

Performance Measurement Tools for

SIP Server

Samit Jain

Columbia University, New York

sj2195@cs.columbia.edu

 2

TABLE OF CONTENTS

1. ABSTRACT ………………………………………………………………………….. 3

2. INTRODUCTION………………………………………………………………………..4

3. PERFORMANCE ISSUES………………………………………………………………. .6

4. ARCHITECTURE ……………………………………………………………………..10

5. MEASUREMENTS AND RESULTS……………………………………………………...12

6. FUTURE WORK ………… ………………………………………………………….19

7. REFERENCES ……………………………………………………………………… 20

A. PROGRAM DOCUMENTATION ……………….………………………………………21

B. EXAMPLES ………………..……………….……………………………………….22

 3

Abstract

Columbia InterNet Extensible Multimedia Architecture (CINEMA) is a set of SIP-based

Internet multimedia servers for creating Internet telephony and multimedia system. It

consists of a number of components such as SIP proxy, redirect and registrar server, SIP

presence server, SIP multimedia conferencing server. This system needs to be

appropriately dimensioned and provisioned for different types of workloads and

requirements. SIPstone defines a basic set of metrics for evaluating and benchmarking

SIP proxy, redirect and registrar servers and attempts to measure the request handling

capacity of a SIP server or a cluster of SIP servers.

The main goal of this project is to extend the SIPstone set of tools for testing SIP server

with different transport protocols – TCP, UDP, and TLS, with or without authentication,

and SIP presence server performance measurement. Presence server testing is defined in

SIMPLEstone and includes SUBSCRIBE-NOTIFY and PUBLISH-NOTIFY tests. The

report is organized into following sections:

1) Introduction

2) Performance Issues

3) Architecture

4) Types of Tests

5) Program Documentation

6) Results

7) Future Work

8) References

 4

Introduction

Before we look at the details of the benchmarking and testing mechanisms, it is necessary

to review the SIP servers and their operations.

The SIP server (sipd) [3] or server under test (SUT) as referred by in this report, is a

redirect, forking
1
 proxy, and registration server that provides name mapping, user

location and scripting services
2
. It also allows users to register their current location with

the server. The SIP location or registration servers maintain the locations where users

could be reached.

The server currently understands the ACK, BYE, CANCEL, INVITE, OPTIONS and

REGISTER requests. Invitations and registrations are authenticated using digest

authentication. The details of individual SIP methods can be found in [4]. The list of

audio/video algorithms supported and the transport addresses to receive them, are

described using Session Description Protocol [5], carried as the body of SIP requests and

responses.

Presence server (pa) [6] is a separate server that allows users to subscribe to each other’s

presence and receive presence notification. The users (watchers) subscribe to presence

information of others (presentities) using SIP SUBSCRIBE and receive notification about

changes in state via SIP NOTIFY messages. Presence information can be published to the

presence server using SIP PUBLISH message. The subscriber can specify watcher filters

to enable filtering the events for which it wants to receive notifications or filtering the

content of notifications. The notification is delivered to the watcher in the form of a

flexible XML-based presence document [6], which is created by the presence server

depending on the composition policy and privacy filters. Subscriptions, publications and

notifications are authenticated using standard SIP authentication mechanisms [4].

The main objective of the benchmark suite is to measure the request handling capacity of

the server for different types of SIP requests and configuration settings. The current

implementation performs tests using a pre-configured workload as specified in the

configuration file, which is flexible enough to allow us to exercise a breadth of system

components, such as concurrent initiation of calls, call intervals, transport protocol,

connection types, authentication, etc. Different types of requests and settings will differ

in the impact they have on the server processing capacity and the network bandwidth,

ultimately affecting the request handling capacity of the server. For example, a PUBLISH

request entails a much higher load on the server and network as compared to an INVITE

request, since the former depends not only on the user population and request rate, but

also on the number of subscribers, composition policy, privacy filters, and subscriber

filters
3
.

1
Forking is currently not being tested since it is hard to predict behavior of common forking proxies.

2
Programmable scripts are currently not being tested since services vary for different applications.

3
Performance testing of different composition policies is not implemented.

 5

The benchmarking tool has some limitations. The results obtained can be severely

dependent on the specific characteristics of the test-bed and test-environment. It may not

be possible to derive results of general validity, but our main goal is to estimate the

relative performance of different test configurations.

