
Advanced Internet Services Project Kunal and Manu

0

COMS 6181

Advanced Internet Services
Fall 2011

Professor Henning Schulzrinne

Course Project Report

SECE Explorer

 Kum2104 md3073

Kunal Mudgal Manu Dhundi
 (Server Implementation) (Client Implementation)

Advanced Internet Services Project Kunal and Manu

1

Goal:

To develop an application (SECE Explorer) that discovers IP enabled services (may or

may not be devices) in a local (home) network and reports the same to a centrally located server

(SECE Server). Also send the service details like IP, Port, service type, service addition or

service removal to the central server. The server to display the list of devices discovered on a

Web Page and to send some commands like print using a discovered printer.

Communication between Client and Server has to be using standard protocols like HTTP

and should use structured languages like JSON or XML. Code to be kept modular enough to

accommodate any additions or improvements.

SECE: Sense Everything, Control Everything

SECE Explorer Client:

Client Code & Architecture

SECEEXP

(SECE Explorer

Application)

Avahi

Discover

SECS

(SECE Explorer

Connection Setup)

HTTP

ZeroConf

Services

S

E

R

V

E

R

WebSocket

Client

Controls a

sample mDNS

service

Ready to talk to

the server in

WebSocket mode

and receive

commands

Utilities

Figure 1: SECE Explorer Client Architecture

 The SECE Explorer Client Architecture is captured in figure 1. It has 2 distinct

applications.

Advanced Internet Services Project Kunal and Manu

2

1. SECE Explorer Application which discovers mDNS Services:

The activity of this application is to discover mDNS services in the local (home) network

and send them to the central SECE Server. There are 3 modules in this application.

(a) Avahi Discover:

This module discovers all the mDNS services in the local (home) network. It runs

on a separate thread and polls continuously for service additions or removals. It also gets

the details like IP Address, Port, Service Name, Host Name, whether the service is being

added or removed and sends those to the application module, SECEEXP, in a structured

format as agreed between the 2 modules. It is important to abstract out the details of

service discovery to the SECEXP because, there may be more than one mechanism to

discover services may be employed in future. Further, the SECEXP is concerned only

with the services discovered and not the way in which they are discovered.

This module uses avahi-core.a and avahi-common.a libraries. The code for this

module has been adapted from the sample codes for avahi discover.

(b) SECEEXP:

This is the application module. It creates necessary resources like threads for all

other modules. It maintains the configuration parameters. It receives the discovered

devices from the Avahi Discover module and sends them to the SECS (SECE Explorer

Connection Setup) module.

SECS module and SECEEXP talk to each other in a structured format as agreed

upon before. SECEEXP is not concerned with the mechanism of server communication.

It only wants to make sure that the data it passes on to the SECS module reaches the

server.

(c) SECS (SECE Explorer Connection Setup):

This module is responsible for communicating with the server with appropriate

protocols. It prepares the JSON payload for the HTTP module. The JSON payload

contains the service info which can be interpreted by the server. JSON operations are

done using json.a library.

If there are any changes in mode of server communication in future, like addition

of security or xml payload, then those changes are to be handled in this module.

(d) HTTP:

This module establishes HTTP connection with the server to send the service

details to the server. It uses curl.a library. HTTP POST and HTTP PUT methods are

made possible. As of now, the server supports HTTP POST and hence HTTP POST is

being used.

Advanced Internet Services Project Kunal and Manu

3

(e) Utilities:

This module aims to contain utility functions which are needed by different

modules. It is important to have a separate utility module to avoid code duplication and

unnecessary dependencies across the modules.

2. WebSocket Client to receive control commands from the server

This application has websocket client ready. It can receive data from the servers that support

websockets. It send the HTTP GET request with “connection upgrade” field parameters. It can

parse the HTTP 101 server response which indicates websocket support and keep the socket

connection open to receive the data from the server.

Until the websocket is ready at the SECE server, it reads a dummy command in the JSON

format and sends them to a sample mDNS service.

3. A sample mDNS Service:

This is a sample mDNS service which gets discovered by the SECE Explorer and can read

and display the commands received from the websocket client application.

Server

Technologies: Java Servlets, JSP, MySQL Database, Glassfish Server 3.1

Architecture:

Advanced Internet Services Project Kunal and Manu

4

Database table

Devices

Column Attribute

ServiceName varchar(200)

ServiceType varchar(50)

ServiceIP varchar(100)

HostName varchar(100)

Port int(10)

ServiceState varchar(10)

Design:
The server has been deployed on Glassfish 3.1 server. The JSP servlet is ready to ready

communication once deployed via HTTP POST method. The JSON data received in payload is

stored in a temporary file at the server side.

The server parses this JSON file and stored in variables. If the device is a new device,

servicestate =1 and does not exist in the table, we add it to the table. If the device comes with

servicestate = 0 i.e. marked for deletion, the we delete it from the table

This data can be displayed on a webpage via JSP hosted on the server.

The list of devices is shown from which the user can select one. Once the user selects a

particular device, all the details of that device are displayed. We intend to send the command to

the device via JSP.

Future Scope:

1. Make SECE Explorer control an actual service as per commands from SECE server.

2. Integrate our SECE server with the main SECE server.

3. Add a security feature (probably light weight) in the SECE Explorer so that the explorer at

the home talks securely with the SECE server and intruders are prevented from controlling

the home devices.

4. Develop UPnP discovery mechanism to discover more devices in the home network.

