
Internet Cache in Opportunistic Networks
Taotao Li

Dept. of Computer Science, Columbia University

New York, NY 10027

tl2453@columbia.edu

ABSTRACT
I made several improvements based on the former version. The
improvements include removing the hard-coded part in the source
files, importing the proxy auto-configuration and porting the
project to Soekris net5501.

1. INTRODUCTION

1.1 Overview of Web Cache Project
The system works between a client and an AP. The basic idea is
that a proxy node caches the web content when Internet connection
exists. When a client asks for the web content, a proxy node checks
the Internet connection and try to get the web connect which the
client has asked for. Using a local cache, the proxy node caches
requested content. Simultaneously, it provides the client a list
containing the web content already cached by proxy node. The
client can browse the cached content he or she is interested in. If
the proxy node successfully caches the web content the client
originally asked for, it pushes a notification on the client's browser.
Hence, the client can retrieve the content.

1.2 The improvements
There are mainly three improvements based on the previous
version:

1. Created the project configuration file, and make the parameters
such as server directory and IP address configurable.

2. Imported proxy-auto configuration approach to simplify the
configuration task in the user side.

3. Installed OS, wireless driver in Soekris net 5501. And also
ported the project code to Soekris net 5501.

2. Architecture
2.1 System architecture

The proxy node works between a client and an AP. When a client
sends the request to our proxy node, it checks the Internet
connection. If it exists, the proxy node fetches the web content. But
if the Internet connection is not available at that time, our proxy
node provides the list of cached web content, and then the client
can browse the cached web content. The proxy node puts the
request in request queue, so if the Internet connection is available
later on, the proxy node fetches it and also push the notification on
the client browser. The proxy node makes the corresponding

adjustment for storing the web content in local file system, so the
client can browse the correct and completed web content.

2.2 Architecture of proxy auto-
configuration
I implemented the feature proxy auto-configuration in our Web
Cache Project, so the client does not need to manually set up the
proxy such as an IP address and a port number. Our proxy auto-
conf is based on the Web Proxy Autodiscovery protocol [1] [2] [3]

Note that this WPAD protocol is not a standard protocol, which
means that not all browsers would support it. However, I have
proved that it works in IE 8 and 9, Firefox, Chrome and Safari.

 Figure 1
The basic idea of WPAD is that the proxy node includes the related
proxy information in a specific file (.pac file). Hence the proxy
information such as IP addresses and port number is recorded in
this file. The proxy node puts .pac file in the directory of web
server, so the client can fetch the file via corresponding URL. The
proxy node needs to combine such URL information in some
specific the response to the client. For example, when the client
sends the DHCP request or DNS request to the proxy node, the
proxy node combines the URL of .pac file in its DHCP/DNS
response. With the support of browsers, the client fetches such file
and parses the content, and then setup the proxy automatically. By
such approach, the client does not need to manually specify the
proxy configuration anymore.

3. Details of Web Cache Project Code
OppNetCache.java
It includes the most important functions in the project. It
implements a separate thread and runs as a daemon to listen and
wait for clients’ requests.

isInternetReachable() Function
The isInternetReachable () function is called from the function
run() which runs as daemon. The function tries to check the
Internet connection by resolving a common website. In the original
version, the interface name for Internet connection must be
specified. So I rewrote this function by removing such restriction.
Hence the user does not need to specify such information anymore.

OppnetHelper.java
This file retrieves the information in the project configuration file.
It also tells from the network card for Internet connection from the
card for ad-hoc connection.

loadOppnetConf()Function
This function locates the project configuration file mentioned
above and loads the corresponding parameters.

analyzeNetworkCard()Function
This function is used to analyze the usage of network card.
Basically, the network card whose ESSID contains special words
(which can be defined by user in our project configuration file) are
treated as ad-hoc connection card.

getIpAddressByCardName()Function
The function is responsible for returning the corresponding IP
address by its network card name.

