

Implementation of
SIP Servlet User Policy

Sangho Shin

Columbia University

Department of Computer Science
ss2020@cs.columbia.edu

Implementation of SIP Servlet User Policy

 1

Contents

1 Introduction

1.1 User policy
1.2 SIP servlet

2 Architecture

2.1 User policy architecture
2.2 SIP servlet user policy handler
2.3 Servlet Engine

2.3.1 Initialization (init())
2.3.2 doRequest and doResponse
2.3.3 Cleanup

2.4 Servlet Loader
2.5 Shared Library

2.5.1 libContactDBWrapper.so
2.5.2 libSipResponseWrapper.so, libSipRequestWrapper.so

3 CINEMA Web interface for sip servlet

3.1 SIP servlet display [Scripts.cgi]
3.2 SIP servlet upload and edit [ScriptEdit.cgi]
3.3 SIP servlet delete. [ScriptDelete.cgi]

4 Simple Salability Test

5 Sample SIP Servlets.

5.1 Call screening
5.2 ForwardOnBusy Servlet
5.3 ForwardOnNoResponse

6 Acknowledgement

7 References

Implementation of SIP Servlet User Policy

 2

1 Introduction

1.1 User policy

Policy is SIP transaction handling. That is policy decides how to handle SIP requests
and responses. Low-level policy is transaction policy. This policy controls the module’s
standard handling of a transaction. High-level policy is user policy, which implements
user specific features, and this user policy is implemented by SIP CGI, CPL, SIP
Servlets. I implemented SIP servlet user policy in this research.

1.2 SIP servlet

A SIP servlet is a Java-based application component, managed by a container, which
performs SIP signaling. SIP servlets can inspect and set message headers and bodies,
and they can proxy and respond to requests and forward responses upstream.
SIP servlets have ready access a wide variety of APIs, directories, databases, CORBA,
the Java Media Framework, etc. and they can reuse Java security infrastructure.

Currently, two versions of SIP Servlet API is published. The first version was published
in 1999, and this is not standard version. The second one was published in May 2002,
which is a standard version (version 1.0). When I started to do this project, only first
version was published. So, this implementation is based on the first version of SIP
servlet API. Please refer to my document, SIP servlet API version 1.0 Review
[SIPServletAPI1.pdf] for their difference.

Implementation of SIP Servlet User Policy

 3

2 Architecture

SIP servlet user policy mechanism is composed of mainly three parts, Policy_core,
sipservlet user policy handler, ServletEngine. Policy core is a mechanism for handling
various user policies, and sipservlet user policy handler is interface between sipd(more
exactly, policy_core) and ServletEngine, and ServletEngine is engine for SIP servlets.

[Fig 1] SIP servlet user policy architecture

2.1 User policy architecture

Policy core invokes policy functions and provides the basic state machinery for policy
invocation.
When SIP message arrives to sipd, sipd checks user policy, and gets policy_core start
user policy handling. Policy_core calls the following 6 functions.

SIP

Proxy Server

Policy_Core

SIP Servlet User

Policy Handler

Native Shared Library

Invoke

Transaction Container

JVM
SIPServlet

Loader
ServletEngine

Sip servlet Class

Scripts repository

SIP servlet Class

Load servlet

Call back Sip servlet Instance

SIP Servlet API Impl

Implementation of SIP Servlet User Policy

 4

user_policy_ret (*init)(request_t *r, const policy_info_t *info, int status);
user_policy_ret (*handle_initial_request)(request_t *r);
user_policy_ret (*handle_subsequent_request)(request_t *r, message_t *m);
user_policy_ret (*handle_response)(request_t *r, message_t *m, branch_t *branch);
user_policy_ret (*timeout_expired)(request_t *r);
user_policy_ret (*cleanup)(request_t *r);

Every user policy handler should implement above 6 functions. Please refer to The
CINEMA LIBSIP policy API [Jonathan Lennox] for specific architecture.

