
Project ReportProject Report  

Automated Busy DiscoveryAutomated Busy Discovery

Subhrendu Sarkar 

Internet Real Time Lab, Columbia University

Fall - 2007



Table of Contents
1. Abstract..................................................................................................................................................3
1Introduction..............................................................................................................................................3

1.1. Objective........................................................................................................................................3
1.2. Motivation......................................................................................................................................3

2. Software Architecture ............................................................................................................................4
2.1. The Video Processing Unit.............................................................................................................5
2.2. The SIP Publish Unit......................................................................................................................5

3. Object Detection Algorithms..................................................................................................................5
3.1 Image Segmentation........................................................................................................................5
3.2. Contour Detection..........................................................................................................................7

4. Object Tracking......................................................................................................................................8
5. Summary..............................................................................................................................................11
6. Implementation.....................................................................................................................................11

6.1 Software overview.........................................................................................................................11
6.2 Background subtraction.................................................................................................................12
6.3 Contour Finder..............................................................................................................................13
6.4 Kanade-Lucas-Tomasi Feature tracking........................................................................................13
6.5 Number of Humans in the Scene – Algorithm .............................................................................13

7. SIP Publish Unit ..................................................................................................................................14
7.1 NUA Concepts...............................................................................................................................14

7.1.1 NUA Stack Object.................................................................................................................14
7.1.2 NUA Operation Handle.........................................................................................................14
7.1.3 Stack Thread and Message Passing Concepts.......................................................................15
7.1.4 SIP Message and Header Manipulation.................................................................................15

7.2 The SIP PUBLISH Unit................................................................................................................15
7.2.1 Data Structures and Defines..................................................................................................15
7.2.2 Initialization and Deinitialization..........................................................................................17

8. Results and Conclusions .....................................................................................................................18
9. Future Directions..................................................................................................................................22
10. Software requirements.......................................................................................................................22
12. References:.........................................................................................................................................22
13. Acknowledgements............................................................................................................................23



1. Abstract
We describe an efficient and robust software system which can detect and track humans in a room and 
update the status of the person at a Presence Server. This aims in understanding the state of a user being 
busy/idle. The information being available on Presence Server, it can accessed by user agents and 
clients to fulfill appropriate actions.  Of special consideration in the design of this system are real-time 
and robustness issues. We thus utilize a detection/tracking scheme in which we detect the full body 
contour of the user(s) and track the detected contour of the user(s). Robustness is implicit in this design 
, as the system automatically detects the limbs as part of the same contour and hence the same user. 
Also it detects any user entering or leaving the scene and tracks the user as long as he/she is within the 
scene. The status of the user is updated at the Presence Server with a SIP (Session Initiation Protocol) 
Message being sent to the Presence Server from the client software when the user is detected to be 
busy. The design is conducive to real-time processing as detection and tracking is not performance 
intensive and thus reasonable frame-rate can be achieved with a short latency. Experiments on real-time 
setting demonstrate the efficacy of this approach.

1 Introduction
1.1. Objective
We aim to design and build an application that detects if a user is likely to be receptive to receiving 
phone calls or otherwise being disturbed and whether the user is physically present. Installed Cameras 
are used to capture video and image analysis of the video is done to detect the presence of  multiple 
persons (e.g. for meetings) in a room. 
Presence of more than one person in a room is assumed to be an indication that the user (individual) is 
most likely to be busy. The software aims in generating presence data and influence call behavior, so 
that incoming calls are automatically redirected to another party or voice mail.

1.2. Motivation
On  many  occasions  it  has  been  found  that  telephone  calls  create  disturbances  in  between  some 
important meetings going on in a room. The software aims to automatically detect the status of the user 
in a room (busy/idle) and correspondingly update the Presence Server with the status of the user so that 
appropriate action is taken for an incoming call. The proxy can request the status of an user from the 
Presence Server and decide to allow the incoming call or may decide to route the incoming call to 
another phone number or the voicemail. 
The field of computer vision is concerned with problems that involve interfacing computers with their 
surrounding  environment  through  visual  means.  One  such  problem,  object  recognition,  involves 
detecting the presence of a known object in an image, given some knowledge about what that object 
should look like. As humans, we take this ability for granted, as our brains are extraordinarily proficient 
at  both  learning  new objects  and  recognizing  them later.  However,  in  computer  vision,  this  same 
problem has proven to be one of the most difficult and computationally intensive of the field. Given the 
current state of the art, a successful algorithm for object recognition requires one to define the problem 
with a more specific focus.



2. Software Architecture 
The software architecture is shown in the figure below:

       Figure – 1: Software Architecture

The software consists of three main components:
1. The Master Control Unit
2. The Video Processing Unit
3. The SIP Publish Unit

Upon execution of the program, the Master Control Unit is initialized and it creates two threads: 
a) The Video Processing Unit Thread: This thread is responsible for the processing and analysis of 
the  video  captured.  It  detects  the  objects  in  a  scene  by analyzing  every frame  of  the  video.  The 
algorithms used in this process will be discussed in detail in later sections. When the Video Processing 
Thread finds that there are more than equal to two humans in the room, it signals the SIP Publish Unit 
thread to publish a pidf/xml on the Presence Server. 

