
Abstract--Supporting the Internet connection
became a part of the modern public
transportation system. This paper applies,
Bonjour and peer-to-peer communication to
provide an Internet connection and make
users share their cache data with each other
in the same local network.

Index Terms--Opportunistic network, Auto-
proxy, Bonjour, Zero configuration
networking, Peer to peer.

I. Introduction
Public transportation plays an important

role. Using a shared passenger transportation
service, people can solve several traffic
problems such as a traffic flow. Meanwhile,
with the rapid growth of the Internet, more
and more people want to access new
information from the Interent when they are
using public transportation; however, it is
difficult to provide Internet access
everywhere. Hence, our objective is to
develop an iOS application to share web page
content in the cache of their devices.

In this paper we first define the system
architectures: the network architecture and the
application architecture. Section III describes
each component of the application
architecture. Section IV describes the setting
of Xcode[1], which is the IDE tool from
Apple.

II. Architectures
There are two architectures. One is for the

network model and the other is for application
components. The network model is based on
creating a local netwok in each bus or train by
a proxy node. At each station which has an

access point proxy nodes can update and
cache new content to satisfy passagers’
demand. On the other hand, application
components describe our iOS application in
detail such as how to access local cache.

A. The Network Architecture
In each bus or train there is a local network

that consists of a proxy node and serval peer
nodes. A proxy node provides three services:
DHCP service, HTTP proxy. Peer nodes
access the Internet through the proxy node
and they also run Bonjour[2] to discover
services among peers. This network model is
represented in the following figure.

Figure 1. The network model

Bonjour is not only for detection of users,
each peer also uses it to shares its cache index
dynamically; therefore, users can directly
browse each other’s cache index to check
whether there is interesting content or not.

When having a web page request, a peer
may receive the response from three sources:
its proxy node, its local cache, and other peer
nodes. The proxy node is the first source a
peer will ask to receive the latest content. A
peer’s local cache is the second, and other
peers are the lowest priority for searching
content. If no one has the content, the proxy

iOS application for content sharing in
Public transit systems

Yu-Wei Chang
Department of Computer Science, Columbia University

Email: yc2574@columbia.edu

mailto:yc2574@columbia.edu
mailto:yc2574@columbia.edu

node will save the request and update its
cache when arriving at a bus/train station.

B. The Application Architecture
Our iOS application consists of four levels

and several components. Users will directly
interact with three main components: a web
browser, the local cache list, and the peer
node list. The application architecture is the
following:

Figure 2. Application components

The web browser will communicate with
the URL cache, which is an interface to
manage cache data in iOS device. Before the
web browser loads any URL request, it will
check the URL cache first. The URL cache
saves content into a database; therefore, even
if users close this application, they will not
lose the data. Moreover, the local cache list
can directly communicate to the database and
show the cache index. On the other hand
when a URL request cannot be found in the
database, this application will send a URL
request to the proxy node or to the other
peers. The peer list is similar to the local
cache list, but it shows the cache list from
other peers; therefore, it interacts with the
peer-to-peer component that respond to all
peer-to-peer communications.

III. Components
This section describes the application

architecture in general; however, there are

several technical problems in each
component. This section will describe each of
these problems and explains our solutions and
implementations.

A. The Web Browser and the URL Cache
Since the web browser is built by

UIWebView[3], it hides and protects the
content of web pages. There is no way to take
data out from an instance of UIWebView.
However, because the web browser uses an
instance of NSURLCache[4] to manage its
cache data, the instance of NSURLCache will
pass every URL request too. Hence it has
become the perfect place to retrieve data. The
following code show how to setup a
customized NSURLCache.

cache = [[MyURLCache alloc] init];
[NSURLCache setSharedURLCache: cache];

Code 1. Setup customized NSURLCache

MyURLCache is the subclass of
NSURLCache. After the creation of an
instance of MyURLCache, the
setSharedURLCache method sets it to
become the shared URL cache for
UIWebView. Since MyURLCache inherits
f r o m N S U R L C a c h e , t h e
cacheResponseForRequest method is invoked
by an instance of UIWebView, in order to
check whether there is a appropriate cache
data for URL request.

