Final Report:
Cloud Platform Visualizing Project
Spring 2012

IRT Lab, Columbia University

Project Student
Jin Hyung Park
jp2105@columbia.edu

Mentor
Jong Yul Kim
jyk@cs.columbia.edu

Advisor

Henning Schulzrinne
hgs@cs.columbia.edu

May 7, 2012

Table of Contents

Introduction
Purpose
Project Scope

Runtime Environment

Application usage and features
Showing VM instances on the window
Showing the status of process running within the instance
Right-click pop-up menu for each instance
Statistics graph for each instance

Installing the application

Implementation Details
Getting information on VM instances
GUI object diagram
Statistics graphs
Application packaging
Lessons learned
Desktop GUI Client Programming in Java

Lessons from the Amazon EC2

Future Work Ideas
Supporting other cloud platforms

Packaging for Microsoft Windows

Appendix A: References

N OO O A N b W W W W

®© © O

10
10
11
11

11

11
11

11

12

1. Introduction
1.1. Purpose
The main purpose of this project is to implement a flexible, reusable GUI client to
manage and monitor various VM instances of services deployed on cloud platforms. As
service monitoring on cloud platforms is still in its infancy, we believe that the prototype
and code from this project will contribute to the cloud user community.
1.2. Project Scope
The project scope is defined as four goals of the project.
i. Show VM instances and status of process running within the instance
ii. Right-click menu for each instance
iii. Packaging it into an executable file
iv. Show EC2 statistics about the instances
1.3. Runtime Environment
The GUI client is written in Java. It supports Microsoft Windows 7, and Mac OS X
Lion. The client is fully tested on both platforms. Currently, it supports the Amazon EC2 for

the cloud platform. In addition, for this project, the visualization client is used to manage
and monitor the Load Scaling Manager. Figure 1.1 shows the client.

Load Scaling Manage

ec2.us-east-1.amazonaws.com | ec2.us-west-2.amazonaws.com |

—— -
S
AVAY)
"
Load Balancer Proxy tabase Initilizing VM

IP:75.101.184.220 1P:50.16.74.72 1P:23.22.44.88
Prv:10.210.174.10 Prv:10.208.249.28 Prv:10.96.30.218

e 00
Network In Network Out
12,500 175
_— 150
10,000
125
] i
| £, 7,500 £ 100
g £
| 5,000 75
| 50
Media Relay Conferend 2,500
1P:50.19.46.194 1P:184.73, ! 25
Prv:10.244.27.216 Prv:10.24
0 0 -
15:34 15:36 15:38 15:3¢ 15:35 15:36 15:37 15:38 15:39
Date Date
CPU Utilization
b 100
| 90 Instance i-3734dd51 Statistics
= 80
Launch VM Stop VM 7 Public IP 75.101.184.220
- £ 60 Private IP 10.210.174.10
™ g
g 50 Instance Location
40|
o
20 ec2.us-east-1.amazonaws.com
20
10
0 -
15:34 15:35 15:36 15:37 15:38 15:39
Date Close

Figure 1.1 - Cloud Platform Visualizing Project

2. Application usage and features

2.1. Showing VM instances on the window

8 0 0 Load Scaling Manager

| ec2.us-east-1.amazonaws.com | ec2.us-west-2.amazonaws.com |

Ealabase Initilizing VM

IP:23.22.44.88
Prv:10.96.30.218

Launch VM Stop VM Start Cluster Stop Cluster

Figure 2.1 - The main window

Figure 2.1 shows the main window of our client. Currently, our client supports the
Amazon EC2 cloud platform, so it contains two region tabs at the top of the window. One
represents the east region, and the other represents the west region. In each region tab,
we can see what VM instances are currently running. At the left upper rectangle, Load
Balancer, Proxy, and Database instances will be placed. At the left lower rectangle, Media
Relay, and Conference instances will be placed. At the right rectangle, waiting VM
instances will be placed. Those waiting VM instances will be configured as the specific
virtual machine that we need.

At the bottom of the main window, there are four buttons: “Launch VM”, “Stop VM”,
“Start Cluster”, and “Stop Cluster”. “Launch VM” is used for launching the single VM
instance. Specific instances can also be stopped from the right-click menu. “Start Cluster”
is used for launching the pre-defined cluster of VM instances. “Stop Cluster” is used for
stopping the pre-defined cluster of VM instances.

