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I. Introduction 
In this project, we take two approaches in analyzing the wireless network status: 

Capturing frames in Linux and Querying Statistics in Windows. In both approaches we 

can acquire many useful parameters, such as transmitted frame counts, retry counts, 

ACK failure counts. We would like to observe some patterns that can help us 

distinguish between different sources of suffering of the network and finally provide 

reliable suggestion for user to recover. 

As we progressed in the experiment steps, we find that it would be too 

imprecise if we want to classify too many different kinds of interference with the 

scenarios and devices we currently using. Therefore, we decided to focus on the 

reasons of suffering that have more obvious features for detection and easier to be 

set up: microwave oven interference, baby monitor interference, channel contention. 

 

II. Design concept 
It is nontrivial to diagnose the root cause of the poor performance of a wireless 

network. Because the real wireless environment is complex with a large number of 

potential interferences and collisions, which themselves could interleave with each 

other and make the situations more complicated.  

 

To make the diagnosis simple and practical, single root cause and four types of 

sources of packet loss are assumed. 

˙ Interference from non 802.11 sources 

˙ Collisions for the same AP 

˙ Collisions for other APs working on the same channel  

˙ Interference due to a neighboring channel 

 

We further simplify the situations by deliberately eliminating the collisions for 

other APs working on the same channel and interference due to a neighboring 

channel. The experiments are done in an environment without neighboring channel 

influence.   
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III. Implementation 

A. Applications 

(A) Windows – Native Wi-fi API 

In Windows part, we originally expected to capture every frame before we can do 

any analysis. Unfortunately, the operating system doesn’t support retrieving these 

detail information with jpcap library. Therefore, we took a statistics approach by 

analyzing the return values in Microsoft Native Wifi API.  

In this application, we use JNI to pass values back and forth with the Native 

library, which was implemented in C++ (the structure shown as Pic. 3-1).  

 

▲Pic. 3-1: The structure of the application of Microsoft native wifi API 

 

About the data we retrieve, we implemented the data shown in physical layer. 

There are 3 sets of PHY layer structures (shown as Pic. 3-2) working in different 

modes (DSSS, OFDM, DSSS+OFDM) we can observe. To make it into a more robust 

tool, we integrate the function of custom configuration of parameters, saving, and 

showing results dynamically; all of them shown in a compact Java swing GUI (shown 

as Pic. 3-3). 



 

3 
 

 
▲Pic. 3-2: The structure of parameters we used in Microsoft native wifi API (shaded more important) 

 

 
▲Pic. 3-3: The GUI version of the application 
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(b) Linux, Macbook – Wireshark + Alpacka 

We construct the application basically based on Wireshark and Alpacka, which is 

a library for parsing the 802.11 frames. The structure will be more complex for the 

jpcap library doesn’t support capturing 802.11 frames on the fly; therefore, we have 

to use other application that support libpcap (in our case, Wireshark), and store the 

result for further analysis with the loadoffline method.  

For each network card, it supports signal-level header in different structure, and 

so we have write a specific parser to match its content. Integrate information from 

Radiotap (signal layer, shown as Pic. 3-4) and 802.11 (data link layer, shown as Pic. 

3-5) header, we can retrieve some useful data for frame analysis. 

Radiotap Header – Atheros (26 Bytes) 

Header 

revision 

Header pad Header 

length 

Present 

flags 

MAC 

timestamp 

Flags 

2nd bit: bad FCS 

1 Byte 1 Byte 2 Bytes 4 Bytes 8 Bytes 1 Byte 

 

Data Rate Channel 

frequency 

Channel 

type 

SSI signal Antenna RX flags 

1 Byte 2 Bytes 2 Bytes 1 Byte 1 Byte 2 Byte 

Radiotap Header – Macbook (25 Bytes) 