Some of the objectives of the benchmark suite are:

1. Characterizing server performance for dimensioning and provisioning

2. The system should allow maximum configuration with simplicity

3. Repeatability of test results

Note that the benchmark suite cannot be used to test server functionality, or evaluate

protocol compliance and robustness.

Some of the results obtained from our tests with different configurations can be

summarized in the following table.

 REGISTER INVITE

UDP 2000 1400

TCP 1200 800

TLS 720 400

Table 1: Performance in terms of request handling capacity (req/sec)

There has been considerable work being done currently and which has been done in the

past on SIPstone and SIP performance measurements. [1] describes the original SIPstone

specification. [2] is ongoing work on performance testing the presence server. [8]

describes failover and load sharing in SIP telephony.

In the next section, we discuss some of the performance issues related to SIP servers.

 6

Performance Issues

1. User Population

The performance of a SIP proxy and registration server is directly dependent on the user

population. Most SIP methods such as for data update (REGISTER) and for data lookup

(INVITE) require database interactions and authentication lookups. There might also be

other database transactions for logging, etc., within the same SIP transaction processing.

This performance is likely to be dependent more on the back-end database server than on

the SIP server. The number of users can be specified in the configuration file and it is

likely that the user population is large, close to thousands of users.

This factor depends highly on the architecture of specific database system being

deployed. The current benchmark uses a MySQL backend server. Also different database

architectures have other implementation tradeoffs, which might affect its performance

and reliability under varying conditions.

The performance of presence server depends more on other factors such as request rate,

composition policies and size of filters, than on the user population, since it uses an in-

memory hash table to store users. But it is likely that the impact of user population on

performance of presence server will only increase with more users. Each call to presence

server also requires authentication lookup, storing or retrieving subscriptions, contacts

lookup, and other auxiliary transactions. Also the number of subscribers per presentity

has an impact on server performance.

In order to see the impact of user population on performance of SIP servers, a separate

test database should be created for new test run. Presently, we use a central database

system for all the tests. This prevents us from demonstrating the affect of user population

on performance for different number of users specified in the test configuration, e.g.,

10,000 vs. 100. As part of the future work, a separate test database instance should be

created for each new test run.

2. Request Rate

Request rate is defined as the number of requests sent to the server per second. The

performance of the SIP proxy server is directly related to the request rate. Each SIP

server has a threshold capacity beyond which the performance goes below optimal or

below an acceptable limit, which can be low success rate or high turn around time. This

can be configured in the test configuration file. We need to measure the transaction

duration for a request and ignore the call duration since SIP proxy servers only maintain

transaction state and not call state.

The request rate has significant impact on the performance of presence server. Since

processing involved for each request type PUBLISH or SUBSCRIBE is different; the

performance depends on the relative rate of each type of request, specifically,

subscription refresh rate and publication rate.

 7

3. Request Type

The type of request affects the performance on SIP server. Each request type causes

different processing on the server and entails different load on the server and on the

network. For example, a REGISTER request causes the SIP server to a) authorize the

request, b) store the association in the database, and c) respond with 200 OK response.

On the other hand, for a PUBLISH request, the presence server needs to a) authorize the

request, b) retrieve subscribers from database, c) retrieve composition policy for the

presentity and filters for each subscriber, d) compose a presence document, e) for each

subscriber, apply privacy filters, f) for each subscriber, apply watcher filters, g) send 200

OK response to publisher, h) send NOTIFY to each subscriber. This clearly shows the

difference between the processing of REGISTER and PUBLISH request types. The

INVITE request has a different requirement as it causes the SIP proxy server to maintain

transaction state until it gets response from the callee.

In the benchmark, we test registrar, proxy and presence server separately, but it would be

interesting to test with a mixed load of these request types and measure the affect of

varying request rates between different request types in the same test. We could model

different systems such as for call center, mobile users, with varying invitation and

registration rates. This has been proposed in SIPstone draft [1] but not implemented. This

is useful to test the usage of a particular server implementation for a particular system

and helps provisioning system and network resources.

For presence server, the request handling capacity of the server depends on the

subscription refresh rate and publication rate. The latter has a bigger impact since

PUBLISH imposes more overhead on server and network. We measure the request

handling capacity for each of the message types in terms of successful SUBSCRIBE-

NOTIFY and PUBLISH-NOTIFY calls.