2.2. Showing the status of process running within the instance

Basically, our client shows three types of information about the VM instance on the
main window. (Figure 2.2)

i. It shows the type of the VM instance. To show the kind of the VM instance, we
use specific icons for each VM instance. Table 2.1 shows what icons represent
what VM instances.

ii. It shows the public IP address of the VM instance. This is useful when a user
tries to manage the VM instance via SSH, HTTP, and so on.

ii. It shows the private IP address. The private IP address is given by the Amazon
EC2, and it is useful when we need to figure out which VM instances we are
working on. This is because we cannot know its public IP address inside of its
VM instance. Through the “View Status” menu, we can check the statistics of the
VM instance, but this will be discussed in the later section.

Icon Virtual Machine Type
Empty VM

@ Load Balancer

fgﬂg’,} Proxy

vy

—

. Database
Media Relay
Conference

Table 2.1 - Each VM instance icon

Load Balancer
IP:75.101.184.220
Prv:10.210.174.10

Figure 2.2 - Three types of information
In addition, each icon is defined by the VM instance tag of the Amazon EC2, so it
can be easily changed if we want to use another icon for each VM instance.
2.3. Right-click pop-up menu for each instance
To manage the VM instance, our client provides the right-click pop-up menu. Figure

2.3 shows the right-click pop-up menu. The menu provides four functions: reconfiguring
the VM instance, stopping the VM instance, terminating the VM instance, and viewing the

COMS E6901 Projects in CS - Cloud Platform Visualization

statistics information of the VM instance. However, reconfiguring the VM instance function
has not yet implemented completely. This is the specific feature for the VolP cloud
platforms, I've implemented the menu holder so that it can be used later.

’ Database
atabase

23004 1P:23.22.44.88

Prv:10.96 Prv:10.96.30.218
Re-config i-87cc25el
Stop i-87cc25el
Terminate i-87cc25el
View Status

T 1

Figure 2.3 - The right-click pop-up menu

2.4. Statistics graph for each instance

e 00O
Network In Network Out
2.001 T ““'
1.75 | Al 3.0 i
1.50 | ‘ 2.5)
21‘25 22_07
] 1001 815 "
0.754 ‘ |
| \ 1.0 !
0.501 I | 0 | |
B | ‘x 0.5 ' ‘l
0.25{} ° »_ . . |
| | -n—R .- _ = .
0.00 : a : P i 0.0 & .i._.i'i*f' =l
15:39 15:49 15:59 16:09 16:19 15:39 15:49 15:59 16:09 16:19
Date Date
CPU Utilization
100 4
901 Instance i-87cc25e1 Statistics
80 4
20 | Public IP 23.22.44.88
£ 60 Private IP 10.96.30.218
(7]
g 504 Instance Location
S 40
o
30 ec2.us-east-1.amazonaws.com
20 4
104

OrE =% = = % 5 = = = u
15:39 15:49 15:59 16:09 16:19
Date | Close |

#- CPU Utilization

Figure 2.4 - The statistics information graph

By clicking the “View Status” on the right-click pop-up menu, we can monitor each
VM instance’s statistics information. There are three types of statistics information:
Network Input Bytes per second, Network Output Bytes per seconds, and CPU Utilization.
It shows the most recent 60 minutes of activity on the VM. With this information, we can

COMS E6901 Projects in CS - Cloud Platform Visualization

check the status of the VM instance. In addition, the graph is updated every 60 seconds. If
the user opens up the graph window, the graph will be automatically updated in real time.

2.5. Installing the application

Our GUI client, and the Load Scaling Manager, is packaged within the DMG
installer for Mac OS X. It is very easy to install. The user can install our client by just
dragging and dropping the application icon. Figure 2.5 shows the mounted DMG installer.
Figure 2.6 shows the installed application on Mac OS X.

® 00/ | LoadScalingManager

(<1>] _- (el @Y s XE>»

FAVORITES
=L All My Files

& Ardrop Load Scaling Manager

[Desktop

J7 Music

(=] Public LoadScalingManager Applications
[_] Photos

{5} jenix RT L b
Applications a
(@) Pictures

% Dropbox

1 QlaiDriva

ve

@ Documents
0 Downloads - > - ’&s .
[] Document Drag to install !

