

COMS 6901 Unified Heterogeneous Networking

Control Middleware Team
Project Report

 Qing Lan ql2282
 Shen Zhu sz2609
 Kai He kh2789

Qing Lan, Kai He, Shen Zhu

 2

Contents
1. Introduction .. 4

1.1. Background .. 4
1.2. Objectives ... 5

2. Methodology ... 6
2.1. Prior Work ... 6

2.1.1. Data Collection and Policy Engine .. 6
2.1.2. EventBus Architecture ... 6

2.2. Data for Modeling ... 6
2.3. Data Study .. 7

2.3.1. Network Data ... 7
2.3.2 Application Traffic Data ... 7

2.4. Policy Engine .. 8

3. Implementation .. 8
3.1. Collect Data .. 9

3.1.1. Time-based Static Data Collection ... 9
3.1.2. Event-based Derived Data Collection .. 10

3.2. Analyze Data .. 11
3.2.1. Data Analysis and Visualization .. 12
3.2.2. Backend APIs ... 16

3.3. Build a Prototype for Policy Engine .. 19

4. Result and Analysis .. 20
4.1. Architecture for Automatic Data Collection and Analysis .. 20
4.2. Prototype for Policy Engine .. 21

5. Discussion ... 29
5.1. Project Outcome .. 29
5.2. Security and Privacy Analysis .. 29

5.2.1. Security .. 29
5.2.2. User Privacy ... 30

5.3. Analysis ... 30
5.3.1. Features We Discarded .. 30
5.3.2. Why Using VPN Service ... 30
5.3.3. Variance on Bandwidth .. 30
5.3.4. Variance on Latency .. 32
5.3.5. Relationship between Bandwidth and Latency .. 33
5.3.6. File Size .. 33

5.4. Current Issues .. 33

6. Conclusion and Future Work ... 34

7. Reference .. 35

Qing Lan, Kai He, Shen Zhu

 3

8. Appendix ... 35
8.1. Android Side .. 35
8.2. Cloud Side .. 36

Qing Lan, Kai He, Shen Zhu

 4

1. Introduction

1.1. Background
When several Wi-Fi networks are available, phones would connect to the network with the

highest signal strength. However, this approach has some limitations: it cannot switch network
intelligently, nor could it switch network seamlessly.

Let’s consider two scenarios:

Fig. 1 Scenario One

 For example, as shown in Fig. 1, say I am walking from home to Columbia University and
listening to music. The networks around me change because my location changes, and my
phone would choose the Wi-Fi network that has the highest signal strength. When my phone
changes the network it connects to, the IP address of my phone changes, and I would lose
connection to Internet and could not have smooth experience listening to music.

Fig. 2 Scenario Two

The second example: I am sitting in Butler Library and using several applications on my
phone, such as YouTube, WhatsApp and Chrome. And many Wi-Fi networks are available
around me, such as Columbia University, Columbia U Secure and CBS-Guest. Different

Qing Lan, Kai He, Shen Zhu

 5

applications have different preferences for networks: YouTube may need network with high
bandwidth and WhatsApp may have preference for network with low latency. When I am
switching among different applications, I want my phone to intelligently choose the most
suitable Wi-Fi network based on my preferences.

1.2. Objectives
Inspired by [1], we want to build control middleware. Fig. 3 shows where the control

middleware lies in the networking stack, which is on top of transport layer and under
application layer.

Fig. 3 Position of Control Middleware

Fig. 4 Architecture of Control Middleware

Fig. 4 shows how this control middleware works. In an Android phone, this control

middleware collects the network, location and application data, it takes input from network
manager, location manager, application manager and user policy. These network data (SSID,
latency and bandwidth), location data(longitude and latitude) and application data (application

Qing Lan, Kai He, Shen Zhu

 6

package name, upload statistics and download statistics) are sent to the policy engine inside
this control middleware, and then this policy engine would make network switch decisions for
this phone.

In this semester, our main goal is to finalize policy engine based on different use cases. In

order to do that, we need to understand various use cases where network switches are needed,
improve the UI for users to add different policies and finally generate the network decisions
under different circumstances.

2. Methodology

2.1. Prior Work
2.1.1. Data Collection and Policy Engine

Last semester, a team of five people implemented the HetNet middleware which could
collect system, network and location information. Specifically, signal strength, signal
frequency, SSID and security protocol were captured successfully by network manager. All the
information was captured through the event listener. After that, the data was merged in the
policy engine class and stored on to the cloud database for future analysis. During this process,
Wi-Fi manager and telephony manager APIs in Android system were used. However, the
bandwidth and latency of the current network were not properly captured. The HetNet
application also included a draft policy engine where user could add the network and location
preferences.

2.1.2. EventBus Architecture
The EventBus Architecture [2] is an open source project widely used in complex Android

system. It provides a convenient thread-management system where every thread in the system
is either publisher or subscriber. This design was used in HetNet for tracking network, location
and system information. Once there is a change in network, location or system status, the
publishers would trigger an event to ask the related information fetcher to fetch the data. In
HetNet design, the central message manager was policy engine class which contains several
AsyncTask and would only be triggered when a new message is received. The messages are
the event responses coming from each publisher.