4. Transport Protocol

SIP operates independently of the underlying transport protocol, which might be TCP,

UDP, TLS, etc. However performance varies with different protocols. There is usually a

tradeoff between performance vs. reliability and security while selecting a transport

protocol. Ideally, we first select a transport protocol to use depending on system

requirements and then perform optimizations for that protocol. When packet loss is low

and the size of SIP messages is within maximum transmission unit (MTU), SIP over

UDP is most efficient since it does not require any flow control or connection. Otherwise,

we need to use TCP to guarantee message transmission reliability. When using TCP,

issues such as the ability of the server to handle a large number of open connections and

its use of persistent connections need to be considered. If we need to ensure

confidentiality, integrity and privacy, we need to use SIP over TLS. When using TLS, we

need to consider capability of server to handle large number of SSL sessions and TCP

connections. We can specify the transport protocol in the configuration file. The

performance measurement for different transport protocols and their comparison is shown

in section 5.

 8

5. Connection Policy

When using UDP, we do not open connections on the server. Network packet losses do

not affect the server load directly, but cause retransmissions of requests, which can

increase server processing load and amplify network traffic. If the packets losses are

below 5%, we can use UDP to achieve good voice quality and acceptable call setup

delays. If the packet losses are much higher, then we should probably be using TCP.

When using TCP, issues such as the ability of the server to handle a large number of open

connections and its use of persistent connections need to be considered. We currently do

not have a good estimate as to the typical number of upstream servers reaching a high-

volume proxy server. If the number is low, almost all such servers will use persistent

connections, otherwise we might have to use a separate connection
1
 for each new request.

When using persistent connections, we still get two connections between SIP proxies for

requests sent in each direction, since source port is ephemeral and connections accepted

at the transport layer cannot be reused for reverse connections. If this leads to potential

scaling and performance problems, we could reuse connections opened in either direction

as proposed in [7]
2
.

When we need to use TLS, we need to consider the ability of the server to handle SSL

sessions. Since SSL session setup is expensive due to imposed network overhead and

cryptographic operations required for a full TLS handshake, it is necessary to cache SSL

sessions between SIP proxy servers. Depending on the load on the server, we might not

be able to cache all SSL sessions. In practice, it might be beneficial to cache sessions

between two proxy servers with high communication volume between them, than caching

sessions between, say, a UAC and proxy server. Session timeout for SSL sessions needs

to be high enough to span many calls or transactions.

6. Authentication

SIP authentication is based on stateless challenge-based authentication scheme similar to

HTTP. The benchmark implements digest authentication scheme, which is most

commonly used. Since the authentication scheme is stateless, they do not entail much

burden on the server. However, if the user agents do not cache authentication credentials

across multiple requests or dialogs, it leads to increased network traffic and more number

of requests hitting the server. Therefore, it is highly recommended that user agents cache

credentials associated with a specific realm. Authentication can be enabled or disabled in

configuration file. We can also compare measurement results when credentials are cached

vs. not cached by setting preloadCredentials parameter in the configuration file.

Authentication credentials when not cached doubles the amount of network traffic.

1
The connections should still be atleast kept open for an implementation-defined time to make it likely that

transactions are completed over the same connection on which they are initiated, e.g. INVITE to ACK.
2
Not currently implemented.

 9

7. Composition and Filtering (only for presence server)

The composition policies on the server have a significant impact on the performance of

the presence server. Firstly, the application of the policy, that is, whether different

policies are applied to presentities or there is a single policy in place, affects the request

handling capacity of the server. There is little gain in introducing per watcher

composition policy, as noted in [6], and it introduces additional complexity and burden

for server. Different types of composition policies and operations such as a simple union

with replacement, or based on a more complex composition policy language, will impose

different processing overheads on the server. The privacy and watcher filtering feature,

the size of filter documents, which in turn determine the look up, comparison and xml

manipulation operation on the server affect the server’s performance. It also affects the

amount of traffic generated by the server. The presence document format (rpid or pidf)

also affects the amount of processing on server.

 10

Architecture

The “server under test” (SUT) is a SIP proxy, redirect, registrar, or presence server whose

performance is to be estimated. The benchmark consists of a set of SIPstone load

generators that create the SIP request load, a call handler that simulates a user agent

server and a central benchmark manager (“controller”) that coordinates the execution of

the benchmark, and the SUT. The call handlers may run along with the load generators or

on different systems. Benchmarking consists of a series of test runs with increasing load

levels generated by the load generators, saturating the processing capability of the server,

and measuring its maximum throughput.

