

1

COMS E6901 Projects in Computer Science

DYSWIS-Wifi Final Report

Ying-Chi Meng (ym2394)

Xiangying Qian (xq2120)

I. Introduction
In this project, we take two approaches in analyzing the wireless network status:

Capturing frames in Linux and Querying Statistics in Windows. In both approaches we

can acquire many useful parameters, such as transmitted frame counts, retry counts,

ACK failure counts. We would like to observe some patterns that can help us

distinguish between different sources of suffering of the network and finally provide

reliable suggestion for user to recover.

As we progressed in the experiment steps, we find that it would be too

imprecise if we want to classify too many different kinds of interference with the

scenarios and devices we currently using. Therefore, we decided to focus on the

reasons of suffering that have more obvious features for detection and easier to be

set up: microwave oven interference, baby monitor interference, channel contention.

II. Design concept
It is nontrivial to diagnose the root cause of the poor performance of a wireless

network. Because the real wireless environment is complex with a large number of

potential interferences and collisions, which themselves could interleave with each

other and make the situations more complicated.

To make the diagnosis simple and practical, single root cause and four types of

sources of packet loss are assumed.

˙ Interference from non 802.11 sources

˙ Collisions for the same AP

˙ Collisions for other APs working on the same channel

˙ Interference due to a neighboring channel

We further simplify the situations by deliberately eliminating the collisions for

other APs working on the same channel and interference due to a neighboring

channel. The experiments are done in an environment without neighboring channel

influence.

2

III. Implementation

A. Applications

(A) Windows – Native Wi-fi API

In Windows part, we originally expected to capture every frame before we can do

any analysis. Unfortunately, the operating system doesn’t support retrieving these

detail information with jpcap library. Therefore, we took a statistics approach by

analyzing the return values in Microsoft Native Wifi API.

In this application, we use JNI to pass values back and forth with the Native

library, which was implemented in C++ (the structure shown as Pic. 3-1).

▲Pic. 3-1: The structure of the application of Microsoft native wifi API

About the data we retrieve, we implemented the data shown in physical layer.

There are 3 sets of PHY layer structures (shown as Pic. 3-2) working in different

modes (DSSS, OFDM, DSSS+OFDM) we can observe. To make it into a more robust

tool, we integrate the function of custom configuration of parameters, saving, and

showing results dynamically; all of them shown in a compact Java swing GUI (shown

as Pic. 3-3).

3

▲Pic. 3-2: The structure of parameters we used in Microsoft native wifi API (shaded more important)

▲Pic. 3-3: The GUI version of the application

4

(b) Linux, Macbook – Wireshark + Alpacka

We construct the application basically based on Wireshark and Alpacka, which is

a library for parsing the 802.11 frames. The structure will be more complex for the

jpcap library doesn’t support capturing 802.11 frames on the fly; therefore, we have

to use other application that support libpcap (in our case, Wireshark), and store the

result for further analysis with the loadoffline method.

For each network card, it supports signal-level header in different structure, and

so we have write a specific parser to match its content. Integrate information from

Radiotap (signal layer, shown as Pic. 3-4) and 802.11 (data link layer, shown as Pic.

3-5) header, we can retrieve some useful data for frame analysis.

Radiotap Header – Atheros (26 Bytes)

Header

revision

Header pad Header

length

Present

flags

MAC

timestamp

Flags

2nd bit: bad FCS

1 Byte 1 Byte 2 Bytes 4 Bytes 8 Bytes 1 Byte

Data Rate Channel

frequency

Channel

type

SSI signal Antenna RX flags

1 Byte 2 Bytes 2 Bytes 1 Byte 1 Byte 2 Byte

Radiotap Header – Macbook (25 Bytes)

Header

revision

Header pad Header

length

Present

flags

MAC

timestamp

Flags

2nd bit: bad FCS

1 Byte 1 Byte 2 Bytes 4 Bytes 8 Bytes 1 Byte

Data Rate Channel

frequency

Channel

type

SSI signal SSI Noise Antenna

1 Byte 2 Bytes 2 Bytes 1 Byte 1 Byte 1 Byte

▲Pic. 3-4: Different version of radiotap header we’re using in the experiments (shaded more

important)

5

▲Pic. 3-5: 802.11 header structure

▲Pic. 3-6: Sample output of Alpacka application

(c) Linux – iwconfig

We wrote a JAVA program to run iwconfig – the built-in function in Linux system

for observing network status, and parse its result. We can get Signal Level and Noise

Level from this function, and store them for analysis (shown as Pic. 3-7).

