
IP Authentication Framework over PKI

Chiache Tsai, Xiaofeng Qiu, Henning Schulzrinne
Internet Real Time Lab, Columbia University

1 Abstract

To provide an IP authentication mechanism for inter-
nal messaging in a network, we apply public key in-
frastructure (PKI) to build up the trust model. The
problems we are solving is to securely sign and ver-
ify messages using asynchronous key pairs and to dy-
namically manage certificates bound to IP addresses.
We try to involve Dynamic Host Configuration Pro-
tocol (DHCP) in the architecture, to make the cer-
tificates being deployed immediately after IP address
asignment. Our model of the certificate management
contains (1) a prover that proves the ownership of IP
addresses to the certificate authority (CA), (2) a signer
that signs the messages using the private key and (3) a
verifier that verify the certificates related with the ar-
riving mesages. This model provides a solution to the
existing routing security issues, and works as a generic
end-to-end message signing mechanism.

2 Introduction

In computer networks, IP addresses are usually used
as identifications of hosts. For example, packet filters
will filter the IP addresses of senders or receivers for
applying the routing policy. In many web services,
clients have to trust applications published by issuers.
The way of identifying application issuers is often IP
addresses or DNS translations of IP addresses, which
makes IP addresses very sensitive information in com-
puter network.

In order to quarantee the authenticity of IP address,
we need a framework that provides methods to proof
the IP address ownership of each individual hosts.
Moreover, when a new host joins the network, the au-
thentication information of the host must be dynam-
ically updated. In order to build such a trust model,
we applies Public Key Infrastructure (PKI) to feature
this security interaction. In Public Key Infrastructure,
entities are given unique asynchronous key pairs, to

proof the integrity of signaling by signing the mes-
sages using the self-hold private key. The receiptors of
messages may verify the integrity of messages by the
public key either attached to the message or found in
the directories of the network. For enforcing the secu-
rity of cryptographic operations, PKI must maintain
proper management on the deployed key pairs, in the
form of protected documents of certificates.

One of the main issues of IP address authentication
is routing security. Internet protocol is a protocol of
network layor, which is much lower than application
layor where most people intend to enforce the security.
A DHCP server does not own a trust model with cer-
tificate authority, so there is no strong model to bind
certificate deployment on IP address assignment. It
will be extremely vulnerable if the certificate author-
ity simply trust all certificate request, since IP address
are easy to forge. Our solutions to the issue is to build
a trust model among IP address assignment and cer-
tificate deployment. The simple one is to embed cer-
tificate request in DHCP request, and thus prevent
other user in the network intercepts the deployment
of certificates. Another solution, which leaves least
modification to DHCP, is to embed a piece of authen-
tication information, which can later be referenced by
the certificate authority when the user issues certifi-
cate requests.

We start this project as a part of NetServ Project.
NetServ is an innovative framework to fulfill new spec-
ification on network routing, with a new signaling
model to carry code segments among routers. The
architecture of NetServ has a security issue: Routers
must trust the issuers of the arriving code segments.
A bogus issuer may compromise a router with back-
doored code. A user may also elevate the privilege
by replaying a signal sent by a privileged user. We
want to design a subsystem to bind the hosts with IP
identification and to provide security for the source
address of routing signals. The core concept of this
project largely depends on the requirement of the Net-

Serv architecture, and we intend to state the security
problems that might happens in the architecture and
provide solutions to those problems. Somehow we are
also intend to make our result to be general solution
that can used to improve security in other network
that requires address-based authentication.

3 Background

In this chapter, we will introduce the background
knowledge that a user or developer must know about
this framework.

3.1 Public Key Infrastructure (PKI)

Public key infrastructure (PKI) is an aggregation of
systems that provides a reliable management and us-
age of cryptographic objects. In our framework, we
hold a network where each entity owns a unique pair
of asymmetric key (a public key and a private key) to
perform cryptographic operations. Public Key Infras-
tructure provides mechanisms for revealing the public
key of a entity to the network. The ability of signing
messages using the private key can prove the authen-
tication of senders, and everyone in the network can
verify the identification using the revealed public keys.

In public key infrastructures, key pairs are be used
in several ways:

• Encryption of digital messages, such as E-mail
messages, sensitive information, privacy data.

• Authentication of the sender and receiver of the
messages.

• Prove the integrity of the content or the attributes
of the messages.

• Authentication of users to applications.

• Bootstrapping secure communication protocols,
such as Internet key exchange (IKE) and SSL.

In common, public keys are stored and conveyed in
the form of digital certificates, which is a piece of data
being protected by some party that both the sender
and receiptor trust. It is critical to have a trust model
between the sender, receiptor and the certificate issuer
to maintain the security of issued certificates. One
of the common trust models is certificate authorities
(CA). Certificate authorities are services provided by
trustworthy servers that sign and issue certificates. A
CA will maintain a directory of all the certificates it
issues, and maintains the proper usage in the life-time
of each certificate. In the case that a certificate is being
abused or compromised, CA must have mechanisms to
revoke the certificates and prevent them to be reused.
Figure 1 shows the architecture of PKI.

Figure 1: Basic Structure of Certificate Authorities

In some case, an optional registration authority
(RA) is required as a role to authenticate the incoming
request and to manage the registration of user entities.
A Registration Authority will be placed int the middle
of the certificate authority and the network, accepting
all request and forward only legal request to certificate
authority. There must be a trust relationship between
certificate authority and registration authority. From
the view of the network, registration authority should
be transparent and considered as one entity together
with the certitifcate authority.