B. Model
This application follows Model-View-

Controller[8] pattern in which model means
data. We adopted CoreData[5] to build model
component. CoreData is based on the
managed object model[5]. It describes an
object scheme. When an object into the
database or it from the database, the object
must follow the managed object model. Our
managed object model, which is called
Content, consists of context (which is binary
data), mineType (which indicates media
type), rank (which is the page hits count),

timeStamp (which is the date of insertion of
the content) and url. The following figure
shows managed object model.

Figure 3. Content Model

C. Peer-to-Peer
Peer-to-Peer communication is one of the

most important parts of this application.
Bonjour, NSNetService[2] and
NSNetServiceBrowser[2], detects each device
and exchange cache index information. Every
device will share its top five popular URL
indexes.

The URL request and response between
each peer are based on unicast socket
communications. This application adopted
event base methods, so the system will not be
locked by a URL request. After the device
receives a respond, it will refresh its web
browser. The following figure is the time
flow.

Figure 4. Time flow

In figure 4, after the web browser has sent
a request to the URL Cache, if there is no
cache content, it will send an asynchronous
request and return null to web browser. After
the URL Cache receives the response from
other peers, it will refresh the web browser. In

order to implement this event trigger, there
are two sets of delegate protocols[9, 10],
which is called interface in Java
programming. The following code shows
these two delegate protocols.

@protocol AsynNetworkDelegate <NSObject>
- (void) asynDownload: (AsynNetwork *)

asynNetwork didFailWithError: (NSError *)
error;

- (void) asynDownloaddidFinish:(AsynNetwork *)
asynNetwork;
@end

@protocol AsynModelDelegate <NSObject>
- (void) AsynModelDidInsertContent: (Content

*) newContent;

- (void) AsynModelWillRequestContent:
(NSString *) reqStr;
@end

Code 2. Delegate Protocols

The cache manager must implement the
AsynNetworkDelegate protocol to be
triggered by socket objects. After the socket
stream receives a response, the socket object
wil l invoke i ts delegator ’s
asynDownloaddidFinish method. The
delegator, which is the cache manager, does
two things in this method. First, it stores data
from socket stream into the database. Second,
the cache manager will notify its delegator,
which is a web browser, that content has
already been stored into the local cache.

- (void) asynDownloaddidFinish:(AsynNetwork *)asynNetwork {
 if (asynNetwork.data == nil) {
 return;
 }

 NetworkUtility *utility = [[NetworkUtility alloc] init];
 NSURL *url = asynNetwork.url;
 NSString *mineType = [utility
identifyMineTypeWithNSURL:url];
 [utility release];
 NSString *urlStr = [NSString stringWithFormat:@"%@://%@
%@", [url scheme], [url host], [url path]];
 Content *newContent = [self
insertNewObjectwithContext:asynNetwork.data mineType:mineType
url:urlStr];

 [asyDelegate AsynModelDidInsertContent: newContent];
 [asynNetwork autorelease];
}

Code 3. AsynDownloaddidFinish

The first three lines of
asynDownloaddidFinish check whether data
from socket objects are empty or not. And

then, from 4th line to 9th line store data into
the database. The last second line invokes
AsyModelDidInsertContent of its delegator,
which is the web browser.

In fact the cache manager also will notify
its delegator before it sends an URL request
out. In order to receive these two notices, a
web browser must implement
AsynModelDelegate protocol. The
AsyModelDidInsertContent will be invoked
after data is stored into the database; the
AsynModelWillRequestContent will be
invoked before an URL request is sent.

After receiving a notice of that data are
stored, the web browser will refresh its
content. This may cause the web browser to
refresh several times; therefore, we adopted a
request pool to reduce the refresh. A web
browser has a request pool. When
AsynModelWillRequestContent is invoked,
the web browser just put an URL into the
pool:

- (void) AsynModelWillRequestContent:
(NSString *) reqStr {
 [downloadPool addObject: reqStr];
}

Code 4. Put an URL into the pool

Web browser will delete this request when
AsynModelDidInsertContent is invoked. The
web browser only refreshes, when the request
pool is empty.

