Evaluating Protocol Parser Performance

Henning Schulzrinne
Department of Computer Science
Columbia University

NY 10027

hgs@cs.columbia.edu

Aarthi Venkataramanan
Department of Computer Science
Columbia University

NY 10027
av2410@columbia.edu

Abstract

Internet messages are one of the most prevalent forms of
communication today, understanding optimal ways to store and parse
this information can help save time. In this study, we attempt to
compare parsers for Internet messages based on the underlying
representation of the input they work on. The formats considered for
this purpose are text as per RFC 5322 [1,2], XML and Binary.

General Terms
Parsers, Performance, Comparison

Keywords
Internet messages, xml encoding, binary encoding, tlvs, rfc 5322

Related Work

Documented work for parsing electronic mail headers is sparse and
relatively less known. GMime [3] is a C/C++ library for parsing MIME
messages but was difficult to apply the API (I/0 classes) to current work
to retrieve header information and so could not be used.

1 Introduction

Internet messages consist of a set of header fields (header section)
followed by an optional body. In this experiment, the focus is on the
header section of Internet messages. The aim of this parser comparison
study is to analyze the differences in the implementation and execution
speeds that can be achieved with storing the header section of Internet
messages in three primary forms:

1) The original Internet message format prescribed and defined by RFC
5322 2) XML data [3,4,5] and 3) as raw binary data.

Parsing in each case is designed to extract information from the e-mail
header fields and this information is then stored in a structure that is
similar across the three types. All parsers are in C.

E-mail header fields are defined by the RFC to be lines starting with a
field name, followed by a colon (:), followed by a field body, and
terminated by CRLF [1]. This field body can have printable US ASCII
characters and WSP but must not contain CR or LF.Each line is
recommended to have no more than 78 characters [1,2]. XML allows for
more structuring of the input, and the header fields’ data can be stored
under relevant tags and attributes. In the binary version a type-length-
value encoding is used to present the header fields.

1.1 Outline

The rest of the report is organized as follows - In Section 2, the system
requirements and environment are described. The actual
implementation is discussed in Section 3. Section 4 describes
performance evaluation measures and results obtained. Conclusions
drawn are listed in Section 5.

2 System Requirements
The experiment was performed on the following system:

Operating System: Ubuntu 9.10
Processor: 2.26 GHz Intel Core 2 Duo Processor
Memory: 2 GB 1067 MHz DDR3

Libraries /Compilers

gcc -GNU Compiler Collection [6]

Libxml2 - XML C parser available under MIT license [7,8,9]
(Appendix 2 lists detailed installation instructions)

3 Implementation

The parsers were implemented in C on a Linux platform. Of the three, it
was observed that a useful C parsing library that could be adapted and
used for Internet messages was available only for XML data, in the form
of libxml2 [7]. The binary and RFC parser’s functionality had to be built
extensively from the ground up.

RFC Text

Parser

Output

C
L> structure

Binary
TLVs

XML :>
>

Figure 1: High-level architecture

C struct

The C structure that is the holder for the values extracted after parsing
comprises both char pointers and nested structures for variable header
fields. (Appendix 1 has definition)

3.1 RFC

The specification [1] for Internet messages as per the Augmented
Backus-Naur Form rules was used to define the input (Appendix 3.1) .A
finite state machine-like model was used to parse the incoming file.
Each character read would then be an input, which determined next
state of parser. Validation on the fields was typically performed on
values retrieved after parsing.

The major modules in this parser are:

parse_fields: this module performed actual separation of the different
components of the header fields(such as via,by,date and from
components for the received fields, display name and e-mail address
components for the to field ,etc.)

validate_email, validate_fields: In these modules the field values were
checked to ensure validity of input.

3.2 XML

Libxml2 libraries [7,8,9] were used to parse the XML document
(Appendix 3.2) and fetch the tags and the attributes;
<libxml/xmlmemory.h> and <libxml/parser.h> were the headers
included for compilation.xmIDocPtr,xmINodePtr and xmlAttrPtr pointers
to the root,current node(or tag) and its attributes as defined in the
parser module of libxml2 [7] were used to achieve desired
results.parse_fields and validate_email are again the major modules of
this parser.

3.3 Binary
A structure representing the type-length-value-input was used to create

the binary file [10] as well as read back the values parsed. Types
corresponding to the various header fields define in RFC 5322 were

arbitrarily assigned unique numbers (mappings described in Appendix
3.3). Structure pointers, size and number of bytes were used as
parameters in reading in the values from the binary file.

