
Abstract

Introduction

 
iOS

The NG911 iPhone app used the PJSIP library, an open-source SIP stack for 
instant messaging and multimedia communication, and was built on top of Apple’s Cocoa 
frameworks. The app also presents the user with the choice of instant-message-style 
messaging or a real-time text experience, each with its own unique user interface.

On launch, an alert is presented to the user, asking if the user is intending to use 
the emergency communication app. This prevents accidental emergency contact, either 
through a user’s pocket, or by inadvertently pressing the app’s icon on the homescreen. 
This is necessary because upon launch, the initial LoST request, used to locate the closest 
SIP server, is sent in order to set up the electronic infrastructure necessary to send and 
receive SIP messages. 

If the app has not been launched before, the prompt will ask if the user prefers 
real-time text or instant message based messaging; after one is selected, it’s stored in the 
settings bundle (found in the “Settings” app), where the user can toggle between the two 
modes. The user can also change the size of the text in the settings bundle, in case the user 
has bad vision. 

Because the app requires some sort of Internet connection, whether it be 3G or 
WiFi, the app uses Apple’s Reachability class, which provides some custom methods to 
check to see whether or not an application is connecting to the Internet or not, and if 
so, what type of connection the app is using. If the app does not have an active Internet 
connection (i.e. if the phone doesn’t have any cell service and there is no WiFi connection 
available), the app pops an alert and lets the user know, and exits automatically.

The instant-messaging user interface looks and behaves a lot like the iPhone’s 
native text messaging application, iMessage. The messages are displayed in a UITableView 
for a uniform representation, and sent and received messages are indicated by blue and 
red backgrounds respectively using customized UITableViewCells. All messages are 
timestamped and displayed until the user clears the conversation (or until the app itself 
restarts). 

The instant messaging section of the app also allows the user to send image 
messages in order to convey more quickly (and with less text and effort) a given situation 
to a call taker. This is done using the iPhone’s native Camera and Photos apps, and the user 
is able to either take a new photo or to select one from his or her saved images, which will 
be sent to the call taker as well as be displayed in a message cell on the user’s side. 



The real-time text interface is simply two text boxes, one if which is editable for the 
user to communicate with the call taker. The user types into the bottom box, whose text is 
displayed for the call taker in real time, and his subsequent response is displayed in real 
time on the user’s iPhone as well. 

In both of these interfaces, a “quick response” button is available; upon pressing 
this button, the user will be presented with a modal view containing three buttons, one 
containing a police car, one a fire truck, and one an ambulance. These buttons can be used 
to send a quick message to alert the call taker of exactly what you need. 

Along with the text typed by the user, the message contains a PIDF-LO component, 
containing the user’s geographical coordinates in XML format. The user’s geolocation is 
captured using the CoreLocation framework, and is tracked throughout the lifetime of 
the app, ensuring that it captures any significant location change. This allows emergency 
personnel to respond quickly to the user’s location even if the user is not able to give his 
location.
 
PJClient

All of the application’s interaction with the network is done through one object 
called PJClient. This class initiates the pjsip stack as well as the UDP and TCP transports. 
Depending on the mode it is started in, it can also start a thread for handling real time text. 
Because using pjsip is very resource intensive, this class is implemented as a singleton 
object. The class will create only one instance and return it every time it is requested. This 
is done using the following class method:
 

+(PJClient *) sharedPJClient;
 
Then it must be initialized with a CLLocation object that it uses in the LoST request using 
the following method:
 

-(void) initClientWithLocation:(CLLocation *)location;
 
This will initialize the pjsip library and any resources it requires. The initialization 
sequence is different for IM and real time text. PJClient looks in the settings bundle for 
the current mode. Once you have a reference to the shared instance of PJClient, you can 
use it to communicate by first implementing the PJClientMessageDelegate protocol. 
This is defined as follows:
 
Optional methods:
 



-(void) messageReceivedFrom:(NSString *)sender WithContent:(id)content;

Called every time an instant message is received with the user ID of the sender 

and the content of the message.