2.2 SIP servlet user policy handler

sipsevlet user policy handler implements the following 6 functions.

user_policy_ret sipservlet_init(request_t *r, const policy_info_t *reg, int status);
user_policy_ret sipservlet_handle_initial_request(request_t *r);
user_policy_ret sipservlet_handle_subsequent_request(request_t *r, message_t *m);
user_policy_ret sipservlet_handle_response(request_t *r, message_t *m, branch_t *b);
user_policy_ret sipservlet_timeout_expired(request_t *r);
user_policy_ret sipservlet_cleanup(request_t *r);

sipservlet_init() function is called immediately after execute_policy is invoked. It
constructs user_policy_info object. user_policy_info contains script object pointer,
callback function pointers for native shared library, original request object pointer, and
calleeID. This user_policy_info is stored in request_t object for later use. I will describe
all about those later.

struct sipservlet_info {
 script_t *script;

void (*send_request_to)(request_t *r, const uri_t *uri, message_t *m,
void *policy_info, policy_type type);

 void (*send_new_response)(request_t *r, int status, const char *reason);
 void (*contact_insert_contact)(cinema_table *table, const contact_table_entry *entry,
 db_err *err, char **reason);
 request_t *original_request;
 char *callee_id;

Implementation of SIP Servlet User Policy

 5

};

After constructing user_policy_info, it constructs SipResquest object(Java) with
request_t using JNI, and constructs servlet class path with script info, and all these
objects are passed to ServletEngine by calling init() function of ServletEngine.

[Fig 2] SIP message objects conversion

 [Fig 3] Function mapping between SIP servlet handler and Servlet Engine

xxx_request(), xxx_response(), and xxx_cleanup() functions constructs constructs
SipRequest and SipResponse objects and call mapping function of ServletEngine.

sipservlet_init()

sipservlet_handle_initial_request()

sipservlet_handle_subsequent_request(
doRequest()

doResponse()

SIP servlet handler Servlet Engine

sipservlet_handle_response()

sipservlet_timeout_expired()

sipservlet_cleanup()

doCleanup()

init()

request_t

message_t

branch_t

SipRequest

SipResponse

C objects
Java objects

ServletEngine

J
N
I

Implementation of SIP Servlet User Policy

 6

2.3 Servlet Engine

Servlet Enigne loads SIP servlets and invokes functions of SIP servlets and maintains
states of SIP servlets. To maintain states of each SIP servlet, Servlet Engine maintains
transaction container (Hashtable). Whenever new SIP transaction is invoked from SIP
servlet handler of sipd, Servlet Engine constructs a SipTransaction object and registers
the SIP servlet object as its listener, and store the SIP transaction to the transaction
container. Originally, multiple servlets can be registered as listener of a SipTransaction.
However, this feature is open issues in this version of SIP servlet API, and only one
servlet can be registered in this implementation.

2.3.1 Initialization (init())
SIP servlet handler does not give servlet class name, and it passes just servlet class path.
Servlet Engine checks the servlet class path, and gets the servlet class name. In the
servlet path, only one public class should exist, but multiple inner classes can exist. If
there is no public class in the pass, the init function will return false.
After getting the servlet class name, ServletEngine loads the servlet class into JVM
using ServletLoader and constructs its instance. Then, it constructs a SipTransaction
object and register the servlet as its listener, and put the transaction object into
transaction container (Hashtable class). Finally, it calls init() function of SIP servlet.

2.3.2 doRequest and doResponse
When the two functions are called, SipRequest object or SipResponse objects are passed
to ServletEngine. ServletEngine searches the SipTransaction objects with the passed
object (in real, CallID is the search key) from transaction container, and gets the listener
SIP servlet. If Servlet Engine cannot find SipTransaction, return false.
If Servlet Engine succeeded in getting listener SIP servlet, it calls gotRequest() or
gotResponse() function.

2.3.3 Cleanup
doCleanup function is called from sipd by user policy cleanup process. Serlvet Engine
searches the SipTransaction object from the container and removes the transaction from
the container. And, the listener SIP servlet of the transaction is removed by calling
destroy() of the SIP servlet.

Implementation of SIP Servlet User Policy

 7

2.4 Servlet Loader

Servlet Loader loads SIP servlet class into JVM from the servlet path. Servlet Loader
class extends ClassLoader class. In JDK1.1, the ClassLoader class was abstract class,
but in JDK1.2, it is not abstract class any more. Please refer to my shor report,
Implementation of SIP Servlet Loader for the specific implementation.