2.2. Data for Modeling
As stated above, our objective is to make network switch based on user policy and current

context (location, network and application information). Therefore, we need to create a
decision maker that takes user policy, location, network environment and application data as

Qing Lan, Kai He, Shen Zhu

 7

inputs and outputs the network to switch. In order to build this decision maker, we need to
collect network, location, and application traffic data and analyze them.

There two kinds of data we need to collect and analyze: the first one is network data,
including the network SSID, location, bandwidth, latency and security protocol. Through
analyzing this data, we can find which network has the highest bandwidth or lowest latency
around one location. The second kind data is the application traffic data, this data contains
information about the upload and download statistics of each application, thus we can find
which application consumes most data. The analysis of application traffic data can be found in
Chapter 3.2.1.

2.3. Data Study
2.3.1. Network Data

Only after we have collected and analyzed enough network data can we decide which
network is the most suitable one based on user policy. Therefore, for each network, we want to
collect the following properties:

 SSID (service set identifier): A human readable identifier of Wi-Fi network.
 Bandwidth: “The bitrate of available or consumed information capacity expressed
typically in metric multiples of bits per second” [3].
 Latency: “A time interval between sending network request and receiving response” [4].
 Location: The geographic location of this network, including longitude and latitude.
 Security Protocol: The security protocol used by this network, such as ESS and WPA2-
PSK-CCMP.

2.3.2 Application Traffic Data
Network data helps us know what networks are available to us in the environment. Besides

that, we also need to understand the users’ behavior of using different applications so that the
policy engine could make a proper network switch decision for them. For example, if by
collecting users’ application data we know that YouTube consumes the most data bandwidth,
we can “remember” this behavior in the database. Later if we detect that the user is currently
using YouTube again, it is very likely that switching to a higher bandwidth network would be
a good decision for this user. In other words, we are trying to build profile for each application,
which contains the following properties:

 Application Package Name: Unique identifier for each application in an Android phone.
 Upload Data: The upload data consumed by this application.

Qing Lan, Kai He, Shen Zhu

 8

 Download Data: The download data consumed by this application.
 Device ID: Unique identifier for the device that running this application.
 Location: The longitude and latitude of using this application. This information helps us
filter data usage by a certain location, which is useful for making network switch decision
based by location based policy.

2.4. Policy Engine
 Policy engine is the decision-making part of our control middleware. The inputs of policy
engine are events of application and location changes, and the outputs are decisions of whether
to switch network or not.

 In our control middleware, policy engine is an Android service running in the background
which continuously listens to application and location changes. Once the user switch to use
another application or moves to another location, policy engine check the analysis results for
user data and the policies specified by the users. By this means policy engine can know what
kind of network the user wants to user for this new application or location, and after that policy
engine make the decision to switch to that certain network.

Fig. 5 How Policy engine makes decisions

3. Implementation
In our implementation, we only consider Wi-Fi networks. We did not experiment on

cellular networks and make HetNet support cellular networks due to two reasons: First, the
time to do this research project is limited. We were more focused on establishing the whole
pipeline. Second, the demo phones we got only have access to Verizon network, but none of
us have Verizon sim cards. We tried to request contract-free phones, but had not received any
feedback.

Qing Lan, Kai He, Shen Zhu

 9

3.1. Collect Data

Fig. 6 Architecture Overview

3.1.1. Time-based Static Data Collection
Previously, the HetNet middleware would consume a great amount of the memory space

due to the anomaly behavior of network manager. A design flaw found in “NetworkListFetcher”
is that there is a while loop that may keep waiting for finishing collecting all network
information, which caused the fetcher thread "unfinished" and remains in the system for a long
time. Since two threads are executed at the same time, the while loop is waiting for the flag
once the other one finished. However, the delay of one thread would cause the entire fetcher
delayed for a long time. In that case, if the HetNet runs through a long period, the accumulation
of the “NetworkListFetcher” thread would result in crash of application. In order to fix this
problem, we create a thread checker to check whether the current thread is existed or not. If
existed, new thread will be delayed until the previous one finished. In this case, the
accumulation of “undead threads” problem is solved.

 In this semester, we have simplified the previous managers to improve the efficiency of the
middleware. The previous system listener/fetcher, location fetcher and network listener/fetcher
were disabled in the EventBus system. A class called "AppDataService" is used to capture all
network information and location information. At this stage, only data could be obtained
directly from the APIs are captured. The APIs used to collect network and location information
are the same as the previous HetNet. A timer set in the main thread triggers this service every
10 seconds. Comparing to the event-based design, time-based data collection reduces a lot of
times of duplicated data capturing. It also solved the known issue with "unfinished" fetcher
class in the previous network manager.