 

-(void) realtimeMessageReceivedwithContent:(NSString *)content;

Called every time a packet containing a realtime text character(s) is received. 

This should appended to the end of any previous text.

 

-(void) realtimeBackspaceReceived;

Called whenever the sender has pressed backspace.

 

-(void) realtimeReturnReceived;

Called whenever the sender presses the return key.

 
Required methods:

-(void)didFinishLoadingWithStatus:(int) status;

This will get called when PJClient has finished loading. The status parameter 

should be equal to 0 if successful. 

 

For sending messages, PJClient has two methods that can be used.

For Instant Message mode:

-(int) sendMsg:(Message *)msg to:(NSString*) dest;

For real time text mode:

-(void) charTyped:(const char *)str;

 

Also, PJClient has the following properties:

id<PJClientMessageDelegate> delegate
CLLocation *currentLocation;
NSString *pidfString;
 

Any object that wishes to use PJClient should set itself as the delegate in order to be 

notified when incoming message are received.

 



We also use a class called LostClient for LoST requests. This class can be initialized 
normally and then using the following method, get the SIP URI of the closest PSAP.
 

-(NSString *) lostRequestWithLatitude:(double) latitude       
longitude:(double) longitude;

 
Implementation Details
 
Instant messages were sent using SIP MESSAGES. Once the user pressed the ‘Send’ button 
after entering some text, the view controller would create an instance of the Message class 
and store the text as an NSString in that class. It would then pass along that Message 
instance to the method: 

sendMsg:(Message *)msg to:(NSString*) dest
The PJClient instance would then extract the contents of the message and, along with the 
PIDF location information, send a SIP MESSAGE to the PSAP server.
 
Real-time text was implemented to conform with T140 protocol (RFC 4103) which 
describes how to send text over an RTP connection. 
The first step involves sending a SIP INVITE with the SDP descriptors necessary to allow 
real-time text. This is sent in the form of a multipart UDP packet that contains both the SDP 
and the PIDF location information. This gives the emergency operator the location of the 
caller. 
Once the server responds with a 200/OK message, the PJClient will create an extra 
thread to handle RTP packet sending. Whenever the user enters a character (including 
backspace and return), the view controller will call the method: 

charTyped:(const char *)str
This will add that particular character to a buffer that is being continously monitored by 
the RTP thread. At each transmission interval, the thread will check this buffer for any new 
characters. If it finds any, it will package them into an RTP packet and send it to the server.
The pjsip library will notify the PJClient if an RTP message is received which will process 
it and call the appropriate delegate method. The view controller will then update the 
screen with the new characters.
 
 
 
 
 
 
 



 
Android
 
Introduction:

The Android client provides means of communicating with the 9-1-1 call taker using 
text messaging and image transmission. The app has two modes of text messaging, Instant 
Messaging and Real-Time Messaging. The app also supports transmission of location data 
to the 9-1-1 call taker to quickly dispatch help. 
 
 
Application Features : 
1. Instant Messaging
 
2. Real-Time Messaging
 
3. Image Transmission
 
4. Location Transmission. 
 
Application flow: 
 

When the application is launched for the first time by the user, it prompts the user 
for his name. This name is stored persistently within the application for future use. The 
application then checks if data connectivity is currently supported by the application. 
If there is no data connectivity then the user is informed that there is currently no data 
connectivity and is provided with the option of calling 9-1-1 directly or exiting the app. On 
the other hand, if there is data connectivity, then the application queries the LoST server 
to check if the local PSAP supports NG 911. If not, the user is once again provided the same 
interface which allows the user to place a direct call to 911 or exit the app.

Once network connectivity and PSAP support is confirmed, the chat user-interface is 
displayed to the user. The user has the option of switching between instant messaging and 
real-time messaging using a radio-button. This switching can be done on the fly without 
losing the conversation flow. 



 
 
 
The instant-messaging provides a traditional bubble style chat UI to the user. Also, 

if a particular message was not received by the 9-1-1 call taker, the user is appropriately 
informed about the same. 