b) The SIP Publish Unit Thread: This thread is created by the Master Control Unit and it remains in a 
listening mode. It initializes the communication with the Presence Server and waits for the signal from 
Video Processing Thread to publish an event on the Presence Server. As soon as it receives the signal 
from the Video Processing Thread it publishes an event on the Presence Server.
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2.1. The Video Processing Unit
The  primary  task  of  the  Video  Processing  unit  is  to  find  out  how  many  humans  are  there  in  a 
continuous  video.  We  present  an  operational  computer  vision  system  for  real-time  detection  and 
tracking  of  human  motion.  The  system captures  monocular  video  of  a  scene  and  identifies  those 
moving  objects  which  are  characteristically  human.  This  serves  as  both  a  proof-of  concept  and  a 
verification  of  other  existing  algorithms  for  human  motion  detection.  The  Video  Processing  Unit 
derives its results on the basis of two major components – Object Detection and Object Tracking, each 
of which has its  own algorithms for artificial  automatic detection and tracking respectively.    The 
results of experiments with the system indicate the ability to minimize both false detections and missed 
detections.

2.2. The SIP Publish Unit
The primary task of the SIP Publish Unit is to publish a pidf/xml (Presence Information Data Format 
-RFC 4480) [3] on a presence server when asked to do so by the Video Processing Unit. The software 
uses an open-source SIP library for the SIP communication. The library used is Sofia-SIP from Nokia. 
(Download the library from http://opensource.nokia.com/projects/sofia-sip/index.html ).

3. Object Detection Algorithms
In this section we will highlight some of the object detection algorithms we have implemented for our 
experiments and will also analyze them for their advantages and disadvantages on the basis of the real-
time results obtained. 
 In order to avoid wasting time on the background image, we use  image segmentation  to separate 
foreground  portions  of  the  scene  from the  background.  Image  segmentation  is  the  action  of  any 
algorithm that separates regions of an image in a way that resembles how a human would naturally 
perceive them. Since we are interested in motion, a natural approach is to segment those regions of the 
image that are moving relative to the background. This process is called background subtraction, and is 
discussed further in Section 3.1. 

3.1 Image Segmentation
Our goal in image segmentation is to separate background areas of the image from foreground regions 
of motion that are of interest for human tracking. In this project, we make the fundamental assumption 
that the background will remain stationary. This assumption necessitates that the camera be fixed and 
that lighting does not change suddenly. 
A naive  description  of  the  approach[4]  can  be  detecting  the  foreground  objects  as  the  difference 
between the current frame and an image of the scene’s static background:

|framei – backgroundi | > Th
The basic method[12] is Frame difference given by:

| framei – framei-1| > Th
The important factors attached with it are:

1. The estimated background is just the previous frame
2. It evidently works only in particular conditions of objects’ speed and frame rate

http://opensource.nokia.com/projects/sofia-sip/index.html


3. Very sensitive to the threshold Th
Another  way of  Background modeling is  by finding the  running average [4]. It  is  mathematically 
represented by:

Bi+ 1= α * Fi+ (1 -α) * Bi

1. α, the learning rate, is typically 0.05
2. There is no more memory requirements
3. The background model at each pixel location is based on the pixel’s recent history.

In many works, such history is:
a) just the previous n frames
b) a weighted average where recent frames have higher weight

4. In essence,  the background model  is  computed as a chronological  average from the pixel’s 
history.

It  is  possible  to achieve accurate image segmentation without  this  assumption,  but such generality 
would require more computationally expensive algorithms. Given our assumption, the algorithm of 
choice is background subtraction, in which we compute a model of the image background over time. 
For any given frame of video, we can subtract this background image from it. Those pixels with a result 
near zero are treated as background and those pixels with a larger result are treated as foreground. 
Thus, once we have the model of the background image, this algorithm is simple, efficient, and easy to 
implement.

Acquiring the background model, on the other hand, is more complicated. The most  straightforward 
approach would be to simply set up the camera, empty the scene of any moving objects, and take a 
snapshot. Although this approach is simple, it is always impractical in real scenes because backgrounds 
can change over time, it can be difficult to empty a scene, lighting can change subtly, and the camera 
position can drift due to any movement of the camera which can be happen due to manual interventions 
or a gust of wind from the window.  

A more practical approach is one that can adapt to a slowly changing background in real-time, which 
we will now describe. [12]
Consider the time-varying value of a pixel at position (x, y) of a grayscale video sequence.
We will refer to this value as Vx,y(t). We can treat the value as a random process of variable

Xt = Vx,y(t)
Now, suppose we can model the probability of observing the current pixel value as a mixture of  K 
Gaussian distributions.[4, 12] This probability is,

where ωi,t is an estimate of the weight of the ith Gaussian, and η is the evaluation of a standard Gaussian 
with mean μi,t and covariance matrix ∑i,t   . [12]

Since the background is assumed to be static, the value of pixels which are part of the background can 



be represented by one or more Gaussians with a small variance due to image noise alone. More than 
one Gaussian is a possibility for bimodal scenes such a objects swaying in the scene or a flashing light. 
Furthermore, in most scenes, the background will be visible more often than foreground at any given 
pixel, so the Gaussian with the largest weight ω is likely the background.
These ideas now enable the following approach to background subtraction:

for(i = 0 to all pixels in a video frame) {
   find k Gaussians and weights that best fit the sample of the last N values taken by the 
   pixel using an algorithm such as K-Means or Expectation Maximization ;
   μ = the mean of the Gaussian with the largest weight ω among the k Gaussians ;
   value of background pixel for this frame = μ ;      
}
Difference Image = current_Frame – background_image;
for(i = 0 to all pixels in a video frame) {
    if ( Pixel(i) > 3 standard deviations from the mean)

