, we need to consider the ability of the server to handle SSL
sessions. Since SSL session setup is expensive due to imposed network overhead and
cryptographic operations required for a full TLS handshake, it is necessary to cache SSL
sessions between SIP proxy servers. Depending on the load on the server, we might not
be able to cache all SSL sessions. In practice, it might be beneficial to cache sessions
between two proxy servers with high communication volume between them, than caching
sessions between, say, a UAC and proxy server. Session timeout for SSL sessions needs
to be high enough to span many calls or transactions.

6. Authentication

SIP authentication is based on stateless challenge-based authentication scheme similar to
HTTP. The benchmark implements digest authentication scheme, which is most
commonly used. Since the authentication scheme is stateless, they do not entail much
burden on the server. However, if the user agents do not cache authentication credentials
across multiple requests or dialogs, it leads to increased network traffic and more number
of requests hitting the server. Therefore, it is highly recommended that user agents cache
credentials associated with a specific realm. Authentication can be enabled or disabled in
configuration file. We can also compare measurement results when credentials are cached
vs. not cached by setting preloadCredentials parameter in the configuration file.
Authentication credentials when not cached doubles the amount of network traffic.

'"The connections should still be atleast kept open for an implementation-defined time to make it likely that
transactions are completed over the same connection on which they are initiated, e.g. INVITE to ACK.
Not currently implemented.



7. Composition and Filtering (only for presence server)

The composition policies on the server have a significant impact on the performance of
the presence server. Firstly, the application of the policy, that is, whether different
policies are applied to presentities or there is a single policy in place, affects the request
handling capacity of the server. There is little gain in introducing per watcher
composition policy, as noted in [6], and it introduces additional complexity and burden
for server. Different types of composition policies and operations such as a simple union
with replacement, or based on a more complex composition policy language, will impose
different processing overheads on the server. The privacy and watcher filtering feature,
the size of filter documents, which in turn determine the look up, comparison and xml
manipulation operation on the server affect the server’s performance. It also affects the
amount of traffic generated by the server. The presence document format (rpid or pidf)
also affects the amount of processing on server.



Architecture

The “server under test” (SUT) is a SIP proxy, redirect, registrar, or presence server whose
performance is to be estimated. The benchmark consists of a set of SIPstone load
generators that create the SIP request load, a call handler that simulates a user agent
server and a central benchmark manager (“controller”) that coordinates the execution of
the benchmark, and the SUT. The call handlers may run along with the load generators or
on different systems. Benchmarking consists of a series of test runs with increasing load
levels generated by the load generators, saturating the processing capability of the server,
and measuring its maximum throughput.

“Tester”
User Agent |— > “Tester”
Client with | ¢ —— User Agent

measurement Server
facility
iiReal!'!
Proxy Server
under test

Figure 1: Basic Architecture for SIP server testing

5=2 F' 2
pnk
W \

Lnad generator 52'

;-:ZTQI/ call hand!er

Figure 2: Testing in 2-stage clustering with 2 stateless, 2 stateful servers

Figure 1 shows the general architecture for single server testing. The SUT includes all
machines and network connections spanning SIP server components including registrar,
database, proxy servers, presence servers, etc. All machines including loaders,
callhandlers, and SUT are connected on a 100 Mb/s Ethernet that is otherwise lightly
loaded. All the tests were performed on IRT cluster machines to ensure minimal non-test
traffic.

10



Figure 2 shows a sample configuration for 2-stage clustering. Presently, clustered testing
is limited to a two-stage scaling architecture. The first set of proxy servers perform
stateless request routing to a particular second-stage cluster server. The second-stage
server performs the actual request processing. This architecture can scale to any desired
processing load and user population size [8]. The stateless servers forward the requests to
stateful servers based on user identifier, so that the requests are uniformly distributed
amongst the stateful servers.

Please see Appendix A for information on running the tests in single-server mode or in a
clustered setting.

Types of tests

1. REGISTER
1. The loader sends REGISTER request to the server.
2. Server stores registration info and responds with “200 OK” response.