Figure 1: Basic Architecture for SIP server testing

Figure 2: Testing in 2-stage clustering with 2 stateless, 2 stateful servers

Figure 1 shows the general architecture for single server testing. The SUT includes all

machines and network connections spanning SIP server components including registrar,

database, proxy servers, presence servers, etc. All machines including loaders,

callhandlers, and SUT are connected on a 100 Mb/s Ethernet that is otherwise lightly

loaded. All the tests were performed on IRT cluster machines to ensure minimal non-test

traffic.

 11

Figure 2 shows a sample configuration for 2-stage clustering. Presently, clustered testing

is limited to a two-stage scaling architecture. The first set of proxy servers perform

stateless request routing to a particular second-stage cluster server. The second-stage

server performs the actual request processing. This architecture can scale to any desired

processing load and user population size [8]. The stateless servers forward the requests to

stateful servers based on user identifier, so that the requests are uniformly distributed

amongst the stateful servers.

Please see Appendix A for information on running the tests in single-server mode or in a

clustered setting.

Types of tests

1. REGISTER

1. The loader sends REGISTER request to the server.

2. Server stores registration info and responds with “200 OK” response.

2. INVITE

1. Callhandler registers test users.

2. Loader sends INVITE request.

3. Server forwards invite to callhandler and sends “100 Trying” response to

loader.

4. Callhandler responds to server with “180 ringing” response.

5. Server forwards the 180 response to loader.

6. Callhandler responds to server with “200 OK” response.

7. Server forwards “200 OK” response to loader.

8. Loader sends ACK to server; server forwards ACK to callhandler.

9. Loader sends BYE to server; server forwards BYE to callhandler.

10. Call handler responds to server with “200 OK” response for the BYE.

11. Server forwards “200 OK” response to loader.

3. SUBSCRIBE-NOTIFY

1. Loader sends SUBSCRIBE requests for presentities.

2. Server stores subscription and responds with “200 OK” response.

3. Server sends NOTIFY to loader; loader responds with 200 OK.

4. Loader sends subscription refresh to server.

5. Server renews subscription and responds with 200 OK response.

4. PUBLISH-NOTIFY

1. Callhandler sends subscription for presentities to server.

2. Server responds with 200 OK followed by NOTIFY for each presentity.

3. Loader sends PUBLISH to server; server responds with 200 OK.

4. Server composes notification and sends NOTIFY to callhandler.

5. Callhandler sends 200 OK response to server.

 12

Measurements and Results

Testing Environment

The testing was performed on IRT cluster machines. Each of the machines has Pentium 4

3 GHz CPU, on 800 MHz motherboard, with Redhat Linux version 2.6.9-22.0.2 and 1

GB of memory. The communication was over 100base-T Ethernet connection. There was

minimal non-test traffic on the network.

The database server used was MySQL database version 4.1 running on metro-north

(located on the same LAN as SUT) shared by all sipd and pa instances. However, this

is not really an issue since the servers mostly use an in-memory database for storing

requests and subscriptions.

Measurement

1. SIP server

For each of the tests, two test loaders and two test handlers were used. The number of

users was fixed to 200 for each of the tests. The turn around time (TA) limit was set to

1000 ms for REGISTER tests and 2000 ms for INVITE tests. The acceptable success rate

for each run is set to 50%. So if the success rate drops below this limit or the average TA

goes above the specified limit, we assume that we have reached the maximum capacity of

the server and stop further testing. The request step size used was 200 for UDP, 100 for

TCP, and 40 for TLS. The test duration for each request step is set to 100 s.

Figure 3: Register UDP with single server

 13

Figure 4: Register UDP with 1 stateless, 1 stateful server

The request handling capacity of the server with s0p1 configuration (figure 3) is 2000

req/sec. With s1p1 configuration (figure 4), there is no change in the request handling

capacity of the server, since the only difference is that instead of getting the requests

directly, the server gets the requests via a stateless proxy server.

Figure 5: Register UDP with 1 stateless, 2 stateful servers

 14

Figure 6: Register UDP with 2 stateless, 2 stateful servers

With s1p2 configuration (figure 5), the capacity of the server has increased to 2400

req/sec. The performance does not increase by 2-fold here by adding another stateful

server because the performance bottleneck is the first stage stateless server, as seen by the

CPU utilization in the graph (blue line). Thereby by adding another stateless server, the

performance is expected to double that of s0p1 configuration. This is illustrated by the

s2p2 configuration (figure 6) in which the capacity of the server increased to 4000

req/sec. Figure 7 shows a quick comparison with different load sharing configurations.