Qing Lan, Kai He, Shen Zhu

 10

Besides network data, we also need to capture application data so that we could better

understand users’ behavior of using application, which can help the policy engine make an
appropriate decision. There are mainly three methods to capture application data in Android
phones:

1) Bionic Library

For the rooted Android phones, we can directly interact with the low-level operating
system and capture the application traffic data through the Bionic Library [5]. However,
we need to collect this application data from all the users, but apparently not all the users
would use rooted Android phone. Therefore, this method is not applicable to us.
2) Android Library

For the unrooted phones, Android does provide APIs to get the upload and download
data. However, this library can only provide simple upload and download data
consumption, which can satisfy our current needs but is not sufficient for future usage. For
example, when a user is using Chrome, we not only want to know the amount of data
Chrome consumes, but also want to know what kind of website Chrome tries to
communicate with. User’s network need of watching video through Chrome and visiting
Wikipedia are quite different, so we need to know the destination the user tries to connect
to, so that the policy engine can make a better decision. Therefore, this method is not used
in our implementation.
3) VPN Service

For the unrooted phones, we can use VPN Service [6] provided in Android system to
capture more comprehensive application traffic data. Using VPN Service, the data packet
will not go to the web server directly. Instead, it will be redirected through the TUN
interface in Android and VPN Service can capture more information of the data packet in
the meantime. Therefore, besides upload and download data consumption, we can also
capture the source address, source port, destination address and destination port of the data
packets, which can be useful for further data analysis of this project.

 The application data capture is also time-based and will be triggered every 10 seconds.
The mechanism is same as network data capture mentioned above.

3.1.2. Event-based Derived Data Collection
Apart from the data collected directly from the APIs, we still need to measure other data,

especially for bandwidth and latency of the network. We are using the previous network listener
registered on EventBus to track the connection change between Wi-Fi networks. Once an event

Qing Lan, Kai He, Shen Zhu

 11

is triggered, the system would start downloading a file from a web server. The downloading
speed may vary based on network and location. In our design, we assume the downloading
speed from server would be the same in everywhere. The start time and the end time would be
captured to calculate the network speed. Latency data is captured through several HTTP
requests to the server and monitored the delay on the response. In that case, the Event-based
data collection would be finished through calculation, which is based on the following
equations:

Bandwidth Calculation:
1) Record start time 𝑡"

2) Download a size of 𝑠 static file from http://download.thinkbroadband.com (This website is

used for downloading file with known size to test network speed)

3) Record finish time 𝑡$

4) Network bandwidth can be calculated by %
&'(&)

Latency Calculation:
1) Record start time 𝑡"

2) Send HTTP GET request to http://google.com 𝑛 times

3) Record finish time 𝑡$

4) Network latency can be calculated by &'(&)
+

3.2. Analyze Data

Fig. 7 Architecture of Data Analytic Engine

 Fig 7 shows the architecture of our data analytic engine. In Android device, it first collects
network and application traffic data and sends it to our backend server. Server receives this

Qing Lan, Kai He, Shen Zhu

 12

data and stores data into database. Besides, this server analyzes collected network, application
data and responses to the request of frond end. Frond end receives and visualizes the results.

 When location or application change, it will trigger an event in policy engine. Then policy
engine will send the context information such as location and current application to decision
maker. Decision maker receives this information and will query backend server about which
network to switch. Backend server integrates the information of networks and sends it back to
decision maker. Finally, decision maker will tell policy engine which network to switch to.

3.2.1. Data Analysis and Visualization
Network and application traffic data are analyzed in backend server and the results are

shown in the frontend.

First, we built a map for different networks, so we can find all the networks around one

location. As shown in the figure below we have collected network information around
Columbia University and created this interactive map.

Fig. 8 Network Map

Qing Lan, Kai He, Shen Zhu

 13

Each marker in this map corresponds to a network, and if there are several networks around
one location, we created a cluster in this map and marked the number of networks in that cluster.
If you click one marker in this map, the information about the networks around this location
will show up. For example, in Fig. 8, when I click the red marker near Barnard College, the
frontend shows that this location is “2961 Broadway, New York, NY 10027, USA”, and the
information about the networks around this location is also presented. We also collect the
device ID so that we can differ the data collected by different phones, therefore, the network
decision made by our system differs on different phones.

For network data, we also analyze signal strength, bandwidth and create the following bar

charts, as shown in Fig. 9 and Fig. 10.

Fig. 9 Distribution of Averaage Signal Strength

Fig. 10 Distribution of Average Bandwidth

Qing Lan, Kai He, Shen Zhu

 14

These data allow us to know the range of bandwidth and signal strength of different

networks, which is helpful if we want to do some normalization when analyzing data. These
charts also give us an intuitive knowledge of which network has stronger signal strength and
higher bandwidth.

 For application traffic data, we first built the pie charts of upload and download statistics
for different applications, as shown in Fig. 11 and Fig. 12. They show the percentage of upload
and download data used by different applications.

Fig. 11 Piechart for Upload Statistics

Fig. 12 Piechart for Download Statistics

 Fig. 11 shows the upload statistics for different applications while Fig. 12 shows the
download statistics. With these two pie charts, we can find out which application consumes the

Qing Lan, Kai He, Shen Zhu

 15

most data. For example, if we find that YouTube or Google Map uses most data, they may need
networks with high bandwidth.