Header 

revision 

Header pad Header 

length 

Present 

flags 

MAC 

timestamp 

Flags 

2nd bit: bad FCS 

1 Byte 1 Byte 2 Bytes 4 Bytes 8 Bytes 1 Byte 

 

Data Rate Channel 

frequency 

Channel 

type 

SSI signal SSI Noise Antenna 

1 Byte 2 Bytes 2 Bytes 1 Byte 1 Byte 1 Byte 

▲Pic. 3-4: Different version of radiotap header we’re using in the experiments (shaded more 

important) 
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▲Pic. 3-5: 802.11 header structure 

 

▲Pic. 3-6: Sample output of Alpacka application 

 

(c) Linux – iwconfig 

We wrote a JAVA program to run iwconfig – the built-in function in Linux system 

for observing network status, and parse its result. We can get Signal Level and Noise 

Level from this function, and store them for analysis (shown as Pic. 3-7). 

 

▲Pic. 3-7: Sample output of iwconfig 

 

(d) Iperf 

We use iperf to create stable TCP throughput for our experiment, and thus make 

variance of transmitted frame count between experimental sets smaller. 

 

 



 

6 
 

B. Experiment 

We find an office placed in CUIT that have a wi-fi environment only between 

channel 6-11, therefore the environment make the optimized place for network 

analysis experiment in Columbia University we found. And thus, we conduct most 

important experiments right here. (Environment shown as Pic. 3-6) 

 

▲Pic. 3-8: The experimental environment setup 

For experiment, we use shell script (in Windows, batch file) to start iperf and 

our application at the same time. In our recent experiment, we follow the rules: 

 

˙ CONTROL VARIABLES:  

1. Distance between AP and device (signal strength at the same time, theoretically) 

2. TCP throughput (by slightly moving the source of interference) 

 

˙ INDEPENDENT VARIABLES: 

Type of Interference/channel contention 

 

˙ DEPENDENT VARIABLES: 

1. Successfully transmitted frame, retry frame, ACK failure, FCS error count 

2. Data rate 

3. Noise Level / SINR 
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IV. Result and Analysis 
There are two control variables on our experiments. By controlling the distance of 

the AP and the device, we can obtain corresponding results on the number of 

successfully transmitted frames (Tx), the number of retransmitted frames, the 

number of ACK failures, the signal strength (and the TCP throughput). By controlling 

the TCP throughput, we can again get these results differently. We have done 

extensive experiments on various distances before. For now the latter case is of our 

interest because we hope to find some patterns on these indicators so as to identify 

the most likely culprit for the poor wireless network performance (which could 

appear as low throughput in TCP or upper layers). 

 

A. Windows 

By querying native Wifi API in windows, we are able to obtain the number of 

successfully transmitted frames (Tx), the number of retransmitted frames, the 

number of ACK failures and the signal strength. 

 

▲Fig. 4-1: Comparison of the percentage of ACK failures under three different conditions 
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▲Fig. 4-2: Comparison of the successfully transmitted frames and ACK failures under three 

different conditions 

Native Wifi API defines the number of ACK failures as the number of times an 

expected ACK has not been received (in response to an attempted transmission). On 

the experiment we make the TCP throughput around 7Mb/s by adjusting the 

distance between the AP and the injected interference source or the number 

competing terminals for the same AP.  

As shown in Fig. 4-1 and Fig. 4-2, the number of ACK failures induced by either 

microwave oven or baby monitor changes with time much more sharply than the one 

resulted from channel contention. In addition, the percentage of ACK failures, which 

is given by 

 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝐶𝐾 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑓𝑟𝑎𝑚𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝐶𝐾 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 )𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 

is always lowest on the condition of channel contention. The result is reasonable in 

the sense that interference is more likely to cause the loss of ACKs. Channel 

contention, on the contrary, uses CSMA/CD technique to reduce the chance of 

simultaneous frame transmission and frame collision and therefore lowers the 

number of ACK failures. Moreover, based on Fig. 4-1 and Fig. 4-2 we cannot obtain 

further safe conclusion on distinguishing baby monitor interference from microwave 

oven interference. (It seems that the variance of Tx and ACK failures on the condition 

of baby monitor is a little bit smaller than that of microwave oven.) 

