
Drag-and-drop File Sharing System Report

Ming Ge
Department of Electrical Engineering, Columbia University

mg2703@columbia.edu

Abstract
Nowadays, people have many choices of operation

systems to work on computers, like Windows, Linux
and Mac. Meanwhile, kinds of network environments
are provided for people to get and share information,
like traditional wired network, wireless network and
Mobile Ad Hoc Network (MANET). “Drag-and-drop
files sharing system” is developed to allow users to
sharing files in different kinds of network environments
and cross different operating systems. Furthermore,
users running this system can automatically detect
each other on the local network without any
configuration. The system is also designed to be
disruption-tolerant to adapt to dynamic network
topologies.

1. Introduction

Information is more valuable than ever in
information age today. Quick and convenient access to
information has become more and more important.
Computers and computer networks have been playing
an important role in spreading information by
providing information platforms and sharing services.
While different kinds of operating systems and
network environments have provided people more
choices in diverse situations, they also bring in
limitations. For example, some information sharing
tools require specific system environment to run and
many people must have experience when they need to
transfer files but their computer can not connect to
Internet and they have to use USB disks which brings
many inconveniences.

“Drag-and-drop file sharing system” (DnD) is
designed to provide a tool for sharing files in different
network environments, including wired, traditional
wireless and Mobile Ad Hoc Network (MANET) [1] ,
as well as on different platforms, including Windows,
Linux, Mac OS.

To work in traditional wired and wireless networks,
TCP/IP protocols must be used for DnD to
communicate between computers. It should also work

without DHCP, DNS servers since MANET has no
fixed infrastructure and centralized server but a
self-organizing and configured topology.

In both traditional network and MANET, we need
to know the destination’s IP address (although the
schemes for allocating addresses may be different for
them) to perform file transfer. The IP addresses may
keep changing. It can be either reallocated by a DHCP
server in a wireless network or by address allocation
protocols or schemes in MANET. So hosts running
DnD should also be able to automatically detect each
other and get their addresses. In addition, as mentioned
before, in MANET, the network topology is keep
changing, network members can enter and leave the
network at any time, so if we consider hosts running
DnD forming a group on the local network, each group
member should be notified when other members leave
or join the group.

Apple’s Bonjour [2] [3] technology is used to
maintain this network group including updating the
member list and informing each member other
members’ information.

To work on different operating systems, DnD
should be platform independent. Java is used as the
programming language.

The following parts of this paper are organized as
following: part2 background and related work, part3
architecture, part4 user interface and tests, part 5 task
list and appendix in the last.

2. Background and related work

Known as zero-configuration networking, Bonjour
[2] [3] can enable automatic discovery of computation
devices over an IP network. There is no need to enter
IP address or DNS servers on those devices to perform
host discovery. (To obtain that, those devices must be
able to allocate IP address without a DHCP server,
perform translation between name and addresses
without a DNS server and locate or advertise services
without using a directory server.) So Bonjour can be

really useful in MANET where a DHCP and DNS
server are not available. The Java package of Bonjour
we will use is com.apple.dnssd [4]. Some main
methods we are using will be introduced later. There
are some tools making Bonjour’s library easier to use.

BonSwing [5] is a JAVA written framework for
building GUI P2P network applications based on
Bonjour on a regular always-on network, an ad-hoc
wireless network or even in a disconnected scenario. It
includes a list and tree component.

There is a drag-and-drop file exchange application
built on BonSwing [6]. It implements basic
drag-and-drop behavior and file transfer but is not
designed to deal with the disruptions during transfer.
We reuse part of the code to build DnD.

BonAHA [7] is another JAVA written library based

on Apple’s Bonjour to provide a framework for

developing P2P applications. Compared to BonSwing,
it provides more flexible and extensible structure for
application development. BonAHA library is

composed of the following Classes/Interfaces: BNode
is defined to represent and store the host’s information
including host name, IP address and port number in the
network. BListener is an interface with two method

serviceUpdated and serviceExited defined to deal
with the host leaving and entering, it will be
implemented by developers. BService is the most

import class in BonAHA which implements

RegisterListener, BrowseListener, and
ResolveListener interfaces defined in Bonjour’s
library. Developers will create instance of BService
class and use the public methods it provided to make
use of Bonjour library. Hash map is used to store the

network member’s information. DNSSD.register
method in Bonjour is used to register a service (of
certain registration or service type) that can be
discovered via DNSSD.browse and DNSSD.resolve
methods. DNSSD.browse method in Bonjour is used
to browse service (of certain registration type) and add
itself as a listener to get called when services are
discovered or disappear. DNSSD.resolve method in

Bonjour is used to resolve a new service name

discovered via DNSSD.browse or a lost service to a
target host name, IP address, port number and txt
record. Then it will call the methods defined in
BListener interface to deal with the service leaving
and entering event.