 We also created the times series of download and upload statistics for different applications,
as shown in Fig. 13 and Fig. 14. The library used to draw these figures is Highcharts [7]. It
turned out that this library did some smoothing while drawing these figures. We stored the
application traffic data in a table named “appdata” and the actual data we collected can be seen
in Fig 15, which is the traffic data of using YouTube in one hour.

Fig. 13 Time Series for Upload Statistics of Youtube

Fig. 14 Time Series for Download Statistics of Youtube

Qing Lan, Kai He, Shen Zhu

 16

Fig. 15 Application Traffic Data of Using YouTube in one hour

 As you can see, there is a dropdown button named “Application Package” in Fig. 13, you
can choose different applications installed on Android phones, and our system will show the
time series of upload and download statistics for this application. Now we chose YouTube, so
the statistics is shown for YouTube. In these time series, we can find when the user uses this
application and how much data this application consumes when being used. In other words, we
can profile the application as well as the user: if we can find some pattern that user always
watches YouTube at 11:00 pm, then in the future, when it is 11:00 pm, our policy can decide
to switch to a network that is most suitable for YouTube. Currently, we didn’t use this for
network decision.

3.2.2. Backend APIs
To support different types of analysis and visualization, we built several APIs in the

backend, here are some of them:
1) /network/getall

Description: Get the data of all collected network

Return Type: JSON

Return: {

 "networks": [network, network,…]

}

2) /network/bydeviceid

Description: Get the network collected by the device with this device ID

Parameter: Device ID

Qing Lan, Kai He, Shen Zhu

 17

Return Type: JSON

Return: {

 "networks": [network, network,…],

 "device_id": device_id_param

}

3) /network/byssid

Description: Get the network that has the input SSID
Parameter: SSID
Return Type: JSON
Return: {
 "networks": [network, network,…],
 "ssid": ssid
}

4) /network/bylocation

Description: Get the network around input location

Parameter: location(longitude and latitude)

Return Type: JSON

Return: {

 "networks": [network, network, …],

 "location": location

}

5) /network/getalllocation

Description: Get all locations where network has been collected

Return Type: JSON

Return: {

 "loaction": [location, location, …]

}

6) /network/getallssid

Description: Get the SSID of all collected network

Return Type: JSON

Return: {

 "ssid": [ssid, ssid, …]

}

Qing Lan, Kai He, Shen Zhu

 18

7) /network/getalldevice

Description: Get all device IDs that have collected network data

Return Type: JSON

Return: {

 "device_id": [device_id, device_id, …]

}

8) /appdata/getall

Description: Get all application data

Return Type: JSON

Return: {

 "appdata": [appdata, appdata, …]

}

9) /appdata/bydeviceid

Description: Get the application data of one device specified by device id

Parameter: Device ID

Return Type: JSON

Return: {

 "appdata": [appdata, appdata, …],

 "device_id": device_id

}

10) /appdata/byuid

Description: Get the network traffict data of one application specified by uid

Parameter: UID

Return Type: JSON

Return: {

 "appdata": [appdata, appdata, …],

 "uid": uid

}

11) /appdata/getbyapplicationpackage

Description: Get the network traffic data of one application specified by application package

Parameter: Application Package

Return Type: JSON

Qing Lan, Kai He, Shen Zhu

 19

Return: {

 "appdata": [appdata, appdata, …],

 "application_package": application_package

}

12) /appdata/downloadstats

Descriptions: Get percentage of download data by different applications

Return Type: JSON

Return: {

 app: percentage,

 app: percentage,

 ...

 }

13) /appdata/uploadstats

Descriptions: Get percentage of upload data by different applications

Return Type: JSON

Return: {

 app: percentage,

 app: percentage,

 ...

 }

14) /appdata/getallapplication

Description: Get all the applications that consumes network data

Return Type: JSON

Return: {

 "application_package": [application_package, application_package, …]

}

3.3. Build a Prototype for Policy Engine
 In our implementation, policy engine mainly consists of three parts:

1) AddPolicyActivity Class for the users to define their own user policies
 public class AddPolicyActivity extends Activity {…}

2) PolicyEngine Class that collects inputs (application and location data) of policy engine
public class PolicyEngine extends Service {…}

Qing Lan, Kai He, Shen Zhu

 20

3) ApplicationDecision Class making the network switch decision based on the inputs
 public class ApplicationDecision extends IntentService{…}

 We set AddPolicyActivity Class to be an Android Activity since this class acts as an UI
that interact with the users and accepts the input policy from the users, which must run in the
foreground. Therefore, extending Android Activity can best satisfy our needs. We set
PolicyEngine Class and ApplicationDecision Class to be Android Service due to the reason
that these two classes should run in the background of Android System and continuously listen
to the changes of the cellphone, and that is the feature of Android Service. For example, when
user moves to a new location, PolicyEngine Service should detect the coordinate change
immediately and triggers the decision making process. Once ApplicationDecision Service
listens to this trigger of decision making process, it will make network switch decision based
on the user policies defined through the UI previously.