2. INVITE
1. Callhandler registers test users.
2. Loader sends INVITE request.

3. Server forwards invite to callhandler and sends “100 Trying” response to
loader.

4. Callhandler responds to server with “180 ringing” response.

5. Server forwards the 180 response to loader.

6. Callhandler responds to server with “200 OK” response.

7. Server forwards “200 OK” response to loader.

8. Loader sends ACK to server; server forwards ACK to callhandler.

9. Loader sends BYE to server; server forwards BYE to callhandler.
10. Call handler responds to server with “200 OK” response for the BYE.
11. Server forwards “200 OK” response to loader.

3. SUBSCRIBE-NOTIFY
1. Loader sends SUBSCRIBE requests for presentities.
2. Server stores subscription and responds with “200 OK” response.
3. Server sends NOTIFY to loader; loader responds with 200 OK.
4. Loader sends subscription refresh to server.
5. Server renews subscription and responds with 200 OK response.

4. PUBLISH-NOTIFY

1. Callhandler sends subscription for presentities to server.
Server responds with 200 OK followed by NOTIFY for each presentity.
Loader sends PUBLISH to server; server responds with 200 OK.
Server composes notification and sends NOTIFY to callhandler.
Callhandler sends 200 OK response to server.

ol ol

11



Measurements and Results

Testing Environment

The testing was performed on IRT cluster machines. Each of the machines has Pentium 4
3 GHz CPU, on 800 MHz motherboard, with Redhat Linux version 2.6.9-22.0.2 and 1
GB of memory. The communication was over 100base-T Ethernet connection. There was
minimal non-test traffic on the network.

The database server used was MySQL database version 4.1 running on metro-north
(located on the same LAN as SUT) shared by all sipd and pa instances. However, this
is not really an issue since the servers mostly use an in-memory database for storing
requests and subscriptions.

Measurement

1. SIP server

For each of the tests, two test loaders and two test handlers were used. The number of
users was fixed to 200 for each of the tests. The turn around time (TA) limit was set to
1000 ms for REGISTER tests and 2000 ms for INVITE tests. The acceptable success rate
for each run is set to 50%. So if the success rate drops below this limit or the average TA
goes above the specified limit, we assume that we have reached the maximum capacity of
the server and stop further testing. The request step size used was 200 for UDP, 100 for
TCP, and 40 for TLS. The test duration for each request step is set to 100 s.

Ferformance s@pl (@ first stage and 1 second stage servers?

T T T T laos

I Success P;te
iea pl CPU 1
pl RSE
pl WSZ

-4 Sas

%8 -

-1 &Ses

- Fes
-8 -

- cBe
&a -

-1 See

ME

H 4o@
4@ |

aa b 4 ze8

success rate or CPU usage (X2

zZa - o4 &&s8

T I I
a
a Seg 1gag 1588 ]z 1] 2588 2@ea 25e8

regquestsssecond

Figure 3: Register UDP with single server

12



iia

Ferformance slpl ¢1 first stage and 1 second stage serwvers)

iga -

28 -

P

EQ -

Se -

40

success rate or CPU wsage (X2

28 -

28 -

T T T T
success rate

pl CFU
pl RSS

pl WSZ
=1 CPU
s1 RSS
W5z

a

Sea

1088

1588 f=alals]

requestsssecond

£5aeg jela1z )]

1g8a

5 988

- &eg

- Fea

- &8g

- Sea

ME

- 489

- =z8a

- 28g

= 18a@

|

3588

Figure 4: Register UDP with 1 stateless, 1 stateful server

The request handling capacity of the server with sOp1 configuration (figure 3) is 2000
req/sec. With sIpl configuration (figure 4), there is no change in the request handling
capacity of the server, since the only difference is that instead of getting the requests

directly, the server gets the requests via a stateless proxy server.

g

1@

=l

20

7d

[=15]

e

48

success rate or GPFU usage oX)

el

4]

ba:]

Per formance s1p2 (1 first =tage and 2 second stage servers)

T T T T T T T T 1oas
suscess rate ——
B pl CPU — 7
pl RS ——
pl ¥§2 —— - 908
- pE CPU s
RS —
S
L 1 %em
- 5 7aa
B H &&@
4 5sem 2
- 488a
- 3288
L y= J
- &2a8a
L / 4 1e@
t : : — a
=] San 16688 1588 e 2aea el s1slz] 235688 4808 45688 SEaaE
reguestsssecond

Figure 5: Register UDP with 1 stateless, 2 stateful servers

13



Ferformance s2p2 (2 first stage and 2 second stage serwvers)