Pixel(i) = foreground;
    else

Pixel(i) = background; 
}

 
The preceding algorithm is too computationally intensive for real-time use, especially the step of fitting 
K Gaussians to the data for each pixel and every frame. To simplify, the background image itself need 
only be  recomputed  every  N  frames.  Thus,  for  most  time  steps,  values  of  each  pixel  are  simply 
collected and stored for later processing that only occurs once every N frames. The disadvantage of this 
approach is some lag time before the background can adapt to new stationary objects. 

There are few other methods of background modeling like mixture of Gaussians (MoG), texture based 
methods and eigen-backgrounds. Each of these methods have their own advantages and disadvantages 
and they behave differently according to the video/scene they analyze.
However for our purposes since our software aims to detect objects/humans typically in a conference 
room or a lab, we can safely make a few assumptions like:

- The background is static and does not undergo frequent changes due to lighting or other issues.
- Hence we can use some time initially to build a good robust background and then use that  
background for comparison with the current frame to get the foreground model.
- Also since our setup is simplistic we will like to adopt an algorithm which should be  fast and 
less complex.

In our software we have two methods implemented:
1. Running Average
2. Gaussian Background Model

3.2. Contour Detection
After background subtraction is complete, the morphological dilate and erode operation [13] is applied 
in sequence to the foreground mask.  Briefly, the dilate function returns the dilation of  image by the 
structuring element. This operator is commonly known as "fill", "expand", or "grow." It can be used to 
fill "holes" of a size equal to or smaller than the structuring element. Used with binary images, where 
each pixel is either 1 or 0, dilation is similar to convolution. Over each pixel of the image, the origin of 



the structuring element is overlaid. If the image pixel is nonzero, each pixel of the structuring element 
is added to the result using the "or" operator. Letting  A ⊕ B represent the dilation of an image A by 
structuring element B, dilation can be defined as:

where (A)b represents the translation of A by b. Intuitively, for each nonzero element bi,j of B, A is 
translated by i,j and summed into C using the "or" operator. [13]

Erosion is the dual of dilation. It does to the background what dilation does to the foreground. Briefly, 
given an image and a structuring element. The erode function can be used to remove islands smaller 
than the structuring element. Over each pixel of the image, the origin of the structuring element is 
overlaid. If each nonzero element of the structuring element is contained in the image, the output pixel 
is set to one. Letting A ⊗ B represent the erosion of an image A by structuring element B, erosion can be 
defined as:

where (A)-b represents the translation of A by b. The structuring element B can be visualized as a probe 
that slides across image A, testing the spatial nature of A at each point. If B translated by i,j can be 
contained in A (by placing the origin of B at i,j), then i,j belongs to the erosion of A by B. [13]

Dilation generally increases the sizes of objects, filling in holes and broken areas, and connecting areas 
that  are  separated  by spaces  smaller  than  the  size  of  the  structuring  element.  With  binary images 
(applicable in our case), dilation connects areas that are separated by spaces smaller than the structuring 
element and adds pixels to the perimeter of each image object. 
Erosion generally decreases the sizes of objects and removes small anomalies by subtracting objects 
with a radius smaller than the structuring element. With binary images, erosion completely removes 
objects smaller than the structuring element and removes perimeter pixels from larger image objects. 
Applying dilation followed by erosion helps us fill in broken areas of a blob and then helps us sharpen 
the edges of the blob. This is extremely useful for accurate contour detection.
Contours are distinguished from edges as follows. Edges are variations in intensity level in a gray level 
image whereas contours are salient coarse edges that belong to objects and region boundaries in the 
image. Since we have a binary image of foreground and background, the connected components of the 
blobs are computed to get the contour of an object which is basically the boundary of the blob.

4. Object Tracking
The image segmentation step allows us to separate foreground objects from the scene background. 
However, we are still working with full images, not the individual points of motion desired for human 
motion detection. The problem of computing the motion in an image is known as finding the optical 
flow  of the image. There are a variety of well-understood techniques for doing so, but the Kanade-
Lucas-Tomasi [6] method stands out for its simplicity and lack of assumptions about the underlying 
image. 



The Kanade-Lucas-Tomasi algorithm [6] uses the image’s gradients to predict the new location of the 
feature already detected — iterating until the new location is converged upon. Since this approach is 
based on a Taylor series expansion, it makes no assumptions about the underlying image.
The  following  derivation  summarizes  the  iterative  step  of  the  Kanade-Lucas-Tomasi  algorithm[6]. 
Consider two images, I and J, represented as continuous functions in two dimensions. We want to track 
a feature of known location x' = [x, y]T in image I to image J, finding its displacement d = [dx, dy]T . 
Given a window W, we can compute the dissimilarity ε between the new and old feature as:

We can make this relationship symmetric by making the substitution x' = x + d/2

Given this expression for dissimilarity, we want to solve for the value of d that minimizes ε. 
Thus, we find the value of d that solves the equation, 

