
Final Report:
The Mobile DYSWIS
Spring 2012
IRT Lab, Columbia University

Project Student
Jin Hyung Park
jp2105@columbia.edu

Mentor
Kyung Hwa Kim
kk2515@columbia.edu

Advisor
Henning Schulzrinne
hgs@cs.columbia.edu

May 10, 2012

COMS E6901 Projects in CS - Mobile DYSWIS

mailto:jp2105@columbia.edu
mailto:jp2105@columbia.edu
mailto:jyk@cs.columbia.edu
mailto:jyk@cs.columbia.edu
mailto:hgs@cs.columbia.edu
mailto:hgs@cs.columbia.edu

Table of Contents

Introduction! 4

Purpose! 4

Project Scope! 4

Runtime Environment! 4

Application usage and features ! 5

Discover Bluetooth devices and connect to the Bluetooth! 5

Network Diagnostic modules! 5

TCP Incoming Test Module! 6

UDP Incoming Test Module! 6

DNS Query Test Module! 7

Android C2DM Test! 7

Ping Test! 8

Route Test! 8

Implementation Details! 10

How can make the modules of the mobile DYSWIS be written in JavaScript! 10

Background! 10

Hybrid Application! 10

How to write the module for the mobile DYSWIS! 10

Android Native Plugin Part! 10

HTML5 + JavaScript Part! 11

Implement the native Android plugin! 11

Implement the factory class for the native plugin! 11

Implement the JavaScript class for the native plugin class! 11

The diagnostic Scenario ! 13

Future Work Ideas! 14

Support another mobile platforms! 14

COMS E6901 Projects in CS - Mobile DYSWIS

Make the desktop DYSWIS diagnose the mobile DYSWIS! 14

Appendix A: References ! 15

COMS E6901 Projects in CS - Mobile DYSWIS

1. Introduction
1.1. Purpose

! The main purpose of this project is to implement the mobile version of the DYSWIS
application so that we can expand the network diagnostic into the mobile network platform.
As a result, we can provide detailed information about the failure even if the local network
is completely out of service.

1.2. Project Scope

! The project scope is defined as follows:

1. Implement the base environment that allows a user to write the mobile DYSWIS
module without modifying the original application

2. Implement Bluetooth server library that provides a communication interface
between the mobile DYSWIS and the desktop DYSWIS

3. Implement the Android specific network diagnostic module, which can diagnose
the Android C2DM(Cloud to Device Manager)

4. Implement common network diagnostic modules

1.3. Runtime Environment

! The mobile DYSWIS is written in Java, HTML5, and JavaScript, and it runs under
the Android OS 2.3.3 or the newer version and the PhoneGap[1] 1.5.0 or the newer
version. Also, the mobile DYSWIS requires the Bluetooth 2.0 stack since it uses bluetooth
communication between the mobile version and the desktop version of DYSWIS.

Figure 1.1 The Main Screen of the mobile DYSWIS

COMS E6901 Projects in CS - Mobile DYSWIS

2. Application usage and features
2.1. Discover Bluetooth devices and connect to the Bluetooth

! After launch, a bluetooth connection between he mobile version and the desktop
version of DYSWIS must be established so that the mobile DYSWIS can send information
to the desktop DYSWIS and receive information from the desktop DYSWIS to diagnose
the network. After launching the desktop DYSWIS, you can discover it by tapping 'List
Bluetooth Devices' button.

 Figure 2.1 Discovering the desktop DYSWIS! Figure 2.2 The connected result

! Figure 2.1 shows the discovery results. By tapping 'Select Device' button, you can
set the Bluetooth address of the desktop DYSWIS as the target. Then, tap 'Connect
Bluetooth' button to connect to the specified desktop DYSWIS. When the connection is
established successfully, the status label will appear as in Figure 2.2.

2.2. Network Diagnostic modules

! The mobile DYSWIS has 6 modules. One module tests the android native network
function(C2DM). Others are for testing the normal network environments. TCP incoming,
UDP incoming, Android C2DM, and Route speed tests are required the desktop DYSWIS,
and DNS Query and Ping tests can be run independently.