In this project, a hierarchical CA framework is used
to implement the public key infrastructure. The rea-
son that we apply public key infrastructure on IP au-
thentication is that we need a mechanism to deploy
and convey the certificates, and to ensure srelaiability
and usability of key pairs. One of the main purposes
of the solution is to provide a generic solution to IP
authentication, so we must not try to define the clients
in the network. We must not assume that each entity
in the network trust each other. Obviously, a CA hi-
erarchy should be useful for providing the trust model
we want, and it is reasonable to assume that the client
at least trust one of the root CAs.

3.2 X509 Certificates

X.509 standard is first issued in 1988, as an exten-
sion of X.500 standard. It is a standard format for
describing the format of public key certificates, certifi-
cate revocation lists, and a certification path validation
algorithm. X.509 strictly defines certificates under a
hierarchical structure: a X.509 certificate has to be
either self-signed (which means it is the root CA) or
signed by some higher-level CA. To do the verification,
it is neccesary to go through the whole signing chain
to verify the certificates.

The first version of X.509 standard defines a stan-
dard certificate format. In the format, each certificate
has a name to identify itself. Such a name is called
Domain Name or Subject. A domain name or sub-
ject consists of different identifications, such as com-
mon names, organization names, company names or
locations. Note that this subject might not be unique
among all the certificates signed by the same CA, and
there is a unique serial number to identify the certifi-
cates. A certificate must contain issuer information,
algorithm and signature for verification.

X.509 version 2 formats is published in 1993, and
version 3 formats is later published in 1996. The pri-
mary improvement of the X509 version 3 formats is a
set of certificate extensions that can carry additional
information for the users.

3.3 Enterprise Java Bean Certificate
Authority (EJBCA)

EJBCA is one of the enterprise class certificate au-
thority applications. It is built on J2EE platform, to-
gether with Java Bean (EJB) framework, which is a
popular component framework implemented in JAVA
language. Enterprise Java Bean framework provides a
methodology to build an internet service with central-
ized server and back-end database. Those enterprise
Java Bean applications will be run on certain EJB
servers, such as JBoss server, Glass Fish, WebLogics
or OC4J. EJBCA can be run on a recent version of all
these servers.

SQL databases are used as a back-end database of
the EJBCA. For each certificate issues by the EJBCA
server, there is a correspondent user created, with a
unique user name. The type of users will tell the pur-
pose that this certificate is being used and the profile
template that the user is generated. Three Basic types
of user are SERVER, END ENTITY and SUBCA.

The architecture of EJBCA can be either an all-
in-one CA/RA server or a standalone of CA server
with some external RA server. In the all-in-one mode,
EJBCA only accept certificate request from a user that
has previously registered to the user database. Also
the status of this user has to be new, which means no
certificate has been generated for this user before. If
configure the EJBCA with an external RA, user can be
generated for any legal certificate request, and EJBCA
will let the external RA responsible for the manage-
ment of users.

Several certificate management standards for PKI
are provided by EJBCA. EJBCA uses digital cer-
tificate, certificate request, certificate revocation list
(CRL) of X.509 standard. It supports RSA key al-
gorithm up to 4096 bits, DSA key algorithm with
1024 bits, and ECDSA key. For certificate status
check, EJBCA support both Certificate Revocation
List (CRL) and Online Certificate Status Protocol
(OCSP). CRL and OCSP provides different mecha-
nism to check revoked certificates, for CRL provides a
list of revoked certificates and OCSP responds to the
client with the status of certificates. The two mecha-
nisms can be useful in different situations. Note that
EJBCA can also be used as a standalone OCSP server
that caches certificates status information from exter-
nal CAs and responds to clients.

EJBCA is also one of the few open-source solutions

that support both Certificate Management Protocol
(CMP) and Simple Certificate Enrollment Protocol
(SCEP). The two protocols are both for batch genera-
tion of external certificate request. The former, CMP,
provides a more general-use management protocol for
all kinds of certificate management operations, while
SCEP provides only a simple messaging protocol for
certificate generation. In this project, we need CMP as
an interface of server for accepting certificate requests
and revocation request from clients.

For futher guideness to set up and configure an
EJBCA server, pease read Appendix I. A Quick Man-
ual for setting up EJBCA.

3.4 Abstract Syntax Notation One
(ASN.1)

In computer networking and cryptographic methods,
a uniform data format is required to store and trans-
fer information among entities. The Abstract Syntax
Notation One (ASN.1) provides a standardized and
flexible data structure to describe objects. ANS.1 Ob-
jects can be encoded into bit string, transferred on the
network or stored on the media, and decoded back into
object.

There are six kinds of encoding rule in ASN.1 stan-
dard:

• Basic Encoding Rules (BER)

• Canonical Encoding Rules (CER)

• Distinguished Encoding Rules (DER)

• XML Encoding Rules (XER)

• Packed Encoding Rules (PER)

• Generic String Encoding Rules (GSER)

Especially Distinguished Encoded Rules (DER) is
widely used in X.509 standard. And we are also using
DER encoding to encode the objects we defined in this
solution.

3.5 OpenSSL, Java Crypto Utility and
Bouncy Castle

The OpenSSL project is a set of utilities that provide
representation of cryptographic objects and methods.
Although the main purpose of OpenSSL is to sup-
port development of applications with SSL/TLS, it
can also be used in public key/secret key encryptions,
certificate generation and management, digital signa-
tures and authentication codes. The current version
of OpenSSL is 0.9.8, and it is written in C languages,
expectedly used on Linux and BSD platforms.