Fig. 16 Android Implementation of Policy Engine

4. Result and Analysis

4.1. Architecture for Automatic Data Collection and Analysis

Fig. 17 Current HetNet

Qing Lan, Kai He, Shen Zhu

 21

The current HetNet architecture is shown above. The complete middleware is divided into
two sections. One is the data collection module that would collect the data in time-based (10
seconds) and event-based (connection change). Another module is the decision module which
contains location change and foreground application change triggers. These triggers are also
part of the EventBus architecture. The end point for two sections are all the cloud-backend with
different APIs. A cloud database built on AWS RDS stores the policy vectors and all
information collected for different users. The decision maker would be triggered once the
mobile device send event vector to the cloud and then do analysis based on the existing policy
vector and historical network/application information. HetNet also supports Wi-Fi hard-switch
when it receives the switch command sent from the server.

4.2. Prototype for Policy Engine
 Current cellphones only support default network switch based on signal strength, which is
not intelligent. The goal of our control middleware team is to provide intelligent network switch
according to user policy defined by users. Currently, we are able to provide hard handover of
Wi-Fi network when user changes location or application (Network switch is determined by
the foreground application, and all the background application will use the same network as
the foreground application does. This is due to the fact that currently we are not able to manage
multiple routing tables.).

 There are two factors that can lead to a decision of network switch: application change and
location change. For better demonstration purpose, we show the results of application change
on the Android phone by switching to different foreground application and see the hard
network switch; and show the results of location change on our cloud side map by clicking
different location on the map and see the network switch decision.

 Demonstration of network switch when application change (Android side):

1) Assume a user is currently at Columbia University, and there are altogether three available

networks: “Columbia University”, “Kai He’s iPhone”, “Shen’sIphone”. Since there are limited

number of networks available to us around campus, we set two of our iPhones as hotspot for

demo purpose (“Kai He’s iPhone” and “Shen’sIphone”).

2) In this example, the user will use Chrome, YouTube and Google Maps one after another, in the

same location. For best user experience, when using Chrome, the user wants to have the highest

bandwidth; when using YouTube, the user wants to have the lowest latency; when using

Google Maps, the user wants to just use “Columbia University” network.

Qing Lan, Kai He, Shen Zhu

 22

Fig. 18 Set policy that Chrome should use network with highest bandwidth

Fig. 19 Set policy that YouTube will use network with lowest latency

Qing Lan, Kai He, Shen Zhu

 23

Fig. 20 Set policy that Google Maps should use Columbia University network

3) In the very beginning, the user is using “Columbia University” network. In order to check the

effectiveness of our policy engine, then the user starts to use Chrome, YouTube and Google

Maps one by one, and we check whether policy engine will switch network for the user

according to his/her policy defined above.

Fig. 210 Use Columbia University in the very beginning

4) When the user switch to Chrome on the foreground, policy engine makes the decision to switch

to network with highest bandwidth. This information of which network has the highest

bandwidth has been collected in the data stored in the data collection phase and stored in the

Qing Lan, Kai He, Shen Zhu

 24

cloud database. Therefore, the policy engine will query the database, fetch the network

information and connect to that network (“Kai He’s iPhone” in this case).

Fig. 22 When starting to use Chrome, network is switched to network with highest bandwidth

Fig. 23 Android system shows that we are indeed using "Kai He's iPhone" network

5) When the user switch to YouTube on the foreground, policy engine makes the decision to

switch to network with lowest latency. This information of which network has the lowest

latency has been collected in the data stored in the data collection phase and stored in the cloud

database. Therefore, the policy engine will query the database, fetch the network information

and connect to that network (“Shen’sIphone” in this case).

Qing Lan, Kai He, Shen Zhu

 25

Fig. 24 When starting to use YouTube, network is switched to network with lowest latency

Fig. 25 Android system shows that we are indeed using “Shen’sIphone” network

6) When the user switch to Google Maps on the foreground, policy engine makes the decision to

switch back to “Columbia University” network.

Qing Lan, Kai He, Shen Zhu

 26

Fig. 26 When starting to use Google Maps, network is switched to "Columbia University" network

Fig. 27 Android system shows that we are indeed using "Columbia University" network

7) This example shows that the policy engine can switch networks for users according to the

application-based policies defined by them. This switch process is triggered when the

foreground application changes, and all the background applications will use the newly

switched network too. For example, if the user starts to use Google Maps in the foreground,

and policy engine switch to “Columbia University” network, all the background application

such as Gmail and Chrome will also use this network. Application-specific network switch is

not achieved since we still cannot manage multiple routing tables in Android phone. This could

be finished in the future semester of this project.

Qing Lan, Kai He, Shen Zhu

 27

We also recorded a video to demo this part, here is link for this video:

https://youtu.be/bMJkRZKcovk

The following is the demonstration of network switch when location change (cloud side):
1) Assume a user walks from home to Columbia University every day and there are five available

networks along the route: “CSORapartment-5G”, “Link-NYC”, “Costa-Conf”, “linksys” and

“Columbia University”.
2) In this example, the user will start from 204 West 108th Street, New York and walk along

Amsterdam Avenue to Columbia University. Since the user repeats this route every day, he/she

knows what networks are available and has the best user experience to him/her. He/she can set

user policy through our user interface and this information can be saved in our cloud database.
3) Assume the user wants to use “CSORapartment-5G” at home, “Link-NYC” around 110th Street,

“Costa-Conf” around 113th Street, “linksys” around 116th Street and “Columbia University”

inside campus. Then we simulate the policy engine decision when user travels from home to

Columbia University.
4) When the user is at home, policy engine makes the decision that network should be switch to

“CSORapartment-5G”.