SIP Servlet can be updated at anytime by user. Furthermore, various SIP servlets can be
built by many users, and can be registered in proxy server. So, the SIP servlet name can
be conflicted. Therefore, Servlet Engine should be able to load new byte code for the
servlet from disk without restarting Java Virtual Machine when the SIP servlet class is
updated, or the SIP Servlet of a different user should be loaded.
ClassLoader maintains hashtable for caching the loaded class, and it always returns the
cached class once a class is loaded into JVM. So, we should call findClass() method to
load a SIP servlet class instead of loadClass() in the Servlet Engine.
However, we have a problem still. Once one class is defined, the class that has the same
name with the class cannot be defined again until the class is unloaded from JVM.
Therefore, we should make the class unloaded from JVM to redefine the updated class.

We cannot explicitly unload the class from JVM, rather we should delete all the
references to the class and make the class garbage-collected.
In my Servlet Engine and Servlet Loader has lots reference to the class when a servlet
class is loaded.

[Fig 4] References of Forward SIP servlet class

Data type for
Forward

Forward
Instance

Class Instance
for Forward

ServletLoader
Instance

Servletcontainer

sipServlet

Vector
Instance

newTransaction

Implementation of SIP Servlet User Policy

 8

So, we should set all the variables that refer to the class to null, including ServletLoader
instance, and reload the class from disk.
And, we cannot always load all classes from disk, so we should check whether the class
is updated first. Only when the class is updated, we should make new instance of
ServletLoader.
Hence, when init function of ServletEngine, ServletEngine checks the servlet class is
updated or not, and if the servlet class is updated, we should release the current
ServletLoader instance and construct new ServletLoader instance for this reason.

2.5 Shared Library

void policy_send_new_response(request_t *r, int status, const char *reason);
void policy_send_modified_new_response(request_t *r, int status,
 const char *reason,
 headers_t *new_headers,
 headers_t *del_headers,
 body_t *body);
void policy_forward_response(request_t *r, message_t *m);
void policy_forward_user_response(request_t *r, message_t *m);
void policy_proxy_original_request_to(request_t *r, const uri_t *uri,
 message_t *m, void *policy_info,
 policy_type type);
void policy_proxy_subsequent_request_to(request_t *r, branch_t *b,
 message_t *m);
void policy_cancel_branch(request_t *r, branch_t *b);
void policy_set_timeout(request_t *r, double delay, policy_type type);
void policy_done(request_t *r, policy_type type);

For final real handling of request or response, policy_core supports the above functions,
and all the final handling should be done by above the functions.
So, send() function of SipReqeust class and SipResponse class shoud be implemented
with the above C native functions, and the functions are called using JNI callback
mechanism. To call the abovce functions in native shared library, we should pass the
function pointer to shared library. Of course, we can include all the functions in the
shared library, but the size of the shared library become very large. So, we convert the
function pointer to long value and store them to user_policy_info object, and the

Implementation of SIP Servlet User Policy

 9

function pointers are converted to Java long type, and passed to shared library through
JVM.
Native share library is composed of three libraries. libContactDBWrapper.so for
ContactDatabase class, libSipResponseWrapper.so for SipResponse class, and
libSipRequestWrapper.so for SipRequest class.

2.5.1 libContactDBWrapper.so
The library supports getContacts() and addContact() function of ContactDatabase class.
getContacts() function get all the registered contacts info from DB, and addContact()
function add a contact for the user to DB.
SIP servlet API can use JDBC to get the contacts from DB and add a contact to DB. But,
to decrease the dependency on DB of the API implementation, the API calls the native
function. By using native function, the API implementation cannot be modified even if
the table name of fields name of the contact info in DB.

2.5.2 libSipResponseWrapper.so, libSipRequestWrapper.so
These libraries supports send() function of SipResponse class and SipReqeust class.
They construct request_t object and extract user_policy_info from the request_t object.
In the user_policy_info, original request_t object pointer and lots callback function
pointers are contained. These native functions call the corresponding callback function
(in policy_core) with the original request_t object.
For mechanism of sipd, the original request_t object should be passed as the argument
of the callback function. Otherwise, sipd cannot identify that any response or request is
sent, and will ignore the response to the response or request.

Implementation of SIP Servlet User Policy

 10

3 CINEMA web interface for sip servlet

[Fig 5] CINEMA Web interface for SIP servlet user policy

Users can upload SIP servlet using CINEMA web interface as likely as SIP CGI and
CPL. However, SIP servlet web interface has different behavior from the SIP CGI and
CPL.
All the scripts are written in Tcl language. For the Tcl for CGI, please refer to “Writing
CGI scripts in Tcl”.