 

▲Fig. 4-3: Comparison of the percentage of retransmitted frames under three different conditions 

 Native Wifi API defines retry count as the number of MSDU/MMPDUs 

successfully transmitted after one or more retransmissions. On the experiment, the 

percentage of retransmitted frames is given by,  

𝑟𝑒𝑡𝑟𝑦 𝑐𝑜𝑢𝑛𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑓𝑟𝑎𝑚𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 
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We make the interval 200ms, which is assumed to be large enough to do the 

normalization. Fig. 4-3 again shows that channel contention leads to most stable and 

lowest level (10%) of retransmissions. The result is as expected because the retry 

count should generally reflect the same property as ACK failures. In fact, one or more 

ACK failure corresponds to a retransmitted frame. 

 It should be noted that we also collect signal quality on windows experiments. 

However, we are not able to obtain the noise level directly. So it makes no sense to 

merely measure the signal strength as it does not change obviously with injected 

interference. We will show the SINR measurement results in Linux section. 

 

B. Macbook (Wireshark) 

We do some data rate, SINR and FCS error analysis in the aid of popular wireless 

network tool Wireshark. We also use the Iperf tool to control the experiment TCP 

throughput at 10Mb/s to 12Mb/s. 

 

▲Fig. 4-4: Comparison of the percentage of FCS errors under three different conditions 

Using Wireshark on Macbook we are easy to obtain current maximum data rate, 

signal strength, noise level, FCS error count and the number of successfully received 

frames. The FCS error percentage is computed as 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝐶𝑆 𝑒𝑟𝑟𝑜𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑎𝑚𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 

Since the FCS errors can partially account for the ACK failures, the same observation 

can be found in Fig. 4-4. Typically, the variance of microwave oven induced FCS errors 

is much larger than the rest.  
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▲Fig. 4-5: Comparison of data rate under three different conditions 

It is clearly shown in Fig. 4-5 that on the condition of channel contention, data 

rate is highest on average while fluctuates most rapidly. In general it changes from 

54Mb/s to 24Mb/s and vice versa every 1 to 2 seconds. For the case of baby monitor 

induced interference, the data rate ranges from 24Mb/s to 38Mb/s with rare 

exceptions. For the case of microwave oven induced interference, the average data 

rate is almost the same as that of baby monitor, while the fluctuation is larger. We try 

to explain the reasons as follows. Channel contention does not lead to as much noise 

as interference, so the data rate, which is partially determined by the SINR, is less 

affected. But the competition among all stations connecting to the same AP may 

account for the instability. Interferences, on the contrary, directly lower SINR level 

and therefore lower the data rate. On the extreme cases, the data rate could become 

0 due to extremely weak SINR. We are not very sure about the difference between 

microwave oven and baby monitor. It could be the inaccuracy of our experiments. 

 

▲Fig. 4-6: Comparison between data rate and SINR with baby monitor interference 
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 ▲Fig. 4-7: Comparison between data rate and SINR with microwave oven interference 

 Fig. 4-6 and Fig. 4-7 show the relationship of data rate and SINR under two kinds 

of interference. We find that the variation trend between data rate and SINR for each 

case is similar to some extent, while the data rate changes less responsively. That is 

to say, the instantaneous data rate can well accommodate to a range of SINRs. We 

also observe that, at some time, the data rate changes a little bit later than the SINR. 

So the data rate is partially related to SINR on these cases. 

 

   ▲Fig. 4-8: Comparison between data rate and SINR with channel contention 

As shown in Fig. 4-8, there is no apparent relationship between the data rate and 

SINR on the condition of channel contention. This is because other factors such as 

the number of competing terminals for the same AP might influence the data rate as 

well. 