▲Pic. 3-7: Sample output of iwconfig

(d) Iperf

We use iperf to create stable TCP throughput for our experiment, and thus make

variance of transmitted frame count between experimental sets smaller.

6

B. Experiment

We find an office placed in CUIT that have a wi-fi environment only between

channel 6-11, therefore the environment make the optimized place for network

analysis experiment in Columbia University we found. And thus, we conduct most

important experiments right here. (Environment shown as Pic. 3-6)

▲Pic. 3-8: The experimental environment setup

For experiment, we use shell script (in Windows, batch file) to start iperf and

our application at the same time. In our recent experiment, we follow the rules:

˙ CONTROL VARIABLES:

1. Distance between AP and device (signal strength at the same time, theoretically)

2. TCP throughput (by slightly moving the source of interference)

˙ INDEPENDENT VARIABLES:

Type of Interference/channel contention

˙ DEPENDENT VARIABLES:

1. Successfully transmitted frame, retry frame, ACK failure, FCS error count

2. Data rate

3. Noise Level / SINR

7

IV. Result and Analysis
There are two control variables on our experiments. By controlling the distance of

the AP and the device, we can obtain corresponding results on the number of

successfully transmitted frames (Tx), the number of retransmitted frames, the

number of ACK failures, the signal strength (and the TCP throughput). By controlling

the TCP throughput, we can again get these results differently. We have done

extensive experiments on various distances before. For now the latter case is of our

interest because we hope to find some patterns on these indicators so as to identify

the most likely culprit for the poor wireless network performance (which could

appear as low throughput in TCP or upper layers).

A. Windows

By querying native Wifi API in windows, we are able to obtain the number of

successfully transmitted frames (Tx), the number of retransmitted frames, the

number of ACK failures and the signal strength.

▲Fig. 4-1: Comparison of the percentage of ACK failures under three different conditions

8

▲Fig. 4-2: Comparison of the successfully transmitted frames and ACK failures under three

different conditions

Native Wifi API defines the number of ACK failures as the number of times an

expected ACK has not been received (in response to an attempted transmission). On

the experiment we make the TCP throughput around 7Mb/s by adjusting the

distance between the AP and the injected interference source or the number

competing terminals for the same AP.

As shown in Fig. 4-1 and Fig. 4-2, the number of ACK failures induced by either

microwave oven or baby monitor changes with time much more sharply than the one

resulted from channel contention. In addition, the percentage of ACK failures, which

is given by

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝐶𝐾 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑓𝑟𝑎𝑚𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝐶𝐾 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠)𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

is always lowest on the condition of channel contention. The result is reasonable in

the sense that interference is more likely to cause the loss of ACKs. Channel

contention, on the contrary, uses CSMA/CD technique to reduce the chance of

simultaneous frame transmission and frame collision and therefore lowers the

number of ACK failures. Moreover, based on Fig. 4-1 and Fig. 4-2 we cannot obtain

further safe conclusion on distinguishing baby monitor interference from microwave

oven interference. (It seems that the variance of Tx and ACK failures on the condition

of baby monitor is a little bit smaller than that of microwave oven.)

▲Fig. 4-3: Comparison of the percentage of retransmitted frames under three different conditions

 Native Wifi API defines retry count as the number of MSDU/MMPDUs

successfully transmitted after one or more retransmissions. On the experiment, the

percentage of retransmitted frames is given by,

𝑟𝑒𝑡𝑟𝑦 𝑐𝑜𝑢𝑛𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑓𝑟𝑎𝑚𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

9

We make the interval 200ms, which is assumed to be large enough to do the

normalization. Fig. 4-3 again shows that channel contention leads to most stable and

lowest level (10%) of retransmissions. The result is as expected because the retry

count should generally reflect the same property as ACK failures. In fact, one or more

ACK failure corresponds to a retransmitted frame.

 It should be noted that we also collect signal quality on windows experiments.

However, we are not able to obtain the noise level directly. So it makes no sense to

merely measure the signal strength as it does not change obviously with injected

interference. We will show the SINR measurement results in Linux section.