For developer that uses Java and C# language,
Bouncy Castle project provides porting of OpenSSL
API to Java and C# platform. Bouncy Castle defines
a set of cryptographic objects in ASN.1 format and
provides methods to encode objects in DER or BER
encoding rule. Bouncy Castle also ports the native
ASN1 parser engine of the OpenSSL project, so de-
veloper can easily define new ASN1 objects in Java or
C# language.

In fact, Java Development Kit 1.2 or later version
also defines cryptographic utilities for developer of se-
curity applications. In the native cryptographic util-
ities of Java, the interfaces and prototype of crypto-
graphic objects and methods are defined abstractly,
and can be implemented by any providers.

3.6 Certificate Management Protocol
(CMP)

Certificate Management Protocol (CMP) is an internet
protocol which supports remote certificate operations
on CAs. The functionality of Certificate Management
Protocol includes request and renewal of X.509 cer-
tificates, update and recovery of public keys, proof of
private key possession, certificate revocation, cross op-
eration among multiple CAs, and so on. Certificate
Management Protocol provides a well-formed commu-
nication channel between end entities and RAs, RAs
and CAs, CAs and end entities. Currently only busi-
ness solutions and a few open-source solutions, such
as EJBCA, support Certificate Management Protocol.
Most of the interface of CMP is built upon HTTP
protocol, while some solution might provide TCP con-
nection for CMP responders.

The format of the CMP messages are defined in Ab-
stract Syntax Notation One (ASN.1 Format).The pro-
tocol is officially defined in RFC4210, and a primary
part of the CMP messages uses CRMF (Certificate
Request Message Format) described in RFC4211. An
obsolete version of CMP is described in RFC 2510, the
respective CRMF version in RFC 2511.

In RFC 4211, the format of CMP messages is de-
scribed as following.

PKIMessage ::= SEQUENCE {
header PKIHeader,
body PKIBody,
protection [0] PKIProtection OPTIONAL,
extraCerts [1] SEQUENCE SIZE (1..MAX) OF

X509CertificateStructure OPTIONAL
}

PKIMessage has two main parts, PKIHeader and
PKIBody. Note that CMP provides two way of the
protection on the integrity of the message. One of
the protection methods is Password-based Protection.
In the Password-based Protection method, client and
server share a secret key and the key can be used to

create the Message Authentication Code (MAC) for
ensuring the integrity. Another method is Certificate-
based Protection. In the Certificate-based Protection
method, client and server own their certificates and
they use the private keys only known by themselves to
generate the signatures as the protection. Only in the
Certificate-base Protection method, extra certificates
have to be attached to the message.

The PKIHeader contains information to identify the
sender and the receiver of the message, the way to
verify the protection and some useful information. The
PKIBody provides up to 26 kinds of messages types to
serve different kind of certificate operations.

In order to prevent eavesdroppers to send bogus
CMP request by making replay attack, the server
might ask the client to prove that it really owns the
private key that correspond to the public key included
in the certificate request. Such a mechanism is called
proof-of-possession (POP). Since only the owner of
the private key can produce the segment of proof-of-
possession, the security can be ensured on the certifi-
cate requests. Several kinds of proof-of-possession pro-
tection can be used in CMP, and one of the simplest
ones is to create signatures of the message. Note that
this signature is different from the certificate-based
protection mentioned before. The Proof-of-Possession
Protection is made on each single certificate requests
(A CMP message can contain multiple requests), and
its purpose is to prove the ownership of the key instead
of protecting the message. By using signatures gener-
ated by the clients private key, the server can prove
the possession by simply verify the signature using the
clients public key. Another proof-of-possession protec-
tion will be decryption key challenge.

Certificate management protocol is very critical in
this solution. Since the complexity of certificate op-
erations performed on the CAs, only Certificate Man-
agement Protocol provides all the functionalities we
want in this project. The two basic message types re-
quired here are Initial Request (Certificate Request as
well) and Revocation Request. The CMP interfaces of
CA/RA servers have to serve the requests from trust-
worthy clients and create/revoke the correspondent
certificates as they wishes. By following the definition
of CMP, with authentication and proof-of-possession,
the request from those clients can be trusted as secure.

To be more specific, the CA/CMP solution used in
this project must satisfy the following requirement:

1. The client must be able to register new users in
the user databases. In order to provide dynamic
certificate deployment for end entities, CAs must
provides user generation when the certificate re-
quest sent by the client does not match with any
existing user in the user databases. Sometimes
such a case is called RA mode. It means that

the CAs trust the sender of certificate request as
a RA, and accept whatever valid request for the
certificate generations. Somehow in such a RA
mode, an additional RA is required to invoke the
management and authentication upon external re-
quests.

2. The CA/RA must authenticate the sender of
CMP requests. Since the CA/RA has to trust
the end entity that requests for certificate gener-
ations, there must be some authentication on the
CMP messages. In fact, not only the client send-
ing certificate requests must be authenticated, the
CA/RA server that providing the CMP interface
also has to be authenticated in order to prevent
rogue servers or man-in-the-middle attack. As de-
scribed before, there are two kinds of authentica-
tion methods for CMP messages: Password-based
Authentication and Certificate-based Authentica-
tion. Both of the methods are usable in the
scheme, as long as a CA/RA maintains a database
for trusted passwords and certificates. Somehow
some CA solutions, such as EJBCA, only pro-
vide a shared-secret authentication for RA mode,
which can be extremely insecure. For those CA
solutions that dont support individual authenti-
cation methods, there is definitely a necessity for
building a correspondent RA.