Equation – 4.1

In order to make it possible to solve for d, we can express the value of the displaced images by their 
Taylor series expansion, approximating terms of second-order or higher derivatives as zero in

and,

Equation (4.1) can now be approximated as:

where



Terms can be rearranged as follows:

Thus, we have simplified the expression to a 2 × 2 matrix equation,

Equation – 4.2
where Z is a 2 × 2 matrix,

and e is a 2 × 1 vector, 

Equation (4.2) allows us to  solve for the approximate displacement of a  feature,  given its  starting 
location and the two images. Furthermore, the computed displacement has subpixel accuracy. Since we 
are dealing with a discrete image composed of pixels, the above definitions for Z and e are computed 
with  a  summation  over  the  window  rather  than  an  integral.  The  x  and  y  image  derivatives  are 
approximated by convolving the images with a Sobel operator.
Since the above computation for displacement  is  only an approximation,  it  is  useful  to repeat  the 
procedure for more than one iteration. If the displacement does not converge towards zero after several 
iterations, the feature is considered lost. For features displaced by a large amount, the approximation 
also breaks down because the Taylor series approximation becomes less accurate. To handle such a 
case,  it  is  best  to  perform  several  iterations  on  versions  of  the  images  re-sampled  to  a  coarser 
resolution, followed by several iterations on the full-resolution images. [3,4,5,6]
A final consideration with the Kanade-Lucas-Tomasi [6] algorithm is the choice of initial features. It is 
wasteful to track all pixels of the starting image to the destination image. A more useful approach is to 
track only those pixels which represent sharp, well-defined features. In our case we track the contour of 
the detected Objects.



5. Summary
We have explained our approach to each of the three stages of the human motion detection
system:

1. Image segmentation achieved with Running Average or a mixture of Gaussians approach  to 
background subtraction.

2. Point feature tracking utilizing the Kanade-Lucas-Tomasi method.

The next section will show how each of these stages was implemented in a real-time
working system.

6. Implementation
In the previous chapter, we discussed the choice of algorithms for each stage of our human motion 
detector. Although this discussion provides a good theoretical overview of how the detector works, it is 
not enough information to implement the system. In this chapter we discuss the practical details of how 
each algorithm is implemented and how they come together to form a complete system.

Figure – 2: Block Diagram of Video Processing Unit

6.1 Software overview
The block diagram in Figure-1 gives a high-level overview of the software architecture of the number 
of human detector. Input to the system is provided by a video source which can be either a IEEE 1394/
USB digital camera or a sequence of still image files in raw RGB format.
The USB digital camera (a logitech USB Digicam is used in our experiments) input allows for live 
video to be processed in real-time as it is captured by the camera. 
Video data from the video input is made available to the background subtraction algorithm, which is 
responsible for differentiating between foreground and background image regions. The implementation 
of the background subtracter is discussed in more detail in Section 3.1. The output of the background 
subtracter for each video frame is an 8-bit per pixel bitmap that serves as a  foreground mask: Those 
pixels which are foreground have value 255 and those pixels which are background have value 0.
The foreground mask provided by the background subtracter is processed to build a data structure that 
enumerates the boundaries for each distinct foreground object. This enumeration is achieved by the 
contour finder, a simple algorithm that finds each “connected component” of the foreground mask. A 
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connected component is defined as a region of an image whose pixels all have the same value and are 
adjacent to other pixels in the same connected component. 
For  our  contour  finder,  we  used  an  implementation  of  the  algorithm provided  by the  Intel  Open 
Computer Vision Library [9]. Once these contours are located, those with small geometric area are 
ignored. Such small contours are likely to be noise or small image disturbances that are probably not 
human. In our experiments, we capture video frames at a resolution of 640 x 480  and we find contour 
area greater than 5000 pixels is a good representation of a human being in the scene. However this 
value is configurable and can tend to vary according to the location, the zoom factor of the camera and 
the resolution of the captured video frames.
For each contour, a rectangular bounding box is computed which is used as the region of interest for the 
Kanade-Lucas-Tomasi  point  feature  tracker,  whose  implementation  is  discussed  in  Section  4.  The 
feature tracker outputs a list of point coordinates within this bounding box. 

6.2 Background subtraction
Our implementation of background subtraction follows the general algorithm described in Section 3.1. 
However, there are a number of approximations and simplifications that have been made to increase 
speed. Since successive frames tend to be very similar, only every fourth frame is used for statistics 
collection.(this again is configurable).  
We can express background subtraction in terms of three basic operations:
background update, which is run once every 4 frames, gathers statistics for the background model.
background subtraction, which generates a foreground mask for every frame. This step is performed 
by  subtracting  the  background  image  from  the  current  frame,  taking  the  absolute  value  of  the 
difference, and thresholding it with the value of three standard deviations of the average image noise. 

There are different ways to estimate the standard deviation of Gaussian noise in an image. Olson(1993) 
showed that that average method was best and also the simplest [12]. This method consists of filtering 
the image I with the average filter and subtracting the filtered image from I. Thus a measure of noise of 
noise at each pixel is computed.  To keep image edges from contributing to the estimate, the noise 
measure is  disregarded if  the magnitude of intensity gradient  is  larger than some threshold  T.  The 
threshold  value  may be  found from the  accumulated  histogram of  the  magnitude  of  the  intensity 
gradient.