3.1 SIP servlet display [Scripts.cgi]

If SIP servlet is registered, the SIP servlet class file name is displayed. If SIP servlet
source file is registered, the source file is displayed and the source can be edited

3.2 SIP servlet upload and edit [ScriptEdit.cgi]

Users can upload not only SIP servlet class file but also SIP servlet source file. Of
course, users can write or paste the SIP servlet source file into TextBox. When user
uploads SIP servlet source file or writes source in TextBox, web server compiles the
source file, and displays error message in case of compile error. Otherwise, the

Implementation of SIP Servlet User Policy

 11

compiled class file is registered as SIP servlet user policy.
Users can use inner class in SIP servlet, and upload the multiple inner classes. However
users can upload just one public class file. If another public class file is uploaded, the
previous public class will be removed. The reason is that only one SIP servlet can be
registered as SIP transaction listener in this implementation, and if multiple public class
file is uploaded, ServletEngine cannot know which one is real class file.
The SIP servlet class name is not stored anywhere. So, ServletEngine checks the servlet
path, and knows SIP servlet class name.
When SIP servlet source file is edited in TextBox, the file name should be decided
automatically, and the file name should be the same as the public class name. So,
Upload cgi checks public class name and decides the source file name. If the upload cgi
can’t extract class name from the source, error message will be displayed.

3.3 SIP servlet delete. [ScriptDelete.cgi]

When user deletes the public class file, the source file is deleted if any. However, all the
inner class files should be deleted separately.

Implementation of SIP Servlet User Policy

 12

4 Simple scalability test

I measured the process time of the SIP servlet user policy to test its scalability. For the
more exact scalability test, I should have measured the time when a number of SIP
transaction is processed by the SIP servlet user policy simultaneously, but I couldn’t.
In stead of it, I set the SIP servlet class that does nothing but just returning false, and its
pure object conversion time and SIP servlet function call time using JNI.

1 st call
Init sipservlet_init() ServletEngine.init() sipd
 361msec 304msec
Request sipservlet.handle_request() ServletEngine.doRequest() sipd

 4msec 11 msec
Response sipservlet.handle_response() ServletEngine.doResponse() sipd
 11msec 9msec

2nd call
Init sipservlet_init() ServletEngine.init() sipd
 361msec 304msec
Request sipservlet.handle_request() ServletEngine.doRequest() sipd

 4msec 11 msec
Response sipservlet.handle_response() ServletEngine.doResponse() sipd
 11msec 9msec

3 rd call
Init sipservlet_init() ServletEngine.init() sipd
 361msec 304msec
Request sipservlet.handle_request() ServletEngine.doRequest() sipd

 4msec 11 msec
Response sipservlet.handle_response() ServletEngine.doResponse() sipd
 11msec 9msec

[Table 1] Simple scalability test results

When SIP message arrived, policy_core calls sipservlet_init(). This function convert C
sipd objects(request_t, message_t etc) to Java objects(SipRequest, SipResponse), and

Implementation of SIP Servlet User Policy

 13

calls init() function of ServletEngine in JVM using JNI.
In first call, the conversion process of sipservlet_init() takes 361 msec. The reason is
that all the classes required for conversion should be loaded into JVM. In the second
call, it takes just 4 msec because all the classes are loaded into JVM already. So, we can
ignore the first 361 msec delay because all the classes should be loaded into JVM after
the first call.
This init() of ServletEngine initialize the ServletLoader, and loads SIP servlet from disk
using the ServletLoader. In first call, the init() function takes 304msec.
This first call delay occurs only once until sipd is killed, so we can ignore the first call
delay. However, we can decrease the first call delay by loading all the required classes
into JVM when sipd is initialized.
Right after initialization of user policy handler, policy core calls
sipservlet_handle_initial_request() function. This function converts all the C objects to
Java object as likely as the init process, and call doRequest() of ServletEngine using JNI.
However, it takes just 4 msec because all the objects are loaded into JVM.
doRequest() of Servlet Engine does nothing and just returns false. So, we can say that
4msec is purely Java function call dealy.
Seeing that 2nd and 3rd call logs, we can find that all the conversion process and
function call take below 10 msec except ServletEngine.init(). The reason is that init()
function of ServletEngine checks if the servlet is updated or not by accessing DISK
even if the servlet class is loaded into JVM already.
I tested another case. After executing DoNothing SIP servlet user policy, I changed the
SIP servlet to Forward.class. This SIP servlet forwards the request to another branch. So,
ServletEngine should load the new SIP servlet class into JVM from DISK, and we can
measure the pure SIP servlet class loading time, because all the other classes are loaded
into JVM already. It took 14 seconds. And, the doRequest() of Forward class process
time was below 10 msec. However, it depends on how to implement the SIP servlet.