B. Macbook (Wireshark)

We do some data rate, SINR and FCS error analysis in the aid of popular wireless

network tool Wireshark. We also use the Iperf tool to control the experiment TCP

throughput at 10Mb/s to 12Mb/s.

▲Fig. 4-4: Comparison of the percentage of FCS errors under three different conditions

Using Wireshark on Macbook we are easy to obtain current maximum data rate,

signal strength, noise level, FCS error count and the number of successfully received

frames. The FCS error percentage is computed as

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝐶𝑆 𝑒𝑟𝑟𝑜𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑎𝑚𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

Since the FCS errors can partially account for the ACK failures, the same observation

can be found in Fig. 4-4. Typically, the variance of microwave oven induced FCS errors

is much larger than the rest.

10

▲Fig. 4-5: Comparison of data rate under three different conditions

It is clearly shown in Fig. 4-5 that on the condition of channel contention, data

rate is highest on average while fluctuates most rapidly. In general it changes from

54Mb/s to 24Mb/s and vice versa every 1 to 2 seconds. For the case of baby monitor

induced interference, the data rate ranges from 24Mb/s to 38Mb/s with rare

exceptions. For the case of microwave oven induced interference, the average data

rate is almost the same as that of baby monitor, while the fluctuation is larger. We try

to explain the reasons as follows. Channel contention does not lead to as much noise

as interference, so the data rate, which is partially determined by the SINR, is less

affected. But the competition among all stations connecting to the same AP may

account for the instability. Interferences, on the contrary, directly lower SINR level

and therefore lower the data rate. On the extreme cases, the data rate could become

0 due to extremely weak SINR. We are not very sure about the difference between

microwave oven and baby monitor. It could be the inaccuracy of our experiments.

▲Fig. 4-6: Comparison between data rate and SINR with baby monitor interference

11

 ▲Fig. 4-7: Comparison between data rate and SINR with microwave oven interference

 Fig. 4-6 and Fig. 4-7 show the relationship of data rate and SINR under two kinds

of interference. We find that the variation trend between data rate and SINR for each

case is similar to some extent, while the data rate changes less responsively. That is

to say, the instantaneous data rate can well accommodate to a range of SINRs. We

also observe that, at some time, the data rate changes a little bit later than the SINR.

So the data rate is partially related to SINR on these cases.

 ▲Fig. 4-8: Comparison between data rate and SINR with channel contention

As shown in Fig. 4-8, there is no apparent relationship between the data rate and

SINR on the condition of channel contention. This is because other factors such as

the number of competing terminals for the same AP might influence the data rate as

well.

C. Linux

In Linux environment we collect instantaneous signal strength and noise strength

at each sampled time and record the SINR as Signal Strength (in dB) – Noise Strength

12

(in dB). Given the information sharing architecture, if the interference source is close

to the AP, it would interfere with all devices; if it's close to only one device (device 1

in the experiment), it should only interfere with one, while the others should see less

interference. So the purpose of our experiment is to compare the SINR

characteristics on the two situations with two interference sources as well as channel

contention.

▲Fig. 4-9: Comparison of SINR between Device1 and Device 2 with baby monitor interference

Fig. 4-9 compares the SINR degradation between device 1 and device 2 when

placing a baby monitor adjacent to device 1. We find an average of 11.5dB

degradation for the SINR of device 1, compared to almost no degradation (less than

0.01dB) for that of device 2. The result is as expected because the severe

interference induced by baby monitor is only exposed to device 1. Therefore, one can

detect the exact situation by sharing information with peers based upon DYSWIS

architecture.

▲Fig. 4-10: Comparison of SINR between Device1 and Device 2 with channel contention

 Fig. 4-10 compares the SINR on normal case to the SINR with severe channel

13

contention. In fact there is always channel contention between device 1 and device 2

that both connect to the same AP. We worsen the situation by explicitly connecting

an additional laptop to the same AP. Then we compare the two scenarios and

evaluate the influence of the third laptop exerted on device 1 and device 2. As shown

in Fig. 4-10, severe channel contention result in an average lower SINR for both

device 1 and device 2. But such influence is not distinguishable between the two

devices, which is still reasonable.