Challenges in implementation

While the nested inner level structure representation for variable sized
headers worked for small sizes, generalizing to work with larger sizes
(header fields) was difficult to achieve and produced segmentation
faults. Current implementation needs work to fix this issue.

4 Performance Evaluation

In order to compare the efficiency of each parsing method, execution
time was measured as recommended by GNU [11] using the system
clock.

Parser code was allowed to execute 1000 times to facilitate time
measurement and the experiment was repeated 10 times for better
accuracy. The average time taken for one execution of the code was then
derived through even more repetitions of the process.(Appendix 4 lists
detailed results)

A summary of the results obtained is as given below:

Type of time taken for one

input execution/run of the
parser (in
milliseconds)

RFC txt 0.164

xml file 0.125

bin file 0.033

Table 1 Parser execution times comparison

bin file

& time taken for one
execution/run of the

xml file —————————— parser (in milliseconds)
RFC txt
s——
0 0.05 0.1 0.15 0.2
Figure 2 Parser Performance:Execution Time (in
milliseconds)

It was seen that the binary format was the fastest to parse, and then
followed by the xml file and finally the RFC.The differences in speeds
were in fractions of microseconds albeit consistent and hence
noticeable.

The results in favor of the binary format may be attributed to the
efficiency and structure of the type-length-value format as data can be
extracted by in effect reading back the values from the binary file and
the workload of the parser is considerably reduced.

As with the XML, the use of XML attributes to separate components of
the header fields (for e.g. display names of email addresses could be
more naturally represented as an attribute of the corresponding node in
xml, separating it from the email address which would be the actual
value of the node) is most likely the reason for improved performance
over the RFC parser which had to parse out these details as well.

Profiling

gprof [12] a useful UNIX profiling command was used to analyze the
time spent in each of the functions involved in the three parsers.(refer
to Appendix 5 for steps to run gprof)

The following charts illustrate typical observed behavior.

function % of total program running time
main 74
parse_fields 12
validate_email 10
call validate 4
validate_fields 0

Table 2 :RFC functions flat profile data

Figure 3: RFC parser functions as fraction of total
program running time

0

4

“main
parse_fields
“validate_email

& call_validate

“validate_fields

function % of total program running time
validate_email 66.67
parse_fields 33.33
call validate 0
parse_doc 0
validate_fields 0

Table 3: XML functions flat profile data

Figure 4: XML parser functions, fraction of total
program running time

0

i validate_email

33.33

parse_fields
& call_validate
K parse_doc

validate_fields

Note:

For some functions in both of the above cases, the % of total program
running time was relatively short compared to other functions and
hence show on the profile with a value of 0% despite being called in the
program as shown by the number of calls made (Source Code
attachment lists the actual file that was output by the gprof command
with additional details like number of calls, ms per call, etc)

function % of total program running time
main 33.33
read_from_file 33.33
write_to _file 33.33

Table 5: Binary functions flat profile data

Figure 5: Binary parser functions as fraction of total
program running time

33.33 33.33 i read_from_file

write_to_file

‘ main

33.33

For the purpose of profiling, the write_to_file function was considered
however it was not included in measurement of actual execution time of
the parser as its function was to create the binary file, which is actually
the input for parsing.

5 Conclusion

In this study performed on the same input data and measurement
parameters (1000 executions repeated 10 times on the same
environment for all 3 parsers) it was found that of the three, parsing
was fastest with the binary representation. The XML follows up second,
with the RFC taking the longest to parse. The execution times for all 3
parsers were in fractions of milliseconds.

References

[1] Resnick, P., "Internet Message Format", Request For Comments
5322,0ctober 2008

[2] “GMime “http://spruce.sourceforge.net/gmime/

[3] XML W3C Recommendation, http://www.w3.org/TR/xml/

[4] XML W3C Recommendation, http://www.w3.org/TR/REC-xml/
[5] www.w3schools.com/xml/default.asp

[6] “GNU Compiler Collection”,http://gcc.gnu.org/

[7] “The Libxml2 Reference Manual”, http://xmlsoft.org/html/libxml-
]

[8] “Libxml tutorial”, http://xmlsoft.org/tutorial /index.html
[9]“Libxml2 download”, http://xmlsoft.org/downloads.html
[10] “Binary I/0”,
http://www.gnu.org/software/octave/doc/interpreter/Binary-

[002f0.html#doc%2dfwrite

[11] “CPU Time Inquiry”,

http://www.gnu.org/s/libc/manual /html_node/CPU-Time.html
[12] “gprof”
http://manpages.ubuntu.com/manpages/hardy/man1/gprof.1.html

