
Implementation of SIP URI Service Discovery
Akshat Sikarwar

COMS E6901 - Fall 2008
Department of Electrical Engineering

Columbia University
New York, USA - 10027

as3515@columbia.edu

ABSTRACT
This project report documents the implementation of the Internet-
Draft (I-D) SIP URI Service Discovery using DNS-SD [1] for SIP
Communicator [2].

Keywords
SIP, Bonjour, Zeroconf, service discovery, SIP Communicator

1. INTRODUCTION
Using the mechanisms described in the I-D, a SIP user agent (UA)
can communicate with another UA even when no SIP registrar is
available. SIP Communicator (SC) was chosen as the target for
the implementation. The soft-phone was modified such that it
advertises and discovers UAs and makes calls to the discovered
contacts.

Consider two users, Alice and Bob, who are running SIP UAs on
their laptop computers on the same subnet. Assume that a DNS-
SD/mDNS implementation [3], such as Bonjour or Avahi, is
installed and running on both computers. Further assume that SIP
registrar and proxy server are not available to the UAs (there is no
SIP server in the network or the UAs are not configured with the
local servers, for instance.) Alice, knowing that Bob is in the
vicinity with his computer connected probably to the same subnet
as hers, would like to make a SIP call to Bob.

If the UAs use the mechanism in the I-D, this requirement can be
met.

The UAs (or contacts) discovered through this mechanism will be
referred to as SIP Bonjour contacts in this document.

2. BACKGROUND
SC is an open source, Java based VoIP soft-phone. It is also a FSF
High Priority Project [4] and is under active development. At time
of writing this document, version1.0-alpha3 was under
development.

SC uses Apache Felix [5] as its application framework. Felix is an
implementation of OSGi [6] by the Apache Foundation. For this
implementation, modifications to the SIP protocol bundle were
required. A bundle is like a module or a plug-in in OSGi
terminology.
The SIP Protocol bundle was extended to advertise the SIP
account using Zeroconf, display the discovered UAs in a separate
group in the buddy list and make calls to them even if SC was
offline. Mechanisms were put in such that if SC was online (as in,
logged into a SIP proxy server) and had other SIP contacts in the
buddy list, they were called via the configured proxy server, while

the contacts discovered through Zeroconf were called directly
(p2p).

JmDNS was chosen as the Zeroconf implementation in this
project. JmDNS is a pure Java implementation of multi-cast DNS
and can be used for service registration and discovery in local area
networks. JmDNS is fully compatible with Apple's Bonjour. [7]

SC uses JAIN SIP (or JSIP) as its SIP stack. JSIP is freely
available software, developed at the National Institute of
Standards and Technology (NIST), an agency of the US Federal
Government. [8]

3. IMPLEMENTATION
3.1 SIP URI Advertisement Format
The Zeroconf service advertisement for SIP URI is of the
following form:

<Instance> . <Service> . <Domain>

<Instance> is the SIP URI of the UA.

<Service> is one of "_sipuri._udp", "_sipuri._tcp",
or "_sipuri._sctp", depending on the transport protocol
desired by the UA.

<Domain> specifies the DNS sub-domain where the service
instance is registered. It may be "local.", indicating the mDNS
local domain, or it may be a conventional domain name such as
"example.com.".

In addition, the TXT record of the advertisement may contain any
of the following:

• txtvers
• name
• contact

Their meaning is self-explanatory.

3.2 General Design
Whenever the UA discovers a contact, it verifies if the contact is
already in the contact list. This is required because the service
advertisements are usually received multiple times.
This service announcement contains all the necessary information
that is required to make a SIP call to the contact.
Similarly, when a contact terminates, the notification is received
via Zeroconf and the contact is removed from the buddy list.

Before a UA terminates, it must remove its Zeroconf
advertisement, so that this event (of its closing down) is sent to all
the interested parties.

All of these functions are implemented in BonjourService
class in the SIP protocol bundle. At this time the implementation
supports communication over UDP only. The name and contact
TXT records are included as part of the Zeroconf advertisement.
In addition, this class also provides a kind of look-up service
(whether a contact was discovered using Zeroconf or not) to SC.
This is required, as this determines whether the call is made via a
proxy server or directly to UA.
A new SIP stack is instantiated in the
OperationSetBasicTelephonySipImpl class, which
takes care of making the direct p2p SIP calls to SIP Bonjour
contacts.