3. Architecture

We define some rules for system design. First,
“hosts” used here are not necessarily different
computers, instead, they are identified by a IP address
and port number pair. There can be multiple hosts on
one machine. Second, we define the members of the
group are the hosts that have registered (use
DNSSD.register method in BonAHA) the same
registration or service type. We will use
“_7ds_filexchange._udp” for DnD. [3] has described
the details about the type name. The global view of the
network is shown in Figure1 (we use A._UDP for short
in the figure), Host1,2,3 are in the same local network,
but only host 1 an 2 are in the same service group and
can see (“see” here means in the same group) each
other. The service name registered here is used to
provide a unique member name in the group and this
name will be translated to the a hostname (IP address)
and port number pair that registered the service and
shown to each group member, and those information
will be used to start TCP connection between
members.

Figure2 is what happen from the host aspect when
host 1 enters the group (host2 already in the group) and
when host2 leaves the group.

Java is used to build this cross-platform system.
Three aspects must be considered for design: GUI for
the member lists in the group to drag-and-drop files to,
showing file saving options, transfer progress and other
information, sockets that are used to transfer files,
interface to work with the BonAHA and Bonjour
library. The modules and classes for the system are
shown as in figure 3.

Java's Swing library is used to build GUI. The
user’s view of the network members is stored in tree
structure, with the service type of the group as the root
name, and all members are direct children of the root.
TransferHandler is used to drag-and-drop file to the
member nodes.

Figure 1 Global view of the network

Figure 2 Local View of Host1

Figure 3 System Modules and Classes

To use the BonAHA, we need to define class

(FStree in figure 3) that implements the interface

BListener and create instance of BService class in

BonAHA. The instance of BServcie will be added as
the listener for the services on the network and does all
the work to register, resolve service, and call functions
in the BListener interface to update the tree view.
When new services are discovered, the information of
the hosts providing those services will be first
encapsulated to BNode structures, and put in the hash
map with the hostnames as keys, and add nodes in the
tree view. When hosts are leaving the network, the
corresponding BNode instances will be removed from
hash map and so as the nodes in the tree view.

TCP socket is used to provide connection oriented
data transfer service. Two kinds of data will be
transferred for each transferring file: control and
information data including the file’s name, length,
sender’s information, recipient’s response and file data,
the control and information data will be transferred

Show
Build

Show

S
h

Contains

Start
sendi

FileXchange
Main Class

Receive
Class:
Listening
for
connection;
Receive
files;

Send Class:
Send files.

FStree Class:

Extends JTree
Implement BListener;
Create BService Instance;
Listener to the service;
Create/Update Tree View.

ProgressBar
Class:
Transfer
progress.

FSTransfer Class:
Extends TransferHandler,
Response to Drag-n-Drop.

Start

Connection

Host 2
Listen
(DNSSD,
TCP)
Browse
A_UDP
See a and b
Get Host 1

Local
Network

Host 3
See nothing.

Register:
Service
Name b
Register
Type
A._UDP

Register
Service
Name a
Register
Type
A._UDP

Host 1
Listen
(DNSSD,
TCP)
Browse
A._UDP
See a and b.
Get Host2.

Delete

Add

Update

See a and b.Resolve
a, b

Browse
for A_UDP
Set up DNSSD
and TCP listener

Register
Service Name: a
Type: A_UDP

Hash Map

Tree
View

Host1 enter
the network

Host2
leaves

Resolv
e b

before file data, so the recipient can choose to accept or
decline the file and select a directory to save the file.
There are five kinds of disruptions we need to concern
during the file transfer: 1 Sender cancels the transfer. 2
Sender leaves the network during the transfer. 3
Receiver accepted the transfer but fails to choose
directory to save the file within a certain time (before
data transfer). 4 Receiver cancels the transfer during
data transfer. 5 Receiver leaves the network during
transfer. All of these can be handled by setting socket
timeout, socket reset exception and comparing the
length of the file with the length received. We also
design progress bar based on the information of the
received file length and total length. If multiple files
are dragged and dropped at one attempt, they will be
transferred one by one, but transfer of directory is not
supported yet. Multiple drag-and-drop actions at the
same time or during transfer progress are not permitted.
File transfer procedure is shown in figure 4.