1ca T T T T T T T T lese
success rate
gl CFU
118 ~ pl RSS -
gl W&z o 9ae
pE CFU
L pE RES _
loe 2 WEZ
St CPU q el
L =1 'RES i
a =8 =1 v e
. s2 CPU
- - 7ag
° s2 RS5S l\\—
m S8 =2 vsz N
m
g - &86
a - =
puu}
o
(]
PRI -+ ses 2
s
2 L
58 - —
Z 3 4ee
W
8 48 - -
2 ;_’/.f”‘a 4 ze@
Y oza | e — -
/\ / 4 2a8
= —
- u
e b 4 tes
@ = | i
a Sea lg8a 15688 caag 2oen ela]ele) 2508 4808 4588 SoEe
regquestsssecond

Figure 6: Register UDP with 2 stateless, 2 stateful servers

With s1p2 configuration (figure 5), the capacity of the server has increased to 2400
req/sec. The performance does not increase by 2-fold here by adding another stateful
server because the performance bottleneck is the first stage stateless server, as seen by the
CPU utilization in the graph (blue line). Thereby by adding another stateless server, the
performance is expected to double that of sOp1 configuration. This is illustrated by the
s2p2 configuration (figure 6) in which the capacity of the server increased to 4000
req/sec. Figure 7 shows a quick comparison with different load sharing configurations.

Success Rate Comparison

T T T
8 =ztatleless 1 stateful
Tt 1 tateful .

L

28 -

e -

&8 -

=1: 0 oy

success rate

4m - .

28 - —

a 1 1 1 1 1 1 1 1 1
=] SEa 1@a8 1588 2aaa =4=1c1c] ZEEE 2508 4@8a8 45EE SHEE
reguestsssecond

Figure 7: Register UDP with different load sharing configurations

14



Note that the CPU utilization reaches to 80-90% before the success rate starts dropping,
and does not entirely go to 100% as expected. The reason is that we use ‘ps’ to compute
CPU utilization of sipd on the server and not ‘top’, and since ‘ps’ gives aggregated
CPU usage instead of instantaneous, it will be lower due to the initial wait period after
starting sipd. This was verified by running ‘top’ on the hosts running sipd servers. If
we increase the test duration to a considerably high value, say 400-500 sec for each
request rate, we should be able to get the CPU utilization up to 100% in the graphs.

Ferformance =8pl <8 first stage and 1 second stage =erwvers?

T T T T T T T lgae

success rate
pl CPU
pl RSE
pl VEZ2

laa

Ela ]
298 -

coa
28

Faa
P

=151
el -

Sea

ME

58

486
4@ |

2 L 3@

success rate or CPU usage (X)

fd] 4 cZea

18 -

488

=11

=11

lgaa

1288

1404

1588

1zaa

2ea

reguestsssecond

Figure 8: Register test with TCP

The request handling capacity of the SIP server for Register tests with TCP is around
1200 requests/sec. The scalability of SIP server for different load sharing configurations
for TCP tests can be extrapolated from the UDP tests above.

Clearly TCP takes more memory than UDP as TCP requires maintaining state on the
server. TCP has lower success rate than UDP on our test environment (where packet
losses are negligible) because of the limit on the number of open connections on server.
But when network packet losses are high or for certain mission-critical applications, TCP
needs to be used as the transport protocol for SIP.

15



Ferformance sBpl (@8 first stage and 1 second stage servers)

T T T T T T 1888

T T
success rate
186 - —
el RSS

VsZ - 988

- gea
208 - =

- Fea
s =

- 8@
6@ - =

SEa

ME

=10 =

4 4g0
40 [ u

86

success rate aor CPU usage (%)
1

2a - zZea

1@ |- loa

a 1 1 I I I 1 1 a
=} loa 2eg je3c1=] 408 =1s 1) =1:]=] saa coe exe1) laaa

regquestsssecond

Figure 9: Register test with TLS

Figure 9 shows the performance of SIP server for Register with TLS. The request
handling capacity of the server is roughly 720 req/sec. As we can see, the memory
requirement for TLS is much greater than TCP or UDP because in addition to TCP state,
the server also needs to maintain SSL session state for each TLS connection. As
expected, TLS gives the lowest success rate, but needs to be deployed for security critical
applications. Figure 10 gives a quick comparison between different transport protocols.

