
Thread Management in Java: Monitoring and Adjusting
Priorities of Threads Using ThreadMXBean

Nathan Miller, Jae Woo Lee, Henning Schulzrinne
Columbia University

ABSTRACT
Java provides ThreadMXBean to monitor threads. The pur-
pose of this project was to harness this ability and create a
rudimentary algorithm to demonstrate fair thread schedul-
ing using this interface, in environments where malicious
threads can change their own priorities in order to overcome
normal thread scheduling.

1. MOTIVATION
A virtual machine can be created in which resources

of the host computer are unknown and inaccessible to
any processes in the VM; this is in fact common prac-
tice. In doing so, the processes running on the VM
are incapable of monopolizing resources of other VMs
or external processes running on the machine unless the
VM is given full measure of the resources. However, in a
scenario where multiple processes occupy the same VM,
measures must be undertaken to prevent these processes
from depriving each other of resources.

In working on the NetServ project, my research led
me to the question of whether Java could natively moni-
tor and control threads, readjusting their priorities when
the threads use too much or too little cpu time (indica-
tive of a deprivation scenario). My goal was to use
ThreadMXBean to monitor these threads and a very
rudimentary algorithm to ensure that no thread can mo-
nopolize cpu time. Since a NetServ container consists
of multiple threads, this would be useful if possible in
NetServ.

I also explored the usage of Java’s SecurityManager
to prevent threads from becoming abusive, and exam-
ined Java’s thread hierarchy to treat child threads as
part of their parent. However, neither of these two ad-
ditional goals were successful for reasons that shall be
made clear.

2. DESIGNING A SOLUTION
ThreadMXBean is a Java interface that handles man-

agement of threads inside a JVM. It handles, based on
Thread ID, monitoring the cpu usage of each thread as
well as other useful thread monitoring duties.

To design a solution in which ThreadMXBean could

be used to detect resource choking, I created two pro-
grams and attempted to create two more to address all
the issues mentioned above. Each of these programs
was uncomplicated, and the final products are by no
means scalable, but do provide a good understanding
of what can and cannot be done using Java.

3. PART ONE: THREADMXBEAN

Figure 1: Example Output of Part One

The first program I created was very simple, with the
goal of ensuring that ThreadMXBean would be able to
provide the monitoring information I needed. Essen-
tially, the program works as follows: the main thread
spawns five friendly thread of class Worker, and as-
signs each of them MIN PRIORITY, or Java Priority
1 [1]. Worker threads do nothing more than count in
an infinite loop, occasionally reporting how high they’ve
counted. See Figure 2.

Figure 2: Worker.java Code Listing

The main thread reports, using a ThreadMXBean ob-

1



ject, the cpu usage of all five Worker threads and the
percentage of the total cpu usage time used. It then
sleeps for another 100ms. Since all five threads act the
same and have the same priority, their numbers stay
about the same over the lifetime of the program. Fig-
ure 1 shows an example output of the first program.

At this point, it should be noted that ThreadMXBean
keeps track of all running threads, and therefore at this
point tracks nine threads rather than just the five Work-
ers. The other four threads are: Signal Dispatcher, Fi-
nalizer, Reference Handler, and main.

4. PART TWO: DETECTING AND REPRI-
ORITIZING ABUSIVE THREADS

Figure 3: Example Output of Part Two

The second program deals with the first problem: a
rogue thread that adjusts its own priority in order to
monopolize cpu time. This thread, EvilWorker, starts
out by adjusting its own priority to MAX PRIORITY,
or Java Priority 10 [1] and then acting as Worker. The
main thread, when it polls threads, notes if threads
have used too much cpu time in comparison to other
threads, defined as a 150% difference. If so, it low-
ers the priorities of the offending threads or thread to
MIN PRIORITY and raises the priorities of the victim-
ized threads or thread by one, so as to enable it to catch
up in terms of cpu usage. This behavior repeats until
usage is balanced.

In practice, this works out so that all threads even-
tually stabilize at Java priority 1 or 2. Figure 3 shows

initial (pre-stabilization) output of this program. This
works correctly even in the case that EvilWorker contin-
ues to reset its priority, although stabilizing takes much
longer and all threads stabilize to MAX PRIORITY
rather than 1 or 2.

5. A NOTE ON LINUX, JVM, AND PRIOR-
ITIES

Interestingly, Linux ignores Java’s priorities and as-
signs all threads the same priority, regardless of their
priority inside the JVM. However, this can be disabled
[2] as shown in Figure 4.

Figure 4: Overriding Linux’s ignoring of Java
Priorities

This override not only forces Linux to recognize the
Java priorities but also maps the Java priorities to Linux
Nice priorities. Java priority 10 maps to Unix Nice level
0 and Java priority 1 maps to Unix Nice level 9.

Without this override, the issue to be solved actually
does not exist on Linux, since all threads will have the
same priority inside Linux. However, this is not the
case for non-Linux VMs (Windows, for instance, does
not ignore the Java priority system), nor will it solve
the issue of a thread that spawns children to take more
resources.