 
The real-time messaging is initialized during launching the application. After 

receiving the result of the LoST querying, the main thread starts a new thread to send SIP 
INVITE message to get the SDP session information. The new thread finishes after making 
the RTP session between the application and the call taker automatically. 

 
In either of the modes, the user is presented with an option of sending an image 

to the 9-1-1 call taker to better describe the situation. The user can invoke the camera by 



pressing the camera icon.
The application also updates the user’s location to the 9-1-1 call taker. Along with 

the first message to the call taker, either using instant or real-time, the location data is 
send along with the message. Future location updates are sent to the call taker if the user 
communicates using instant messaging. That is, if the location of the user is updated, only 
then the location details are re-sent to the call taker. 
 
Implementation details:
  
1. Instant Messaging

The instant messaging mode uses SIP protocol for communication. It uses the 
SIP ‘MESSAGE’ method for sending instant messages across. The application uses the 
MJSIP library for implementing this SIP protocol. [ISSUE : We had two Java libraries 
that supported the SIP protocol, namely, JSIP and MJSIP. Initially, we implemented the 
JSIP library. However, Android version 2.3.3 introduced built-in SIP library, but without 
the ‘MESSAGE’ extension needed for IM. This library had the same naming conventions as 
the JSIP, leading to naming conflict on version 2.3.3 and above. Hence the application would 
be only compatible on versions before 2.3.3. To get rid off these compatibility issues, we 
switched to the MJSIP library.] 

The application sends SIP MESSAGES to the server in the stand-alone mode. 
These messages are sent over the default UDP protocol. Once sent, the application listens 
for the “200 OK” response from the server to ensure successful transmission. For each 
message we set a 4 second time-out. If the 200 OK response is not received from the server 
within this time, we push a notification to the user that message sending failed. 

 
2. Real-Time Messaging

The Real-Time messaging uses T140 Protocol on the RTP session. To manage the 
SDP information for making the RTP session, we create UserAgent class, which manages a 
local SDP information and a SDP information from the server. To implement this part, we 
followed SipDroid’s method of managing SDP information. To handle T140 Protocol, we 
referenced T140Handler class, which is used by SIPc. Additionally, we modified MJSIP’s 
SIP INVITE messaging sending part to send the PIDF-LO object at the same time; however, 
the location information should be already sent if a user uses the instant SIP message first. 
In this case, MJSIP’s INVITE messaging part works normally. The hard thing was that we 
had to debug the Real-Time Messaging on the real device, not the emulator because of the 
RTP session. Sometimes, the Real-Time messaging characters were missed, or sent several 
times. To check this problem, we used ‘tcpdump’ on the real device.
 



3. Image Transmission
The underlying protocol in image transmission is TCP by way of the SIP stack. 

Invoking the built-in camera API meant that the user would incur an additional click to 
approve the photo, once shot. Given that this is an emergency app, the primary goal is to 
minimize communication time between the user and the NG911 call taker. With this in 
mind, we decided to implement a custom camera interface which directly sends the image 
as soon as it is shot. We obtain a byte array of the image as soon as it is shot, and send the 
byte array as a tcp packet to the call taker. 

Once we have get the image binary data, we invoke the SipStack. However, the 
SipStack had a limitation that it could only send data encoded in strings and not binary. So 
we had to modify the SipStack (MjSIP) to accept binary data. So once we have the image 
binary data, we switch the stream from UDP to TCP and send this binary data to the server. 
 
4. Location Transmission

In order to send the location details to the call taker, we set up a location listener 
that constantly checks for changes in location. This listener provides us with two options: 
to set the frequency of location update checks(in milliseconds), and to set the minimum 
change of distance(in metres) to consider it as a location change. For testing, we set both 
these parameters to 0 but to deploy in the real world, these value will need to be updated 
to an optimum value. If set too low, it will cause the app to slow down and drain out the 
battery faster and on the flip side, if set too high, say 10000 metres and 100000 seconds, 
the call taker may not be updated frequently enough.