- (void) AsynModelDidInsertContent: (Content *) newContent {
 [downloadPool removeObject:newContent.url];
 if ([downloadPool count] > 0) {
 return;
 }

 Content *pp = [self.modelManager contentRequest:lastUrl];
 if (pp == nil)
 return;
 [self.webview stopLoading];
 [self.webview loadData:pp.context MIMEType:pp.miniType
textEncodingName:@"utf-8" baseURL:[NSURL
URLWithString:pp.url]];

 ...
}

Code 5. AsynModelDidInsertContent

T h e fi r s t l i n e o f
AsynModelDidInsertContent removes the
URL from the pool. And the second and third

lines check if the pool is empty or not. If it is
empty, the next eight lines refresh the web
browser. By using this solution, we reduce
refresh requests from 106 times to 36 times
when loading the home page of the New York
times.

IV. Setting
We used the current version of Xcode,

which is Xcode 4.0, and the latest SDK,
which is SDK 4.3. This application used six
libraries from Cocoa framework: Foundation,
UIKit, CoreGraphics, CoreData, CFNetwork,
and SystemConfiguration. The first three
libraries are required by any iOS application,
and the socket programming requires last two
libraries.

There are 30 source code files. They are
represented in the following figure.

Figure 5. Source code files

PTMAppDelegate is the entry of the
application. There is a UITabBarController[6]
including three view controllers: Bonjour List
(BonjourListViewController), Cache List
(CacheListViewController), and Web
Browser (WebBrowserViewController).
MyURLCache is the implementation of the
URL Cache component. The object model
scheme is described in PTM.xcdatamodeld[5]
and its counterpart, which is the source code
of object model, is Content. ModelManager is
the implementation of the model component.

There are two parts in the Peer to Peer
group: Server (BonjourSocketServer responds
to set up NSService and a unicast socket[7])
and Client (BonjourDiscoverSocketClient
responds to set up NSServiceBrowser).
SocketServerRequest will handle URL
request from other peers, and its counterpart,
SocketClient, will send a URL request and
handle the responses from the peer who has
an appropriate content. BonjourPeer is a map
linking a peer’s NSService and its cache list.

The network group has NetworkUtility
(which are some utilities such as mineType
detection) and AsynNetwork (which creates
asynchronous download connections).

V. Conclusion
In this paper, we show an iOS application

that can cooperate with a proxy node to make
users share their cache content. This
application also provides offline web browser
functionality.

VI. Reference
[1] Xcode: https://developer.apple.com/xcode/
[2] Introduction to NSNetServices and CFNetServices
Programming Guide: https://developer.apple.com/
library/ios/#documentation/Networking/Conceptual/
NSNetServiceProgGuide/Introduction.html
[3] UIWebView Class Reference: https://
developer.apple.com/library/ios/#documentation/
UIKit/Reference/UIWebView_Class/Reference/
Reference.html
[4] NSURLCache Class Reference: https://
developer.apple.com/library/ios/#documentation/
Cocoa/Reference/Foundation/Classes/
NSURLCache_Class/Reference/Reference.html
[5] Introduction to Core Data Programing Guide:
https://developer.apple.com/library/ios/
#documentation/Cocoa/Conceptual/CoreData/
cdProgrammingGuide.html
[6] Tab Bar Controller: https://developer.apple.com/
library/ios/#featuredarticles/
ViewControllerPGforiPhoneOS/TabBarControllers/
TabBarControllers.html
[7] Introduction to Stream Programming Guide for
Cocoa: https://developer.apple.com/library/ios/
#documentation/Cocoa/Conceptual/Streams/
Streams.html
[8] Model-View-Controller Design Pattern: http://
developer.apple.com/library/ios/#documentation/
Cocoa/Conceptual/CocoaFundamentals/
CocoaDesignPatterns/CocoaDesignPatterns.html%23//
apple_ref/doc/uid/TP40002974-CH6-SW1
[9] Cocoa Core Competencies--Delegate: http://
developer.apple.com/library/ios/#documentation/
General/Conceptual/DevPedia-CocoaCore/
Delegation.html
[10] Cocoa Design Pattern--Chain of Responsibility:
http://developer.apple.com/library/ios/#documentation/
Cocoa/Conceptual/CocoaFundamentals/
CocoaDesignPatterns/CocoaDesignPatterns.html

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