No matter what, no thread is completely deprived.
Even in situations where its priority is lower, it simply
receives a smaller cpu timeslice, rather than being cut
off entirely. This has to do with Linux scheduling as
well.

6. PART THREE: INTEGRATING SECURI-
TYMANAGER

Of course, if a thread is incapable of setting its own
priority, then EvilWorker will be incapable of its ex-
ploitation, and the monitoring main thread will have
much less work to do (or be unnecessary altogether).
To successfully do this, however, requires implementing
a SecurityManager.

Unfortunately, there is no easy way of doing this.
There are several problems that exist in attempting to
do this. First, SecurityManager works with Permission
objects, but Permissions are assigned per signing au-
thority or per codebase. In my testing, I am unable to
create separate signing authorities, nor codebases. Un-
fortunately, it is not feasible to assign Permissions on a
per thread basis, so if the main thread has the permis-
sion to act in a certain way, the other threads will as
well: this includes setting priorities.

2



Second, it is possible to create a subclass of Securi-
tyManager in an attempt to create a customized check-
Permission() method, however, overriding checkPermis-
sion seems to be a rather involved issue and in essence
impossible; Java will not run if checkPermission is over-
ridden. It is unclear if this a bug or by design (the latter
would make sense) but in any case it is problematic.

It is, however, possible to override checkAccess, which
is what is actually called when a thread attempts to
setPriority. However, in practice, this is unreasonable:
checkAccess calls checkPermission, and though it would
be conceivable that an overridden checkAccess could
itself throw a SecurityException based on the calling
thread, this turns out to be very convoluted, as threads
can spoof many of their “unique” properties, and others
that cannot be spoofed are different from run to run.
The result is the same as not overriding: all threads
ostensibly have the same permissions.

There is a well-documented workaround for the prob-
lem above which allows one to override the deeper meth-
ods that checkPermission calls, in Java’s AccessCon-
troller. However, this is extremely tedious, and after
a short attempt to do so, it became apparent that the
time commitment would be unreasonable for a small-
scale project.

7. PART FOUR: THREAD HIERARCHY
Another way that a thread could be malicious, even

in an environment where priorities are controlled (either
by the monitoring thread or by an OS policy) would
be to spawn multiple threads. Since each thread will
get the same time slice, the malicious thread and its
children would still starve other threads.

In order to prevent this, it would be useful for the
monitoring thread to group these children together and
apply the same priority adjustment algorithm to the
group as a whole, rather than the individual thread.
However, this turns out to be difficult for two main
reasons:

• First, there is an issue if the threads constantly
readjust their priorities to MAX PRIORITY. Al-
though the algorithm will stabilize, each thread
will gain an equal timeslice, not each grouping of
threads.

• Second, and more importantly, Java does not treat
the thread hierarchy in the manner that one would
expect. A thread is identified by its threadgroup,
not by its parent. Unless a parent voluntarily cre-
ates a new threadgroup (and malicious threads
would obviously not voluntarily make things eas-
ier), then the threadgroup of a newly spawned
child thread is the same as that of its parent. In
other words, the thread hierarchy is quite flat.

Of course, rewriting the security architecture to solve

the problems in part three could also be used to solve
this problem: in theory, threads would not be allowed to
spawn children, but rather a factory could be provided
with the ability to create threads, and then group them
according to the requesting “parent” thread.

8. FURTHER LIMITATIONS
Note that all these examples work only with a one-

core VM. Using more than one core allows the VM
to split the threads among cores according to various
scheduling methods depending on the OS and JVM
used. In these cases, a thread may starve only one
thread rather than all of the other threads, or, if the
thread scheduler is particularly good, it may not par-
ticularly starve any threads if, for instance, malicious
threads are given their own cores.

In addition, ThreadMXBean reporting is not 100%
accurate all times. There are times where adding up
the cpu time used will yield a larger number than the
actual time that has passed (the percentages will equal
more than 100).

Also, because ThreadMXBean is a lightweight inter-
face and deals with thread IDs and not the threads
themselves, the programs I implemented are not easily
scalable. The main thread is aware of all the threads in
the system because it created them and kept track of
them. Thus it is able to adjust their priorities; doing so
through ThreadMXBean alone is impossible.

9. CONCLUSION
Using ThreadMXBean, it is possible to gain infor-

mation about cpu usage of threads, rogue and benign.
Coupling this with an algorithm to contain these rogue
threads is successful, but not necessarily easily imple-
mentable in non-test environments. In addition, mali-
cious threads have too much leeway to accomplish other
malicious tasks that are not easily prevented in small-
scale situations such as this.

Nonetheless, I do think ThreadMXBean provides a
very useful tool, if not only to provide a monitor to
check that an external scheduling or security mechanism
is working as it should. In the future, I hope to further
explore this topic, as well as expanding on the issues
in parts three and four and attempting to solve them
wherever possible.

10. REFERENCES
[1] Oracle. Java Constant Field Values.

http://download.oracle.com/javase/6/docs/

api/constant-values.html#java.lang.
[2] E. Stølsvik. Linux Java Thread Priorities

workaround.
http://tech.stolsvik.com/2010/01/

linux-java-thread-priorities-workaround.

html, 2010.

3