H Movies
ey I
[_] Public

2 items, 3.6 MB available e p—

Figure 2.5 - DMG Installer

8 O O/ @Applucatlons

(«]>] i -- (el @Y% X @>

5 TPTIOLO
[} Documents '8/ isale 5
B Movies BB iSTAR Drummer HD
X @ iTunes
JJ Music 2 iWeb
@) Pictures (1] iwork '09 >
o Downloads /- Kindle
— #®) Launchpad
e '@ LittleSnapper
(=] Public P& Live Interior 3D Standard
3 Dropbox < Livescribe Connect
“ Livescribe Desktop
3 Document
(=] Public B LockScreen2
(] Photos g MacDjview
_ . % Macjournal
|| SkyDrive @ Mactracker Name LoadScalingManager
[_] Google Drive | ¥ Macvim Kind Application
& Mail Size 11.8 MB
DEVICES N Created Today 5:05 PM
~ & Microsoft Messenger Modified Today 5:05 PM
H 2nd HDD . Microsoft Office 2011 > Last opened Today 5:05 PM
|_| BOOTCAMP ~ Microsoft Silverlight Version --

A MindNode Pro
a Mission Caontral
1 of 157 selected, 27.97 GB available

|| LoadSc... &

Figure 2.6 - The installed application

COMS E6901 Projects in CS - Cloud Platform Visualization
3. Implementation Details
3.1. Getting information on VM instances

Amazon EC2 API was heavily used in the project. The API serves as the client
interface to the Amazon EC2 web service. Amazon implements the APIs using HTTP
request and response under the hood.

The visualization client’s Ul model classes call these API functions, each in their
own thread of execution, so that the user can run tasks simultaneously without being
blocked by Ul events and API calls.

3.2. GUI object diagram

Figure 3.1 shows us the object diagram of the visualization client.

Tabbar
DataCenter

Menu
Controller
Class

VMStatusinfo
Dialog
Class

Figure 3.1 - Object diagram (Arrows mean the caller/callee of the class.)

The visualization client is written in Java with SWT framework[4], and it consists of 6
GUI classes, and one threading class: MainWindow, MenuController,
RegionChooserDialog, Stoplnstance, TabbarDataCenter, VmListDialog,
VMStatusinfoDialog class, and UlThreadWaiting class.

The MainWindow class controls the main window, which is shown when we launch
the application. The Main Window class contains the Tabbar Controller, the VMList Dialog,
the Pop-up menu Controller, and the VMStatusinfo Dialog.

The TabbarDataCenter controls the region group tab in the main window. With the
RegionChooserDialog class, the Load Scaling Manager can determine where the user
wants to launch their VM instances on. Also, through the TabbarDataCenter class, the
MainWindow class switch the region displays.

The VmListDialog class manages which VM instance will be launched. When the
user clicks the “Launch Instance” button on the main window, the VmListDialog class
shows the VM selection dialog to the user. When the user choose the VM instance, the
MainWindow class calls the Amazon EC2 API to launch the VM instance.

The StoplnstanceDialog class allows the user to stop the VM instance. When the
user clicks the “Stop Instance” button on the main window, the StoplnstanceDialog class
requests the MainWindow class to call the method that stops the process running on the
VM instance.

The MenuController class controls the right-click pop-up menu on each VM
instance’s icon. When the user clicks the right mouse button on the VM instance icon, the
pop-up menu will be shown up. Through this menu, the user can re-configure, stop, or
terminate the VM instance. Also, in this menu, the user can choose to the statistics
information graph.

The VMStatusinfoDialog class shows the VM instance’s statistics information. When
the user clicks the “View Status” menu, the MenuController class calls the Amazon EC2
API to get the statistics information for the VM instances, then it passes data to the
VMStatusinfoDialog to display the statistics graph and other information.

Each class runs on its own thread, which are from the UIWaitingThread class. This
prevents blocking the user interface.

Class Summary

MainWindow MainWindow class of the visualization client

MenuController Right-click PopUp menu Controller

RegionChooserDialog | RegionChooserDialog allows users to choose the Amazon EC2 region.