▲Fig. 4-11: Comparison of SINR between Device1 and Device 2 with microwave oven interference

 Fig. 4-11 compares the SINR degradation between device 1 and device 2 when

placing a microwave oven close to device 1. We find an average of 9.2dB degradation

for the SINR of device 1, compared to 3.1dB degradation for the SINR of device 2. The

gap between 9.2dB and 3.1dB is around 6dB, which is not as large as that of 11dB on

the case of baby monitor. But it is still applicable to distinguish which device is

suffering from nearby interference. The reason device 1 has fewer SINR degradation

on the condition of microwave oven might be the microwave oven exhibits an

ON/OFF pattern on occupying the spectrum. People have done some experiments on

the influence of the two interference sources on TCP throughputs and found that, at

the extreme worst cases where baby monitor thoroughly interrupt the

communications, microwave oven can still maintain a 30% of TCP throughput as no

interference. Our result is reasonable in the sense that SINR is proportionally related

to TCP throughput. The variations in the average SINR degradation could be helpful

to identify baby monitor from microwave oven interference.

14

▲Fig. 4-12: Comparison of SINR of Device1 with different location of baby monitor

▲Fig. 4-13: Comparison of SINR of Device1 with different location of microwave oven

Fig. 4-12 and Fig. 4-13 show the SINR of device 1 with different location of

interference sources. It is clearly shown that device 1 suffers less degradation when

placing the interference sources around the AP. The increasing distance between the

interference source and the device could partially account for the result. Compare

SINR characteristic with the percentage of ACK failures and retransmissions we find

that SINR is insensitive to the injected interference around AP, while others are

hugely affected if the interference source is around AP. Assuming the distance

between the AP and the station is large, this is also helpful to identify the possible

location of interference.

 All Figures and results are based upon our latest experiments, though we have

done many experiments until now.

15

V. Conclusions
Diagnosing the root cause of the poor performance of a wireless network is

nontrivial because the real wireless environment is complicated, where there are a

large number of potential interferences and collisions, which themselves could have

interleaved with each other and make the situations more complicated. To make the

diagnosis simple and practical, we limit to a single root cause and four kinds of

sources of packet loss, which are interference from non 802.11 sources, collisions for

the same AP, collisions for other APs working on the same channel and interference

due to a neighboring channel. We further simplify the situations by deliberately

eliminating the collisions for other APs working on the same channel and

interference due to a neighboring channel. So our experiments are done in an

environment without neighboring channel influence. Our extensive experiment

results are helpful to diagnose the root single cause of the low Wifi throughput,

which is equivalent to distinguish non 802.11 sources from channel contention,

indicate the possible locations of non 802.11 sources by sharing information among

peers inside a WLAN network, and partly identify interference sources between baby

monitor and microwave oven.

 Our conclusions are shown as follows.

1. If the percentage of ACK failures and the percentage of retransmitted frames

during a period of time is around 10% in average; the average percentage of FCS

errors is no more than 2%; in addition, the data rate varies/fluctuates quickly and

largely (the particular number is dependent on the total number of competing

stations) every 1 to 2 seconds, we are safe to diagnose the root cause as a

channel contention. Otherwise, we assume it as a non 802.11 sources (either

baby monitor or microwave oven).

2. The approach to tell the locations of non 802.11 sources (either close to AP or

close to one station) is based upon sharing information among peers using

DYSWIS architecture. By exchanging SINR information among peers we are able

to find out whether or not all of the stations experience the same situation. If

one of them has notable SINR degradation than the rest, the interference sources

are surely placed closed to the very station. Otherwise, the interference sources

are likely to around the AP. Under this circumstance, all the stations are supposed

to have SINR as no 802.11 interference.

3. If the interference source happens to be near one station, we can further analyze

the SINR degradation of the particular station and compare it to the others. If the

gap/difference of degradation is less than 9dB, possibly it is a microwave oven.

Otherwise it is more likely a baby monitor.

16

As for the above conclusions, we have to say even though we find some patterns

to do the root cause diagnosis (shown as Fig. 5-1), the exact statistic numbers used

for the clarification or identification may not accurate because of our limited

experiment trials. To make the conclusions more accurate and convincing we put

forward some available future work in the following.

▲Fig. 5-1: The flow chart of our current diagnosis process

17

VI. Related Work
Authors in [7] provided a comprehensive view of the building of the peer to

peer communication networks. They acquired parameters like Received Signal

Strength, Beacon Loss Rate; introduced some potential accidents that made a node

disconnected and provided an algorithm describing steps to analyze those

parameters and categorized the outcomes.