Fig. 28 Policy engine makes decision to switch to "CSORapartment-5G" network at home according to user policy

5) When the user is at 110th Street, Amsterdam Avenue, policy engine makes the decision that

network should be switch to “Link-NYC”.

Fig. 29 Policy engine makes decision to switch to "Link-NYC" network at 110th Street according to user policy

Qing Lan, Kai He, Shen Zhu

 28

6) When the user is at 113th Street, Amsterdam Avenue, policy engine makes the decision that

network should be switch to “Costa-Conf”.

Fig. 30 Policy engine makes decision to switch to "Costa-Conf" network at 113th Street according to user policy

7) When the user is at 116th Street, Amsterdam Avenue, policy engine makes the decision that

network should be switch to “linksys”.

Fig. 311 Policy engine makes decision to switch to "linksys" network at 116th Street according to user policy

8) When the user is inside Columbia University, policy engine makes the decision that network

should be switch to “Columbia University”.

Fig. 312 Policy engine makes decision to switch to "Columbia University" network inside campus according to user policy

9) This example shows that the policy engine can switch networks for users according to

the location-based policies defined by them. This switch process is triggered when coordinate

of the user changes, and the switched network will be applied to all the background application

Qing Lan, Kai He, Shen Zhu

 29

too.

5. Discussion

5.1. Project Outcome
 In this semester, we have built a complete Android-cloud data collection pipeline and a
prototype of policy engine.

The data collection pipeline consists of Android side and cloud side. Android side runs as
an Android service in the background that continuously collect users’ network data as well as
application data and send them to the cloud side. The cloud side receives the data and save data
in the database. Also, the cloud side can analyze data and tell which network is most suitable
for users. This whole pipeline is complete and stable. If other types of data need to be collected,
they can easily be incorporated into this pipeline with the least modification.

Another outcome of the project is the prototype of policy engine, which can make decisions

for the users based on simple policy such as using networks with highest bandwidth and lowest
latency. First, we design a user interface for users to input their own policy according to their
needs. Then it can fetch the network information in the database through our cloud and know
which network should be switched to for the user. Finally, we implemented the hard network
switch based on our decision made for the user.

In short, this semester we build a foundation for control middleware team. The above

outcomes can be extended to more complicated usage without many changes in architecture.
Future students in control middleware team do not need to bother with issues like how to collect
user data, how to store data and how to let users define their policy. Instead, they can
immediately start working on how to design the most suitable policy that can best satisfy users’
network needs.

5.2. Security and Privacy Analysis
5.2.1. Security

 Currently, we have built the sign up and log in system on the cloud server to validate the
users’ identities. We are using JSON format to send the users’ account and password
information, which could be sniffed and attacked by hackers. The ideal way to deal with this
issue should be generating an authentication token on the client side in the login process and
sending the token to the server. The token can be used as a session key in header or cookie field
or as a part of the data. It should automatically expire in a certain time period. The connection

Qing Lan, Kai He, Shen Zhu

 30

between cloud backend and database are secure since it happened on the AWS internal
networks through the authentication tool provided by Amazon. The database is protected by
the username and password. There is no open port (can be accessed without
username/password) from cloud backend to the database.

5.2.2. User Privacy
 The database will store the location and network information in the areas where the user
has visited. This information would not be shared with other users. However, the user has the
right to use the information on multiple devices as long as the credential is matched. In this
case, HetNet users should have the device management tools available on the cloud backend.
Different devices should be registered with the unique identifier. Users also have the right to
remove any information collected from the server and the information must be removed once
the user no longer use the services. The cloud backend is designed to use all of the application
traffic data for analysis, and during this analysis, users’ personal information will not be used.

5.3. Analysis
5.3.1. Features We Discarded

In the final model, the signal strength result is not selected to make the decision. Since the
Android system is using this value to do the network switch automatically, there is not much
need for this data to make the decision again. Considering the fact that the bandwidth and
latency for certain network in a certain location is obtained, signal strength is not collected.

5.3.2. Why Using VPN Service
As we discussed in previous part, VPN Service is a good tool to capture more

comprehensive application data information which can help policy engine to make better
decision. Specifically, VPN Service can not only capture upload and download data
consumption, it can also tell us the source and destination of the data packets, which can help
us better understand the behavior of the user. When a user is using a multi-functional
application such as Chrome, knowing whether the user is watching videos or reading news
makes a difference for the decision making process.

5.3.3. Variance on Bandwidth
Although the bandwidth calculation would be performed when connection changed. The

variance of the data would not be measured. Hence, we evaluate the bandwidth based on three
factors: location, file size and time.