Based on these settings, the Android run-time notifies the application of any 
location update. Once updated, the application sends this location as a PIDF-LO object 
along with the first SIP Message or SIP INVITE (whichever is first), by creating a multi-part 
message. If the user decides to use the Instant-Messaging mode, future location changes 
are buffered in the application. If there is a new location in the buffer which hasn’t yet been 
notified to the PSAP, it is sent along with the next SIP message, if any. This ensures that 
the application keeps updating the PSAP of location changes without sending too many 
messages.  
 
5. LoST Querying

To get the nearest PSAP server, we have to send the query to the LoST server with 
the current location. This is done by LostConnector class. After acquiring the current 
GPS, sending the LoST querying is called automatically. Based on the query result, the 
application also initializes the Real-Time messaging session automatically.
 
6. User-Interface Implementation



The layout we have implemented follows closely on requirements and layout of 
TIPCon by Omnitor. The layout consists of a vertically oriented layout with the lowest 
quarter as controls. These controls include text input for the user to send the message, 
and a radio group to switch between Instant messaging and real time text. Additionally, 
we place a camera button in this quarter. The rest of the screen space is left for displaying 
the chat. We implement a bubble list with an orange bubble for outgoing messages, blue 
bubbles for incoming messages, and a red bubbles for error messages.  When in rtt mode, a 
Text box (say rttTextBox) is present above the radio button control group, where the text 
that the call taker is typing is currently displayed. 

 
We choose the vertical layout since it best fits the screen size of an Android phone. 

This suits both RTT and Instant messaging(by way of SIP) really well. This also matches 
Omnitor’s requirements for RTT messaging in the following manner:
 
The bubble list shows only text that is finalized. What the user is currently typing, appears 
only on his/her input text field, and what the call taker is currently typing, appears only on 
the text box(rttTextBox) dedicated for it. Only when the call taker finalizes text by hitting 
the enter button, does the text get pushed up to the bubble list. Similarly, the user’s text 
gets pushed up to the bubble list only on end of input entry as described in the Omnitor 
requirements sheet. This includes hitting the “enter” button, a brief period(currently 
set to 4 seconds) of inactivity after a period “.” , and when the input text box reaches 
its horizontal limit and needs to wrap around to the next line. If the user enters text in 
RTT mode and does not perform and “end of input” action, then after a brief period of 
inactivity(10 s), the user is displayed a message prompting him/her to complete the text. 
Another point worth noting is that the “send” button is disabled when in RTT mode to 
clearly indicate to the user that the text is sent real time. 

 



 
The Android API does not allow applications to intercept keyboard events for 

security reason. Therefore we implemented a TextWatcher which monitors and listens 
for change in text in a specified text field. Due to this, we need to make sure that the user 
does not use “predictive text” and “auto-complete” features. We can only enforce this if the 
user is working on the native Android keyboard because we cannot set flags for any other 
keyboard type.
 
 
 
 
 
 
 
 
 
 



 
Server

server platform: Apache Tomcat + Mobicents, here is a simple guide for developing a 
simple SIP application with Mobicents and Eclipse (http://ben-touron.blogspot.com/2009/
11/developping-simple-sip-application-with.html)
 
Architecture

Here is a use case diagram showing how the caller and the call taker interact with 
the server:

 
The callers have two ways to interact with the server. The first is to send INNVITE 

along with SDP in the content to Sip Servlet, then server will create a RTT session with 
the caller and use it for real-time text. The second one is to send MESSAGE with instant 
message or image in the content to Sip Servlet, the server will forward the messages to a 
call taker.

We are using SIP servlet in Java in the implementation of PSAP. SIP servlet is a Java 
API support (http://docs.oracle.com/cd/E19355-01/820-3007/index.html) which helps 
establish SIP signaling. SIP servlet provide a list of methods which are invoked when these 
particular kind of messages are received by the application. These methods maintain a 
hierachical structure through internal inheritance. We implement doInvite, doMessage, 
doBye on the server side.