As discussed in the approach, we maintain a set of Gaussians for each pixel of the background. Each 
Gaussian has a mean, variance, and weight. To simplify, the variance is assumed to be fixed, equal to 
the variance of the image noise. In our algorithm, the weight of a Gaussian is simply equal to the 
number  of  frames  for  which  the  pixel  has  taken  a  value  within  three  standard  deviations  of  that 
Gaussian’s mean. Furthermore, we keep track of the sum of these pixel values, so that the Gaussian’s 
mean is simply this sum divided by the number of frames.  Also, each pixel has exactly five Gaussians 
associated with it to simplify data structures.

The procedure to update each pixel during the Background Update phase is as follows:

        mean of each of the five Gaussians  =  divide each sum of the pixel by the frame count (weight).
        if(the current pixel value is within three standard deviations of any of the means of five gaussians)

increase that Gaussian’s weight by 1 and add the current value to its sum.
       else {

replace the Gaussian of lowest weight by a Gaussian with weight equal to 1;



sum equal to the value of the current pixel.
}

This procedure will tend to collect a pixel’s past values into the five highest weighted Gaussians that 
represent them. Although it is only an approximation of the exact mathematical specification in Section 
3.1, it balances accuracy and efficiency. This background subtraction algorithm is easily extended to 
color images by applying the procedure separately to each of the red, blue, and green channels. If any 
one of the three channels is determined to be foreground for a given pixel, the entire pixel is marked
as foreground.

6.3 Contour Finder
After background subtraction is complete, the morphological dilate and erode operation [13] is applied 
in sequence to the foreground mask. 
Once this step is complete,  the foreground mask is run through a contour finder. We use OpenCV 
contour finder functions for this purpose [9]. We specifically use the function  cvFindContours and 
cvApproxPoly.
The function  cvFindContours retrieves  contours  from the binary image and returns  the number of 
retrieved contours. 
The function cvApproxPoly approximates one or more curves and returns the approximation result(s). It 
approximates with desired precision which can be configured and for our purposes we have attained an 
optimum value by experimentation.[9] 

6.4 Kanade-Lucas-Tomasi Feature tracking
The Kanade-Lucas-Tomasi algorithm was implemented almost exactly as described in Section 4. In 
fact,  the  code  was  based  on  a  reference  implementation  of  the  KLT algorithm  written  by  Stan 
Birchfield [8], although heavily modified to be optimized for speed and the details of this particular 
application.  We  use  the  OpenCV  Library  Tracking  function  cvCalcOpticalFlowPyrLK  in  our 
implementation. In order to be robust against large displacements of features, the algorithm is first run 
on  a  sub-sampled  version  of  the  image.  The  sub-sampled  image is  computed  by first  feeding  the 
original through a Gaussian filter and then removing the odd-numbered rows and columns. Tracking is 
first performed on an image sub-sampled twice to get an approximate displacement.
The tracking formula, Equation (2.2), is used to compute the displacement for each iteration of the 
algorithm. The origin of the starting image is then shifted by this displacement so that the tracking 
equation can be reapplied. Once the displacement converges near zero, tracking is complete. If it does 
not converge in a few iterations, the algorithm fails.

6.5 Number of Humans in the Scene – Algorithm 
The number of humans in the scene is calculated on the basis of the following algorithm.

● Detected Contours of greater than 5000 pixels of area is assumed to be a human being.
(the value 5000 pixels is configurable)

● The number of humans in a scene is calculated after every 60 frames. (again the value 60 
frames is configurable)

● For every 60 frames, the maximum, minimum and median number of humans detected in the 
scene is calculated. Presently we find the minimum as a good approximate of the number of 
humans detected in the scene. This may be because we are running the algorithm for every 60 

http://robotics.elec.nara-k.ac.jp/opencv/ref/OpenCVRef_StructAnalysis.htm#decl_cvApproxPoly
http://www710.univ-lyon1.fr/~bouakaz/OpenCV-0.9.5/docs/ref/OpenCVRef_ImageProcessing.htm#decl_cvFindContours


frames  which is fairly quick considering the frame capture rate is 30 frames/second, so we are 
effectively calculating for every 2 seconds and it is unlikely that there is much change in the 
number of humans in the scene for every 2 seconds.

7. SIP Publish Unit 
We have used the Sofia-SIP library from Nokia for publishing a pidf/xml to the Presence server. 
When there are more than one individual detected in the room, then the user is assumed to be busy and 
the pidf/xml SIP message contains:

<status><basic>closed</basic>\n</status>
otherwise:

<status><basic>open</basic>\n</status>

Sofia-SIP  is  an  open-source  SIP User-Agent  library  [10],  compliant  with  the  IETF  RFC3261 
specification [1]. It can be used as a building block for SIP client software for uses such as VoIP, IM, 
and many other real-time and person-to-person communication services. The primary target platform 
for Sofia-SIP is GNU/  Linux  . Sofia-SIP is based on a SIP stack developed at the Nokia Research Center. 
Sofia-SIP is licensed under the LGPL. 
Sofia-SIP implementation follows RFC3261 [1] and related key RFCs. It supports simple presence and 
instant messaging,  with the MESSAGE, SUBSCRIBE/NOTIFY and PUBLISH methods.  NUA and 
NTA are the primary interfaces Sofia-SIP provides to application developers. 
NUA, the User-Agent API (a higher layer interface) is ideal for implementing SIP clients such as VoIP 
and IM applications, and server elements implemented as SIP clients. NUA hides many complex tasks, 
such  as  dialog  management,  offer/answer  negotiation,  and  registration  management,  from  the 
application developer. We use NUA interface towards building the client for publishing a pidf/xml on 
the Presence  Server.  