3. The CA/RA must deal with the collision of pub-
lic keys and domain names in certificate requests.
In this project, one of the assumptions is that
the network that an organization owns might not
have its own CA/RA server. It is allowed that
the certificates for this network are issued by an
external trustworthy CA/RA server. As a result,
there exists possibility for collision in the domain
names that the clients request for. The collision
can happen especially when we use the IP ad-
dresses as the Common Name for recognizing the
certificates. Since the quantity of certificate re-
quests that a CA/RA server receives might be
huge, there is also a possibility that two clients use
the same public key. As a solution, the CA/RA
has to accept CMP requests with identical domain
names or public key, and try to prevent confusion
during the certificate management.

For developers, currently there are only a few imple-
mentations of CMP API suites. An unofficial exten-
sion of OpenSSL provides the definition and methods
to build CMP messages in C language. For Bouncy
Castle project, a Novosec extension implements a set
of API supporting CMP, and it is also used in EJBCA.
Both of the solutions is used in this project, for the
CMP extension of OpenSSL is used in C programming,

and Novesec extension for Bouncy Castle is used in a
large proportion of Java programming.

3.7 Certificate Revocation List (CRL)

A certificate revocation list is a list that a Certificate
Authority issues, of certificates that are revoked or no
longer valid so no any entity should reuse them. The
concept of certificate revocation list was defined to-
gether with X.509 certificate in RFC3280. In fact, a
CRL is usually a list of the serial number of the revoked
certificates instead of the full contents of certificates.

Certificate revocation lists are generated periodi-
cally by the issuers. Two attributes in the CRL can
tell the validity of the CRL Object: Last Update spec-
ifies when the CRL object should be used, and Next
Update tells when the CRL object should no longer be
used. The period of CRL generation should be short
enough to prevent a revoked certificate being abused
before it is listed in the CRL. Although that we cannot
renew the CRL timely after the revocation of a certifi-
cates, as long as the update period is short enough, we
dont really worry about the effect of a revoked certifi-
cate in the cryptosystems. In principal, we should not
absolutely depend on CRL to decide the validity of a
certificate, and a reasonable expiring time should be
given in case that CRL service is not available.

The largest threat of certificate revocation list will
be denial-of-service attack. Since the revocation list
is updated to clients passively, a denial-of-service will
make the client unable to verify the certificates, or
even make the revoked certificates pass through the
verification. The denial-of-service attack can happens
in both sides: in the server side, make CRL unable
to be updated or retrieved, or in the client side, make
the client unable to obtain the CRL. In some cases, an
alternative of the CRL called online certificate status
protocol (OCSP) might be more useful.

In the revocation list, there are two kinds of sta-
tus the certificates might be given, one is Revoked and
another is Hold . A revoked certificate is irreversibly
revoked, so any client should no longer reuse this cer-
tificate. But a hold certificate is just a temporarily
invalidated certificate, which might be reused later for
some reason. When the issuer claimed that a certifi-
cate is revoked, it might also want to specify the reason
why the certificate should not be used. There are 10
predefined reasons in CRL that can be given by the
issuers.

Sometime it is a waste of bandwidth if we period-
ically download the full Revocation List. Instead, a
delta CRL can be generated by the issuer to improve
efficiency. A delta CRL includes only the difference of
the current CRL with the previous CRL, so largely re-
duce the size of the CRL Object. The clients only have
to download the full content of CRL at the beginning

and after the service resumes. Note that a delta CRL
also has a denial-of-service problem. Temporary un-
availability to the delta CRL will cause inconsistence
and affect the reliability of the CRL.

4 Concept

4.1 Dynamic Certificate Deployment

One of the problems that we are challenging is how
to deploy certificates to authenticate the IP addresses
in a dynamically allocated network. Suppose we have
a DHCP server that assigns a range of addresses to
all the hosts in the local network. Assuming that all
the hosts obtain the IP addresses legally, we need a
mechanism to issue certificates to bind on those IP
addresses and let the host can sign messages with the
correspondent private key. Therefore the receivers of
those messages can verify the signatures and prove the
integrity of source IP addresses.

Such a mechanism is especially useful in a network
where a huge amount of addresses are dynamically al-
located and users of the network cannot be explicitly
defined. Since the users of the network cannot get the
certificate before obtaining the IP address, there is a
difficulty to build a web of trust that Secure BGP does.
We try to provide a solution that all IP address owners
in the network can obtain a legally signed short-term
certificate to authenticate themselves, with no need to
register preliminarily.

The main challenge of this problem is how we can
trust the hosts in the local network to request certifi-
cates. After the IP addresses being assigned to hosts,
we can no longer prove the ownership of the IP ad-
dresses. Since an attacker or eavesdropper in the local
network can always spoof the source address by manip-
ulating the header of an IP packet, there is no secure
way to authenticate the clients given the IP addresses.
In order to solve this problem, we try to involve DHCP
server in the process of certificate deployment. The in-
volvement of DHCP server gives us a new advantage
on trusting the certificate request from local clients,
and stops the attackers from trying to spoof an IP ad-
dress that they actually didnt own. During the assign-
ment of an IP address, a piece of identity information
can be given by the legal obtainer of this address, and
since such an identity information cannot be forged or
reused by any attacker, the security is maintained in
the process of certificate deployment.

We have two solutions that both involve DHCP ser-
vices in the certificate request procedure. One of the
solutions has a direct involvement to the DHCP ser-
vices, and we modify DHCP messages to carry the
cryptographic objects. Another solution leaves the
least change to DHCP messages, but use some at-

tribute of DHCP messages to carry authentication in-
formation. The comparation between the two solu-
tions will be discussed in later chapter.