Success Rate comparison

T T T T T T
UnF

TCFP T
TLE

success rate

38 - =

2e - n

@ I I 1 I 1 I
a oag lgag 1588 eaaa £588 fedalalz) 3588

reguests-second

Figure 10: REGISTER with different transport protocols

16



FPerformance sBpl (@ first =tage and 1 =zecond stage serwvers?

T T T T T T 1eag

T T
success rate

- 988

- =88

- a8

- 688

- 588

ME

- <88

- =88

success rate or CPU usage (X2

za 4 2ea

18 = 186
a I 1 1 I I I I I I a
zes 488 =151 Sea 1686 1286 1486 1a@0 1860 2epg 2eee

regquestsssecond

Figure 11: Invite test with UDP

Figure 11 shows the performance of SIP server for INVITE test with UDP. The request
handling capacity is roughly 1400 req/sec as compared to 2000 req/sec for REGISTER
test with UDP, since INVITE entails more server and network load, as discussed earlier.
We can also see the big difference in the memory consumption between REGISTER and
INVITE tests, since INVITE requires maintaining state on the server for each call, until
the session is established.

The graphs for INVITE test with TCP and TLS are not shown here. The capacity of
server for INVITE on TCP is 800 req/sec and with TLS is 400 reqg/sec. The drop in
performance from TCP to UDP to TLS is significant for INVITE due to the requirement
of maintaining connections/sessions on both sides of an INVITE call.

The performance comparison for INIVITE tests with different load sharing
configurations can be extrapolated from REGISTER tests.

2. Presence Server Testing

Due to ongoing work on the presence server related to functional testing and performance

optimizations, the performance test results are not available for presence server.
However, they will be available in the near future.

17



Inconsistencies in results

1.

In some cases, the CPU utilization does not reach 100% before the request rate starts
dropping. The reasons for this are already explained in the previous section.

There are some spikes in the success rate graph for TCP and TLS testing. After
comprehensive testing, we realize that this is not a problem with our benchmarking
tool but due to some inconsistency in behavior of sipd indicating this might be a
server implementation issue.

18



Future Work

e Presence server testing with different composition policies and size/type of subscriber
and publisher filters.

 'To avoid unexpected and hard-to-debug errors, the wrapper scripts used for running
sipstone tests should first create a test database, populate with relevant test data, run
tests, and drop database. The temporary test database can be named according to user
name and current timestamp. This avoids conflict with other tests and with other
usages of the central database. Secondly, this will assist in seeing the impact of user
population on performance of SIP servers. It should be easy to define a test database
schema and test data, which can be updated whenever sipd or pa is modified.

« 'Host name configuration used at various places such as domain DB table, certificate
verification, sipstone, etc., should work with either canonical host name or IP address
to avoid really hard-to-debug problems.

 'Implementation of DNS NAPTR/SRV schemes for lookups in sipstone.

o SSL session caching in SIP servers to avoid SSL handshake for every request.

e Connection reuse for SIP connections as specified in RFC draft [7].

e Add transport parameter to contact field in Register templates so that sipd
can use the specified transport protocol for downstream calls, instead of the default.

e Changes in server code sipd need to be done in sync with sipstone so that new
changes don’t break the benchmark tool. Ideally the person responsible for some
modification in sipd should make the corresponding changes in sipstone, so that
the server is always ready for performance testing.

! this should definitely be done in the near future to improve usability of sipstone tools.

19



References

[1] SIPstone: Benchmarking SIP server performance

[2] SIMPLEstone: Benchmarking presence server performance.

[3] SIP redirect, proxy and registration server: sipd

[4] REC 3261: SIP - session initiation protocol.

[5] REC 2327: SDP - session description protocol.

[6] SIMPLE: SIP for instant messaging and presence.

[7] REC Draft: Connection Reuse in SIP.

[8] Kundan Singh and Henning Schulzrinne, Failover and Load Sharing in SIP
Telephony, Technical report, Department of Computer Science, Columbia University
[9] Jonathan Michael Lennox, Services for Internet Telephony, PhD Thesis, Columbia
University, 2004

20



Appendix A. Program Documentation

1.

2.

Changes submitted to CVS.

Please see cinema/sipstone/docs/sipstone.html for revised
documentation about running the tests.