Appendix 1
C struct definition

struct parse_header{

Joh;

char *ptr_recvd_from;

char *ptr_recvd_via;

char *ptr_recvd_by;

char *ptr_recvd_with;

char *ptr_recvd_id;

char *ptr_recvd_for_email;

char *ptr_recvd_for_date;

char *ptr_resent_date;

struct resent_from *ptr_resent_from_field;
struct resent_to *ptr_resent_to_field;
struct resent_cc *ptr_resent_cc_field;
struct resent_bcc *ptr_resent_bcc_field;
char *ptr_resent_message_id;

char *ptr_orig_date;

struct from_field *ptr_from_field;
struct to_field *ptr_to_field;

struct reply_to_field *ptr_reply_to_field;
struct cc_field *ptr_cc_field;

struct bec_field *ptr_bcc_field;

char *ptr_message_id;

char in_reply_to[20][50];

char references[20][50];

char *ptr_subject;

char *ptr_comments;

char *ptr_keywords;

char *ptr_received;

char *ptr_return_path;

Appendix 2
Setup & Installation

2.1 Installing gcc and libxml libraries

2.1 Installing gcc

$ sudo apt-get update

$ sudo apt-get install build-essential
$ gcc-v

$ make -v

2.2 Libxml2 installation

After downloading the latest version of libxml2 from [11], these steps
should be executed:

$./configure --prefix=/usr/local /libxml2
$ make
$ sudo make install

This displays the message:
Libraries have been installed in:
/usr/local/libxml2 /lib

Set path by typing:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/libxml2/lib

To compile :
gcc -1/usr/local/libxml2 /include/libxml2 -Ixml2 filename.c
./a.out input.xml

Appendix 3
Sample Inputs

3.1 RFC Input Sample

Return-Path : <local@domain>

Received : from x.y.test by example.net via TCP with ESMTP id ABC12345 for
<mary@example.net>; 21 Nov 1997 10:05:43 -0600

Resent-Date : Fri, 21 Nov 1997 09:55:06 -0600

Resent-From : Zhou Chang <ching@corp.com>

Resent-To : Mona Baker <mbaker@bing.com>, Vera
Braldey<vbdly@hotmail.org>

Resent-Cc : Peter Smith <psmith@gmail.com>, "Jacob Karen"
<jkr@hotmail.org>

Resent-Bcc : Ming Fu <ming@bing.com>, <dring@hotmail.org>
Resent-Message-ID : <8912@bon.com>

Date :Fri, 20 Nov 1997 09:55:06 -0600

From :John Doe <jdoe@machine.example>

Reply-To : <mwng@bing.com>, "Vera Braldey" <vbly@hotmail.org>
To : Mary Baryy <mary@example.net>,sjakes@eee.com,<areva@pearlmail.in>
Cc :Maya@example.net

Bcc :"John Doe Personal Account” <doe@home.example>,"Mason"
<mason@sate.com>,"Kate" <kates@gmail.com>,<harry@jiffy.com>
Message-Id : <1234@machine.example>

In-Reply-To :<4567 @pearlmail.in>, <9123 @example.net>
References :<4567 @pearlmail.in>, <5678@example.net>

Subject :Saying Hello

Comments :Greeting

Keywords :meeting up, general discussion

3.2 XML Input Sample

<internet-message xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:SchemalLocation="schema.xsd">
<trace>
<return-path> <mary@example.net ></return-path>
<received from="x.y.test" by="example.net" via="TCP"
with="ESMTP" id="ABC12345" for="<mary@example.net>">
<date>2002-10-10T17:00:00Z</date>
</received>
<received from='"node.example" by="x.y.test">
<date>2002-10-10T16:55:00Z</date>
</received>
<resent-date>2002-10-11T16:55:00Z</resent-date>
<resent-to displayname="Zhou
Chang">&1t;ching@corp.com></resent-to>
<resent-cc displayname="Peter
Smith">&1t;psmith@gmail.com></resent-cc>
<resent-bcc displayname="Ming
Fu"><ming@bing.com></resent-bcc>
<resent-from displayname="Mona
Baker">&1t;mbaker@bing.com></resent—from>
<resent-message-id>&1t;8912@bon.com></resent-message-
id>

</trace>

<orig-date>2002-10-10T16:50:00Z</orig—date>

<from displayname="John Doe">&1t; jdoe@machine.example></from>
<reply-to displayname="John Doe: Personal
Account">&1t;doe@home.example></reply—-to>

<to displayname="Mary Smith">&1lt;mary@example.net></to>
<cc displayname="Boss'">&1lt;boss@nil.test></cc>