4.1.1 Solution 1: Certificate Request and Re-
sponse within DHCP Messages

This solution involves a direct modification to the
DHCP message format. It has been well defined in
DHCP standard that an IP request procedure consists
of four DHCP messages between clients and DHCP
server. All the messages are sent in the form of UDP
packets and mostly broadcast to the local network.
The DHCP server has to remain stateful for each single
request, and keep all the information (client ID, physic
address, requesting IP address, etc) for unfinished re-
quest. Note that client ID is a randomly generated
32bit integer which is used to identify the request.

The DHCP messaging for requesting consists of four
phases:

• Discovering: A DHCP client will broadcast
DHCPDISCOVER message to find local DHCP
servers. Sometime a client might specific a previ-
ously allocated address in the DHCPDISCOVER
message, for requesting reuse of the address.

• Offering: The DHCP server will respond to
DHCPDISCOVER message with a pre-allocated
address.

• Requesting: If the DHCP client to accept the of-
fer of the address from a certain server, the client
sends out a DHCPREQUEST to request this ad-
dress.

• Acknowledging: If the requested address is still
available to the client, the DHCP server will ac-
knowledge the client with DHCPACK message.

We need to place certificate request and retrieval in-
formation within DHCP request. The basic procedure
is as following:

1. The client generates a key pair consist of a private
key and a public key.

2. The client sends the public key to the DHCP
server by encapsulating it in the DHCP message.

3. The server will generate or ask some Certificate
Authority to generate the certificate, and return
to the client in another DHCP message.

The certificate object should only be put in
DHCPACK messages. It should not be put in
DHCPOFFER messages since the address being of-
fered to the client might not be the address eventu-
ally being assigned. However, from the client side, the

public key can be put in either DHCPDISCOVER or
DHCPREQUEST messages. Technically we prefer to
put the public key in the DHCPDISCOVER messages
than DHCPREQUEST messages, since the public key
can be used in some other way to protect sensitive
information during the DHCP request.

There might be a race between the legal user and
some attacker trying to steal the address identity.
Since an attacker can sniff on the local network, the
requested IP address is somehow revealed to the at-
tacker before it is actually assigned. The result is,
the attacker can send out a bogus DHCPREQUEST
messages with its own public key. Such a attack can
trick the DHCP server to issue the certificate that ac-
tually contains a counterfeit public key. The attack
also causes a denial of service on the legal user, since
the signature that a legal user generated can no longer
be verified.

One useful technique to stop attacker from send-
ing bogus request is to shadow the IP address in
DHCPOFFER messages. No attacker can get the re-
quested IP address before the last acknowledge and try
to race with legal clients to obtain certificates. Instead
the request IP address can be encrypted by the clients
public key. Since only the client owning the corre-
spondent private key can decrypt the information, we
dont have to worry that attackers might reveal the
requested address and do malicious things.

However, such a mechanism does not really stop all
attackers to send out bogus request. Since the range
of the IP addresses in a C-class local network is usu-
ally of size smaller than 256, it is not difficult for an
attacker to send out 256 DHCPREQUEST and try to
obtain the certificate bruteforcedly. Things get worse
when the DHCP server assigns the IP address in se-
quence. An attacker can easily predict the next ad-
dress by eavesdropping all the DHCP requests in the
local network. In fact this problem is a common secu-
rity problem for DHCP service and there is no solution
but some detection technique we can use to find out
attacker in the local network.

Sometimes we may want to shadow the IP ad-
dresses not only in DHCPOFFER messages but also
DHCPREQUEST messages. There is a concern that
an attacker might still eavesdrop on DHCPREQUEST
messages and try to race with legal users. As a result,
not only the client has to provide its public key to
the server, but server has to provide its public key to
clients. The public key of the DHCP server can be car-
ried by DHCPOFFER messages and used on the en-
cryption of IP address in DHCPREQUEST messages.

In order to carry cryptographic objects in DHCP
messages, we create a new option temporarily num-
bered as 254. Just like mentioned before, the YIADDR
(Your Address) fields have to be wiped out as 0s, and

also Option 50 (Requested IP address) must be re-
moved in the first three messages. The cryptographic
objects that the messages carrying will be as follow:

• Discovering: Client generates a key pair and sends
the public key to the server.

• Offering: Server sends its public key to client,
with the offered IP address encrypted with clients
public key.

• Requesting: Client sends the requesting IP ad-
dress encrypted with servers public key. Client
may also want to update its public key.

• Acknowledging: Server returns the certificate.

The Key Pair should only be generated by
the client. Since there is no previously negotiated
key between server and client, it is extremely insecure
to let the server generate the Key Pair and conveyed
to the client. However, there are some drawbacks
for letting clients to generate their key pairs. First,
there might be a collision, occasionally or deliberately,
among the public keys that different clients generated.
Second, the server cannot prove the possession of the
private keys in the CMP requests. For solving those
two problems, the client should be responsible for pro-
viding a unique public key and a proof-of-possession
segment to the server. The server will validate the in-
formation given by the client and deny those requests
that didnt give reasonable parameters.

One of the concerns for putting cryptographic ob-
jects into DHCP messages is the size of the objects.
The size of a certificate can be as large as several hun-
dred bytes, and make the DHCP messages too large to
send. For some small router, there might be a limita-
tion on the size of the DHCP messages, and therefore
truncate the messages to a fixed length. This problem
is just a technical problem that can be solved by config-
uring the network properly. However, if we dont want
the certificate to make the DHCP messages too large,
there are two techniques that we can use in the imple-
mentation: One is create another channel to deploy the
certificates. We can either broadcast the certificate to
the network, or put the certificate on some distribute
point that can be retrieved by clients later. Another
way is to cut the certificates into several pieces, and
carry them in multiple DHCPACK messages.