3.3 Code Organization
The BonjourService class is responsible for handling the
Zeroconf events.

A new SipProvider and ListeningPoint was created to respond to
SIP events and to make calls to SIP Bonjour contacts. Additional
ListeningPoint could not be added to the existing SipProvider
because this is prohibited in the JAIN SIP implementation.
Following is from the javadoc for addSipListener method of
SipProvider (JAIN SIP):

If there is a ListeningPoint with the same transport but different
IP or port, the implementation is expected to throw an exception.

By default a UDP ListeningPoint is created for the proxy server
connection, which listens on port 5060. Therefore, we need a new
SipProvider with required UDP ListeningPoint. Since it is not
possible to have multiple ListeningPoints bound to the same port,
the ListeningPoint for SIP Bonjour binds to UDP port 5070.

Following code snippet shows the initialization of the SIP
Bonjour SIP stack:

Figure 1 Initialize SIP stack

At the time of placing an outgoing call, the check for registered
protocol provider needs to be modified so sip contacts can be
called even if registration has not happened.

Figure 2 Modify check for protocol provider
Additionally, we need to determine if the callee is a SIP Bonjour
contact, and if so, use the SIP stack we just created above instead
of the default one

Figure 3 Modify getDefaultJainSipProvider()
A similar modification is required to the routine, which returns
ListeningPoints.

Figure 4 Retrive ListeningPoint

3.4 Presence
Presence is out of scope of the I-D and therefore this
implementation as well. However, since buddy list is involved in
the implementation, a decision had to be made on how and when
to show the contacts in the buddy list and what kind of presence
information to give out as part of the Zeroconf advertisement.

It has to be kept in mind that the user has no control over who
receives the service advertisement. It would be unwise to give out
presence information to an unknown audience (specially because
status messages can be personal in nature.)

Additionally, it is not known whether user is offline or there is no
connectivity to the SIP proxy (which is a scenario covered by the
I-D). As a result the SIP URI is advertised at all times the
application is run. It is unclear what the presence status of the user
is while the account if offline.
Due to these reasons, the SIP Bonjour contacts are available for
calling, at all times the client software is running.

If the user does not want to give out service advertisement, he can
always disable SIP Bonjour from the settings as explained in
Section 4 or terminate the client.

4. CONFIGURATION
Zeroconf requires no configuration Very little configuration is
required (and provided) in this implementation. The default
settings would suffice most of the times.

There are two user configurable parameters. These can be
manipulated at account creation time or modified at a later time. If
changes are made to an existing account, the client must be
restarted for changes to take effect. A screenshot of the
configuration is shown below:

4.1.1 Enable SIP Bonjour
The user can disable SIP Bonjour if he so wishes. In this case, the
SIP URI will not be advertised and associated JAIN SIP
infrastructure will not be created.

4.1.2 SIP Bonjour Port
The default port for SIP Bonjour ListeningPoint is bound to port
5070. This can be changed depending on the users requirements.
In fact, this change is required if the user wishes to run more that
one SIP account at the same time. Since multiple ListeningPoints
cannot be bound to the same port for a given protocol (UDP),
changing the port number is a must in this scenario.

5. FUTURE DIRECTIONS
5.1 Code Enhancement
The default port that is selected for SIP Bonjour is 5070. This is
relatively safe and chances of a conflict are minimal. On the
IANA list, 5070 is listed as a well-known port for VersaTrans
Server Agent Service. To remove chances of a conflict, the
implementation could select a random unused port at startup.

5.2 Integration with Mainline
It is the author’s intent to submit a patch file to the SIP
Communicator team, for including this implementation as part of
the standard software distribution.

6. ACKNOWLEDGMENTS
My sincere thanks to Prof. Henning Schulzrinne
(hgs@cs.columbia.edu) and Jae Woo Lee (jae@cs.columbia.edu)
for help during the development of this project.

7. REFERENCES
[1] Lee, J., et al., (2008) SIP URI Service Discovery using DNS-

SD, Internet-Draft, [Online], Available:
http://tools.ietf.org/html/draft-lee-sip-dns-sd-uri

[2] SIP Communicator, [Online], Available: http://sip-
communicator.org

[3] Cheshire & Krochmal, (2008) mDNS, Internet-Draft,
[Online], Available: http://files.multicastdns.org/draft-
cheshire-dnsext-multicastdns.txt

[4] FSF High Priority Projects, [Online] Available:
http://www.fsf.org/campaigns/priority.html

[5] Apache Felix, [Online], Available:
http://felix.apache.org/site/index.html

[6] OSGi, [Online], Available:
http://www.osgi.org/Main/HomePage

[7] JmDNS, [Online], Available: http://jmdns.sourceforge.net
[8] JAIN SIP, [Online], Available: https://jain-sip.dev.java.net