Figure 7: Register UDP with different load sharing configurations

 15

Note that the CPU utilization reaches to 80-90% before the success rate starts dropping,

and does not entirely go to 100% as expected. The reason is that we use ‘ps’ to compute

CPU utilization of sipd on the server and not ‘top’, and since ‘ps’ gives aggregated

CPU usage instead of instantaneous, it will be lower due to the initial wait period after

starting sipd. This was verified by running ‘top’ on the hosts running sipd servers. If

we increase the test duration to a considerably high value, say 400-500 sec for each

request rate, we should be able to get the CPU utilization up to 100% in the graphs.

Figure 8: Register test with TCP

The request handling capacity of the SIP server for Register tests with TCP is around

1200 requests/sec. The scalability of SIP server for different load sharing configurations

for TCP tests can be extrapolated from the UDP tests above.

Clearly TCP takes more memory than UDP as TCP requires maintaining state on the

server. TCP has lower success rate than UDP on our test environment (where packet

losses are negligible) because of the limit on the number of open connections on server.

But when network packet losses are high or for certain mission-critical applications, TCP

needs to be used as the transport protocol for SIP.

 16

Figure 9: Register test with TLS

Figure 9 shows the performance of SIP server for Register with TLS. The request

handling capacity of the server is roughly 720 req/sec. As we can see, the memory

requirement for TLS is much greater than TCP or UDP because in addition to TCP state,

the server also needs to maintain SSL session state for each TLS connection. As

expected, TLS gives the lowest success rate, but needs to be deployed for security critical

applications. Figure 10 gives a quick comparison between different transport protocols.

Figure 10: REGISTER with different transport protocols

 17

Figure 11: Invite test with UDP

Figure 11 shows the performance of SIP server for INVITE test with UDP. The request

handling capacity is roughly 1400 req/sec as compared to 2000 req/sec for REGISTER

test with UDP, since INVITE entails more server and network load, as discussed earlier.

We can also see the big difference in the memory consumption between REGISTER and

INVITE tests, since INVITE requires maintaining state on the server for each call, until

the session is established.

The graphs for INVITE test with TCP and TLS are not shown here. The capacity of

server for INVITE on TCP is 800 req/sec and with TLS is 400 req/sec. The drop in

performance from TCP to UDP to TLS is significant for INVITE due to the requirement

of maintaining connections/sessions on both sides of an INVITE call.

The performance comparison for INIVITE tests with different load sharing

configurations can be extrapolated from REGISTER tests.

2. Presence Server Testing

Due to ongoing work on the presence server related to functional testing and performance

optimizations, the performance test results are not available for presence server.

However, they will be available in the near future.

 18

Inconsistencies in results

1. In some cases, the CPU utilization does not reach 100% before the request rate starts

dropping. The reasons for this are already explained in the previous section.

2. There are some spikes in the success rate graph for TCP and TLS testing. After

comprehensive testing, we realize that this is not a problem with our benchmarking

tool but due to some inconsistency in behavior of sipd indicating this might be a

server implementation issue.

 19

Future Work

• Presence server testing with different composition policies and size/type of subscriber

and publisher filters.

•
1
To avoid unexpected and hard-to-debug errors, the wrapper scripts used for running

sipstone tests should first create a test database, populate with relevant test data, run

tests, and drop database. The temporary test database can be named according to user

name and current timestamp. This avoids conflict with other tests and with other

usages of the central database. Secondly, this will assist in seeing the impact of user

population on performance of SIP servers. It should be easy to define a test database

schema and test data, which can be updated whenever sipd or pa is modified.

•
1
Host name configuration used at various places such as domain DB table, certificate

verification, sipstone, etc., should work with either canonical host name or IP address

to avoid really hard-to-debug problems.

•
1
Implementation of DNS NAPTR/SRV schemes for lookups in sipstone.

• SSL session caching in SIP servers to avoid SSL handshake for every request.

• Connection reuse for SIP connections as specified in RFC draft [7].

• Add transport parameter to contact field in Register templates so that sipd

can use the specified transport protocol for downstream calls, instead of the default.

• Changes in server code sipd need to be done in sync with sipstone so that new

changes don’t break the benchmark tool. Ideally the person responsible for some

modification in sipd should make the corresponding changes in sipstone, so that

the server is always ready for performance testing.

1
 this should definitely be done in the near future to improve usability of sipstone tools.