Qing Lan, Kai He, Shen Zhu

 31

Table 1 Location Test

Location Time File size Bandwidth
Business School

Entrance
9:10 5M 7.59 Mb/s

Business School Library 9:12 5M 6.82 Mb/s
Business School Cafe 9:15 5M 6.32 Mb/s

The first topic chosen to measure is the location. The time was chosen in the morning that

fewer people would be in the library. Network used for testing is the "Columbia U Secure".
Three location were at cafe area, main entrance and inside of the Library. The results shown
above are the average of 5 measurements in each area. The bandwidth differences are not large.

Table 2 Test on the Time

Location Time File size Bandwidth
Business Library 1 9:00 5M 12.60 Mb/s
Business Library 1 10:15 5M 10.97 Mb/s
Business Library 1 11:36 5M 7.01 Mb/s
Business Library 1 12:50 5M 5.62 Mb/s
Business Library 1 13:44 5M 5.53 Mb/s
Business Library 1 14:55 5M 6.94 Mb/s
Business Library 1 16:20 5M 8.32 Mb/s

Then we chose a Tuesday and did a couple of testing during the day. The result is as shown

below: the bandwidth is strongly related to the time during a day. It may be caused by the
number of people currently in the same networks. However, the historical data of bandwidth
during different days may be a good model to measure the quality of the network.

Qing Lan, Kai He, Shen Zhu

 32

Fig. 33 Graph of Different File Size

Finally, several tests were applied on the file size: file sizes of 2MB, 4MB, 5MB and 7MB
were chosen to do the measurement. All tests were run during 9:00 - 10:00 AM in the same
location of library. The result suggests a larger file would likely to provide a stable bandwidth
testing. As the difference between 5MB and 7MB was not significant, 5MB would be an ideal
option for network bandwidth measurement.

In summary, the variance of the bandwidth is more related to the file size and different
time of a day (how crowed the room would be). The location effect would not be considered
for a certain network. Whenever a bandwidth will be chosen, it should also be accompanied
with a timestamp.

5.3.4. Variance on Latency
Similarly, we tested latency based on location and time. The first factor we choose to

measure is location. we calculated latency for network “Columbia U Secure” in the morning in
three different locations, Business School Entrance, Business School Library and Business
School Café. The results are shown in the following chart. We can find that there are not too
many differences among them.

Table 3 Latency in Different Location

Location Time Latency

Qing Lan, Kai He, Shen Zhu

 33

Business School Entrance 9:03 0.264s
Business School Library 9:11 0.218s

Business School Cafe 9:07 0.247s

The second factor we tested is time. In Business School Library, we calculated the latency

for “Columbia U Secure” at different times, the results are also shown in the following chart:

Table 4 Latency in Different time

Location Time Latency
Business Library 9:00 0.218s
Business Library 10:15 0.200s
Business Library 11:36 0.233s
Business Library 12:50 0.228s
Business Library 13:44 0.294s
Business Library 14:55 0.374s
Business Library 16:20 0.351s

Generally speaking, the latency for network “Columbia U Secure” does not change too

much, but it can be found that the latency is larger at noon and in the afternoon. It may be due
to the reason that there are more people connecting to this network at noon and in the afternoon.

5.3.5. Relationship between Bandwidth and Latency
 Currently, we are not making any assumptions on the relationship between bandwidth
and latency. From the network data we measured at business school, it seems that there is
correlation between bandwidth and latency, as shown in Table 2 and Table 4. However, this
is not always the case. For example, in the demo video we recorded in Chapter 4.2, the
network with highest bandwidth and lowest latency are not the same.

5.3.6. File Size
File size may influence the bandwidth testing process when fetching network information.

The reason of doing experiments on different file size is to find the minimal file size that we
can provide us with acceptable accuracy.

5.4. Current Issues
During the time-based data capturing process, it is not strictly triggered every 10 seconds.

We set the interval to be 10 seconds so that we can gather location and application traffic data
repeatedly. This “10 seconds” parameter has not been tuned rigorously by experiments.

Qing Lan, Kai He, Shen Zhu

 34

Sometimes it could be 15 seconds and even longer due to the Wi-Fi scan process in network
capturing process. The timer would only trigger a new task when the previous one is finished
in order to avoid the accumulation problems happened in last semester.

The battery consumption is also an issue that user need to be aware of. Since the Wi-Fi

scanning and GPS locating services are used more frequent than usual, it will influence battery
usage greatly. However, once the user switch to the network suggestion mode, these services
will not be used very often and the cost would be reduced. The data collection mode would
consume much more battery than network suggestion mode.

6. Conclusion and Future Work
The control middleware team has finished most of the tasks mentioned in our project

proposal, including maintaining the data collections as well as a draft policy engine. A
universal network data capturing method is implemented to apply on both rooted and unrooted
phone. The backend server is designed to connect closely with the database and provide data
fetching APIs for visualizer and decision maker. A complete cloud analytic engine contains the
data visualization and management is built by these components. Several analyses were applied
to evaluate the variance of the parameters as well as the usage of them. Finally, the complete
work would be easy to extend and scale. The visualizer tool could be reused to provide more
visualization of the data. Comparing with the proposal, around 75% of the tasks were finished.
The remaining part was the bridge to the seamless transaction and the complicated use cases
handling based on the data now available.

