Fault Isolation in a Multicast Tree using DYSWIS COMS 6181 Fall 2011

Phil Sphicas

Goal

 Correlate faults between multicast receivers of the same stream, and pinpoint where in the network the loss occurred

How do we detect faults?

- RTP has sequence numbers
- When a packet is received with an unexpected sequence number, we know that a fault occurred
- This could be a loss or a packet reordering - for the purposes of this project, we don't distinguish

How can we isolate faults?

- Nodes can determine their own path to the multicast source
- If an end node experienced a fault, all the hops between it and the source are suspect
- If an end node was joined to the stream but did not experience the fault, all the hops between it and the source are good
- By combining the sets of known good and possibly bad hops, we can come up with a smaller set of suspect hops

Multicast Topology

Fault Isolation Algorithm

- Let *H(n)* be the set of hops between node n and the source
- Choose a node *a* that experienced a fault
- Let *B* represent the set of possible bad hops
- Initialize B = H(a)
- For all other nodes b that experienced the fault, $B = B \cap H(b)$
- For all nodes c that did not experience the fault, B = B \ H(c)

Shifting gears ... DYSWIS

- DYSWIS is a distributed automatic fault detection and diagnosis system
- Provides a framework for detecting faults, querying other nodes for information about faults, and analyzing the results

Monitoring multicast RTP streams

Detecting multicast RTP faults

DYSWIS Probes

- Probes are used to query remote DYSWIS nodes for information
- We use a MultiProbe to query multiple nodes at once
- We ask each remote node:
 - Was it joined to the same stream at the same time?
 - Did it experience the same fault?
 - What is its path back to the source?

Diagnosing multicast RTP faults