For the real time text part, we use T140Handler which created by Wonsang Song. 
Most of RTP and SDP related classes in T140Handler are from an open source software 
TIPcon1 (http://tipcon1.sourceforge.net/).
 

The call takers use simple HTTP to connect to the server, we provide a web interface 

http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://docs.oracle.com/cd/E19355-01/820-3007/index.html
http://tipcon1.sourceforge.net/
http://tipcon1.sourceforge.net/
http://tipcon1.sourceforge.net/
http://tipcon1.sourceforge.net/
http://tipcon1.sourceforge.net/
http://tipcon1.sourceforge.net/
http://tipcon1.sourceforge.net/
http://tipcon1.sourceforge.net/


(http://ng911-svr1.cs.columbia.edu:8080/NG911/) for the following purposes:
 To enable username and password log in for security purposes.

○ User can register a username one the sever and use it to log in.
○ Use seesion to store information when user log in.
○ Clear the seesion and log user out when user close the browser tab/window.
○ If the server does not receive any request from a user within 5 minutes, 

server will log the user out. 
 To notify a call taker about a new incoming message.

○ The caller tab will show yellow color when receiving a new message from the 
caller.

 To provide an interface for call takers to chat with callers
○ Support instant messaging and real-time text types of chat interface for the 

call taker.
 Show the image sent by caller.

○ Provide a thumbnail of the image. click it will open a new window with the 
real size image.

 Provide text format of the caller’s information
○ name, ip, message type(RTT or SIP), location (longitude, latitude)

 To point the location of the emergency caller on the Google Map on the web 
Interface.

○ Use a marker on google map to show the position of the caller.
  

Below is the web interface work flow:

 
We have used Java Server Pages to develop the web front-end interface of the 

application. In addition, we are using JavaScript, Ajax, JQuery to create dynamic pages. 
Since we support real time text, our client web interface must be very dynamic. Hence, we 
are using AJAX to keep on retrieving data from the server and only updates the pertinent 
part of the web page.  Also, we are using Google Map API (http://code.google.com/apis/

http://ng911-svr1.cs.columbia.edu:8080/NG911/
http://ng911-svr1.cs.columbia.edu:8080/NG911/
http://ng911-svr1.cs.columbia.edu:8080/NG911/
http://ng911-svr1.cs.columbia.edu:8080/NG911/
http://ng911-svr1.cs.columbia.edu:8080/NG911/
http://ng911-svr1.cs.columbia.edu:8080/NG911/
http://ng911-svr1.cs.columbia.edu:8080/NG911/
http://ng911-svr1.cs.columbia.edu:8080/NG911/
http://ng911-svr1.cs.columbia.edu:8080/NG911/
http://ng911-svr1.cs.columbia.edu:8080/NG911/
http://ng911-svr1.cs.columbia.edu:8080/NG911/
http://ng911-svr1.cs.columbia.edu:8080/NG911/
http://ng911-svr1.cs.columbia.edu:8080/NG911/
http://ng911-svr1.cs.columbia.edu:8080/NG911/


maps/documentation/javascript/) to display the location of the caller on the web interface 
of the call taker. In our application, we are extracting the latitude and longitude values from 
the INVITE or MESSAGE message received from the caller and show it on the screen.
 
Problems, concerns and future works

1. To make the real-time text and instant messaging work like real-time and instant, 
the way we are doing now is every 1 second, the page will send a request to the 
server and ask if there are new messages, if so, use Ajax to update some portion of 
the page. By doing this, it might cause a lot traffic on the server.

2. Support RTT and Instant message from the same person at the same time. If we 
treat SIP and RTT from the same IP as different users, then there is a chance they 
will be mapped to different call takers, which is very weird. And if we treat them 
as a same user, then we have to decide which method should the call taker use to 
send out the message (RTT or IM), which is very tricky since the caller might keep 
changing between IM and RTT, and there's no way for the server to decide how 
should we send message at any point.

3. Log everything and save them to database.
4. Refine the user interface.
5. Include and extract the phone number from the header.

 

References
 
 