 20

References

[1] SIPstone: Benchmarking SIP server performance

[2] SIMPLEstone: Benchmarking presence server performance.

[3] SIP redirect, proxy and registration server: sipd

[4] RFC 3261: SIP - session initiation protocol.

[5] RFC 2327: SDP - session description protocol.

[6] SIMPLE: SIP for instant messaging and presence.

[7] RFC Draft: Connection Reuse in SIP.

[8] Kundan Singh and Henning Schulzrinne, Failover and Load Sharing in SIP

Telephony, Technical report, Department of Computer Science, Columbia University

[9] Jonathan Michael Lennox, Services for Internet Telephony, PhD Thesis, Columbia

University, 2004

 21

Appendix A. Program Documentation

1. Changes submitted to CVS.

2. Please see cinema/sipstone/docs/sipstone.html for revised

documentation about running the tests.

3. Testing with authentication: First set the authentication of relevant test users to

"required" in the test database. Also set the server authentication for your domain to

"digest". The sql scripts setauth.sql and setnoauth.sql are provided to make this easy.

Also for testing with authentication, set useAuthentication to true and set

preloadedCredentials parameter.

4. Testing with SSL: We need to set up SSL keys and certificates for our test hosts

signed with a common CA certificate in order to test the presence server with TLS.

To automate this process, we have provided a script generate_keystore.pl that reads in

a file "hosts.txt" and generates keys and certificates for each host in that file. It signs

all certificates with a shared CA private key. If you are generating your own

certificates, please make sure that the "CN" field in certificate is set to the canonical

host name and NOT the IP address, since the server verifies by matching ip addresses.

Also for testing with TLS, set the protocol to TLS, server port to 5061, and

security to true in the test configuration.

5. Code changes in sipstone, sipd, reanalyze and wrapper test scripts submitted to CVS.

Please see cinema/sipstone for revisions.

 22

Appendix B. Examples

We have shown some examples below for different tests. Since the purpose here is to

show the message flow, we have run these tests for 1 request, 1 user and 1 sec. duration.

1. Register UDP

test Loader SUT
REGISTER sip:128.59.19.154 SIP/2.0
Via: SIP/2.0/UDP 128.59.19.159:7798
From: sip:A1000@cs.columbia.edu
To: sip:A1000@cs.columbia.edu
Contact: sip:A1000@128.59.19.159:7798
Subject: sipstone register test
CSeq: 1 REGISTER
Call-ID: 1560721148@irtcluster07.cs.columbia.edu
Expires: 86400
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP 128.59.19.159:7798
From: sip:A1000@cs.columbia.edu
To: sip:A1000@cs.columbia.edu;
tag=1Lf7nhwQ6icuse8RcYVYsw
Call-ID: 1560721148@irtcluster07.cs.columbia.edu
CSeq: 1 REGISTER
Date: Wed, 10 May 2006 08:25:42 GMT
Server: Columbia-SIP-Server/1.24
Content-Length: 0
Contact: <sip:A1000@128.59.19.159:7798>;
expires=86400; action=proxy; q=1.00
Expires: 86400

2. Register TCP

test Loader SUT
REGISTER sip:128.59.19.154 SIP/2.0
Via: SIP/2.0/TCP 128.59.19.159:7798
From: sip:A1000@cs.columbia.edu
To: sip:A1000@cs.columbia.edu
Contact: sip:A1000@128.59.19.159:7798
Subject: sipstone register test
CSeq: 1 REGISTER
Call-ID: 3181750771@irtcluster07.cs.columbia.edu
Expires: 86400
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/TCP 128.59.19.159:7798
From: sip:A1000@cs.columbia.edu
To: sip:A1000@cs.columbia.edu;
tag=O9q6fXxde4lSZZZVnotj4Q
Call-ID: 3181750771@irtcluster07.cs.columbia.edu
CSeq: 1 REGISTER
Date: Wed, 10 May 2006 08:27:19 GMT
Server: Columbia-SIP-Server/1.24
Content-Length: 0
Contact: <sip:A1000@128.59.19.159:7798>;
expires=86400; action=proxy; q=1.00
Expires: 86400