Testing with authentication: First set the authentication of relevant test users to
"required" in the test database. Also set the server authentication for your domain to
"digest". The sql scripts setauth.sql and setnoauth.sql are provided to make this easy.
Also for testing with authentication, set useAuthentication to true and set
preloadedCredentials parameter.

Testing with SSL: We need to set up SSL keys and certificates for our test hosts
signed with a common CA certificate in order to test the presence server with TLS.
To automate this process, we have provided a script generate keystore.pl that reads in
a file "hosts.txt" and generates keys and certificates for each host in that file. It signs
all certificates with a shared CA private key. If you are generating your own
certificates, please make sure that the "CN" field in certificate is set to the canonical
host name and NOT the IP address, since the server verifies by matching ip addresses.
Also for testing with TLS, set the protocol to TLS, server port to 5061, and
security to true in the test configuration.

Code changes in sipstone, sipd, reanalyze and wrapper test scripts submitted to CVS.
Please see cinema/sipstone for revisions.

21



Appendix B. Examples

We have shown some examples below for different tests. Since the purpose here is to
show the message flow, we have run these tests for 1 request, 1 user and 1 sec. duration.

1. Register UDP

test Loader

SUT

REGISTER sip:128.59.19.154 SIP/2.0
Via: SIP/2.0/UDP 128.59.19.159:7798
From: sip:A1000@cs.columbia.edu

To: sip:Al000@cs.columbia.edu
Contact: sip:A10000@128.59.19.159:7798
Subject: sipstone register test

CSeqg: 1 REGISTER

Call-ID: 1560721148@irtcluster07.cs.columbia.edu
Expires: 86400

Content-Length: 0O

SIP/2.0 200 OK

Via: SIP/2.0/UDP 128.59.19.159:7798
From: sip:A1000@cs.columbia.edu

To: sip:Al000@cs.columbia.edu;
tag=1Lf7nhwQ6icuse8RcYVYsw

Call-ID: 1560721148Q@irtcluster07.cs.columbia.edu
CSeqg: 1 REGISTER
< Date: Wed, 10 May 2006 08:25:42 GMT

Server: Columbia-SIP-Server/1.24
Content-Length: 0
Contact: <sip:A1000@128.59.19.159:7798>;
expires=86400; action=proxy; g=1.00
Expires: 86400

2. Register TCP

test Loader SUT

REGISTER sip:128.59.19.154 SIP/2.0

Via: SIP/2.0/TCP 128.59.19.159:7798

From: sip:A1000@cs.columbia.edu

To: sip:Al000@cs.columbia.edu

Contact: sip:A1000@128.59.19.159:7798

Subject: sipstone register test — >

CSeqg: 1 REGISTER

Call-ID: 3181750771Q@irtcluster07.cs.columbia.edu

Expires: 86400

Content-Length: 0
SIP/2.0 200 OK
Via: SIP/2.0/TCP 128.59.19.159:7798
From: sip:A1000@cs.columbia.edu
To: sip:Al000@cs.columbia.edu;
tag=09qg6£fXxded1SZ2Z2ZVnotj4Q
Call-ID: 3181750771Q@irtcluster07.cs.columbia.edu
CSeqg: 1 REGISTER

< Date: Wed, 10 May 2006 08:27:19 GMT

Server: Columbia-SIP-Server/1.24
Content-Length: 0
Contact: <sip:A1000@128.59.19.159:7798>;
expires=86400; action=proxy; g=1.00
Expires: 86400

22




3. Register TLS

test Loader

SUT

REGISTER sip:128.59.19.154 SIP/2.0
Via: SIP/2.0/TLS 128.59.19.159:7798
From: sip:A1000@cs.columbia.edu

To: sip:Al000@cs.columbia.edu

Contact: sips:A1000@128.59.19.159:7798
Subject: sipstone register test

CSeq: 1 REGISTER

Call-ID: 239106195@irtcluster07.cs.columbia.edu
Expires: 86400

Content-Length: 0

SIP/2.0 200 OK

Via: SIP/2.0/TLS 128.59.19.159:7798
From: sip:A1000@cs.columbia.edu
To: sip:Al000@cs.columbia.edu;

tag=eF8jVurC85tFsYYE.OagjA
Call-ID: 239106195@irtcluster07.cs.columbia.edu
CSeq: 1 REGISTER
Date: Wed, 10 May 2006 08:31:32 GMT
Server: Columbia-SIP-Server/1.24
[ Content-Length: 0
Contact: <sip:A1000@128.59.19.159:7798>;
expires=86146; action=proxy; g=1.00