7.1 NUA Concepts

7.1.1 NUA Stack Object
Stack object represents an instance of SIP stack and media engine. It contains reference to root object 
of that stack, user-agent-specific settings, and reference to the SIP transaction engine, for example. A 
NUA stack  object  is  created  by  nua_create() function  and deleted  by  nua_destroy() function.  The 
nua_shutdown() function is used to gracefully release active the sessions by nua engine.engine.NUA 
stack object has type nua_t. [10]

7.1.2 NUA Operation Handle
Operation handle represents an abstract  SIP call/session.  It  contains information of SIP dialog and 
media session, and state machine that takes care of the call,  high-level SDP offer-answer protocol, 
registration, subscriptions, publications and simple SIP transactions. An operation handle may contain 
list of tags used when SIP messages are created by NUA (e.g. From and To headers).

An operation handle is created explicitly by the application using NUA for sending messages (function 
nua_handle()) and by stack for incoming calls/sessions (starting with INVITE or MESSAGE). The 
handle is destroyed by the application using NUA (function nua_handle_destroy()).

http://sofia-sip.sourceforge.net/refdocs/nua/nua_8h.html#f4acea648a21c210effb93ee20a78951
http://sofia-sip.sourceforge.net/refdocs/nua/nua_8h.html#05f645b5a1ac2de454a1d343efc25ec6
http://sofia-sip.sourceforge.net/refdocs/nua/nua_8h.html#ffc111d186106fc8931ffa95a6e2d4a3
http://sofia-sip.sourceforge.net/refdocs/nua/nua_8h.html#f98a26bf7be134a643a9b32faad64db0
http://sofia-sip.sourceforge.net/refdocs/nua/nua_8h.html#5143ffe880249d0570f428a20035641d
http://sofia-sip.sourceforge.net/refdocs/nua/
http://en.wikipedia.org/wiki/SIMPLE
http://www.faqs.org/rfcs/rfc3261.html
http://www.gnu.org/copyleft/lesser.html
http://www.nokia.com/research
http://en.wikipedia.org/wiki/GNU/Linux
http://en.wikipedia.org/wiki/GNU/Linux
http://en.wikipedia.org/wiki/Session_Initiation_Protocol


Indication and response events are associated with an operation handle.

NUA operation handle has type nua_handle_t. [10]

7.1.3 Stack Thread and Message Passing Concepts
The  stack  thread  is  a  separate  thread  from application  that  provides  the  real-time  protocol  stack 
operations so that application thread can for example block or redraw UI as it likes.

The communication between stack thread and application thread is asynchronous. Most of the NUA 
API  functions  cause  a  send  of  a  message  to  the  stack  thread  for  processing  and  similarly  when 
something happens in the stack thread it sends a message to the application thread. The messages to the 
application thread are delivered as invokes of the application callback function when the application 
calls su_root_run() or su_root_step() function. [10]

7.1.4 SIP Message and Header Manipulation
SIP messages are manipulated with typesafe SIPTAG_ tags. There are three versions of each SIP tag:

• SIPTAG_<tagname>() takes a parsed value as parameter.
• SIPTAG_<tagname>_STR() takes an unparsed string as parameter.
• SIPTAG_<tagname>_REF() takes a reference as parameter, is used with tl_gets() function to 

retrieve tag values from tag list.
• SIPTAG_<tagname>__STR_REF()  takes  a  reference  as  parameter,  is  used  with  tl_gets() 

function to retrieve string tag values from tag list.

For  example  a  header  named  "Example"  would  have  tags  names  SIPTAG_EXAMPLE(), 
SIPTAG_EXAMPLE_STR(), and SIPTAG_EXAMPLE_REF().

When tags are used in NUA calls the corresponding headers are added to the message. In case the 
header can be present only once in a message and there already exists a value for the header the value 
given by tag replaces the existing header value. Passing tag value NULL has no effect on headers. 
Passing tag value (void *) -1 removes corresponding headers from the message. [10]

7.2 The SIP PUBLISH Unit

7.2.1 Data Structures and Defines
/* type for application context data */
typedef struct pua_s pua_t;
#define NUA_MAGIC_T pua_t

/* type for operation context data */
typedef struct ssc_oper_s ssc_oper_t;
/* define type of context pointers for callbacks */
#define NUA_IMAGIC_T    ssc_oper_t
#define NUA_HMAGIC_T    ssc_oper_t

struct ssc_oper_s {
  /**< Remote end identity
   *
   * Contents of To: when initiating, From: when receiving.