Authors in [8] proposed a system that employed online trace-driven simulation

as an analytical tool to diagnose faults and developed a complete diagnosis

algorithm to find out all possible root causes. They characterized the network with

four components: traffic load, routing, wireless signal and faults (random packet

dropping, external noise sources and MAC misbehavior). Some small-scale

experiments are done in a testbed with different scenarios.

Authors in [9] studied packet loss characteristics induced by wireless channel and

MAC protocol; analyzed the loss variability across time (short burst, long burst, and

residual); and explored some potential loss remedies (mainly MAC layer adaption

algorithms). Wireless channel losses include external WiFi interference, non-WiFi

interference and multipath interference. MAC protocol losses lie in protocol timeouts

and the breakdown of CSMA over long distances and propagation delays. The

paper did a series of experiments on two different real-world WiLD deployments,

rural and urban and obtained two main results.

1) External WiFi interference leads to most significant amount of packet losses in

WiLD links. (Compared to urban mesh networks, multipath interference is the

most significant source of loss.)

2) Urban links suffer from a higher degree of residual loss.

Authors in [10] provide us a systematic architecture overview for detecting and

diagnosing faults in 802.11 wireless networks. The content is very comprehensive

without much detailed implementation information and diagnosis algorithm. But it

mainly focuses on companywide commercial network, so that network security and

overhead cost are two important factors.

The paper and related patent

Authors in [11] proposes an approach for detecting the presence of pulsed

interference affecting 802.11 links, and for estimating temporal statistics (complete

probability distribution) of this interference. They distinguish packet losses due to

collisions (a feature of normal operation in 802.11 WLANs) from packet losses due to

18

interferences. It is important to distinguish between the two cases because the

packet loss rate induced by collisions can be significant even in quite small WLANs.

Detailed packet pair bursting approach can be found in the paper.

At the same time, the author set up an experiment based upon the packet pair

bursting method to simulate Microwave Oven Interference and validate the

experiment results with a spectral analyzer. (The results indicated that MWO

interference is estimated to be approximately periodic with period of 11ms.)

IEEE 802.11 employs DCF as primary mechanism to access the medium. Its

performance is very sensitive to the number of stations competing on the same

channel. Authors in [12] proposed a modified Kalman Filter estimation of n, which is

unbiased and of high accuracy, as function of the conditional collision probability (p)

encountered on the channel.

As the ISM band becomes increasingly crowded with diverse technologies, many

802.11 access points may not find an interference-free channel. Authors in [2]

presented a TIMO, a MIMO design that enables 802.11n to communicate in the

presence of high-power cross-technology interference. To compare and evaluate the

performance improvements using the proposed technique, the authors firstly did

some experiments focusing on digital cordless phone, baby monitor, microwave oven

and frequency hopping bluetooth and concluded their characteristics respectively.

 Authors in [13] presented detailed and comprehensive experimental results

(using the ORBIT radio grid testbed) to quantify the effects of inter- and intra-radio

interference in representative SOHO scenarios. In particular, different topologies,

traffic loads and number of interfering devices were emulated to show the impact of

multi-radio interference and to characterize each kind of interference. Further, a

cross-layer, multi-radio interference diagnosis framework (called “spectrum MRI”)

was described with the aim of isolating and classifying multi-radio interference

problems using heuristic and model-based methods.

19

VII. Future Work

˙ Find the best compatible network card for linux (or use macbook

instead)
In our attempt to experiment linux system using Wireshark, we find that both the

internal and external network cards are both too old to run with some newer drivers

that are useful in detecting noise level. And also we observed that the data captured

by old cards are quite unstable when surrounding signals are too complex, i.e. many

frames will be hided and cannot be detected. We tried to buy one new adapter

(ConnectGear WU260N), but unfortunately it still didn’t meet our need. And thus, we

can only implement the set of experiment using Wireshark on Macbook, and then

analyze the data using linux for now.

Another suggestion is that we should use Macbook for experiment instead

because we already find that Macbook has a full-supported network card, which is

able to run in monitor mode without any external supports. In addition, Macbook

has a more stable and identical system, which would make experiments like channel

contention more convincing if all devices are using the same interface.