Figure 4 File Transfer Procedures

4. Tests and user interfaces

The system (including all libraries used) is written
in Java. So it can run on Windows, Linux and Mac OS
platforms with Java virtual machine and apple’s
bonjour installed. Windows Vista and Mac OS X 10.5
are selected to represent Windows and Mac OS
platforms. Linux-based operation system Ubuntu
(version 8.4) is chosen to represent the Linux platform.
Tests include the system’s functions of host discovery,

files sending and receiving, as well as handling the
exceptions during transfer. Tests are run both locally
(multiple services on one machine) and remotely
(multiple machines), as well as between different
platforms, like between Windows and Ubuntu,
Windows and Mac OS, etc.

The result shows the all functions of DnD work well
on Windows Vista and Mac OS X 10.5 However on
Ubuntu 8.4, due to likely faulty implementation of the
Java Transferhandler for drag-and-drop on Linux, we
can only receive files, and other functions are working
well.

The tree view is shown in Figure 5:

Figure 5 GUI—Group list

Once running, the services of the same register type
(here the register type for this program is
"_7ds_filexchange._udp", the service name is the name
of the <host, port> that provide the service) registered
on the network will be listed as nodes under the "Peer
Nodes" list. File can be dragged and dropped to the
target node. (Notice: a node represents a <hostname,
port> pair on the network that is running DnD, the pair
provides the information we need to start TCP
connections to send files).

Upon receiving a file, the recipient can choose to
accept or decline as well as the directory to save the
file. Both recipient and sender can cancel the file
transfer or leave the group and the other side of the
transfer will get the corresponding information. During
transfer, a progress bar will be shown at both sender

Sender

Tree
View

Hash
Map

Receiver
TCP
Listener

Drag-an
d-drop
Files

Connection
Established

and recipient’s sides indicating the percentage and data
size that have been sent or received.

Figure 6 shows the scenario during file transfer, and
figure 7 shows the information popped on recipient’s
side after the sender canceled the transfer.

The following figure is snapped during transfer.

Figure 6 GUI--Transfer files

Figure 7 GUI--Sender canceled the transfer

5. Task list

DnD is built based on BonAHA library. Some of
the codes of the file sharing system build on

BonSwing [5] which implements basic drag-and-drop
action and file transfer are reused. The tasks for this
system includes: Use BonAHA to manage the member
lists of the group and retrieve information of them;
Build mechanisms to make transfer disruption-tolerant;
GUI is improved for interactive messages for user’s
operation and file transfer.

References

[1] Roberto Beraldi, ”Unicast Routing Technique for
Mobile Ad Hoc Networks”, the Hand Book of Ad Hoc
wireless networks, Edited by Mohammad llyas,2003,
chapter 7.
[2]
http://images.apple.com/macosx/pdf/MacOSX_Bonjou
r_TB.pdf
[3]
http://developer.apple.com/networking/bonjour/index.
html
[4]
http://developer.apple.com/documentation/Java/Refere
nce/DNSServiceDiscovery_JavaRef/com/apple/dnssd/
DNSSD.html
[5]
http://bonswing.sourceforge.net/
[6]
http://bonswing.cvs.sourceforge.net/viewvc/bonswin
g/7DS_J_filexchange/
[7]
http://bonaha.sourceforge.net/

.
Appendix

Appendix A is the program documentation.
Appendix B provides a program manual.

Appendix A
Program Documentation

Authors

Ming Ge
Department of Electrical Engineering
Columbia University
mg2703@columbia.edu

Name

Drag-and-drop File Sharing System (DnD).

Introduction

The System is built to provide files sharing service
in traditional wired, wireless or Ad-Hoc network
environment. Services on the local network can be
automatically discovered without user's configuration.

System requirement

1. Java Virtual Machine/JDK 1.6 or newer version.
2. Apple's Bonjour is installed.

Installation instructions

An open source Java based software—IzPack [1] is
used as the installation tool.

Installations for Windows Platform, Linux, Mac OS
(DnD_install.jar) are available now.

For windows platform, double click DnD_install.jar
to start the installation and following instructions to
install DnD.

For Linux and Mac platform, use "$java -jar
DnD_install.jar" to start the installation and following
instructions to install DnD.