OppnetCache.java, OppnetFilter.java, Server.java,
ShowStatus.java and ShowNothing.java
I made the corresponding adjustments so that the “hard-coded” part
can be removed from our source code. It includes tomcat directory,
port number and network card for Ad-hoc connection.

4. How to build and run the project

4.1 Requirement of Web Cache Project
To build and install Web Cache Project, the hardware and software
should satisfy the following requirements:

1. Make sure you have two wireless network interface cards on
your machine, so you can use one to set up an ad-hoc network and
use the other to connect to access point (AP).

2. Make sure you have installed JDK 1.6

3. Make sure you have installed Tomcat 6.0. For Linux machine,
you should follow the default installation directory, i.e. under the
path “//user/local/tomcat/”

4. For development purpose, you also need to install Eclipse 3.6,
but this is not necessary if you just want to run our application

5. If you want to install Web Cache Project on windows machine,
you need to install windows SDK to identify the network

connection and modify some source path, this document is for
Linux system.

4.2 Steps for run Web Cache Project
Step 1 Set up an Ad Hoc network on your proxy server machine,
and manually set its IP address for Ad Hoc to 10.42.43.8. Use a
client machine to join this Ad Hoc network.

Step 2 Unzip and open folder OppNet_src_v3.

Step 3 Copy folder CacheFiles and StatusBar, and then paste
them under directory “/usr/local/tomcat/webapps/” as shown be-
low.

Step 4 Open a prompt window and start up Tomcat using the fol-
lowing command:

oppnet@irt:~$ cd /usr/local/tomcat/bin

oppnet@irt:/usr/local/tomcat/bin$./startup.sh restart

Step 5 Follow the instructions in the source directory to install and
configure the servers.

Step 6 Set the path to “OppNet_src_v3/muffin-0.9.3a/src” and
start up Muffin.

oppnet@irt:~$ cd /home/oppnet/OppNet_src_v3/muffin-0.9.3a/src

Step 7 Run Muffin using the following command:

oppnet@irt:/home/oppnet/OppNet_src_v3/muffin-0.9.3a/src$ java
Muffin

Step 8 The Muffin is running now and you can monitor what’s
happening on the proxy server side. On your client machine, open a
web browser and it should automatically setup the proxy.

Step 9 Use Firefox to send an HTTP request for a webpage. And
you will see on proxy server side that this request is in the queue
right now. If the proxy server side has network connection to AP, it
will send out the request and cache the response then push notifica-
tion to client, if it doesn’t, it will keep checking network status.

Step 10 To stop Muffin, press key Ctrl+C; to shut down tomcat,
use command ./shutdown.sh

5. The steps to install Ubuntu on Seokris
net 5501
5.1 Install OS
These instructions describe how I installed Ubuntu 10.04 on
Soekris net5501[4] by using debootstrap to build a CF card on a
host system running Ubuntu 10.04. I need to use Minicom to
capture the output of net5501, and I need to set its speed rate to
115200 and use “minicom –s –n on” to run minicom.

1. Partition the CF card and mount the target / filesystem at
/mnt/target.

sudo mkdir /mnt/target

sudo cfdisk /dev/sdb

sudo mke2fs -j /dev/sdb1

sudo mount /dev/sdb1 /mnt/target

2. Mount the installation ISO

sudo mkdir /mnt/iso

sudo mount –t iso15200 –o ro.loop=/dev/loop0
/home/oppnet./ubuntu 10.04-server-i386.iso /mnt/iso