 23

3. Register TLS

test Loader SUT
REGISTER sip:128.59.19.154 SIP/2.0
Via: SIP/2.0/TLS 128.59.19.159:7798
From: sip:A1000@cs.columbia.edu
To: sip:A1000@cs.columbia.edu
Contact: sips:A1000@128.59.19.159:7798
Subject: sipstone register test
CSeq: 1 REGISTER
Call-ID: 239106195@irtcluster07.cs.columbia.edu
Expires: 86400
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/TLS 128.59.19.159:7798
From: sip:A1000@cs.columbia.edu
To: sip:A1000@cs.columbia.edu;
tag=eF8jVurC85tFsYYE.0agjA
Call-ID: 239106195@irtcluster07.cs.columbia.edu
CSeq: 1 REGISTER
Date: Wed, 10 May 2006 08:31:32 GMT
Server: Columbia-SIP-Server/1.24
Content-Length: 0
Contact: <sip:A1000@128.59.19.159:7798>;
expires=86146; action=proxy; q=1.00
Expires: 86146

1. Invite UDP

test Loader SUT test Callhandler

SIP/2.0 200 OK
Via: SIP/2.0/UDP
128.59.19.159:6786
From: sip:A1000@cs.columbia.edu
To: sip:A1000@cs.columbia.edu;
tag=gvwVveBPqSheRbH2LdxtnQ
Call-ID:
646107955@irtcluster07.cs.colum
bia.edu
CSeq: 1 REGISTER
Date: Wed, 10 May 2006 11:08:11
GMT
Server: Columbia-SIP-
Server/1.24
Content-Length: 0
Contact:
<sip:A1000@128.59.19.159:7798>;

REGISTER sip:cs.columbia.edu
SIP/2.0
Via: SIP/2.0/UDP
128.59.19.159:6786
From: sip:A1000@cs.columbia.edu
To: sip:A1000@cs.columbia.edu
Contact:
sip:A1000@128.59.19.159:6786
Subject: sipstone register test
CSeq: 1 REGISTER
Call-ID:
646107955@irtcluster07.cs.colum
bia.edu
Expires: 86400
Content-Length: 0

 24

INVITE
sip:A1000@cs.columbia.edu
SIP/2.0
Via: SIP/2.0/UDP
128.59.19.159:7798
Max-Forwards: 70
From:
sip:sipcaller@cs.columbia.edu
To: sip:A1000@cs.columbia.edu
Contact:
sip:sipcaller@irtcluster07.cs.c
olumbia.edu:7798
Subject: sipstone invite test
CSeq: 1 INVITE
Call-ID:
2348585866@irtcluster07.cs.colu
mbia.edu
Content-Type: application/sdp
Content-Length: 210

v=0
o=user1 53655765 2353687637 IN
IP4 128.3.4.5
s=Mbone Audio
t=3149328700 0
i=Discussion of Mbone
Engineering Issues
e=mbone@somewhere.com
c=IN IP4 128.3.4.5
t=0 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

expires=76748; action=proxy;
q=1.00
Contact:
<sip:A1000@128.59.19.159:6786>;
expires=86400; action=proxy;
q=1.00
Contact:
<sips:A1000@128.59.19.159:7798>
; expires=77002; action=proxy;
q=0.00
Expires: 76748

SIP/2.0 100 Trying
Via: SIP/2.0/UDP
128.59.19.159:7798
From:
sip:sipcaller@cs.columbia.edu
To: sip:A1000@cs.columbia.edu;
tag=aTg.VxTmsuYzUfoEN5NFag
Call-ID:
2348585866@irtcluster07.cs.colu
mbia.edu
CSeq: 1 INVITE
Date: Wed, 10 May 2006 11:08:14
GMT
Server: Columbia-SIP-
Server/1.24
Content-Length: 0

INVITE
sip:A1000@128.59.19.159:7798
SIP/2.0
Via: SIP/2.0/UDP
128.59.19.154:5060;branch=z9hG4
bKkslhRLUJAQAAAAAAAAAAADghg5kE7
3QEX39IhAiKWaU_
Via: SIP/2.0/UDP
128.59.19.159:7798
Max-Forwards: 69
From:
sip:sipcaller@cs.columbia.edu

 25

To: sip:A1000@cs.columbia.edu
Contact:
sip:sipcaller@irtcluster07.cs.c
olumbia.edu:7798
Subject: sipstone invite test
CSeq: 1 INVITE
Call-ID:
2348585866@irtcluster07.cs.colu
mbia.edu
Content-Type: application/sdp
Content-Length: 210

v=0
o=user1 53655765 2353687637 IN
IP4 128.3.4.5
s=Mbone Audio
t=3149328700 0
i=Discussion of Mbone
Engineering Issues
e=mbone@somewhere.com
c=IN IP4 128.3.4.5
t=0 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