COMS E6901 Projects in CS - Mobile DYSWIS

2.2.1. TCP Incoming Test Module
Figure 2.3 - TCP Incoming Test Module

! To test TCP incoming connection, a user input the port to open with TCP at first.
When the user touch the ‘TCP Incoming Test’ button, the mobile DYSWIS opens the given
TCP port, and send the request to the desktop DYSWIS to connect into the mobile
DYSWIS. If the mobile DYSWIS receives the expected data, the test will be passed.

2.2.2. UDP Incoming Test Module
Figure 2.4 - UDP Incoming Test Module

COMS E6901 Projects in CS - Mobile DYSWIS

! The UDP incoming test is same as the TCP incoming test. The test will be started
when the user inputs the port and touches the ‘UDP Incoming Test’ button.

2.2.3. DNS Query Test Module
Figure 2.5 - DNS Query Module

! The DNS Query Module can be used to test whether the mobile device can connect
the DNS server, and get the correct DNS information. At the ‘Host’ filed, a user should
input the host name to verify, and the user should input the DNS server IP address at the
‘Serv’ field. The DNS Query result will be showed at the alert pop-up window.

2.2.4. Android C2DM Test
Figure 2.6 - The Android C2DM Test Module

COMS E6901 Projects in CS - Mobile DYSWIS

! The Android C2DM test module can test whether the mobile device can receive the
push notification correctly or not. This test is needed because lots of Android applications
are using this C2DM service, but sometimes users cannot receive the push notification
information of each application. As a result, users have questions why their mobile devices
cannot receive their push notification information. This module tests Google’s C2DM
service, and reports the result whether the mobile device can receive the push notification
correctly. If the test is passed, it shows the success message in the window.

2.2.5. Ping Test
Figure 2.7 - The Ping Test Module

! The Ping module implements a normal ICMP ping application. When a user inputs a
host name to check the ICMP ping at the ‘HostName’ field, it will show the ICMP ping
results with the minimum speed, average speed, and the maximum speed. The user can
easily determine the network speed of the mobile device with this module. Also, this
module can be used to test the network connectivity.

2.2.6. Route Test

! The Route test module checks the TCP packets of the round trip time to the given
hosts. When a user starts the Route test module, the mobile DYSWIS sends the request to
the desktop DYSWIS to receive a random host in the desktop DYSWIS P2P network. The
mobile DYSWIS sends the requests five times to the desktop DYSWIS. Whenever the
mobile DYSWIS receives the server address to check the round trip time, the mobile
DYSWIS sends the TCP check packet, and records the results. After finishing checking all
five servers, the mobile DYSWIS shows the results with the average, minimum, and
maximum round trip times.

COMS E6901 Projects in CS - Mobile DYSWIS

Figure 2.8 - The Route Test Module

COMS E6901 Projects in CS - Mobile DYSWIS

3. Implementation Details
3.1. How can make the modules of the mobile DYSWIS be written in JavaScript

3.1.1. Background

! The desktop DYSWIS is implemented on the OSGi framework. This enables a user
to write the modules for the desktop DYSWIS without modifying the original DYSWIS. In
this sense, the mobile DYSWIS should have the features that can write the modules
separately; however, the Dalvik VM[2], which is the Java virtual machine for the Android,
does not allow loading Java classes because each class in the Dalvik should be signed
when the compile time. As a result, there is no way to insert the class files or JAR files
during running the application.

3.1.2. Hybrid Application

! The solution for the problem mentioned at the section 3.1.1 is that the mobile
DYSWIS is written as the hybrid application. The hybrid application means the application
is written in HTML5 and JavaScript so that the application can be run all platforms if the
platform has the web browser supports HTML5 and JavaScript.[3] By writing the
application as the hybrid application, we can write each module in HTML5 and JavaScript.
As a result, we can separately write the modules for the mobile DYSWIS without modifying
the original application; however, this hybrid application requires the native layer plugins to
enable JavaScript to use native APIs, for example, Bluetooth, TCP, or UDP sockets. In this
project, I implemented those native layer plugins to use Bluetooth, TCP, UDP, and ICMP in
JavaScript.