3. Run debootstrap

sudo apt-get install debootstrap

sudo debootstrap –arch i386 feisty /mnt/target file:/mnt/iso

4. Chroot into the target

sudo chroot /mnt/target /bin/bash

5. Configure keyboard

dpkg-reconfigure console-setup

6. Setup a nonroot user

adduser foo

echo 'foo ALL=(ALL) ALL' >> /etc/sudoers

chmod 0440 /etc/sudoers

7. Create the file /etc/event.d/ttyS0:

start on runlevel 2

start on runlevel 3

start on runlevel 4

start on runlevel 5

stop on runlevel 0

stop on runlevel 1

stop on runlevel 6

respawn

exec /sbin/getty -L ttyS0 115200 vt102

8. Edit the file /etc/initramfs-tools/modules and add the
following two lines at the end of the file:

ext3

ide_generic

 Then, run update-initramfs –u

9. Install grub and linux generic kernel

apt-get install linux-image-generic grub memtest86+

mkdir -p /boot/grub

cp /usr/lib/grub/i386-pc/* /boot/grub

editor /boot/grub/menu.lst

exit

10. Run the command to finish the installation.

Run this from outside the chroot()

 sudo grub-install --no-floppy --root-directory=/mnt/target
/dev/sdb1

11. unplug the CF card form your laptop and insert it to the
Soekris net 5501.

5.2 Build the wireless driver to linux kernel
Since Ubuntu Server 10.04 cannot recognize the wireless driver
successfully, I need to manually download the source code and
compile it.

1. Install the essential build tool.

Sudo apt-get install build-essential bin86

2. Download the Madwifi source code [5]

3. Extract the Madwifi source code

 Tar –xzf madwifi-0.9.4.tar.gz

4. Download the linux source code I are using

 Sudo apt-get install kernel-headers-$(uname -r)

5. Go to the directory of Madwifi and run

Sudo make clean

Sudo make

Sudo make install

This takes around half an hour to compile the source code,
make sure there are no errors in the output screen.

6. Make the kernel to probe the module automatically

Echo ath_pci > /etc/modules

7. Reboot the box and the wireless card should be recognized
successfully.

5.3 The steps to port the code to Seokris net
5501
1. Install dhcp server

Sudo apt-get install dhcp3-server

2. Install dns server

Sudo apt-get install bind9

3. Install apache server

Sudo apt-get install apache2

4. Copy the corresponding configuration file to the right
directory, follow the instructions in ReadMe file.

5. Install tomcat server

Download the zip version of tomcat and extract it to
/usr/local/ directory

6. Install ssh server

Sudo apt-get install ssh

7. Connect to the box via ssh, and I can run the program by “ssh
–X foo@x.x.x.x” (x.x.x.x is the IP address of box which I can
connect via network)

6. Conclusion
By removing the hard-coded parts in the previous source code, the
current version is more configurable and flexible. By adding the
proxy auto-configuration, the client browser can automatically set
up the proxy. So the user does not need to manually set up the
proxy parameter. Also, I successfully installed OS on Seokris net
5501 and set up the WLAN driver.

7. Reference
[1].http://en.wikipedia.org/wiki/Web_Proxy_Autodiscovery_Proto
col

[2].http://en.wikipedia.org/wiki/Proxy_auto-config

[3].http://www.itbully.com/articles/auto-configuring-proxy-settings

[4]. http://soekris.com/products/net5501.html

[5].http://madwifi-project.org/

mailto:foo@x.x.x.x

	1. INTRODUCTION
	1.1 Overview of Web Cache Project
	1.2 The improvements
	2. Architecture
	2.1 System architecture
	2.2 Architecture of proxy auto-configuration
	3. Details of Web Cache Project Code
	OppNetCache.java
	It includes the most important functions in the project. It implements a separate thread and runs as a daemon to listen and wait for clients’ requests.
	isInternetReachable() Function

	OppnetHelper.java
	loadOppnetConf()Function
	analyzeNetworkCard()Function
	getIpAddressByCardName()Function

	OppnetCache.java, OppnetFilter.java, Server.java, ShowStatus.java and ShowNothing.java

	4.	How to build and run the project
	4.1	Requirement of Web Cache Project
	4.2	Steps for run Web Cache Project
	5.	The steps to install Ubuntu on Seokris net 5501
	5.1 	Install OS
	5.2	Build the wireless driver to linux kernel
	5.3	The steps to port the code to Seokris net 5501
	6. 	Conclusion
	7. 	Reference