Expires: 86146

1. Invite UDP

test Loader

SUT

test Callhandler

SIP/2.0 200 OK
Via:

From:
To:

Call-ID:

bia.edu
CSeq:
Date:
GMT
Server:
Server/1.24
Content-Length:
Contact:

Wed,

SIP/2.0/UDP
128.59.19.159:6786
sip:A1000@cs.columbia.edu
sip:A1000@cs.columbia.edu;
tag=gvwVveBPgSheRbH2LdxtnQ

646107955@irtcluster07.cs.colum

1 REGISTER
10 May 2006 11:08:11

Columbia-SIP-

<sip:A1000@128.59.19.159:7798>;

REGISTER sip:cs.columbia.edu
SIP/2.0

Via: SIP/2.0/UDP
128.59.19.159:6786

From: sip:A1000@cs.columbia.edu
To: sip:Al000@cs.columbia.edu

Contact:

sip:A1000@128.59.19.159:6786

Subject: sipstone register test
CSeq: 1 REGISTER

Call-ID:
646107955@irtcluster07.cs.colum
bia.edu

Expires: 86400

Content-Length: 0

0

23




INVITE
sip:A1000@cs.columbia.edu
SIP/2.0

Via: SIP/2.0/UDP
128.59.19.159:7798
Max-Forwards: 70

From:
sip:sipcaller@cs.columbia.edu
To: sip:Al000@cs.columbia.edu
Contact:
sip:sipcaller@irtcluster07.cs.c
olumbia.edu:7798

Subject: sipstone invite test
CSeqg: 1 INVITE
Call-ID:

2348585866@irtcluster07.cs.colu
mbia.edu

Content-Type: application/sdp
Content-Length: 210

v=0

o=userl 53655765 2353687637 IN
IP4 128.3.4.5

s=Mbone Audio
£=3149328700 0
i=Discussion of Mbone
Engineering Issues
e=mbone@somewhere.com
c=IN IP4 128.3.4.5

t=0 0

m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

expires=76748;
g=1.00
Contact:
<sip:A1000@128.59.19.159:6786>;
expires=86400; action=proxy;
g=1.00

Contact:
<sips:A1000€@128.59.19.159:7798>
; expires=77002; action=proxy;
g=0.00
Expires:

action=proxy;

76748

_'>

SIP/2.0 100 Trying

Via: SIP/2.0/UDP
128.59.19.159:7798

From:

sip:sipcaller@cs.columbia.edu

To: sip:A1000@cs.columbia.edu;

tag=aTg.VxTmsuYzUfoENS5NFag

Call-ID:

2348585866@irtcluster07.cs.colu

mbia.edu

CSeqg: 1 INVITE

Date: Wed, 10 May 2006 11:08:14
GMT

Server: Columbia-SIP-

Server/1.24
Content-Length: 0

INVITE
sip:A1000@128.59.19.159:7798
SIP/2.0

Via: SIP/2.0/UDP
128.59.19.154:5060;branch=z9hG4
bKks1hRLUJAQAAAAAAAAAAADghgSKET7
3QEX39IhAiKWaU7

Via: SIP/2.0/UDP
128.59.19.159:7798
Max-Forwards: 69

From:

sip:sipcaller@cs.columbia.edu

24




To: sip:A1000@cs.columbia.edu
Contact:
sip:sipcaller@irtcluster07.cs.c
olumbia.edu:7798

Subject: sipstone invite test
CSeqg: 1 INVITE

Call-ID:
2348585866@irtcluster07.cs.colu
mbia.edu

Content-Type: application/sdp
Content-Length: 210

v=0

o=userl 53655765 2353687637 IN
IP4 128.3.4.5

s=Mbone Audio

t£=3149328700 0

i=Discussion of Mbone
Engineering Issues
e=mbonel@somewhere.com

c=IN IP4 128.3.4.5

t=0 0
m=audio 3456 RTP/AVP 0 SIP/2.0 180 Ri
a=rtpmap:0 PCMU/8000 Via: SIP/2.0/UDP