3.2. How to write the module for the mobile DYSWIS

3.2.1. Android Native Plugin Part

! To support JavaScript to use the Android’s native APIs, we have to implement some
plugins so that those plugins provide the new APIs for JavaScript. The blue arrow of the
Figure 3.1 shows what layers we should implement.

Figure 3.1 - The native plugin bridge to support the native APIs in JavaScript

COMS E6901 Projects in CS - Mobile DYSWIS

!
! For this project, I implemented 7 plugins. These plugins will be used again later to
extend the mobile DYSWIS. Table 3.1 shows what plugins I implemented, and those
purposes.

Table 3.1 - The plugins of the mobile DYSWIS to support JavaScript

3.2.2. HTML5 + JavaScript Part

! To write the module for the mobile DYSWIS in JavaScript, we should follow next
steps.

3.2.2.1. Implement the native Android plugin

! At first, we need to implement the native Android plugin. For example, if we want to
use the TCP socket in JavaScript, we should wrap APIs related to the TCP socket. Also,
the native plugin uses JSON(JavaScript Object Notation) for the data between the native
application and the JavaScript layer. This means that we need to make JSON data, not
normal binary data. For example, when we receives some bytes from the TCP socket, we
have to encode those bytes into JSON. As a result, the native plugin should contain JSON
library.

3.2.2.2. Implement the factory class for the native plugin

! After creating the native plugin class, we need to write the factory class for the
native plugin class. This factory class determines which native object will be passed to
JavaScript. In this manner, we can keep TCP or UDP connections at the JavaScript.
Normally, objects of JavaScript of one page will be removed when the page is refreshed;
however, we cannot keep the TCP connection if the TCP object of JavaScript is released.
As a result, we use the factory class to manage objects.

3.2.2.3. Implement the JavaScript class for the native plugin class

! If there are ready to use the native plugin and the JavaScript class, we can write the
program in JavaScript. The code 3.2 shows how we use TCP in JavaScripts

COMS E6901 Projects in CS - Mobile DYSWIS

Plugin Name Purpose

BTSocket Supports the Bluetooth

C2DMReceiver Supports the C2DM service

PGDNS Supports the DNS Query commands

PGTCPSocket Supports the TCP socket

PGUDPSocket Supports the UDP socket

PGTCPRoute Supports getting the TCP round time

PGPing Supports generating the ICMP ping

this.startTestTCP = function(port) {
 this.port = port;
 console.log("Start TCP Incoming Test with Port = " + this.port);
 // Remove the port form on the screen, and replace it to waiting TCP connection
PORT
 var htmlText = "Waiting an incoming connection on port " + this.port + "
";
 document.getElementById("tcpincoming_result").innerHTML = htmlText;

 // To open and bind the given port,
 // we should use "0.0.0.0:port:ture" for the PGTCPSocket's initilizing mehtod
 tcpsocket = new PGTCPSocket("0.0.0.0:"+this.port+":true");
 tcpsocket.onopen = function() {
 alert('connected');
 };
 tcpsocket.onmessage = function(msg) {
 var data = msg.data;
 console.log("Incoming TCP data " + data);
 	 alert('There is no problem on the incoming TCP connection!');
 btsocketCommand = "TcpIncomingTest:Result:OK";
 SendBTCommand();
 document.getElementById("tcpincoming_result").innerHTML = formCode;
 };
 tcpsocket.onclose = function() {
 alert('close');
 };
}

Code 3.2 - The part of tcpincoming.js

! As we can see in Code 3.2, we can read TCP data from the JavaScript event, which
is the ‘onmessage’ event in this case. When the native TCP plugin receives data, it will
notify to JavaScript by sending the JavaScript event. There are cons and pros. The native
plugin automatically creates the TCP and streamer objects so that we can simply use the
TCP communication, and we can write another TCP modules without modifying the native
application. To write a module without modifying the application is one of this project goal;
however, this TCP socket depends on the native Android plugin, there is no way to modify
the TCP options if the native plugin does not wrap the original APIs that we want.