<bcc displayname="Mary Smith"><mary@example.net></bcc>
<message-id>&1t;3456@local.machine.example></message-id>
<in-reply-to>&1t;1234@example.net></in-reply-to>
<references>&1t;1234@example.net></references>

<subject> Saying Hello</subject>

<comments> Greeting</comments>

<keywords> meeting up, general discussion </keywords>
</internet-message>

3.3 TLV sample used to create .bin file

input_tlv.txt
Type Value

5 <local@domain>

8 Zhou Chang <ching@corp.com>

9 Mona Baker <mbaker@bing.com>
22 "Jacob Karen" <jkr@hotmail.org>
23 Ming Fu <ming@bing.com>

24 <8912@bon.com>

15 Fri, 20 Nov 1997 09:55:06 -060

14 John Doe <jdoe@machine.example>
13 <mwng@bing.com>

10 Mary Baryy <mary@example.net>
11 Maya@example.net

12 "John Doe Personal Account" <doe@home.example>
16 1234@machine.example>

17 <4567 @pearlmail.in>

19 Saying Hello

20 Greeting

21 meeting up general discussion

mapping types
Return-Path 05
Resent-Date 07
Resent-From 08
Resent-To 09
Resent-Cc 22
Resent-Bcc 23
Resent-Message-ID 24
Date 15

From 14
Reply-To 13

To 10

Cc11

Bcc 12
Message-Id 16
In-Reply-To 17
References 18
Subject 19
Comments 20
Keywords 21

Appendix 4
4.1 RFC Detailed Execution Times Result

RESULT: Time elapsed or CPU time used: 0.210000 s

RESULT: Time elapsed or CPU time used: 0.150000 s

RESULT: Time elapsed or CPU time used: 0.140000 s

RESULT: Time elapsed or CPU time used: 0.130000 s

RESULT: Time elapsed or CPU time used: 0.130000 s

RESULT: Time elapsed or CPU time used: 0.180000 s

RESULT: Time elapsed or CPU time used: 0.120000 s

RESULT: Time elapsed or CPU time used: 0.170000 s

RESULT: Time elapsed or CPU time used: 0.270000 s

RESULT: Time elapsed or CPU time used: 0.140000 s

TOTAL TIME TO RUN THE CODE 1000 times and repeat the experiment 10 times
=1.640000 s

AVERAGE TIME to run the CODE 1000 times= 0.164000 s

estimated time taken to run the code for one execution(avg time /1000)= 0.164 ms

(Note: RESULT: Time elapsed denotes time for a 1000 executions of the code)
4.2 XML Detailed Execution Times Result

RESULT: Time elapsed or CPU time used: 0.100000 s

RESULT: Time elapsed or CPU time used: 0.150000 s

RESULT: Time elapsed or CPU time used: 0.150000 s

RESULT: Time elapsed or CPU time used: 0.100000 s

RESULT: Time elapsed or CPU time used: 0.140000 s

RESULT: Time elapsed or CPU time used: 0.100000 s

RESULT: Time elapsed or CPU time used: 0.120000 s

RESULT: Time elapsed or CPU time used: 0.150000 s

RESULT: Time elapsed or CPU time used: 0.110000 s

RESULT: Time elapsed or CPU time used: 0.130000 s

TOTAL TIME TO RUN THE CODE 1000 times and repeat the experiment 10 times
=1.250000 s

AVERAGE TIME to run the CODE 1000 times=0.125000 s

estimated time taken to run the code for one execution(avg time /1000)= 0.125 ms

4.3 Binary Detailed Execution Times Result

RESULT: Time elapsed or CPU time used: 0.040000 s

RESULT: Time elapsed or CPU time used: 0.020000 s

RESULT: Time elapsed or CPU time used: 0.040000 s

RESULT: Time elapsed or CPU time used: 0.030000 s

RESULT: Time elapsed or CPU time used: 0.040000 s

RESULT: Time elapsed or CPU time used: 0.030000 s

RESULT: Time elapsed or CPU time used: 0.030000 s

RESULT: Time elapsed or CPU time used: 0.030000 s

RESULT: Time elapsed or CPU time used: 0.030000 s

RESULT: Time elapsed or CPU time used: 0.040000 s

TOTAL TIME TO RUN THE CODE 1000 times and repeat the experiment 10 times
=0.330000 s

AVERAGE TIME to run the CODE 1000 times= 0.033000 s

estimated time taken to run the code for one execution(avg time /1000)= 0.033 ms

Appendix 5

Steps to run gprof

1.Compile file as follows with -pg:
gcc filename.c -pg

2.Run the executable

./a.out

3.Run gprof command

gprof > outputfile

