
CCNxServ Project –

Extending Services with File type Check

Yu-Wen Chen

Columbia University

New York, NY 10025

USA

yc2450@columbia.edu

Abstract

This project extends the CCNxServ to allow services check the file type

is supported or not before processing. It enhances the error-handling

capability for CCNxServ and avoids users to spend time on completing the

service with the wrong output file.

Introduction

Content centric networks is the architecture of computer networks,

which allow users request for specific content more than other specific

references and physical locations. While many implementations of CCN

protocols, like CCNx [1], focus on centering the network on content and

handling requests, many people also believe that service scalability and

mobility are also the important part of networking. To address this, the

paper “CCNServ: Dynamic Service Scalability in Information-Centric

Networks” [2] and the Dynamic Services with Content Centric Networking

project [3] enable dynamic services on top of the CCNx.

About the CCNxServ project
[4]

The CCNxServ project enables services on top of CCNx protocol. It

supports executing services in a chain and provides two service examples,

linenumber and nextservice, working on txt files.

Extended Scope

While surveying on this project, I found that services did not check the

file type before processing. This situation will let user unnecessary waiting

for the services process finish with wrong output file. To avoid this situation,

adding the file type check function not only enhances the ability of

error-handling for CCNservice but could also avoids users to spend time on

completing the service with the wrong output file.

Approach

I use an array to store the supported file type for each service. This

allows the service support multi types.

The form of the output file from the CCNxServ project is

“CONTENT_NAME%2B%SERVICE NAME”, and the service will

separate the file type from the CONTENTNAME_NAME, like the red

circles as followed.

 test.txt

 test.txt%2Blinenumber

 test.txt%2Bnextservice%2Blinenumber

After extracting the file type, the service will write the error message in

the output file if the type is not supported. This approach will not let the

system exit so users could continually make other commands conveniently.

The procedure in the service side:

Step1. Store supported file types in an array.

Step2. Get the filePath from the command and split the filePath to extract

the file type.

Step3. Determine the file type is supported by the service or not

1. Supported:

Process the service

2. Not Supported:

Write an error messages “Error: File type is not supported” in

the output file.

Step4. Return the output file path

Process Screenshots

1. Start the ccn deamon with the ccnd command, “$ ccnd”.

2. Run the CCNService.

“CCNServices $ ant run-ccnservices –DCCNX_PREFIX=ccnx:/

-DFILE_PREFIX=/node-repo”

3. Test the service “linenumber” with supported file type

$ ccngetfile ccnx://test.txt+linenumber t1.txt

The output file context:

4. Test the service “linenumber” with unsupported file type

$ ccngetfile ccnx://gizmo.mp4+linenumber t2.txt

The output file context:

Conclusion

The extended scope allows services detect the file type of the object that

is passed on to the service before determining whether to process the service

or not. This not only enhances the error-handling capability for CCNxServ

but also avoids users to spend time on completing the service with the

wrong output file.

Future Work for integrating Xuggler
[5]

 applications

on the CCService

 Currently, the service examples of the CCNxServ project support txt

files. It would be a potential work to add services working video files’

modification in the future.

After getting familiar with the Content Centric Network and Xuggler, I

tried to integrate the Xuggler applications on the CCNService during this

semester. However, I found out it is a tough issue to integrate them in

separated jar files/modules. Since both Xuggler and new service could work

independently in the system, and the codes failed while calling the

IMediaTool, which is under the Xuggle-Xuggler.jar file, I thought there are

two possible reasons caused the issue. One is due to the OSGi framework

could not work with the JNI successfully, and the other one is because the

separated jar files could not connect to each other successfully.

For the first possible reason, between the OSGi framework and the JNI,

many people had faced the same problem in the past, and all the solutions

are related to Bundle Native Code. The Bundle Native Code could notify the

OSGi framework of native libraries included in the bundle. Therefore, I

added the attribute of Bundle Native Code in the manifest, but it showed the

error message with “cannot found those .so files.” In order to solve this error,

I tried to include those .so files into the project directly and also set the link

path to the original location of those .so files. Unfortunately, both of these

methods did not solve this error.

For the second possible reason, the connection between the separated

jar files, I found it comes out the solution related to the class path. Both

methods of adding the attribute of the class-path in the manifest and letting

the Xuggler.jar file automatically loaded when the netserv launched still did

not make a real progress for integrating Xuggler applications on the

CCNService.

In the previous NetServ-ActiveCDN project [6], it solved the similar

issue by tightly integrating the NetServ core with Xuggler under same

JAR/module. Although I changed my goal to extend the service with the file

type check to ensure I could have something to present in the end of this

semester under the limited time in this semester, integrating the Xuggler

applications on the CCNService in separate jar file/module would still be a

potential continued issue in the future.

Acknowledge

Working on this project helps me learn the concept of Content Centric

Network, which is really interesting since it is true that people request more

for specific content. I also know more about how video files work and how

could we do the different modification for video files or streams, and the

CCNService project also provide me the knowledge about how the dynamic

services work on top of the CCN protocol. Although I had a lot of try and

error and was frustrated during the semester, it was interesting to learn all of

these new areas and enhanced my ability to think over the possible reasons

and solutions with a lot of processes of try and error. Thanks for having the

chance to work on this project.

References

1. Project - CCNxTM. http://www.ccnx.org, Sep. 2009

2. Suman Srinivasan, Amandeep Singh, Dhruva Batni, Jae Woo Lee,

Henning Schulzrinne and Volker Hilt, “CCNServ: Dynamic Service

Scalability in Information-Centric Networks”

3. Project - Dynamic Services with Content Centric Networking

4. Project – CCNService, https://github.com/amanus/CCNServices

5. Xuggler, http://www.xuggle.com/xuggler/

6. Porject - NetServ-ActiveCDN

https://github.com/amanus/CCNServices
http://www.xuggle.com/xuggler/
http://www.xuggle.com/xuggler/