Implementation of SIP Servlet User Policy

 14

5 Sample SIP servlets

5.1 Call screening
Screening list : Alice@cs.columbia.edu

.
This servlet reject a call from a user who is included in call screening list. doRequest()
function checks if the caller is in the call screening list, and sends BUSY HERE
response to the caller if the caller is in the list. Otherwise, it will defer the handling to
sipd by returning false.

import org.ietf.sip.*;

import java.util.Vector;

public class CallScreen extends SipServletAdapter {

 protected int statusCode;

 protected String reasonPhrase;

 Vector screeningList;

 SipFactoryImpl factory = new SipFactoryImpl();

 public void init(ServletConfig config) {

 super.init(config);

 factory = new SipFactoryImpl();

 screeningList = new Vector();

 try {

 /* You can also read screening list from DB or files */

 SipURL url =

Alice

Proxy

Server

INVITE

DECLINE

Bob Bob

INVITE

ss2020

Proxy

Server

INVITE

Implementation of SIP Servlet User Policy

 15

 factory.createSipURL("sip:ss2020@disco.cs.columbia.edu");

 screeningList.add(url.toString());

 }catch(ParseException e) {

 }

 statusCode = SC_DECLINE;

 reasonPhrase = "Decline";

 }

 public boolean doInvite(SipRequest req) {

 String uri = req.getFrom().getSipURL().toString();

 /* If the caller URL is included in the screening list, reject

the call */

 if (screeningList.contains(req.getTo().getURI())) {

 SipResponse res = req.createResponse();

 res.setStatus(statusCode, reasonPhrase);

 res.send();

 return true;

 }

 else

 return false;

 }

}

5.2 ForwardOnBusy Servlet

Alice

Proxy

Server Contact2 Contact1 Bob

INVITE

INVITE
INVITE

BUSY

INVITE

OK

OK

BUSY

Implementation of SIP Servlet User Policy

 16

This servlet forwards the request when all the braches are busy or reject the call.
doRequest() function gets the registered contacts from DB, and fork the request to the
all contacts. doResponse() function checks if all the branches sends BUSY or rejects the
call, and forward the original request to new branch. If one of the contacts accepts the
call, defer the handling to sipd by returning false.

import java.util.*;

import org.ietf.sip.*;

public class ForwardOnBusy extends SipServletAdapter {

 SipServletContext context;

 boolean forwarded = false;

 Hashtable branches;

 /* init() */

 public void init(ServletConfig config) {

 super.init(config);

 branches = new Hashtable();

 /* Get context */

 context = config.getServletContext();

 }

 /* doInvite()

 * Get registered contacts and forward the request to the branches.

*/

 public boolean doInvite(SipRequest req) {

 /* Get contact info for the callee */

 SipAddress callee =

context.createSipAddress(req.getRequestURI());

 List contacts = context.getContacts(callee);

 /* proxy request to all contacts */

 if (contacts!= null) {

 Iterator e = contacts.iterator();

Implementation of SIP Servlet User Policy

 17

 while(e.hasNext()) {

 ContactImpl contact = (ContactImpl)e.next();

 try {

 SipURL sipURL =

context.createSipURL(contact.getURI());

 Object requestToken = req.send(sipURL);

 branches.put(requestToken, contact.getURI());

 }catch(ParseException ex) {

 return false;

 }

 }

 }

 return true;

 } /* doInvite */

 /* gotResponse()

 * Check if this response is from branches that this servlet sent

* to. If not, return false.

 * If so, remove the request token from hashtable and check if all

 * requestTokens are removed.

 * If all requestTokens are removed from hashtbale, then forward

 * the original request to the new branch.