 

C. Linux 

In Linux environment we collect instantaneous signal strength and noise strength 

at each sampled time and record the SINR as Signal Strength (in dB) – Noise Strength 
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(in dB). Given the information sharing architecture, if the interference source is close 

to the AP, it would interfere with all devices; if it's close to only one device (device 1 

in the experiment), it should only interfere with one, while the others should see less 

interference. So the purpose of our experiment is to compare the SINR 

characteristics on the two situations with two interference sources as well as channel 

contention. 

 

▲Fig. 4-9: Comparison of SINR between Device1 and Device 2 with baby monitor interference 

Fig. 4-9 compares the SINR degradation between device 1 and device 2 when 

placing a baby monitor adjacent to device 1. We find an average of 11.5dB 

degradation for the SINR of device 1, compared to almost no degradation (less than 

0.01dB) for that of device 2. The result is as expected because the severe 

interference induced by baby monitor is only exposed to device 1. Therefore, one can 

detect the exact situation by sharing information with peers based upon DYSWIS 

architecture.   

 

▲Fig. 4-10: Comparison of SINR between Device1 and Device 2 with channel contention 

 Fig. 4-10 compares the SINR on normal case to the SINR with severe channel 
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contention. In fact there is always channel contention between device 1 and device 2 

that both connect to the same AP. We worsen the situation by explicitly connecting 

an additional laptop to the same AP. Then we compare the two scenarios and 

evaluate the influence of the third laptop exerted on device 1 and device 2. As shown 

in Fig. 4-10, severe channel contention result in an average lower SINR for both 

device 1 and device 2. But such influence is not distinguishable between the two 

devices, which is still reasonable. 

 

▲Fig. 4-11: Comparison of SINR between Device1 and Device 2 with microwave oven interference 

 Fig. 4-11 compares the SINR degradation between device 1 and device 2 when 

placing a microwave oven close to device 1. We find an average of 9.2dB degradation 

for the SINR of device 1, compared to 3.1dB degradation for the SINR of device 2. The 

gap between 9.2dB and 3.1dB is around 6dB, which is not as large as that of 11dB on 

the case of baby monitor. But it is still applicable to distinguish which device is 

suffering from nearby interference. The reason device 1 has fewer SINR degradation 

on the condition of microwave oven might be the microwave oven exhibits an 

ON/OFF pattern on occupying the spectrum. People have done some experiments on 

the influence of the two interference sources on TCP throughputs and found that, at 

the extreme worst cases where baby monitor thoroughly interrupt the 

communications, microwave oven can still maintain a 30% of TCP throughput as no 

interference. Our result is reasonable in the sense that SINR is proportionally related 

to TCP throughput. The variations in the average SINR degradation could be helpful 

to identify baby monitor from microwave oven interference.  
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▲Fig. 4-12: Comparison of SINR of Device1 with different location of baby monitor 

 

▲Fig. 4-13: Comparison of SINR of Device1 with different location of microwave oven 

Fig. 4-12 and Fig. 4-13 show the SINR of device 1 with different location of 

interference sources. It is clearly shown that device 1 suffers less degradation when 

placing the interference sources around the AP. The increasing distance between the 

interference source and the device could partially account for the result. Compare 

SINR characteristic with the percentage of ACK failures and retransmissions we find 

that SINR is insensitive to the injected interference around AP, while others are 

hugely affected if the interference source is around AP. Assuming the distance 

between the AP and the station is large, this is also helpful to identify the possible 

location of interference. 