˙ Apply machine learning method to find some admissible heuristic

for distinguishing different types of interference
For now, we can only find kinds of tendencies by analyzing the result. The hardest

part of this project is that we are lack of ways to demonstrate if the result we get in

trustable. For example, the Signal Level and Noise Level may be different between

the result using iwconfig, wireshark, and Native wi-fi API at the same time, but we

cannot make sure which one is true.

A reason of the uncertainty can be the experimental errors, and we are possible

to solve it by collecting large amount of data. However, for observing those data only

in time domain may be too difficult for people, and we think the best way doing this

is to apply machine learning to classify the conditions. Traversing each independent

variable and record the result for training may make the algorithm more reliable.

For now, to avoid too much amount of uncertainty, we are only able to focus on a

specific condition and make conclusions by observation of graphs.

20

VIII. Reference
[1] DYSWIS, Collaborative network fault diagnosis, Kyung-Hwa Kim, Vishal Singh,

Henning Shulzrinne

[2] Gollakota S, Adib F, Katabi D, Seshan S, Clearing the RF Smog: Making 802.11

Robust to Cross-Technology Interference, SIGCOMM 2011

http://www.cs.washington.edu/homes/gshyam/Papers/TIMO.pdf

[3] http://jpcap.sourceforge.net/ Jpcap

[4] http://www.wireshark.org/ Wireshark

[5] http://code.google.com/p/alpacka/ Alpacka

[6] http://msdn.microsoft.com/en-us/library/windows/desktop/ Microsoft Native

Wifi API

[7] Ranveer Chandra, Venkat Padmanabhan, and Ming Zhang, WifiProfiler:

Cooperative Diagnosis in Wireless LANs, Microsoft Research June 2006

http://research.microsoft.com/en-us/um/people/ranveer/docs/WiFiProfiler-MobiSys

.pdf

[8] Lili Qiu, Paramvir Bahl, Ananth Rao, and Lidong Zhou, Fault Detection, Isolation

and Diagnosis in Multihop Wireless Networks. MSR-TR-2004-11, December 2003.

http://pages.cs.wisc.edu/~suman/courses/740/papers/fault-isolation.pdf

[9] Nedevschi, S. Patra, R. Surana, S. Brewer, E. Subramanian, L. Packet Loss

Characterization in WiFi-based Long Distance Networks. INFOCOM 2007. 26th IEEE

International Conference on Computer Communications.

[10] Atul Adyta, Paramvir Bahl, Ranveer Chandra, Lili Qiu, Architecture and

techniques for diagnosing faults in IEEE 802.11 infrastructure networks. Appears in

the Proceedings of the Tenth Annual International Conference on Mobile Computing

and Networking (MobiCom 2004)

http://research.microsoft.com/pubs/73484/diagnostics.pdf

[11] Brad W. Zarikoff, Douglas J. Leith, Measuring Pulsed Interference in 802.11 Links,

IEEE/ACM Transactions on Networking, Issue: 99.

[12] Giuseppe Bianchi, Ilenia Tinnirello, Kalman filter estimation of the number of

competing terminals in an IEEE 802.11 network. Twenty-Second Annual Joint

Conference of the IEEE Computer and Communications. INFOCOM 2003. Pages 844 -

852 vol.2. http://www.ieee-infocom.org/2003/papers/21_02.pdf

[13] Akash Baid, Suhas Mathur, Ivan Seskar, Sanjoy Paul, Amitabha Das, Dipankar

Raychaudhuri, Spectrum MRI: Towards Diagnosis of Multi-Radio Interference in the

Unlicensed Band. 2011 IEEE Wireless Communications and Networking Conference

(WCNC), Pages 534 - 539.

http://www.cs.washington.edu/homes/gshyam/Papers/TIMO.pdf
http://jpcap.sourceforge.net/
http://jpcap.sourceforge.net/
http://www.wireshark.org/
http://www.wireshark.org/
http://code.google.com/p/alpacka/
http://code.google.com/p/alpacka/
http://msdn.microsoft.com/en-us/library/windows/desktop/
http://research.microsoft.com/en-us/um/people/ranveer/docs/WiFiProfiler-MobiSys.pdf
http://research.microsoft.com/en-us/um/people/ranveer/docs/WiFiProfiler-MobiSys.pdf
http://pages.cs.wisc.edu/~suman/courses/740/papers/fault-isolation.pdf
http://research.microsoft.com/pubs/73484/diagnostics.pdf
http://www.ieee-infocom.org/2003/papers/21_02.pdf

