
Yu-Wen Chen
Advised by Prof. Henning Schulzrinne, Suman Srinivasan

 Goal: Integrate Xuggler applications on
CCNService

 Background of Content Centric Network & OSGi
(1 week)
 Read the draft of the paper “CCNServ: Dynamic

Service Scalability in Information-Centric Networks” [1]

 Project: Dynamic Services with Content Centric
Networking[2]

 Project CCNxTM

[3](1 week)
 Environment Setting
 Example Code

 CCNServ Project [4] (1 week)
 NetServServiceCore

 CCNService Examples
▪ Linenumber & Nextservice Code - By Amandeep Singh’s

 Xuggle [5](2 weeks)
 Java jar files + Native shared libraries: Install the libraries

 Xuggle applications
▪ Know how media files work

▪ Example Code & Tool usage
▪ Issue1 : “mp4” is more stable for xuggle to work on

▪ Issue2 : “ java.lang.UnsatisfiedLinkError” - when we launch applications like
Eclipse, it doesn't get the environment variables

▪ Solution: DYLD_LIBRARY_PATH login-wide on Mac

▪ Solution: Use command line to compile the java file directly in the shell

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/UnsatisfiedLinkError.html

 New service (1 week)
 Build.xml, Manifest

 Activator

 Modify text files successfully.
 Integrate the Xuggle application into service
 IMediaTool

 Issue:

▪ Fail when calling IMediaTool Reader

▪ File permission

▪ OSGI and JNI

▪ Project - NetServ:ActiveCDN [6] (1 week)

 Bundle Native Code (2 weeks)
 Allows developers to notify the OSGi framework of

native libraries included in the bundle
▪ <attribute name="Bundle-NativeCode” value=“… …

${lib}/libxuggle-ferry.so;${lib}/libxuggle-xuggler.so;
osname=linux; processor=x86" />

 Issue: Cannot find those .so files

 Class path (0.5 week)
 Set link path
 Automatically load the Xuggle.jar file when the

netserv launched (netserv.core.osgi.Launch)
 Not solving….

 Goal: Extend services to check the file type is
supported or not before processing. (Nov.21)

 Enhance the error-handling capability
 Approach:

<Services side>

 Use Array to store the supported file types
▪ Allow services support multi types

 Get the filePath & Check the type is supported or not.
▪ test.txt

▪ test.txt%2Blinenumber

▪ test.txt%2Bnextservice%2Blinenumber

 Approach:
 When the type is not supported by the services:

▪ Write Error messages “Error: Filetype is not supported.” in
the output file.

▪ Instead of letting the CCNServer exit (system.exit())
▪ Continually make other commands conveniently

 Demo:

1. Service “linenumber” with supported file type

2. Service “linenumber” with unsupported file type

 References:
[1] Suman Srinivasan, Amandeep Singh, Dhruva Batni, Jae Woo

Lee, Henning Schulzrinne and Volker Hilt, “CCNServ: Dynamic
Service Scalability in Information-Centric Networks”

[2] Project - Dynamic Services with Content Centric Networking

[3] Project - CCNxTM, http://www.ccnx.org

[4] Project - CCNService, https://github.com/amanus/CCNServices

[5] Xuggler, http://www.xuggle.com/xuggler/

[6] Porject - NetServ:ActiveCDN

Thank you!

http://www.ccnx.org/
https://github.com/amanus/CCNServices
http://www.xuggle.com/xuggler/