In this project, we extended the open-source UD-
HCP application, which is a light-weighted DHCP so-
lution for both client side and server side. The imple-
mentation is on the both side, for removing plaintext
IP address information and creating a new option to
carry public keys and certificates. The server used a
CMP client in the local host to communicate with an
external CA to obtain the certificate.

4.1.2 Solution 2: Certificate Request and Re-
sponse without DHCP Messages

The second challenge of the dynamic certificate de-
ployment problem is to build a certificate deployment
mechanism without changing the structure of DHCP
messages. We want to prevent direct modification to
the DHCP standard, and build a trustworthy channel
for the IP address owner to obtain their certificates.
An ideal communication model is like the following.

Phase 1 The client sends some preliminary messages.

Phase 2 The client obtains IP address by DHCP re-
quest.

Phase 3 The client sends request to a local server for
the issue of new certificate.

Phase 4 The client gets the certificate.

As described in the previous paragraph, it is nec-
essary to involve the DHCP server in the procedure.
In order to make sure that the client doesnt spoof its
IP address while requesting the certificate, we need
some new advantage for the legal users to authenti-
cate against attackers. We need two assumptions on
the DHCP solution to provide the security.

1. DHCPREQUEST must carry some authentica-
tion information that can only be produced by
a legal client. For example, the result of a one-
way function that can only be computed by the
client itself.

2. After the offering of an IP address being acknowl-
edged to the client, the authentication informa-
tion must be kept in the lease database that some
other application can retrieve on the local host.

Make an example, we can make client ID (XID) as
a digest of the public key to be the authentication
information. Since the digest function is a one-way
function that cannot be reversed by eavesdroppers, no
attacker can request the certificates with some other
public key. The certificate request will be served or
forwarded by a daemon that runs on the same host of
the DHCP server and has the power to query the lease
databases. When such a daemon receives a certificate
requests with some public key, it will check if the di-
gest of the public key matches with the authentication
information in the lease database. If the daemon de-
termines that the requests cannot be proved as sent by
the real owner of the IP address and the public key, it
will deny the request for a new certificate.

We do not worry about replay attack in this model.
An attacker that tries to send out a certificate request
which was sent previously by some other legal client

Figure 2: Architecture for Dynamic Deployment
Model without DHCP messages

can only obtain the same certificate that was given to
this client before. Since the attacker doesnt own the
correspondent private key, it cannot spoof its IP ad-
dress by signing its payload with this certificate. Since
such a model guarantees that the relationship of IP
address and the public key cannot be forged by any
attacker, any local machine that tries to bind some
public key to an allocated IP address will be denied
by the certificate daemon.

For doing the implementation, a simple model is to
make the certificate daemon as a proxy of certificate
request. When the daemon determine a certificate re-
quest to be legal, it will sign the request with its own
certificate and send it to some trusted Certificate Au-
thority to obtain the certificate. The Certificate Au-
thority will verify the request to make sure it doesnt
come from a rogue sender or a compromised DHCP
server. Figure 3 shows the architecture of deployment
model.

In such a model, the certificate daemon must ne
given the proof-of-possession of the certificate request.
In some network that is less sensitive, the daemon
can accept aggressive connections from the clients
that produce the proof-of-possession segment by them-
selves. For a more secure way, the daemon can chal-
lenge the client with the public key and check if the
client can answer the challenge. Additional messages
are required to do the challenge.

There might be confusion on the role of the certifi-
cate daemon and local clients. The daemon is a local
server that accepts requests from local clients. At the
same time it is also a client to the CA/RA server. The
workload of the certificate daemon can be large, since
it has to be responsible for the validation of the public
key and the deployment of the certificate request. As
a result, the risk that such a server is compromised
can be huge. To simplify the role of the Certificate
Daemon, we defined a new role in the model called
Prover.

Figure 3: Phases for Certificate Deployment using
Provers

The prover is an entity in the local network that is
trusted by the DHCP server. It has the privilege to
query the lease database and retrieve the pre-stored
authentication information. The job of prover is easy:
to prove the relationship between the allocated IP ad-
dress and the public key that the owner uses. We can
define the prover as an efficient algorithm that com-
pute the following result:

Prover (IP address H, Public Key PK) =

true, if the owner of H owns PK

false, otherwise.

Now the certificate daemon is changed into a prover
daemon. The prover daemon will validate certificate
request and sign requests if it can prove the relation-
ship of the IP address and the public key. The client
will send the signed request to the CA/RA server not
through the daemon but by themselves. Such a model
is simpler than using certificate daemon, since there
is no synchronization problem, collision problem, la-
tency from the CA/RA responders, and it is easier to
implement and extend.

We can argue that the security of certificate daemon
and prover daemon is actually equivalent. Since no
entity but the prover in the network has the ability
to sign the certificate request, it does not matter if
we let the clients to send the request by themselves.
Suppose there exists an attacker that can deceive a
Prover Daemon to sign a bogus request, it must also
be able to deceive some Certificate Daemon to send the
request for it. For these reasons, we prefer the model
with a Prover Daemon than a Certificate Daemon.

Figure ?? shows the steps that the certificate is de-
ployed in the model with a Prover.

Phase 0 The client will generate a key pair consist of
a public key and a private key.