Operation

On windows platform, run Drag-and-Drop.jar by
double clicking it in the installation directory, for Linux
and Mac platform, go to the installation directory and
use "$java -jar Drag-and-Drop.jar" to run the
application.

Program internal operation

Once running, the services of the same register type
(here the register type for this program is
"_7ds_filexchange._udp", the service name is the name
of the <host, port> that provide the service) registered
on the network will be listed as nodes under the "Peer
Nodes" list. File can be dragged and dropped to the
target node. (Notice: a node represents a <hostname,
port> pairs on the network that is running DnD, the pair
provides the information we need to start TCP
connections to send files).

Upon receiving file, the receiver can chose accept or
decline and choose the directory to save the file. Both
receiver and sender can cancel the file transfer or leave
the group, and the other side of the transfer will get the
corresponding information.

During transfer, a progress bar will be shown at
sender and receiver indicating the percentage and data
size that have been sent or received.

If multiple files are dragged and dropped at one
attempt, they will be transferred one by one, but
transfer of directory is not supported yet. Multiple
drag-and-drop actions at the same time or during
transfer progress are not permitted.

Figures 5-7 in Part 4 of the report are the screen
dump for the system.

Limitation

Due to likely faulty implementation of the Java
Transferhandler for drag-and-drop on Linux, sending
files is not working. However files can still be received.

Future work and enhancement

Security features can be added, like group password
needed to register the service on the network, SSL and
Digital Signature can be used to secure the file transfer.

Acknowledge

Application is developed using the framework of
BonAHA. BonAHA is developed by Suman R.

Srinivasan. BonAHA is a framework built on Apple's

Bonjour library and used to develop P2P applications.
Some codes from an earlier version (by Suman R.

Srinivasan) of drag-n-drop file sharing application
which can be found in [2] are reused.

Reference

[1]
http://izpack.org/
[2]
http://bonswing.cvs.sourceforge.net/viewvc/bonswing
/7DS_J_filexchange/.

Appendix B
Program Manual

Name

Drag-and-drop File Sharing System.

Synopsis

N/A.

Availability

Installations for Windows, Linux and Mac OS
(DnD_install.jar) are available now.

Description

The System is built to provide disruption-tolerant
file sharing service in wired, traditional wireless or
Ad-Hoc network environment. Services on the local
network can be automatically discovered without user's
configuration.

Features

1. Cross-platform. The system can run on Windows,
Linux and Mac OS platforms.

2. Zero configuration. Hosts that run the application
can automatically discover each others to form a
network group. Hosts can leave or join the group, all
the members will be notified and automatically update
the member list.

4. Disruption-tolerant. The system can handle all
exceptions during file transfer.

5. Multiple files transfer. Multiple files can be
selected and transferred by one drag-and-drop action.

Configuration

N/A.

Option

N/A.

Notes

Due to likely faulty implementation of the Java
Transferhandler for drag-and-drop on Linux, sending

files is not working. However, files can still be
received.

See Also

See Program Documentation in Appendix A.

Authors

Ming Ge
Department of Electrical Engineering
Columbia University
mg2703@columbia.edu

Acknowledgements

Application is developed using the framework of
BonAHA. BonAHA is developed by Suman R.

Srinivasan. BonAHA is a framework built on Apple's

Bonjour library and used to develop P2P applications.
Some codes from an earlier version of drag-and-drop
files sharing application (by Suman R. Srinivasan)
which can be found in [1] are reused.

Copyright

Copyright 2008 by Columbia University; all rights
reserved

Permission to use, copy, modify, and distribute this
software and its documentation for not-for-profit
research and educational purposes and without fee is
hereby granted, provided that the above copyright
notice appear in all copies and that both that the
copyright notice and warranty disclaimer appear in
supporting documentation, and that the names of the
copyright holders or any of their entities not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission. Use
of this software in whole or in parts for commercial
advantage and by for-profit organizations requires a
license.

The copyright holders disclaim all warranties with
regard to this software, including all implied warranties
of merchantability and fitness. In no event shall the
copyright holders be liable for any special, indirect or
consequential damages or any damages whatsoever
resulting from loss of use, data or profits, whether in an

action of contract, negligence or other tortuous action,
arising out of or in connection with the use or
performance of this software.

Reference
[1]
http://bonswing.cvs.sourceforge.net/viewvc/bonswing
/7DS_J_filexchange/.

	paper-3