! In sum, we can write modules of the mobile DYSWIS separately by using HTML5
and JavaScript. Of course, it requires us to write the native plugin to support JavaScript;
however, it will give us more benefits after implementing the native plugins; for example,
writing modules without modifying the application, supporting another mobile platforms,
and so on. In this project, I chose writing the mobile DYSWIS in JavaScript to support the
independent module programming environment.

COMS E6901 Projects in CS - Mobile DYSWIS

4. The diagnostic Scenario
! To diagnostic the network problems on the mobile, I designed the diagnostic test
scenario by the top-down approach. Figure 4.1 shows the flow chart of this scenario.

Figure 4.1 - Android C2DM Test Scenario

!

COMS E6901 Projects in CS - Mobile DYSWIS

! The purpose of this scenario is to show users whether their C2DM functions work
fine. The most Android application are using the C2DM services; however, sometimes the
user cannot receive the C2DM notification from Google. In this case, the user may wonder
why they cannot receive C2DM notifications. So, first, the desktop DYSWIS requests the
C2DM notification to Google. The case of (1) means we can receive the C2DM notification.
If we receives the C2DM notification, our network connectivity is good. If we cannot
receive the C2DM notification, we run the next test. The second test is waiting the
incoming TCP connection from the desktop DYSWYS over P2P. If we can accept the TCP
incoming connection, there is no problem on the internet. For the final step, we’ll test the
local area network. In the case of (3), the local network works fine; however, if we cannot
receive the packet, the local area network has some problems. In this case, we may
assume that the router or the wireless AP have problems.

5. Future Work Ideas
5.1. Support another mobile platforms

! The current mobile DYSWIS supports only the Android platform. The mobile
DYSWIS is written in HTML5 and JavaScript, so we can implement the mobile DYSWIS
for the other platforms if we implement the native plugins for those platform. The
PhoneGap, which I used the library for the hybrid application, supports iOS and Windows
Mobile. This means that the mobile DYSWIS can also support those platforms.

5.2. Make the desktop DYSWIS diagnose the mobile DYSWIS

! Currently, the mobile DYSWIS uses the power of the desktop DYSWIS; however,
the desktop DYSWIS also uses the power of the mobile DYSWIS whenever the desktop
DYSWIS cannot use their networks. This is because the mobile DYSWIS has a 3G
network, so the mobile device does not lose their network connectivity in common. This
property can give help to the desktop DYSWIS to diagnose its network.

COMS E6901 Projects in CS - Mobile DYSWIS

Appendix A: References
! [1] PhoneGap - PhoneGap is an HTML5 app platform that allows you to author
native applications with web technologies and get access to APIs, http://phonegap.com/
! [2] Dalvik VM - Dalvik is the process virtual machine (VM) in Google's Android
operating system, http://en.wikipedia.org/wiki/Dalvik_(software)
! [3] The Hybrid Application - http://blog.brightcove.com/en/2011/11/html5-and-rise-
hybrid-apps

COMS E6901 Projects in CS - Mobile DYSWIS

http://en.wikipedia.org/wiki/Virtual_machine#Process_virtual_machines
http://en.wikipedia.org/wiki/Virtual_machine#Process_virtual_machines
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Dalvik_(software
http://en.wikipedia.org/wiki/Dalvik_(software
http://blog.brightcove.com/en/2011/11/html5-and-rise-hybrid-apps
http://blog.brightcove.com/en/2011/11/html5-and-rise-hybrid-apps
http://blog.brightcove.com/en/2011/11/html5-and-rise-hybrid-apps
http://blog.brightcove.com/en/2011/11/html5-and-rise-hybrid-apps