Phase 1 The client obtain an IP address from the
DHCP server, an authentication code of the pub-

lic key must be provided to the DHCP server and
stored in the lease database.

Phase 2 The client creates a raw certificate request
containing the public key. The prover will sign
the request if it can prove the relationship between
the IP address that the client owns and the public
key that the client is using.

Phase 3 The client send the request to CA/RA server
and obtain the certificate.

Sometimes a trivial prover can be used in a static
network or a pre-allocated network. In a static net-
work that each entity already owns some key pair gen-
erated by some trustworthy authority, the prover only
has to maintain a database for the IP addresses and
correspondent public keys, and no need to query any
lease database on the DHCP servers. In some other
cases, we can also use a password-based prover that
authenticates the request by verifying the password.
In the model that uses such a password-based prover,
we assume that the clients will be responsible for the
security of their own key pair.

4.2 Certificate Status Validation

We designed a certificate status validation algorithm
to verify the certificates used to sign the payload. This
algorithm involves a set of unverified certificates and a
set of certificates of some trusted CAs. We also need
a somehow certificate status checking service to check
the revocations of those certificates.

Since we use a hierarchical CA structures in this
model, each certificate will have a signing path that
starts with some trusted root CA. To validate the cer-
tificate, we have to go through the whole signing path
and validate each certificate that signs the ascendants
of the end entitys certificate. This signing path can be
long if we have a complicated hierarchy of CA struc-
ture. There is a risk of denial-of-service that either
one of the certificates in the signing path might fail
the verification and affect the usability of the system.
We need an algorithm to dynamically collect status of
the certificates and change the states of those certifi-
cates that share the signing paths or part of the sign-
ing paths. This algorithm has to be efficient enough
to process a huge amount of certificate validation.

For relaxing the security and increasing the usability
of the system, we defined the validity of a certificate
to be Validity Depth which is an 8-bit integer. The
definition of Validity Depth is as following:

If the certificate is absolutely trusted,

Validity Depth = 0.

If the certificate is determined as invalid,

Validity Depth = negative integer

If the certificate is determined as valid, but

we havent got enough information to verify the

signing path of the certificate,

Validity Depth = 128.

If the certificate is determined as valid, and

we can verify the signing path of the certificate

to up to the d-th ascendant,

Validity Depth = d.

By using such a relaxed definition of certificate val-
idation, we can somehow make the system tolerant
to failure of status check. Normally a Validity Depth
up to 1 3 might be reasonably good enough for the
system, since we assume that the end entity can only
own some certificate with a very short validation time.
Even if we cannot get timely status of a certificate, we
still dont have to worry about the abuse of the certifi-
cate in a very short period of time.

The validation algorithm in this model is designed
as following:

SetDepth(Certificate C , Depth D)
If C.Depth > D then

C.Depth <- D
For every child C for C
If C is checked as valid then SetDepth(C , D)

Else SetDepth(C , D + 1)

Certificate[] Store

Verify(Certificate[] Cs)
For every C in Cs

Check the status of C by using some status checking service

If C is checked as invalid then SetDepth(C , -127)
If C is checked as valid then SetDepth(C , 127)
If C cannot be checked then SetDepth(C , 128)

If C in Store is found as a parent of C
If C is checked as valid then SetDepth(C , C.Depth)
If C cannot be checked then SetDepth(C , C.Depth + 1)

If C in Store is found as a child of C
If C is checked as valid then SetDepth(C , C.Depth)
If C cannot be checked then SetDepth(C , C.Depth + 1)

Add C to Store

Return Cs.Depth

4.2.1 Certificate Status Validation with CRL

Unlike other certificate status checking service, CRL
provide a list of revoked certificates for clients to look
up. While retrieving CRL from a CA server, a X.509
CRL object is downloaded from the distribute point
and we compare the certificates with the content of
CRL. We need an additional algorithm to verify the
CRL and integrate CRL objects into the certificate
storage. If a CRL is not verified as a valid CRL object,
the algorithm should not rely on the list given by this
CRL object.

Applying the previous certificate validation algo-
rithm, we have to assign CRL objects with the same

definition of Validity Depth as certificates. Just like
certificates, CRL objects can only be trusted when the
whole signing path is validated. If a certificate in the
storage is determined as the issuer of a CRL object,
the Validity Depth of the CRL object should be set
up the depth of the issuer certificate. As long as the
issuer certificate of a CRL objects is found, all the
certificates that are signed by the same issuer can be
verify by this CRL object.

The validation algorithm is designed as following.

CRL[] CRLStore

VerifyCRL(CRL L)
If L is not valid then return

If found some Certificate C in Store that C = L.issuer then
SetDepth(L , C.Depth)
For each child C of C

If C is revoked in L then SetDepth(C , -127)
If C is not revoked in L then SetDepth(C , C.Depth)

Add L to CRLStore

5 Discussion

5.1 Functionality

We implemented a PKI system that applies the core
concepts we designed in this project. Both of the two
solutions got successful results in the demonstrations.
The experiment done in this project consists of a hi-
erarchical CA structure (with a root CA and a local
CA), a router with DHCP server, and two clients that
each obtains an IP address in the network. For simpli-
fying the problem, we didnt use IP forwarding or IP
Masquerading on the router. The signing and verify-
ing of the messages is only done end-to-end, but we
believe the same methods can be used on edge-to-edge
operations.