The latter part requires the skill of the data analysis and algorithm building. The data should

be transformed into a format that could be applied to the classification/clustering algorithm in
order to identify the different condition such as, different period of a day, networks available,
which foreground application is using. The future goals would be the automated network
switch without any prior user defined policy. The policy engine would learn from the data to
build the user specific policy on the user account. It should also have the ability to label the
data-consuming application and most frequent used application during different time of a day
for certain user. The application data usage that we collected for now may have a strong impact
on the automated learning of the policy engine.

Qing Lan, Kai He, Shen Zhu

 35

7. Reference
	

[1] Singh, A., Ormazabal, G., Schulzrinne, H., Zou, Y., Thermos, P., & Addepalli, S. (2013,
October). Unified heterogeneous networking design. In Proceedings of Principles,
Systems and Applications on IP Telecommunications (pp. 1-7). ACM.

[2] [Online]. Available: http://greenrobot.org/eventbus/.
[3] [Online]. Available: https://en.wikipedia.org/wiki/Bandwidth_(computing).
[4] [Online]. Available: https://en.wikipedia.org/wiki/Latency_(engineering).
[5] [Online]. Available: https://android.googlesource.com/platform/bionic/.
[6] [Online]. Available:

https://developer.android.com/reference/android/net/VpnService.html.
[7] [Online]. Available: https://www.highcharts.com/.

8. Appendix
We put the codes we’ve written in this part, they can be divided into two parts: Android

side and cloud side.

8.1. Android Side
GitHub Repository: https://github.com/lanking520/HetNet
Our contribution to the repo in this semester:

• HetNet/app/src/main/java/android_network/hetnet/application/ApplicationDecision.java
• HetNet/app/src/main/java/android_network/hetnet/cloud/AppDataService.java
• HetNet/app/src/main/java/android_network/hetnet/cloud/SendCloud.java
• HetNet/app/src/main/java/android_network/hetnet/cloud/HttpService.java
• HetNet/app/src/main/java/android_network/hetnet/cloud/PostTask.java
• HetNet/app/src/main/java/android_network/hetnet/data/NetoworkEvaluation.java
• HetNet/app/src/main/java/android_network/hetnet/data/PolicyEngineData.java
• HetNet/app/src/main/java/android_network/hetnet/location/LocationFetcher.java
• HetNet/app/src/main/java/android_network/hetnet/network/NetworkListFetcher.java
• HetNet/app/src/main/java/android_network/hetnet/networkcap/ConnectionEvalFetcher.ja

va
• HetNet/app/src/main/java/android_network/hetnet/networkcap/ConnectionListener.java
• HetNet/app/src/main/java/android_network/hetnet/networkcap/ConnectionResponseEvent

.java
• HetNet/app/src/main/java/android_network/hetnet/networkcap/ConnectionTriggerEvent.j

Qing Lan, Kai He, Shen Zhu

 36

ava
• HetNet/app/src/main/java/android_network/hetnet/policy_engine/PolicyEngine.java
• HetNet/app/src/main/java/android_network/hetnet/vpn_service/ServiceSinkhole.java
• HetNet/app/src/main/java/android_network/hetnet/vpn_service/AcitivityTraffic.java
• HetNet/app/src/main/java/android_network/hetnet/vpn_service/DatabaseHelper.java
• HetNet/app/src/main/java/android_network/hetnet/AddPolicyActivity.java
• HetNet/app/src/main/java/android_network/hetnet/MainActivity.java

8.2. Cloud Side
GitHub Repository: https://github.com/lanking520/HetNet_Cloud
Our contribution to the repo in this semester:

• HetNet_Cloud/webserver/application.py
• HetNet_Cloud/webserver/table.py
• HetNet_Cloud/webserver/routes/appdata.py
• HetNet_Cloud/webserver/routes/event.py
• HetNet_Cloud/webserver/routes/index.py
• HetNet_Cloud/webserver/routes/login.py
• HetNet_Cloud/webserver/routes/network.py
• HetNet_Cloud/webserver/routes/sampledata.txt
• HetNet_Cloud/frontend/index.html
• HetNet_Cloud/frontend/css/signin.css
• HetNet_Cloud/frontend/home/applicationData.html
• HetNet_Cloud/frontend/home/applicationDataVisualization.html
• HetNet_Cloud/frontend/home/decisionMaker.html
• HetNet_Cloud/frontend/home/main.html
• HetNet_Cloud/frontend/home/networkData.html
• HetNet_Cloud/frontend/home/networkDataVisualization.html
• HetNet_Cloud/frontend/js/highcharts.js
• HetNet_Cloud/frontend/js/login.js
• HetNet_Cloud/frontend/js/main.js
• HetNet_Cloud/frontend/js/markerclusterer.js
• HetNet_Cloud/frontend/js/ng-map.min.js
• HetNet_Cloud/frontend/login/logintable.html
• HetNet_Cloud/frontend/login/registertable.html

Qing Lan, Kai He, Shen Zhu

 37