 

 All Figures and results are based upon our latest experiments, though we have 

done many experiments until now.  
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V. Conclusions 
Diagnosing the root cause of the poor performance of a wireless network is 

nontrivial because the real wireless environment is complicated, where there are a 

large number of potential interferences and collisions, which themselves could have 

interleaved with each other and make the situations more complicated. To make the 

diagnosis simple and practical, we limit to a single root cause and four kinds of 

sources of packet loss, which are interference from non 802.11 sources, collisions for 

the same AP, collisions for other APs working on the same channel and interference 

due to a neighboring channel. We further simplify the situations by deliberately 

eliminating the collisions for other APs working on the same channel and 

interference due to a neighboring channel. So our experiments are done in an 

environment without neighboring channel influence. Our extensive experiment 

results are helpful to diagnose the root single cause of the low Wifi throughput, 

which is equivalent to distinguish non 802.11 sources from channel contention, 

indicate the possible locations of non 802.11 sources by sharing information among 

peers inside a WLAN network, and partly identify interference sources between baby 

monitor and microwave oven. 

 Our conclusions are shown as follows. 

1. If the percentage of ACK failures and the percentage of retransmitted frames 

during a period of time is around 10% in average; the average percentage of FCS 

errors is no more than 2%; in addition, the data rate varies/fluctuates quickly and 

largely (the particular number is dependent on the total number of competing 

stations) every 1 to 2 seconds, we are safe to diagnose the root cause as a 

channel contention. Otherwise, we assume it as a non 802.11 sources (either 

baby monitor or microwave oven).  

2. The approach to tell the locations of non 802.11 sources (either close to AP or 

close to one station) is based upon sharing information among peers using 

DYSWIS architecture. By exchanging SINR information among peers we are able 

to find out whether or not all of the stations experience the same situation. If 

one of them has notable SINR degradation than the rest, the interference sources 

are surely placed closed to the very station. Otherwise, the interference sources 

are likely to around the AP. Under this circumstance, all the stations are supposed 

to have SINR as no 802.11 interference. 

3. If the interference source happens to be near one station, we can further analyze 

the SINR degradation of the particular station and compare it to the others. If the 

gap/difference of degradation is less than 9dB, possibly it is a microwave oven. 

Otherwise it is more likely a baby monitor. 

 



 

16 
 

As for the above conclusions, we have to say even though we find some patterns 

to do the root cause diagnosis (shown as Fig. 5-1), the exact statistic numbers used 

for the clarification or identification may not accurate because of our limited 

experiment trials. To make the conclusions more accurate and convincing we put 

forward some available future work in the following. 

 
▲Fig. 5-1: The flow chart of our current diagnosis process 
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VI. Related Work 
Authors in [7] provided a comprehensive view of the building of the peer to 

peer communication networks. They acquired parameters like Received Signal 

Strength, Beacon Loss Rate; introduced some potential accidents that made a node 

disconnected and provided an algorithm describing steps to analyze those 

parameters and categorized the outcomes. 

 

Authors in [8] proposed a system that employed online trace-driven simulation 

as an analytical tool to diagnose faults and developed a complete diagnosis 

algorithm to find out all possible root causes. They characterized the network with 

four components: traffic load, routing, wireless signal and faults (random packet 

dropping, external noise sources and MAC misbehavior). Some small-scale 

experiments are done in a testbed with different scenarios. 

 

Authors in [9] studied packet loss characteristics induced by wireless channel and 

MAC protocol; analyzed the loss variability across time (short burst, long burst, and 

residual); and explored some potential loss remedies (mainly MAC layer adaption 

algorithms). Wireless channel losses include external WiFi interference, non-WiFi 

interference and multipath interference. MAC protocol losses lie in protocol timeouts 

and the breakdown of CSMA over long distances and propagation delays.  The 

paper did a series of experiments on two different real-world WiLD deployments, 

rural and urban and obtained two main results. 

1) External WiFi interference leads to most significant amount of packet losses in 

WiLD links. (Compared to urban mesh networks, multipath interference is the 

most significant source of loss.)  

2) Urban links suffer from a higher degree of residual loss.  

 

Authors in [10] provide us a systematic architecture overview for detecting and 

diagnosing faults in 802.11 wireless networks. The content is very comprehensive 

without much detailed implementation information and diagnosis algorithm. But it 

mainly focuses on companywide commercial network, so that network security and 

overhead cost are two important factors.  