   */
  char const   *op_ident;

  /** NUA handle */ 
  nua_handle_t *op_handle;

  sip_method_t  op_method; /** REGISTER, INVITE, MESSAGE, PUBLSIH or SUBSCRIBE */
  char const   *op_method_name;
  /** Call state. 
   *
   * - opc_sent when initial INVITE has been sent
   * - opc_recv when initial INVITE has been received
   * - opc_complate when 200 Ok has been sent/received
   * - opc_active when media is used
   * - opc_sent when re-INVITE has been sent
   * - opc_recv when re-INVITE has been received
   */
  enum { 
    opc_none, 
    opc_sent = 1, 
    opc_recv = 2, 
    opc_complete = 3, 
    opc_active = 4,
    opc_sent_hold = 8,             /**< Call put on hold */
    opc_pending = 16               /**< Waiting for local resources */
  } op_callstate;

  int           op_prev_state;     /**< Previous call state */
  unsigned      op_persistent : 1; /**< Is this handle persistent? */
  unsigned      op_referred : 1;
  unsigned :0;
};

typedef struct ssc_conf_s ssc_conf_t;
/** 
 * Configuration data for pua_s_create().
 */
struct ssc_conf_s {
  const char   *ssc_aor;        /**< Public SIP address aka AOR (SIP URI) */
  const char   *ssc_certdir; /**< Directory for TLS certs (directory path) */
  const char   *ssc_contact; /**< SIP contact URI (local address to use) */
  const char   *ssc_media_addr; /**< Media address (hostname, IP address) */
  const char   *ssc_media_impl; /**< Media address (hostname, IP address) */
  const char   *ssc_proxy; /**< SIP outbound proxy (SIP URI) */
  const char   *ssc_registrar; /**< SIP registrar (SIP URI) */
  const char   *ssc_stun_server;/**< STUN server address (hostname, IP address) */
 };
/**
 * PUA context information structure
 */
typedef struct pua_s {
  su_home_t    ssc_home[1]; /**< Our memory home */
  char const   *ssc_name; /**< Our name */
  su_root_t    *ssc_root;       /**< Pointer to application root */
  nua_t        *ssc_nua;        /**< Pointer to NUA object */

  ssc_oper_t   *ssc_operations; /**< Remote destinations */



  char         *ssc_address;    /**< Current AOR */
  ssc_conf_t    conf[1];  /**< Config settings for ssc_sip.h */
} pua_t;

7.2.2 Initialization and Deinitialization
The following code snippet shows how the system is  initialized, enters the main loop for processing 
the messages, and, after message processing is ended, deinitalizes the system 

7.2.2.1 Initialization
pua_t pua[1] = {{{{sizeof(pua)}}}};
global_pua = pua; 
pua->ssc_name = win->m_ssc_name/*"ss3295"*/;
//Initialize system utilities
su_init();
//initialize memory handling
su_home_init(pua->ssc_home);
//Initialize the root object
pua->ssc_root = su_root_create(pua);
pua->ssc_nua = nua_create(pua->ssc_root, 

    event_callback, pua,
      TAG_NULL());

if (pua->ssc_nua) {
nua_set_params(pua->ssc_nua, TAG_IF(pua->conf->ssc_proxy,  
NUTAG_PROXY(pua->conf->ssc_proxy)),  NUTAG_ENABLEMESSAGE(1),
NUTAG_ENABLEINVITE(1),   NUTAG_AUTOALERT(1),   NUTAG_SESSION_TIMER(3600), 
TAG_IF(pua->conf->ssc_aor, SIPTAG_FROM_STR(pua->conf->ssc_aor)), TAG_NULL());

}

7.2.2.2 DeInitialization
void free_thread2(void *msgp)
{

su_root_break(global_pua->ssc_root) ;
nua_shutdown(global_pua->ssc_nua);
if(publish_flag == 1)

nua_destroy(global_pua->ssc_nua);
su_root_destroy(global_pua->ssc_root);
su_deinit();

}

7.2.2.3 Entering Main Loop For Processing of Messages:
su_root_run(pua->ssc_root);  /*Enters the main loop */

The main loop handles any incoming messages from the Presence server, it again goes on a listening 
mode waiting for the Video Unit to signal for another Publish. Upon getting such a signal, it publishes a 
message again on the Presence server.

7.2.2.4 Publishing SIP message on Presence Server:
pl = sip_payload_format
    (pua->ssc_home, 
     "<?xml version='1.0' encoding='UTF-8'?>\n"
     "<presence xmlns='urn:ietf:params:xml:ns:cpim-pidf'\n"
     "          entity='%s'>\n"
     "  <tuple id='%s'>\n"
     "    <status><basic>%s</basic>\n</status>\n"
     "%s"
     "  </tuple>\n"
     "</presence>\n",



     pua->ssc_address, pua->ssc_name, 
     state_busy ? "closed" : "open", 
     xmlnote ? xmlnote : "");

address = su_strdup(pua->ssc_home, pua->ssc_address);

 if ((op = ssc_oper_create(pua, SIP_METHOD_PUBLISH, address,  
SIPTAG_EVENT_STR("presence"),TAG_END())))
 {

global_op = op;
    printf("%s: %s %s\n", pua->ssc_name, op->op_method_name, op->op_ident);
    nua_publish(op->op_handle, 

SIPTAG_CONTENT_TYPE_STR("application/cpim-pidf+xml"),
SIPTAG_PAYLOAD(pl),
SIPTAG_EXPIRES_STR("3600"),
TAG_END());