SIP/2.0 180 Ri
Via: SIP/2.0/UDP
128.59.19.159:7798
Max-Forwards: 69
From:
sip:sipcaller@cs.columbia.edu
To: sip:A1000@cs.columbia.edu
Contact:
<sip:callhandler0@128.59.19.159
:6786>
Subject: sipstone invite test
CSeq: 1 INVITE
Call-ID:
2348585866@irtcluster07.cs.colu
mbia.edu

SIP/2.0 180 Ri
Via: SIP/2.0/UDP
128.59.19.154:5060;branch=z9hG4
bKkslhRLUJAQABAAAAAAAAADghg5kE7
3QEX39IhAiKWaU_
Via: SIP/2.0/UDP
128.59.19.159:7798
Max-Forwards: 69
From:
sip:sipcaller@cs.columbia.edu
To: sip:A1000@cs.columbia.edu
Contact:
<sip:callhandler0@128.59.19.159
:6786>
Subject: sipstone invite test
CSeq: 1 INVITE
Call-ID:
2348585866@irtcluster07.cs.colu
mbia.edu
Content-Type: application/sdp
Content-Length: 210

v=0
o=user1 53655765 2353687637 IN
IP4 128.3.4.5
s=Mbone Audio
t=3149328700 0
i=Discussion of Mbone
Engineering Issues
e=mbone@somewhere.com
c=IN IP4 128.3.4.5
t=0 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

 26

Content-Type: application/sdp
Content-Length: 210

v=0
o=user1 53655765 2353687637 IN
IP4 128.3.4.5
s=Mbone Audio
t=3149328700 0
i=Discussion of Mbone
Engineering Issues
e=mbone@somewhere.com
c=IN IP4 128.3.4.5
t=0 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

SIP/2.0 200 OK
Via: SIP/2.0/UDP
128.59.19.159:7798
Max-Forwards: 69
From:
sip:sipcaller@cs.columbia.edu
To: sip:A1000@cs.columbia.edu
Contact:
<sip:callhandler0@128.59.19.159
:6786>
Subject: sipstone invite test
CSeq: 1 INVITE
Call-ID:
2348585866@irtcluster07.cs.colu
mbia.edu
Content-Type: application/sdp
Content-Length: 210

v=0
o=user1 53655765 2353687637 IN
IP4 128.3.4.5
s=Mbone Audio
t=3149328700 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP
128.59.19.154:5060;branch=z9hG4
bKkslhRLUJAQABAAAAAAAAADghg5kE7
3QEX39IhAiKWaU_
Via: SIP/2.0/UDP
128.59.19.159:7798
Max-Forwards: 69
From:
sip:sipcaller@cs.columbia.edu
To: sip:A1000@cs.columbia.edu
Contact:
<sip:callhandler0@128.59.19.159
:6786>
Subject: sipstone invite test
CSeq: 1 INVITE
Call-ID:
2348585866@irtcluster07.cs.colu
mbia.edu
Content-Type: application/sdp
Content-Length: 210

v=0
o=user1 53655765 2353687637 IN
IP4 128.3.4.5
s=Mbone Audio
t=3149328700 0
i=Discussion of Mbone
Engineering Issues
e=mbone@somewhere.com
c=IN IP4 128.3.4.5
t=0 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

 27

ACK
sip:callhandler0@128.59.19.159
SIP/2.0
Via: SIP/2.0/UDP
128.59.19.159:7798
Max-Forwards: 69
From:
sip:sipcaller@cs.columbia.edu
To: sip:A1000@cs.columbia.edu
CSeq: 1 ACK
Call-ID:
2348585866@irtcluster07.cs.colu
mbia.edu
Content-Length: 0

BYE
sip:callhandler0@128.59.19.159
SIP/2.0
Via: SIP/2.0/UDP
128.59.19.159:7798
Max-Forwards: 69
From:
sip:sipcaller@cs.columbia.edu
To: sip:A1000@cs.columbia.edu
CSeq: 1 BYE
Call-ID:
2348585866@irtcluster07.cs.colu
mbia.edu
Content-Length: 0

i=Discussion of Mbone
Engineering Issues
e=mbone@somewhere.com
c=IN IP4 128.3.4.5
t=0 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The examples for Invite TCP and Invite TLS are similar to Invite UDP shown above.