StoplnstanceDialog StoplnstanceDialog displays the list of VM instances so that users can stop the
application running on VM instance.

TabbarDataCenter This class represents each Amazon EC2 region.

UlWaitingThread UlWaitingThread makes Ul wait until finishing LoadScalingManager's job

VmlListDialog VmlListDialog displays the list of the type of VM instances so that users can choose the
VM type.

VMStatusinfoDialog VMStatusinfoDialog shows the statistics information graph.

Table 3.1 - The summary of the package edu.columbia.cs.irt.sipcloud.gui (from JavaDoc)

3.3. Statistics graphs

VMStatusinfoDialog uses JFreeChart[5] to draw the statistics information graph.
JFreeChart is a free library written entirely in Java that makes it easy for developers to
display charts in their applications. JFreeChart is an open-source project, so | chose this
for our project.

To draw our statistics information graph, | implemented two APIs for our project.
private static XYDataset createDataset(String timeName, ArraylList <Datapoint> res)

“createDataset” creates the XYDataset object from the Amazon EC2 results. When
we request the Amazon EC2 to get the statistics information, the data are returned as
“ArrayList <Datapoint>". With this API, we can easily create the XYDataset object.

private static JFreeChart createChart(String timeName, String yStr, XYDataset dataset)

“createChart” creates the actual graph object, which is a JFreeChart object, with the
given XYDataset from the “createDataset” API result. Figure 3.2 shows the JFreeChart
graph result.

Network In
2.00 y
1.75
1.50
§125
& 1.00
X 075
0.50 1
|
0.25{F N4 et
0.00 : : _
15:39 15:49 15:59 16:09 16:19
Date
& Network In

Figure 3.2 - A graph drawn using JFreeChart

3.4. Application packaging

As | mentioned in the Section 2.5, the visualization client and the Load Scaling
Manager is packaged for Mac OS X. | used one Bash shell script, and the tool iDMG to
create the DMG Installer for the Mac OS X. In the project source file, there is the Bash
shell script, which is named “packageMac.sh” in the project root directory. This
“packageMac.sh” shell script creates the Mac OS X application bundle. Before running this
script, we need to export our compiled project to one JAR file in the Eclipse.

4. Lessons learned

4.1. Desktop GUI Client Programming in Java

In this project, | used Java and the SWT framework to implement a desktop GUI
program. That was my first time to use them for GUI programming. This was helpful in that
| acquired the skills to implement desktop GUI applications without the platform
dependency.

4.2. Lessons from the Amazon EC2

First, as the main part of this project, | implemented managing and monitoring the
VM instance. By working on the project, | found out that the best benefit of cloud
computing is that we can spawn and use a virtual machine whenever we want. We don't
have to run the machines all the time but only when we need to. Additionally, we can scale
the number of machines easily by simply clicking or calling a function in Amazon EC2 API.
The best benefit is that we do not need to run always all machines. By using Amazon EC2
APls, we can turn on or off each virtual machine whenever we want. Additionally, we can
add the scalability easily. With just one click, we can add or delete the machine at once.

Second, it was a really valuable experience for me to play around with EC2 APlIs. It
is hard for students to get this kind of experience. Exposure to CloudWatch monitoring API
was especially valuable and I'm certain that it will be helpful whenever | have to work on
another project related to cloud computing.

5. Future Work Ideas

5.1. Supporting other cloud platforms

At this moment, our GUI client supports only the Amazon EC2 cloud platform. To
use more generally, we can consider supporting other cloud platforms like Google App
Engine, or Microsoft Azure Cloud Platform.

5.2. Packaging for Microsoft Windows
Currently, the visualization client comes with a packaging script for Mac OS X;

however, it would be useful if it can be installed via the Windows Installer even though our
current application can run without any installation tool.

Appendix A: References

[1] Amazon EC2 - http://aws.amazon.com/ec2/

[2] Google App Engine - https://developers.google.com/appengine/
[3] Microsoft Azure Platform - http://www.windowsazure.com/en-us/
[4] SWT Framework - http://www.eclipse.org/swt/

[5] JFreeChart - http://www.jfree.org/jfreechart/