 */

 public boolean gotResponse(SipResponse res) {

 int status = res.getStatus();

 Object requestToken = res.getRequestToken();

 SipURL fwdURL;

 switch (status) {

 case SC_BUSY:

 case 486: /* This is not defined in current SipServlet API */

 case SC_DECLINE:

 if (forwarded) return false;

 String branchURI = (String)branches.get(requestToken);

 if (branchURI == null)

 return false;

Implementation of SIP Servlet User Policy

 18

 else {

 branches.remove(requestToken);

 if (branches.size() != 0)

 return false;

 }

 /* Get the original request for the current response */

 SipRequestImpl newRequest =

new SipRequestImpl((SipTransactionImpl)res.getTransaction());

 /* Get Sip URL of the branch for forwarding */

 try {

 fwdURL =

context.createSipURL("sip:ss2020@diamond.cs.columbia.edu");

 }catch(ParseException e) {

 return false;

 }

 /* proxy the origianl request */

 newRequest.send(fwdURL);

 forwarded = true;

 break;

 case SC_TRYING:

 return false;

 case SC_OK:

 return false;

 }

 return true;

 }/* gotResponse */

}

Implementation of SIP Servlet User Policy

 19

5.3 ForwardOnNoResponse

This servlet is very similar to the previous one except it has a timer. doRequest() starts a
timer and defer the handling to sipd by returning false. Then, sipd forwards the call to
the registered two branches. After 20 seconds later, there was no response from any
contacts, it will forwards the original request to new branch. For a timer, I used Timer
class and TimerTask class, which is supported in JDK1.2 or higher version.

import java.util.*;

import org.ietf.sip.*;

public class ForwardOnNoResponse extends SipServletAdapter {

 Timer timer;

 int waitingTime;

 /*

 * init()

 */

 public void init(ServletConfig config) {

 super.init(config);

 /* Set waiting time */

 waitingTime = 30;

 }

Alice

Proxy

Server Contact2 Contact1 Bob

INVITE

INVITE
INVITE

INVITE

OK

OK

20secs

Implementation of SIP Servlet User Policy

 20

 /*

 * doInvite()

 * Start timer.

 */

 public boolean doInvite(SipRequest req) {

 timer = new Timer();

 timer.schedule(new ForwardTask((SipRequestImpl)req),

waitingTime*1000);

 return false;

 }

 /*

 * gotResponse

 */

 public boolean gotResponse(SipResponse res) {

 int status = res.getStatus();

 Object requestToken = res.getRequestToken();

 SipURL fwdURL;

 switch (status) {

 case SC_BUSY:

 case 486: /* This is not defined in current SipServlet API */

 case SC_DECLINE:

 case SC_OK:

 timer.cancel();

 }

 return true;

 }

}

import org.ietf.sip.*;

import java.util.*;

public class ForwardTask extends TimerTask {

 SipRequestImpl req;

Implementation of SIP Servlet User Policy

 21

 public ForwardTask(SipRequestImpl req) {

 this.req = req;

 }

 public void run() {

 SipURL fwdURL;

 SipServletContext context = config.getServletContext();

 try {

 fwdURL =

 context.createSipURL("sip:ss2020@diamond.cs.columbia.edu");

 }catch(ParseException e) {

 }

 req.send(fwdURL);

 cancel();

 }

}

Implementation of SIP Servlet User Policy

 22

6 Acknowledgement

I would like to thank Professor Henning Shulzrinne, Jonathan Lennox, Kundan Sign,
Sankaran Narayan for their comments and advices.

Implementation of SIP Servlet User Policy

 23

7 References

1. A. Kreistensen, A. Byttner, The SIP Servlet API, Sept. 1999

2. Adnders Kristensen, SIP Servlet API Version 1.0 Public Draft Version 0.51, Mar.
2002.

3. Don Libes, Writing CGI scripts in Tcl.

4. java.sun.com, Java Tutorial. Java Native Interface.

5. Jonathan Lennox, sipd: SIP proxy, redirect and registrar server.

6. Jonathan Lennox, The CINEMA LIBSIP policy API.

7. Rosenberg, Schulzrinne, Camarillo, Johnston, Peterson, Sparks, Handley, Schooler
SIP: Session Initiation Protocol INTERNET DRAFT Oct. 2001

8. Sheng Liang, The Java Native Interface Programmer’s Guide and Specification

9. Wenyu Jian, Jonathan Lennox, Sakanran Narayanan, Henning Shulzrinne and
Kundan Singh, Towards Junking the PBX: Deploying IP Telephony