  }

7.2.2.5 Callback Event:
void event_callback(nua_event_t event, int status, char const *phrase, nua_t *nua, nua_magic_t *pua, nua_handle_t *nh, 
nua_hmagic_t *op, sip_t const *sip, tagi_t tags[])
{

tag_type_t tag = NULL;
  tag_value_t value = 0;

switch (event) {
  case nua_r_get_params:

printf("Event %s status %d %s\n", nua_event_name(event), status, phrase);
break;
case nua_r_set_params:

printf("Event %s status %d %s\n", nua_event_name(event), status, phrase);
   break;

case nua_r_publish:

ssc_r_publish(status, phrase, nua, (pua_t *)pua, nh, (ssc_oper_t *)op, sip, tags);
pthread_mutex_lock(&BusyState_mutex);
pthread_cond_wait(&BusyState_cond, &BusyState_mutex);
pua_publish(global_pua,g_busy_state, NULL);
pthread_mutex_unlock(&BusyState_mutex);

break;
}

}

8. Results and Conclusions 
The performance of the software is  highly dependent  on the accuracy and efficiency of the Video 
Processing Unit. 
In the software,  we have implemented few algorithms and one can actually evaluate and compare 
between them. The options available are:

1) Gaussian Background Model
1. With Object Tracking enabled
2. Without Object Tracking

2) Running Average Background Model
1. With Background Model being continuously being updated



2. With  Background  Model  being  generated  only once  and  all  comparisons  are  with  that 
background.

Each of these methods have their own advantages and disadvantages. 
a) Gaussian Background Model

The algorithm is fairly complex and it is good in terms of modeling the background. However it 
is a bit slow and also since the environment in which the software operates is fairly static and 
stable, it does not show significant benefit over the other methods. It is around 10% slower than 
the other method (Running Average) used in our experiments. 

b) Tracking:
Since the Gaussian Method is a continuous background update module, it makes it absolutely 
imperative to do tracking along with the object detection because otherwise if a person remains 
in  the  scene  for  a  long  amount  of  time,  he/she  will  eventually  become  merged  into  the 
background and the software will lose the information about the presence of the human in the 
scene.  By  tracking,  the  software  knows  that  the  person  is  still  in  the  scene  even  if  the 
foreground model does not detect a contour for the person.
However, tracking can become really tricky when many people enter and leave the scene at the 
same time. Since tracking happens on feature points, it becomes difficult to determine if a point 
being tracked was part of a contour in a previous frame is part of the same contour in the next 
frame. Points from different contours can get overlapped due to occulsions and in all the cases 
tracking does not provide very accurate results.

c) Running Average:  Background creation  by running average of  the  pixels  is  a  fairly simple 
algorithm and hence it is fast. Though it is not one of the most sophisticated algorithm it still 
does pretty well  in the environment primarily because our environment is stable,  static and 
invariant to much lighting or such changes. Running Average is a simple algorithm in which the 
the background model is created on the basis of the pixel values of the last N frames, hence in 
more complex dynamic backgrounds with considerable lighting changes, it may at times not 
provide the best  background model.  However  our background being simple,  static  and less 
prone  to  lighting  changes,  Running  Average  creates  a  good  background  model.  (visually 
verified)

d) Creation of Background Once: Using the background once definitely improves the performance 
as background modeling is then not done for every frame. However, to get the best out of this 
process, we have to make sure that the software gets a good amount of initial time to build the 
background in which the conference room or the lab is empty without any individuals inside it. 
Also it may require an occasional re-creation of the background after a pre-determined amount 
of  time  or  at  a  specified  time  for  instance  the  software  may want  to  create  a  background 
everyday twice, once in the morning and once in the evening.

e) The software presently takes an frame buffer from the camera, processes it and then frees the 
frame buffer memory. This slightly affects the performance and we can find that the software 
operates at around 6-10 frames/second. It can possibly be made more efficient with a frame 
buffer queueing mechanism.



Below are a few screenshots showing how the software looks like:

Figure-3: The green spots in the Foreground depicts the points that are being tracked.

Figure-4: The Blob contour

  

Figure-5: The GUI as it looks while the software is running



Figure-6: The red rectangle shows the rectangular block drawn on the contour that is 
found.

Note: Movement of hand does not lead to the finding of more than once contour, it still can 
acurately detect the hand as a connected component.

Figure- 7: Without tracking



9. Future Directions
We need to test the software in real-time actual situations and observe its performance. We need to play 
around with the configurable parameters of the software and observe the results. 
There are couple of changes which can possibly improve the performance of the software if we find 
that  in  actual  real-time  situation  the  performance  of  the  software  is  not  up  to  the  mark.  In  the 
continuous Background Model, we can aim to process every nth frame for the update process instead of 
doing it for every frame. That will improve the performance. Also we can do the same for the Object 
Detection.  Also we may look at  using Intel's  IPP library of  OpenCV to find if  that  improves  the 
performance significantly.
We may try to improve the tracking system further and aim to track contours as a whole rather than just 
points  on the contour. We can also improve some performance by having a frame buffer queueing 
mechanism.

10. Software requirements
1. OpenCV (Intel's Computer Vision Open Source Library)
2. GTK 2.0 (for the GUI development on Linux)
3. Linux Kernel 2.6.xx
4. Drivers of the Webcam installed in the Linux kernel.
5. Sofia-SIP library (Nokia's Open Source SIP Library) 
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