The paper and related patent  

 

Authors in [11] proposes an approach for detecting the presence of pulsed 

interference affecting 802.11 links, and for estimating temporal statistics (complete 

probability distribution) of this interference. They distinguish packet losses due to 

collisions (a feature of normal operation in 802.11 WLANs) from packet losses due to 
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interferences. It is important to distinguish between the two cases because the 

packet loss rate induced by collisions can be significant even in quite small WLANs. 

Detailed packet pair bursting approach can be found in the paper.  

At the same time, the author set up an experiment based upon the packet pair 

bursting method to simulate Microwave Oven Interference and validate the 

experiment results with a spectral analyzer. (The results indicated that MWO 

interference is estimated to be approximately periodic with period of 11ms.)  

 

IEEE 802.11 employs DCF as primary mechanism to access the medium. Its 

performance is very sensitive to the number of stations competing on the same 

channel. Authors in [12] proposed a modified Kalman Filter estimation of n, which is 

unbiased and of high accuracy, as function of the conditional collision probability (p) 

encountered on the channel.  

 

As the ISM band becomes increasingly crowded with diverse technologies, many 

802.11 access points may not find an interference-free channel. Authors in [2] 

presented a TIMO, a MIMO design that enables 802.11n to communicate in the 

presence of high-power cross-technology interference. To compare and evaluate the 

performance improvements using the proposed technique, the authors firstly did 

some experiments focusing on digital cordless phone, baby monitor, microwave oven 

and frequency hopping bluetooth and concluded their characteristics respectively. 

 

 Authors in [13] presented detailed and comprehensive experimental results 

(using the ORBIT radio grid testbed) to quantify the effects of inter- and intra-radio 

interference in representative SOHO scenarios. In particular, different topologies, 

traffic loads and number of interfering devices were emulated to show the impact of 

multi-radio interference and to characterize each kind of interference. Further, a 

cross-layer, multi-radio interference diagnosis framework (called “spectrum MRI”) 

was described with the aim of isolating and classifying multi-radio interference 

problems using heuristic and model-based methods.  
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VII. Future Work 

˙ Find the best compatible network card for linux (or use macbook 

instead) 
In our attempt to experiment linux system using Wireshark, we find that both the 

internal and external network cards are both too old to run with some newer drivers 

that are useful in detecting noise level. And also we observed that the data captured 

by old cards are quite unstable when surrounding signals are too complex, i.e. many 

frames will be hided and cannot be detected. We tried to buy one new adapter 

(ConnectGear WU260N), but unfortunately it still didn’t meet our need. And thus, we 

can only implement the set of experiment using Wireshark on Macbook, and then 

analyze the data using linux for now. 

Another suggestion is that we should use Macbook for experiment instead 

because we already find that Macbook has a full-supported network card, which is 

able to run in monitor mode without any external supports. In addition, Macbook 

has a more stable and identical system, which would make experiments like channel 

contention more convincing if all devices are using the same interface. 

 

˙ Apply machine learning method to find some admissible heuristic 

for distinguishing different types of interference 
For now, we can only find kinds of tendencies by analyzing the result. The hardest 

part of this project is that we are lack of ways to demonstrate if the result we get in 

trustable. For example, the Signal Level and Noise Level may be different between 

the result using iwconfig, wireshark, and Native wi-fi API at the same time, but we 

cannot make sure which one is true. 

A reason of the uncertainty can be the experimental errors, and we are possible 

to solve it by collecting large amount of data. However, for observing those data only 

in time domain may be too difficult for people, and we think the best way doing this 

is to apply machine learning to classify the conditions. Traversing each independent 

variable and record the result for training may make the algorithm more reliable.  

For now, to avoid too much amount of uncertainty, we are only able to focus on a 

specific condition and make conclusions by observation of graphs. 
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