128.59.19.154:5060;branch=z9hG4

bKks1hRLUJAQABAAAAAAAAADghgSkKET

3QEX39ThAiKWaU

Via: SIP/2.0/UDP
128.59.19.159:7798

<« Max-Forwards: 69

From:

sip:sipcaller@cs.columbia.edu

To: sip:Al000@cs.columbia.edu

Contact:

<sip:callhandler0@128.59.19.159

:6786>

Subject: sipstone invite test

CSeq: 1 INVITE

Call-ID:

2348585866@irtcluster07.cs.colu

mbia.edu

Content-Type: application/sdp

Content-Length: 210

v=0

o=userl 53655765 2353687637 IN
IP4 128.3.4.5

s=Mbone Audio
£=3149328700 0
i=Discussion of Mbone
Engineering Issues
e=mbone@somewhere.com
c=IN IP4 128.3.4.5

t=0 0

m=audio 3456 RTP/AVP 0

a=rtpmap:0 PCMU/8000
SIP/2.0 180 Ri

Via: SIP/2.0/UDP
128.59.19.159:7798

| Max-Forwards: 69
From:
sip:sipcaller@cs.columbia.edu
To: sip:A1000@cs.columbia.edu
Contact:
<sip:callhandler0@128.59.19.159
:6786>
Subject: sipstone invite test
CSeqg: 1 INVITE
Call-ID:
2348585866@irtcluster07.cs.colu
mbia.edu

25




Content-Type: application/sdp
Content-Length: 210

v=0

o=userl 53655765 2353687637 IN
IP4 128.3.4.5

s=Mbone Audio
t=3149328700 0
i=Discussion of Mbone
Engineering Issues
e=mbonel@somewhere.com
c=IN IP4 128.3.4.5

t=0 0

m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

SIP/2.0 200 OK

Via: SIP/2.0/UDP

128.59.19.154:5060;branch=z9hG4

bKks1hRLUJAQABAAAAAAAAADghgSKET

3QEX39ThAiKWaU

Via: SIP/2.0/UDP

128.59.19.159:7798
Max-Forwards: 69

4_ From:

sip:sipcaller@cs.columbia.edu

To: sip:Al000@cs.columbia.edu

Contact:

<sip:callhandler0@128.59.19.159

:6786>

Subject: sipstone invite test

CSeq: 1 INVITE

Call-ID:

2348585866@irtcluster07.cs.colu

mbia.edu

Content-Type: application/sdp

Content-Length: 210

v=0

o=userl 53655765 2353687637 IN
IP4 128.3.4.5

s=Mbone Audio
£=3149328700 0
i=Discussion of Mbone
Engineering Issues
e=mbone@somewhere.com
c=IN IP4 128.3.4.5

t=0 0

m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

SIP/2.0 200 OK

Via: SIP/2.0/UDP
128.59.19.159:7798
Max-Forwards: 69

From:
sip:sipcaller@cs.columbia.edu
To: sip:A1000@cs.columbia.edu

Contact:

<sip:callhandler0@128.59.19.159
:6786>

Subject: sipstone invite test

CSeqg: 1 INVITE

Call-ID:
2348585866@irtcluster07.cs.colu

mbia.edu

Content-Type: application/sdp

Content-Length: 210

v=0

o=userl 53655765 2353687637 IN
IP4 128.3.4.5

s=Mbone Audio

t=3149328700 0

26




i=Discussion of Mbone
Engineering Issues
e=mbonel@somewhere.com
c=IN IP4 128.3.4.5

t=0 0

m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

ACK
sip:callhandler0@128.59.19.159
SIP/2.0 _>
Via: SIP/2.0/UDP
128.59.19.159:7798
Max-Forwards: 69

From:
sip:sipcaller@cs.columbia.edu
To: sip:Al000@cs.columbia.edu
CSeqg: 1 ACK

Call-ID:
2348585866@irtcluster07.cs.colu
mbia.edu

Content-Length: 0

BYE
sip:callhandler0@128.59.19.159
SIP/2.0

Via: SIP/2.0/UDP ->
128.59.19.159:7798
Max-Forwards: 69

From:
sip:sipcaller@cs.columbia.edu
To: sip:Al000@cs.columbia.edu
CSeq: 1 BYE

Call-ID:
2348585866@irtcluster07.cs.colu
mbia.edu

Content-Length: 0

The examples for Invite TCP and Invite TLS are similar to Invite UDP shown above.

27