The implementation of the system is platform-
dependent, so currently the solution cannot be used
on non-Unix platforms. However the structure we de-
signed is platform-independent, and it is feasible to
build customized solution for any network and any
platform. We try to build the system on existing
network protocols, such as X.509, Certificate Man-
agement Protocol (CMP) and Cryptographic Message
Syntax. Our solution is very friendly to developers
who is looking for a suitable IP authentication frame-
work.

5.2 Security

This solution is just a prototype of IP authentication
framework, so it might be imperfect in some details of
implementation. However we can prove that those se-
curity vulnerabilities are not structural vulnerabilities
and can be fixed through certain improvement. We be-
lieve our system solved most of the security problems

encountered in the project and proposed a solution for
most of the vulnerabilities we havent solve.

Involvement of DHCP server in the architecture
gives us new advantages to authenticate against IP
spoofer. We assume that all the hosts in the local net-
work obtained the IP addresses from the DHCP server
through legal DHCP requests. Even though we dont
really worry about the security of DHCP messaging
(It is not the purpose of this project.) it should be
kept in mind that such an assumption might be too
strong for the real-world network. However, skipping
the security problem of DHCP messaging, our solution
avoids any bogus certificate requests that come from
IP spoofers and provide a method for legal users to
register themselves before they obtained the address.

Note that in the second solution, for using client
ID as a digest of public key, it might be too short for
generating a 32-bit long digest for the public key. An
attacker can build up a dictionary with 232 different
key pairs that try to race with the legal user to send
out certificate request. One solution for this problem
will be putting random nonce or timestamps into the
digest to make the digest non-deterministic. (For using
timestamp, there might be a synchronization problem
of system time between servers and client.) Another
solution, which provides even better security, is to cre-
ate a new option to carry the digest.

One of the few attacks that can happen in the second
solution is replay attack. However, just like described
in the previous paragraph, a replay attack cannot re-
ally get any benefit from the system. Since the Cer-
tificate Authority accepts replayed certificate request,
such an attack doesnt really affect the common usage
of a legal user. As a result, the attacker will get a cer-
tificate with some private key that he didnt know, he
cannot really make use of this certificate.

Man-in-the-middle attack is actually a larger threat
in this system. We defined a mechanism for how the
user can be authenticated by the server (no matter
CA server, DHCP server, certificate daemon or prover
daemon). However we miss the definition of the server
authentication in the framework. The user that joins
into the network might be misled by a rouge server,
and become a victim of Main-in-the-middle attack.

Another attack we might want to worry about is
denial-of-service attack. An easier attack might be
some client in the local network trying to occupy all
the IP addresses in the range and prevent other client
to obtain IP addresses before its certificates expire.
In order to solve this problem, we need a collector to
collect all the unused IP addresses in the local network
and release them to new users. Another Denial-of-
service attack might happen on a router that verifies
a large amount of certificates. The workload of the
verifier on the router can be overridden by a client

send out a large amount of unverified certificates.
One of the problem that we should always keep in

mind is the possibility that a DHCP server/certificate
daemon/prover daemon being compromised. The
CA/RA server has to revoke the certificates of those
compromised servers timely to reduce the risk that
those servers are being abused. In principal, the
CA/RA server should not accept any request from
a DHCP server/certificate daemon/prover daemon re-
lated to a IP address that isnt owned by the domain.
Therefore even if an attacker broke into one of the
local server in the domain, it cannot spoof its IP ad-
dress that belongs to another domain. Also we can
assign different policy on different domains, for some
domains, such as DMZ, might be more sensitive on the
integrity of IP address identity.

6 Future Work

The construction of this framework is finished, but
some details of the system need improvement on the
security. In the dynamic deployment solution with a
prover daemon, we need a better way to carry authen-
tication information in the DHCP messages. A new
DHCP option will definitely be a good solution on this
problem. In addition, we need a better management
on the authentication information stored in the lease
database. The management system has to prevent col-
lision and confusion on the identity of different client.

We also need an algorithm to manage the certificate
in the database of the certificate authority and in the
cache of router verifier. Consider about the amount of
certificates in a network, the overhead of verifying or
managing those certificates can be very expensive.

Finally, we want to refine the solution and the API,
and make it more flexible, usable, extensible and plat-
form independent. We believe that this solution can be
a general solution to solve the authentication problem
of local IP address identity.

References

[1] FC5280 - Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL)
Profile http://tools.ietf.org/html/rfc5280

[2] FC 4210 - Internet X.509 Public Key Infrastructure
Certificate Management Protocol (CMP) http://
tools.ietf.org/html/rfc4210

[3] FC 4211 - Internet X.509 Public Key Infrastruc-
ture Certificate Request Message Format (CRMF)
http://tools.ietf.org/html/rfc4211

[4] FC 2560 - X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol (OCSP) http:

//tools.ietf.org/html/rfc2560

[5] TU-T X.690 ASN.1 encoding rules: Specification
of Basic Encoding Rules (BER), Canonical En-
coding Rules (CER) and Distinguished Encod-
ing Rules (DER) http://www.itu.int/ITU-T/

studygroups/com17/languages/X.690-0207.

pdf

[6] raft of Secure BGP http://tools.ietf.org/

html/draft-clynn-s-bgp-protocol-01

[7] anifests for the Resource Public Key Infrastructure
http://tools.ietf.org/html/

draft-ietf-sidr-rpki-manifests-07

[8] JBCA http://ejbca.sourceforge.net/

[9] penSSL Project http://www.openssl.org/

[10] ouncy Castle Project Java Home http://www.

bouncycastle.org/java.html

[11] ovosec Bouncy Castle Extension http://

sourceforge.net/projects/novosec-bc-ext/

